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ABSTRACT 
 
The work and life of Piotr Szymański is reviewed. He is the author of a classical paper on 
accelerating pipe flow, but is relatively unknown to the scientific community of today. 
The paper by Szymański is one of the first related to unsteady friction, clearly explaining 
the underlying physics and with rigorous mathematics. Exactly half a century after his 
death, the authors of this current paper would like to pay a modest tribute to the man and 
his achievements. 
 
 
INTRODUCTION 
 
In 1932 in the prestigious Journal de Mathématiques Pures et Appliquées a paper 
appeared with the title "Quelques solutions exactes des équations de l’hydrodynamique 
du fluide visqueux dans le cas d’un tube cylindrique". The author was Piotr Szymański 
from Varsovie. The paper became famous, but its author always remained anonymous. 
The translated title is "Some exact solutions of the equations of hydrodynamics of viscous 
fluid in the case of a cylindrical tube". The paper gives the analytical solution of laminar 
pipe flow accelerating from rest and as such forms a basis for the nowadays popular 
research topic "unsteady friction". It is our intention to inform the reader about the man 
behind the paper. Szymański had an interesting life in a turbulent time in a dangerous 
part of the world. He was deported twice, escaped from concentration camp, became 
ambassador of Poland, and ended up as full professor in Warsaw. The paper itself was in 
French and a summary by Szymański (translated into English by the authors) is given in 
Appendix B herein. The paper will be placed in its historical context, both regarding 
predecessors and successors. Related work by Szymański will be mentioned and his full 
biography is listed in Appendix A. In fact, his main contribution to science can be dated 
two years earlier than 1932: in 1930 he presented a condensed version of his1932 paper 
at an esteemed conference in Stockholm. 
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Fig 1  Professor Piotr Szymański. 
 
 
UNSTEADY FRICTION 
 
Unsteady friction (UF) in unsteady pipe flow refers to situations where a quasi-steady 
law is not sufficient to describe skin friction at the wall. The unsteady velocity profile is 
not parabolic as function of the radial coordinate r, but can take different shapes 
depending on the pressure gradient as function of time t. All early work concentrated on 
the calculation of velocity profiles in laminar flow. [Schönfeld (3) appears to be the first 
to consider turbulence in modelling UF.] The mathematical problem is one-dimensional 
in space, with − compared to waterhammer − the radial coordinate r instead of the axial 
coordinate x. For steady oscillatory flow driven by a sinusoidal pressure-gradient, 
analytical solutions were derived independently in the 1920s by Crandall (4), Grace (5) 
and Sexl (6), and by Gerbes (7), Fassò (8-9) and Womersley (10) in the 1950s. Important 
− but less well known − works preceding these investigations were by Witzig (11), 
Gromeka (12-13) and Boussinesq (14-15). 
 Szymański (1-2) (in French) considered starting of a flow due to a suddenly applied 
pressure gradient. He used Fourier-Bessel (Hankel) transforms to derive the analytical 
solution presented herein in the section "His Work". Gromeka (12) (in Russian) and 
Gerbes (13) (in German, and using Laplace transforms) derived the same solution. 
Gerbes also dealt with stopping of a flow and found that − in contrast to starting flow − 
the unsteady velocity profile keeps a parabola-like shape during deceleration to rest. 
Brereton (16) considered − besides pipe flow − unsteady flow between two parallel 
plates, and Brereton and Jiang (17) systematically calculated all relevant functional 
dependencies. Vardy and Brown (18-19) presented analytical solutions derived for the 
extra complication of time-dependent viscosity. 
 Laminar flow is of less significance for civil engineering practice, where nearly all 
flows are turbulent, but nowadays the subject becomes increasingly important because of 
micro- and nano-tubes conveying liquids. Via d’Souza and Oldenburger (20) and Zielke 
(21), the papers mentioned above also stood at the basis of UF in turbulent flow and 
waterhammer (22-23). 
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HIS LIFE 
 
Piotr Szymański (Fig. 1) was born on 29 June 1900 in the village of Cypryjanka in the 
administrative district of Lipno (Poland). His father (Stefan) worked as a technician in 
the Chełmica sugar factory. During World War I his father was evacuated to the city of 
Berdyansk on the northern coast of the Sea of Azov (Ukraine). In that city Piotr 
Szymański spent his formative years (from 1915-1921). In 1918 he finished high school 
and started his studies in the Department of Mathematics and Physics at the University of 
Kharkov (Ukraine). Because it was (civil) war time, he could not study in a normal way 
and was forced to learn independently. In 1921 he went back to Poland and started 
mathematical studies in the Department of Philosophy at the University of Warsaw. He 
specialised in the theory of sets and topology. In 1926 he finished and defended his Ph.D. 
Thesis with the title "About the sum of two irreducible continua" under promotor 
Professor S. Mazurkiewicz (Fig. 2). In 1928, on the initiative of Professor C.M. 
Witoszyński, he gained a one-year scholarship in Paris to specialise in hydrodynamics 
and aerodynamics. In Paris he wrote his famous work on the hydrodynamics of viscous 
pipe flow, which was subsequently published in the Journal de Mathématiques Pures et 
Appliquées (1). This contribution to science has excited specialists ever since. The 
theoretical solutions presented in the article were experimentally validated shortly later in 
the University of Lille (the person who validated the solutions had a private letter 
communication with Piotr Szymański). After Paris, Szymański returned to Poland and 
took on positions at Warsaw Polytechnic. 
 
 

 
Fig 2  Copy of Szymański’s Ph.D. Diploma (1926). 

 
 

During the German-Russian-Slovak invasion of Poland in September 1939, which 
marked the beginning of World War II, Szymański was deported to Romania and 
interned in a concentration camp in Tulcea. In October 1939, when transported to another 
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camp, he was lucky enough to escape by running away from the train. He ended up in 
Cluj (Romania) (1939-1940) where he gave a series of lectures at Cluj University on the 
"theory of sets" (there was large interest in hearing them). From Cluj he moved to 
Craiova (Romania) where he became teacher at and director of the local Polish high 
school. He stayed in Romania during the entire war and wrote many articles published in 
Romanian journals (see App. A). 
 During his stay abroad he was socially and politically active. He became involved in 
the Association of Polish Patriots and was elected president of the Polish Democratic 
Union in Romania. This fact, and because he was highly educated and fluent in Russian, 
French and Romanian, and also understood English and German, led to an appointment 
within the Ministry of Foreign Affairs after his return to Poland in July 1945. An 
additional explanation is that he joined the Polish Communist Workers Party. He became 
diplomat in Denmark, Hungary and Romania and made it up to Polish Ambassador in 
Romania. His interests for science and didactics made him in 1949 return to Academia 
and Applied Mathematics. He ended his long career as Full Professor at Warsaw 
Polytechnic. His impressive Curriculum Vitae is summarised in Table 1. 
 He married to Halina Smolarkiewicz and had one son: Jan Kazimierz (born on 8 
October 1928) who became an interior architect in Warsaw. He had a brother Jerzy who 
too was employed at Warsaw Polytechnic and a sister Helena Wojtulewska who worked 
as a clerk in cooperatives at Białystok. He died on 13 January 1965 in Warsaw probably 
due to problems with his heart. 
 
 

Table 1  Curriculum Vitae. 
 
From  To  Institute Position City 
IX 1924 VIII 1925 Teachers Seminar Teacher Warsaw-

Ursynow 
1925 1928 Aerodynamic Institute – 

Warsaw Polytechnic 
Scientific Worker Warsaw 

IX 1927 VIII 1928 Jan Zamoyski High School Teacher Warsaw 
VIII 1928 V 1929 Advanced studies Post-Doc Paris 
VIII 1929 VIII 1934 Aerodynamic Institute 

Warsaw Polytechnic 
Research Fellow Warsaw 

X 1929 VIII 1939 Department of Mathematics 
Warsaw Polytechnic 

Senior Assistant Warsaw 

X 1934 VIII 1939 School of Aviation Cadet 
Officers 

Lecturer Bydgoszcz 
Warsaw 

I 1940 III 1945 Craiova High School Teacher and 
Director 

Craiova 
(Romania) 

VI 1945 X 1945 Ministry of Foreign Affairs Advisor Warsaw 
XI 1945 V 1946 Polish Embassy Copenhagen Chargé d’Affaires Copenhagen 
VII 1946 VII 1947 Polish Embassy Budapest Chargé d’Affaires Budapest 
VIII 1947 II 1949 Polish Embassy Bucharest Ambassador Bucharest 
II 1949 V 1949 Ministry of Foreign Affairs Advisor Warsaw 
V 1949 VIII 1950 Course for Railroad 

Engineers 
Lecturer Warsaw 

V 1949 VII 1951 Ministry of (University and) 
Education 

Assistant Manager Warsaw 

VII 1951 VI 1962 Warsaw Polytechnic – Dept. 
of Geodesy and Cartography 

Assistant and Full 
Professor 

Warsaw 
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HIS WORK 
 
Szymański’s much celebrated paper (1) [8] appeared in the Journal de Mathématiques 
Pures et Appliquées in1932, but was preceded by a fine and to-the-point summary (2) [6] 
presented at the Troisième Congrès International de Mécanique Appliquée held in 1930 
in Stockholm. Renowned participants were Th. von Karman and E. Jouguet, the latter 
known from his early text on waterhammer (25). Szymański’s other mathematical 
treatments of fluid mechanics were on Stokes flow [7], on tapered tubes [9] and on 
boundary layers [15]. 
 
His main contribution is the analytical solution describing the instantaneous acceleration 
of an initially stationary fluid. The Newtonian fluid is incompressible and contained in a 
cylindrical pipe of circular cross-section. The governing partial differential equation for 
the velocity profile ( , )v r t is linear: 
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where r is the radial coordinate, t is time, D is the pipe diameter, and ν  is the kinematic 
viscosity. The constant 1 / ( ) 0C P Lρ= ∆ >  represents a suddenly applied acceleration 
with P∆  the corresponding pressure step, ρ is the mass density and L is the pipe length. 
The solution is in terms of Bessel functions (J) of the first kind of orders 0 and 1: 
 

 
( )

2
3

12 0
8

3
1 1

2J
2( , ) 2 1 8 e

J
n

n C t

n n n

r
r Dv r t V

D
λ

λ

λ λ

∞ −

∞
=

  
       = − −   

    
  

∑  (2) 

 
with final (cross-sectional) average velocity 1 3/ 0V C C∞ = >  and 2

3 32 / 0C Dν= > . 
The first 21 values of λn (nth zero of J0) are: 
 
λ1 = 2.40482555769577 λ8  = 24.3524715307493 λ15 = 46.3411883716618 
λ2 = 5.52007811028631 λ9  = 27.4934791320403 λ16 = 49.4826098973978 
λ3 = 8.65372791291101 λ10 = 30.6346064684320 λ17 = 52.6240518411150 
λ4 = 11.7915344390143 λ11 = 33.7758202135736 λ18 = 55.7655107550200 
λ5 = 14.9309177084878 λ12 = 36.9170983536640 λ19 = 58.9069839260809 
λ6 = 18.0710639679109 λ13 = 40.0584257646282 λ20 = 62.0484691902272 
λ7 = 21.2116366298793 λ14 = 43.1997917131767 λ21 = 65.1899648002069 
 
For these 21 values, approximately: λn = −0.635 + 3.131 n . 
 
Plotting the truncated Eq. (2) for different instants of time leads to Szymański’s 
elucidating drawing: Figure 3. The difference with the related issue of entrance flow 
(from reservoir to pipe) is that entrance flow is steady and involves radial velocities, 
though Atabek (26) found analytical solutions for an unsteady entrance region. 
 
The cross-sectional average of the flow velocity, or discharge divided by cross-sectional 
area, is found directly from Eq. (2) as 
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From Eqs. (2) [with C1(t)] and (3) a relation between 
v
r

∂
∂

at the pipe wall (at r = D/2) and 

V(t) can be obtained, such that the wall shear stress can be included (as convolution-type 
UF) in one-dimensional (waterhammer) models governing V and P. 
 
The derivation of Eq. (2) is well described in (1) and (2), where (1) contains a range of 
mathematical proofs on convergence and asymptotic behaviour of the analytical 
solutions. In the 1930s that was most useful, since there were no computers to carry out 
quick checks (or produce a drawing like Fig. 3). For periodic and arbitrary pressure-
gradients driving the flow, Szymański found general solutions in terms of a series and an 
integral, respectively. Furthermore, in (2) he presented (with the aid of Green’s 
functions) integral expressions describing unsteady flow in conduits of arbitrary cross-
section. 

 
 

Fig 3  Szymański’s dimensionless velocity profiles published in 1930 (2): 
development from no-flow at time zero to Poiseuille flow at time infinity. 

 
 
CONCLUSION 
 
Szymański was a remarkable man with an interesting life in an eventful era. Mathematics 
and politics were his areas of focus. In both he kept the highest standards and reached the 
highest positions. Nevertheless, hydraulicians will remember him for his seminal paper 
(1). 
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APPENDIX B:  English translation of Szymański’s 1930 paper: 

 
ON THE NON-PERMANENT FLOW OF VISCOUS FLUID IN A PIPE 

by P. SZYMAŃSKI, Warsaw. 

PAGE 249 
Introduction. 

 This note is devoted to the study of the flow of incompressible viscous fluid in a 
cylindrical pipe. The objective that I pose myself is to obtain the exact solutions of the 
equations of STOKES, constituting generalisations of the well-known Poiseuille solution. 
The latter represents permanent laminar flow of viscous fluid in a pipe of circular cross-
section. Well then, I intend to study how the laminar flow regime establishes from rest. 
Therefore I look for integrals of the equations of Stokes that depend on time. I assume 
that the fluid velocity is constantly parallel to the pipe axis and that it is zero everywhere 
at the initial time. 
 I first study the case of a pipe of circular cross-section and I find the solution of the 
problem in the form of a series. The solution depends essentially on the manner in which 
the difference of the pressures at the ends of the tube varies with time. Of course, one 
assumes this function as given. 
 I show that if the said function has a certain limit at infinity, the solution for infinite 
time tends uniformly to the Poiseuille solution. 
 As for the general case of arbitrary pipe cross-section, I prove the uniqueness of 
solutions and I express these with a function similar to that of GREEN.1 
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I.  Flow through a pipe of circular cross-section. 

 The flow is symmetrical with respect to the pipe axis; we use the cylindrical 
coordinates (r, ϑ, z). We have the OZ axis along the axis of the pipe such that the ends of 
the pipe correspond to z = 0 and z = l. Assuming zero velocity components vr and vϑ, one 

obtains by virtue of the continuity equation: 0zv
z

∂
=

∂
. The equations of motion are 

written, therefore, as follows: 
 

 1 0p
rσ
∂

− =
∂

  (1) 
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1 1z z zp v v v

z r r tr
µ

σ σ
 ∂ ∂ ∂ ∂

− + + =  ∂ ∂ ∂∂ 
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 0zv
z

∂
=
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where p denotes the pressure, σ − the density of the fluid and μ − the coefficient of 
viscosity. 
 (The above equations are written for the case where the external forces are zero. If 
a potential for the external forces exists, the equations have a similar shape.) 
--------------------------------------------------------------------------------------------- 
1 I limit myself here to indicating and phrasing the theorems. An article about this topic and 
containing all the details of proofs will be published soon. 
 
PAGE 250 

 The equations (1) and (3) show that p is a function of z and t, while vz depends only 

on r and t, where, by virtue of equation (2), p
z
∂
∂

 is a function of t only. This is a given 

function equal to 0( )  ( )lp t p t
l
−  where pl(t) and p0(t) indicate the pressures at the 

terminations of the pipe. 

 The problem reduces to finding one function vz of the two variables r and t 
satisfying the equation: 
 

  

2
1 0

2
( )  ( )1 1z z z p t p tv v v

r r t lr
µ
σ σ
  −∂ ∂ ∂

+ − = ⋅  ∂ ∂∂ 
 (I) 

 
and conditions at boundaries: 
 
 vz = 0  for  r = r0 and t ≥ t0 ,  (α) 

 vz = 0  for  t = t0 and 0 ≤ r ≤ r0 ,  (β) 

 0zv
r

∂
=

∂
 for  r = 0 and t ≥ t0 .  (γ) 



12 
 

where r0 is the radius of the pipe cross-section and t0 − the initial time. (One may 
obviously assume t0 = 0.) 

 The pressure is determined by the formula: 

( ) ( )( ) ( ) o l
o

p t p tp t p t z
l
−

= − ⋅  

 Let us introduce new variables that do not depend on the particular choice of units 
of measurement by taking: 

0
, ,z

r
x v u

lr
µ
σ

= =  

( )
2

0
022

0

, l

t rT p p
r

µ σt
µσ

= = − . 

 The equation is then written as: 

 
2

2
1 ( )u u u T
x xx

t
t

∂ ∂ ∂
+ − =

∂ ∂∂
  (II) 

and the function u satisfies the conditions: 

 u = 0  for  x = 1 and τ ≥ 0 ,  (α) 

 u = 0  for  τ = 0 and 0 ≤ x ≤ 1 ,  (β) 

 0u
x
∂

=
∂

 for  x = 0 and τ ≥ 0.  (γ) 

In addition, the function u must be continuous and also its derivatives u
t
∂
∂

, u
x
∂
∂

 and 
2

2
u

x
∂
∂

 

for 0 ≤ x ≤ 1 and τ ≥ 0. We call such a function regular. 
 I solve the problem by the following method. For each given function T(τ), I find a 
particular solution u0(x, τ) of the equation (II) satisfying the conditions (α) and (γ). Then I 
find the solution w of the equation without second member (right-hand side): 

 

2

2
1 0w w w
x xx t

∂ ∂ ∂
+ − =

∂ ∂∂
   (III) 

satisfying the conditions (α) and (γ) and reducing to u0 (x, 0) for τ = 0 and 0 ≤ x ≤ 1. The 
function u = u0 − w will then be the solution of the problem. 
 I develop the function w in a series: 

 
2

1
( ) n

n
a

n n
n

w c J a x e t
=∞

−

=
= ∑  

PAGE 251 
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where J (ξ) denotes the Bessel function of the first kind and of zero order. This series 
formally satisfies equation (III) and the conditions (α) and (γ), if the numbers an are the 
roots of the equation: J(a) = 0. (It is sufficient to consider positive roots only.) 
 The condition (β) can be fulfilled by a suitable choice of the coefficients cn , if u0 (x, 
0) is developable in a series of FOURIER-BESSEL: 

( )0
1

,0 ( ).
n

n n
n

u x c J a x
=∞

=
= ∑  

 
 Based on the work of D. HILBERT, E. W. HOBSON and W. H. YOUNG1 we know how 
to identify the possibility of the development in question and calculate the coefficients cn 
for a broad class of functions. 
 I apply the method first to the case of the function T(τ) = h = const. and I find: 
 

2
0 ( 1)

4
hu x= −  

and 

 
22

3
1

( )( , ) 1 8
4 ( )

nan

n n n

J a xhu x x e
a J a

tt
∞

−

=

 
= − − ⋅ 

′  
∑ . (4) 

 I prove the uniform convergence of this series and its formal derivatives u
t
∂
∂

, u
x
∂
∂

 

and 
2

2
u

x
∂
∂

 for all values 0 ≤ x ≤ 1 and τ ≥ 0 with the exception of the point (x = 1, τ = 0) 

where the functions u
t
∂
∂

 and 
2

2
u

x
∂
∂

 are discontinuous. This is due to the fact that in the 

case considered the function T(τ) does not vanish for τ = 0, which is necessary if we are 
to satisfy the equation (II) and the conditions (α) and (β). 

 I then prove that the function (4) tends uniformly to u0, i.e. to the function of 

POISEUILLE, if the time τ increases to infinity. In the same manner, the derivatives u
t
∂
∂

, 

u
x
∂
∂

 and 
2

2
u

x
∂
∂

 tend respectively to 0u
t

∂
∂

, 0u
x

∂
∂

 and 
2

0
2

u
x

∂
∂

. The figure (Fig. 3 herein) 

shows the curves of the distribution of velocities for several values of τ. The limit curve 
is the parabola of POISEUILLE. 
 I construct by the same method the solutions A(x, τ, k) and B(x, τ, k) of our 
problem, corresponding respectively to the cases: 
 

( ) cos 1T kt t= −  
and 

( ) sinT kt t= −  
----------------------- 
 1 D. HILBERT.  Nachr. Ges. Gött. 1904 math.-phys.  p. 231-241  and  Th. der linearen 
Integralgleichungen.  Leipzig, 1924, p. 54. 
E. W. HOBSON.  Representation of a function by Bessel series of functions.  Proc. of the London 
Math. Soc. 2 ser. vol. VII, 1909, p. 387. 
W. H. YOUNG.  On series of Bessel functions.  Ibid. vol. 18, 1920, p. 184. 
 



14 
 

PAGE 252 

 With the aid of these two functions A(x, τ, k) and B(x, τ, k) I express the solutions of 
the problem for more general cases. I limit myself to the following two important cases. 

First case.  The function T(τ) is periodic. 
The result that I have obtained can be summarized as follows. 
»Let T(τ) be a periodic function of period ω;  if: 
1. T(0) = 0, 
2. T(τ) has a first derivative T '(τ), 
3. the functions T(τ) and T '(τ) have bounded variations on the interval (0, ω), 

4. 
0

2 2( )cosn
nsc T s ds

ω π
ω ω

= ∫   and  
0

2 2( )sinn
nss T s ds

ω π
ω ω

= ∫ , the function: 

1

2 2( , ) , , , ,
n

n n
n

n nu x c A x s B xπ πt t t
ω ω

=∞

=

   = −   
   

∑  

is a regular integral of equation (II) satisfying the conditions (α), (β) and (γ).» 

 The movement represented by the function u is not periodic although the pressure 
(the function T(τ)) varies periodically; but this movement is periodic in the limit for an 
infinite time τ. By this it is meant that the function u can be decomposed into two parts, 
one of which is periodic and the other tends uniformly to zero as τ increases indefinitely. 
The movement limits at the same period ω and follows the variations of the pressure. 

Second case.  The function T(τ) has a bounded limit for infinite τ. 
I prove the following theorem: 
»Let T(τ) be a function defined for all values τ ≥ 0;  if: 
1.  T(0) = 0, 
2.  T(τ) tends to a specified limit L for τ → ∞, 

3.  the integral ( )
0

T L dt t
∞

−∫  exists, 

4.  T(τ) is continuous and has bounded variations on the interval (0, ∞), 
5.  T(τ) has a first derivative T '(τ) with bounded variation on the interval (0, ∞), 

6.  
0

2( ) ( ) cosc k T s L k s ds
π

∞

= −∫ , the function: 

( ) ( )
0

, ( , , )  u x c k A x k dkt t
∞

= ∫  

is a regular integral of equation (II) satisfying the conditions (α), (β) and (γ).» 
 In this general case the limit of the motion is also that of POISEUILLE, as in the case 
already studied. In particular we have: 

 »The functions u, u
x
∂
∂

, 
2

2
u

x
∂
∂

 and u
t
∂
∂

 tend for infinite τ uniformly to 2( 1)
4
L x − , 

2
L x , 

2
L  and 0, respectively.» 1 
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II.  Flow through a pipe of arbitrary cross-section. 

 We now use Cartesian coordinates as being more convenient. Let us have the pipe 
axis, as before, along the axis OZ of the coordinates. Let C be the contour of the cross-
section of the pipe in the plane OXY, or in any arbitrary plane perpendicular to the pipe 
axis. The points (x, y) located within or on the contour C, form a closed region which we 
refer to as R. 

------------------------ 
1 I am indebted to MR. ZYGMUND for the simplification of the proof of this theorem. 
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 Assuming vx = 0 and vy = 0 one arrives at, as before, the conclusions 0p
x
∂

=
∂

, 

0p
y
∂

=
∂

 and 0zv
z

∂
=

∂
. The problem reduces to a single equation: 

 

2 2

2 2
1 ( )z z zv v v T t

tx y ν
∂ ∂ ∂

+ − =
∂∂ ∂

 
 

(I) 

with one unknown function vz of three variables x, y and t. The function T(t) is given and 

has the same meaning as before, ν is a constant ( µν
σ

= ). The function vz must be regular 

for t ≥ 0 and for any point (x, y) of the region R. The boundary conditions are here: 
vz = 0 for t ≥ 0 and for every point (x, y) on the contour C,   (α) 
vz = 0 for t = 0 and for every point (x, y) of the region R.   (β) 
 Let: 

0

( )
t

zv u T s dsν= − ∫  

 The equation becomes: 

 

2 2

2 2
1 0u u u

tx y ν
∂ ∂ ∂

+ − =
∂∂ ∂

  
(II) 

with the conditions: 

0

( )
t

u T s dsν= ∫  for t ≥ 0 and (x, y) situated on C,  (α) 

u = 0 for t = 0 and all (x, y) of the area R.  (β) 
 I study the more general problem where the function u(x, y, t) reduces for t = 0 to a 
given initial function φ(x, y) and for the points (x, y) situated on C it has the values of the 
given boundary function f(x, y, t). 
 First I take care of the uniqueness of the solutions and I reach the following 
theorem: 
»If u1 and u2 are regular solutions of equation (II) corresponding to boundary functions 
f1(x, y, t) and f2(x, y, t), respectively, and to the same initial function φ(x, y) and if, 
moreover, the functions f1(x, y, t) and f2(x, y, t) have the same values for 0 ≤ t ≤ t1 and for 
(x, y) situated on C, then the functions u1 and u2 coincide for 0 ≤ t ≤ t1. In particular, if t1 
= ∞, the functions u1 and u2 are identical.» 



16 
 

 I express the solutions of the problem with the aid of the function G(x, y, t, ξ, η, τ) 
which I define in the following manner:1 

1. G(x, y, t, ξ, η, τ) = w(x, y, t, ξ, η, τ) − g(x, y, t, ξ, η, τ) 
where: 

2 2( ) ( )
4 ( )1

x y
tw e

t

x η
ν t

t

− + −
−

−=
−

 

and g is a solution of the adjoint equation: 

2 2

2 2
1 0g g g
ν tx η

∂ ∂ ∂
+ + =

∂∂ ∂
 

regular for 0 ≤ τ ≤ t and for points (ξ, η) in the region R, 

2.  g = w if 0 ≤ τ ≤ t and if the point (ξ, η) is located on C, 
3.  g = 0 if τ = t and if the point (ξ, η) belongs to R. 
If for the region R the function G exists, the solution of the problem has the form: 

0

1 1( , , ) ( , ) ( , , , , ,0) ( , , )
4 4

t

R C

dGu x y t G x y t d d d f ds
dn

f x η x η x η t x η t
πν π

= +∫∫ ∫ ∫  

-------------------------------- 
 1 Cf. A. SOMMERFELD. Zur analytischen Theorie der Wärmeleitung. Math. Ann. vol. 45, 
1894, p. 263.  See also: H. WEBER. Part. Different. Gleich. 1919 vol. II. 
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 Applying this general formula one obtains for the velocity vz of our flow the 
following expression: 

0 0

( ) ( ) ( )
4

t t

z
C

dGv t T d ds T d
dn

ν t t t ν t t
π

= − −∫ ∫ ∫  

Warsaw, the 26th of April 1930. 

Szymański P (1930) Sur l'écoulement non permanent du fluide visqueux dans le tuyau. 
Compte Rendu du III Congrès International de Mécanique Appliquée, Stockholm, 1930, 
pp. 249-254 (in French). 
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