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ABSTRACT 
 
The purpose of this paper is to show how derivatives of the Boussinesq and Coriolis 
coefficients, β and α, can be handled formally in 1-D analyses of unsteady flow.  In the 
case of low Mach number flows typical of liquid flows in many pipes, it is usual to 
disregard differences between these coefficients and unity, thereby simplifying 
expressions such as the Joukowsky equation.  When this is deemed to be unacceptable – 
e.g. in moderate and high Mach number flows – a different approach is usually followed, 
namely allowing for the actual values of the coefficients, but disregarding derivatives of 
them.  It is shown herein that this approach is not only unnecessary, but is actually less 
accurate than disregarding the coefficients altogether (i.e. using plug-flow 
approximations).  Mathematically, the new result is obtained by deriving expressions that 
relate derivatives of β and α to derivatives of the principal flow parameters (pressure p, 
density ρ and mean velocity U).  Because these relationships involve derivatives, they do 
not enable actual values of β and α to be deduced.  However, it is shown rigorously that 
inertial waves do not change the product ρ2U 2(β1) and so, if β is known a priori before a 
wave-induced velocity change, its value after the change can be deduced. 
 
Keywords: 
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NOMENCLATURE 
 
A  cross-sectional area – m2 
c  sound speed – m/s 
Fτ shear force per unit length, N/m 
M Mach number 
MOC  method of characteristics 
p  cross-sectional mean pressure – Pa 
RHS right-hand side of equations 
t  time coordinate – s  
U  mean velocity – m/s  
u  local velocity – m/s 
x  distance coordinate – m 
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Greek symbols 
α  Coriolis coefficient – see Eq.2.3 
β  Boussinesq coefficient – see Eq.2.2 
Δ  finite interval 
λ coefficient in MOC Eqs. 
ρ  fluid density – kg/m3 
τ  shear stress – Pa 
φ  Un-named coefficient – see Eq.2.4 
ψ  see Eq.A1.11 
 
Suffices 
wall inner surface of pipe/duct wall 
 
 
1  INTRODUCTION 
 
For many years, the authors have corresponded about the influence of neglecting non-
uniform velocity distributions in simulations of unsteady flows in ducts and pipes, as is 
standard practice in papers presented at this series of conferences on Pressure Surges.  It is 
not possible to allow exactly for the non-uniformity in one-dimensional representations of 
such flows, but their existence is sometimes acknowledged by introducing correction 
coefficients for terms describing momentum flux and energy flux – as is done below.  
These are often referred to as Boussinesq and Coriolis coefficients, β and α respectively.  
However, there are several  difficulties with this approach, notably: 
(i)  It is fundamentally impossible to deduce exact values of β and α without knowing the 
true velocity distribution over the flow cross-section.  This can sometimes be known with 
good accuracy in the case of steady flows, but it is not known in 1-D analyses of unsteady 
flows, except perhaps as an initial condition. 
(ii)  The true values of these coefficients can vary hugely; β ranges from unity to infinity 
and α ranges from minus to plus infinity.  The infinite extremes exist when the mean 
velocity is zero, but both positive and negative velocities exist locally in the cross-section. 
(iii)  The 1-D equations of momentum and energy contain not only β and α themselves, but 
also their spatial derivatives and, in some formulations, their temporal derivatives too.  
Hitherto, it has always been assumed that it would be impossible to allow for these in a 
meaningful way even if approximate methods of estimating instantaneous values of β and 
α could be found.  In all papers that the authors have studied, these derivatives have simply 
been neglected. 
 
For completeness, it is pointed out that, although the focus of the present paper is on 
unsteady flows – and, in particular, on pressure waves – variations in β and α also occur in 
steady flows.  Obvious examples include regions of flow up to a few tens of pipe diameters 
after an inlet, bend or junction.  A less-widely acknowledged instance relates to velocity 
changes implied by density changes that inevitably accompany pressure changes due to 
skin friction, say. 
 
A few years ago, the authors chanced upon a simple method of eliminating the derivative 
∂β/∂x from momentum equations developed using area-weighted formulations of the 1-D 
equations of unsteady flow. That is, the third of the above complications could be 
overcome rigorously (Vardy & Tijsseling, 2022).  It shows that momentum equation and 
MOC equations derived using the method are a very close approximation to standard plug-
flow equations derived by completely disregarding the non-uniformity of velocity 

distributions.  This is, of course, excellent news for analysis and designers using bespoke 
or standard tools in which this simplification is implicit. 
 
The resulting analysis had an even more unexpected bonus in that it went a long way 
towards eliminating the first of the above complications because it yielded an explicit 
relationship between changes in β and changes in the mass flow rate.  Direct use can be 
made of this to infer values of β when two conditions are fulfilled.  First, the value of β 
needs to be known a priori for one mass flow rate.  In practice, this will commonly be 
possible when steady flow conditions exist before the arrival of a wavefront, but it will 
rarely be possible otherwise.  Second, all changes in the velocity profile must be due 
exclusively to the influence of pressure waves.  That is, the time scales must be too short 
for lateral vorticity diffusion to exert significant influence.  Clearly, this limits the direct 
usefulness of the relationship in analyses that include long periods between successive 
strong wavefronts, but it is nevertheless highly informative in understanding the 
wavefronts themselves.  The implications of this limitation can be inferred from Fig.1, 
which shows a velocity distribution before and shortly after the passage of a wavefront 
causing a change in mean velocity from U1 to U2.  In both parts of the Figure, the 
continuous (blue) line assumes the existence of a no-slip condition at the wall.  The broken 
(red+blue) line in Fig.1b depicts a hypothetical variation in which the change in velocity 
is not subjected to the no-slip condition.  The sole purpose of the hypothetical line is to 
demonstrate that, during the short time of passage of a sudden wavefront, the shape of the 
velocity profile changes negligibly except very close to the wall. 
 
 

 
 
         (a) Initial velocity distribution            (b) Distribution after step change 
 

Fig-1 Flow reversal within a cross-section caused by a sudden wavefront. 
[The (red) dash-dot lines correspond to plug flow] 

 
This paper reports further developments that have been made since the work reported by 
Vardy & Tijsseling, 2022).  An extension of the original logic is used to enable explicit 
expressions to be derived for the derivatives ∂α/∂x and ∂β/∂t and the first of these is then 
used to derive an enhanced version of the flow-weighted form of the momentum equation.  
The second could be used to eliminate ∂β/∂t from the energy equation, but, for brevity, this 
is not done herein.  Energy equations are used extensively in the first author's work, but 
they are used only occasionally in papers in this conference series. 
 
There are two appendices.  The first develops explicit relationships between β and α  and 
the mass flow rate.  The second introduces a conundrum that exercised the authors' meagre 
brains for a considerable time before the penny finally dropped.  It is an especially 
satisfying way in which to end a Forum paper because it casts doubt on the reliability of a 
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fundamental assumption that is made almost universally in studies of unsteady flows in 
ducts and pipelines.  To avoid undue concern or over-expectation, we declare at this point 
that the uncertainty is not sufficient to challenge the practical use of existing methods, but 
it is likely to provide food for thought for academics who, like us, have not previously 
considered it. 
 
 
2  DEFINITIONS 
 
It is convenient to precede the main derivations with some basic integrals that are used 
more than once.  This has the spin-off benefit of giving a family resemblance between 
various definitions and hence providing intuitive guidance on their implications. 
 
2.1   Base parameters 
 
The following four integrals may alternatively be interpreted as definitions of (i) the mean 
velocity U, (ii) the Boussinesq coefficient β, the Coriolis coefficient α and an un-named 
coefficient φ.  Herein, the integration variable A is always used to denote the cross-
sectional area of flow and δA is the cross-sectional area of a typical stream tube. 
 
 

Mean velocity U: � 𝑢𝑢𝑢𝑢𝑢𝑢
�

= 𝑢𝑢. 𝑈𝑈 (2.1) 

 

Boussinesq coefficient β: � 𝑢𝑢�𝑢𝑢𝑢𝑢
�

= 𝛽𝛽. 𝑢𝑢𝑈𝑈� (2.2) 

 

Coriolis coefficient α: � 𝑢𝑢�𝑢𝑢𝑢𝑢
�

= 𝛼𝛼. 𝑢𝑢𝑈𝑈� (2.3) 

 

Un-named coefficient φ: � 𝑢𝑢�𝑢𝑢𝑢𝑢
�

= 𝜑𝜑. 𝑢𝑢𝑈𝑈� (2.4) 

 
 
For future reference, it is pointed out that the velocity is not the only parameter that varies 
over the cross-section.  So too do parameters such as pressure, density and temperature.  
Nevertheless, following the usual practice in pressure-surge studies, no account is taken of 
these additional variations herein.  No formal justification is advanced for neglecting them, 
but a short descriptive assessment is now given, focussing initially on the case of single-
phase liquids in straight conduits.  As a preliminary remark, it is noted that, in most one-
dimensional analyses of pressure surges, it is assumed to be acceptable to neglect the 
influence of axial variations in density and temperature, at least locally.  The focus herein 
is on cross-sectional variations that, in many cases (although not all) will be far smaller 
than axial ones. 
 
Pressure:  Cross-sectional variations in pressure can occur because of hydrostatic effects 
(i.e. gravity), geometric curvature, temperature variations or relatively high-frequency 
disturbances.  The first three of these possible influences on pressure are commonly found 
to be negligible even in the case of steady or quasi-steady flows even though local axial 
variations in pressure are then far smaller than in wave-like flows.  It does not seem 
necessary to discuss them further herein.  The fourth (i.e. high-frequency disturbances 

arising, for instance, from, say, turbulence fluctuations or pipe hoop vibrations) is not 
necessarily negligible, however.  Indeed, account is sometimes taken of them in detailed 
studies (e.g. Yen 1973; Fenton et al 2005).  Pressure changes due to individual fluctuations 
disperse rapidly (in line with Huygen’s Principle), but the cumulative effect of on-going 
phenomena such as turbulence can nevertheless be readily detectable.  Herein, account is 
taken of this implicitly by defining the variable ‘p’ in equations to be a cross-sectional 
mean pressure. 
 
Density:   Cross-sectional variations in density can occur because of variations in pressure 
or temperature.  Proportional variations due to pressure change are approximately equal to 
the ratio of cross-sectional pressure differences and the fluid bulk modulus.  This ratio is 
tiny in pipe systems of interest to the pressure-surge community.  Indeed, the effect is so 
small that it is conventionally neglected even in relation to axial variations of density 
induced by pressure changes that are hugely greater than cross-sectional variations due to, 
say, turbulent fluctuation.  Likewise, at constant pressure,  proportional cross-sectional 
variations in density due to temperature are equal to the product of the thermal expansivity 
of the fluid and the cross-sectional temperature differences.  Implausibly large temperature 
differences would be required to cause proportional density variations of practical 
relevance to the present study. 
 
Velocity:  In contrast with these variations in pressure and density, proportional cross-
sectional variations of axial velocity components are always large – indeed, larger than the 
mean velocity of flow, even in steady flows (except in the special case of super-cooled 
liquids).  Inevitably, therefore, these will dwarf any corresponding consequences of cross-
sectional variations in density, pressure and temperature.  Indeed, it is to be expected that 
such consequences will be dwarfed even by uncertainties in calculated values of β and α 
arising from unknowable details such as the details of turbulence. 
 
The authors consider that, for single-phase liquids, this short discussion is more than 
adequate for justifying neglecting cross-sectional variations in density and temperature and 
for defining ‘p’ to be a mean pressure.  Furthermore, it is assumed herein that broadly 
similar reasoning is also adequate in the case of gas flows – at least for the stated purposes 
of this paper – even though the proportional variations in density, pressure and temperature 
will be much larger than those for liquids.  Nevertheless, for completeness, it is 
acknowledged that neglecting them – and also neglecting consequence of non-axial 
components of velocity – clearly violates the formal laws of physics in all directions except 
axial.  That is, the principle of Galilean invariance is not respected.  Readers wishing to 
explore this matter in more detail are referred to a recent paper by Gray & Miller (2023). 
 
 
2.2  Derivatives of U, β and α 
 
Use is made below of derivatives of U, β and α.  In most cases, differentiation is made with 
respect to the spatial coordinate x.  However, corresponding derivatives with respect to 
time t can be inferred from these equations by simply replacing x by t. 
 

∂U/∂x: �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

𝑑𝑑𝑑𝑑 =
𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜕𝜕
�

𝑑𝑑𝑑𝑑 = 𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (2.5) 
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3  CONTINUITY 
 
Several variations on the continuity equation are presented below.  The first of these 
(Eq.3.1) is applicable when plug flow conditions are assumed.  It is widely used in analyses 
of unsteady flows in pipes except that it is commonly simplified by neglecting the 
convective term U ∂/∂x.  This is not done here, partly because it is not appropriate at 
moderate or large Mach numbers and partly because it would hide a revealing complication 
that is discussed in Appendix-1.  The second (Eq.3.2a) is applicable for any typical 
streamtube in which the velocity is u.  In simulations that neglect cross-sectional variations, 
it can be expressed for the whole cross-section using the mean velocity U instead of the 
local velocity u, thereby yielding plug-flow equations.  However, the focus herein is on 
more general cases with non-uniform velocity distributions. 
 
The remaining versions of the continuity equation are integral formulations using different 
weighting factors for the various streamtubes.  All are mathematically valid, although some 
are used more commonly than others.  The chosen weighting factors are δA, uδA and u2δA.  
The first two of these are referred to in the literature as area-weighted and flow-weighted, 
respectively.  The development of the first one is presented in full, but, for brevity, only 
the final forms of the others are presented. 
 

Continuity 
 (Plug flow): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

= 0 (3.1) 

 
Continuity 
(Streamtube): 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝑑𝑑 + 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝑑𝑑 + 𝜕𝜕
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

𝛿𝛿𝑑𝑑 = 0 (3.2a) 

 
Continuity 
 (Full section): 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑑𝑑𝑑𝑑
�

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑢𝑢
�

𝑑𝑑𝑑𝑑 + 𝜕𝜕�
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕�

𝑑𝑑𝑑𝑑 = 0 (3.2b) 

 
Continuity: 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

= 0 (3.2c) 

 
Continuity: 
(u.δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝜕𝜕
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

+
1
2
𝜕𝜕𝑈𝑈

𝜕𝜕𝛽𝛽
𝜕𝜕𝜕𝜕

= 0 (3.3) 

 
Continuity: 
(u2.δA-weighted) 𝛽𝛽

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝜕𝜕
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

+
1
3
𝜕𝜕𝑈𝑈

𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

= 0 (3.4) 

By inspection, the true area-weighted formulation (Eq.3.2c) is identical to the usual plug-
flow formulation (Eq.3.1) even though it allows explicitly for the velocity distribution.  
However, the other two formulations are more complex.  In part, this is because they 
involve the Boussinesq and Coriolis coefficients, but even more important, they involve 
spatial derivatives of these parameters.  These complications are highly restrictive because 
it is not possible to infer suitable values of any of these terms from one-dimensional 
considerations alone.  This is true even in steady flows, let alone in general, unsteady flows.  
Fortunately, however, as shown below, it is possible to work-around some of these 
limitations in a rigorous manner.  As a precursor to this, it is useful to re-express Eqs.3.3 
and 3.4 to highlight their potential use for eliminating ∂β/∂x and ∂α/∂x from other 
equations.  Using Eq.3.2c, these lead respectively to: 
 

∂β/∂x: 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −2(𝜕𝜕 − 1)
𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
 (3.5) 

 

∂α/∂x: 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −3(𝜕𝜕 − 𝜕𝜕)
𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
 (3.6) 

 
 
4  MOMENTUM 
 
The sequence followed for the continuity equation in the preceding Section is now repeated 
for the momentum equation.  Once again, the derivation of the area-weighted case is 
presented fully, but only the final forms of the u.δA-weighted and u2.δA-weighted  cases 
are given (NB: the last of these is not used herein.  It is included for completeness and for 
record purposes).  
 
Each of the following equations includes the influence of shear stresses even though the 
main thrust of the paper is restricted to inviscid flow behaviour.  This is done to serve as a 
reminder that some conclusions of the paper are not exactly true for real flows (although 
they are nearly true for strong waves of special interest in studies of pressure surges in 
pipes).  The parameter Fτ,wall is the shear force per unit length on the pipe wall.  The 
interpretation of all other terms in Fτ is given after all formulations of the equations have 
been presented. 
 

Momentum 
 (Plug flow): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

=
𝐹𝐹�,����

𝐴𝐴
 (4.1) 

 
Momentum 
(Streamtube): 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝐴𝐴 + 𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝐴𝐴 + 𝜌𝜌𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝐴𝐴 = 𝛿𝛿𝐹𝐹� (4.2a) 

 

Momentum 
 (Full section): 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑑𝑑𝐴𝐴
�

+ 𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

𝑑𝑑𝐴𝐴 + 𝜌𝜌 � 𝜕𝜕
�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝐴𝐴

= �
𝜕𝜕𝐹𝐹�

𝜕𝜕𝐴𝐴�
𝑑𝑑𝐴𝐴 = 𝐹𝐹�,����  

(4.2b) 

 
Momentum: 
(δA-weighted) 𝐴𝐴

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝐴𝐴
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝐴𝐴𝜌𝜌𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
1
2

𝐴𝐴𝜌𝜌𝜌𝜌� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐹𝐹�,����  (4.2c) 

 
Momentum: 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜌𝜌𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
1
2

𝜌𝜌𝜌𝜌� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐹𝐹�,����

𝐴𝐴
 (4.2d) 
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∂β/∂x: 
�

𝜕𝜕𝑢𝑢�

𝜕𝜕𝜕𝜕�
𝑑𝑑𝑑𝑑 =

𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑢𝑢�
�

𝑑𝑑𝑑𝑑 = 𝑑𝑑
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛽𝛽𝑈𝑈�)

= 2𝛽𝛽𝑑𝑑𝑈𝑈
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

+ 𝑑𝑑𝑈𝑈� 𝜕𝜕𝛽𝛽
𝜕𝜕𝜕𝜕

 
(2.6) 

 

∂α/∂x: 
�

𝜕𝜕𝑢𝑢�

𝜕𝜕𝜕𝜕�
𝑑𝑑𝑑𝑑 =

𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑢𝑢�
�

𝑑𝑑𝑑𝑑 = 𝑑𝑑
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛼𝛼𝑈𝑈�)

= 3𝛼𝛼𝑑𝑑𝑈𝑈� 𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

+ 𝑑𝑑𝑈𝑈� 𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

 
(2.7) 

 
 
3  CONTINUITY 
 
Several variations on the continuity equation are presented below.  The first of these 
(Eq.3.1) is applicable when plug flow conditions are assumed.  It is widely used in analyses 
of unsteady flows in pipes except that it is commonly simplified by neglecting the 
convective term U ∂/∂x.  This is not done here, partly because it is not appropriate at 
moderate or large Mach numbers and partly because it would hide a revealing complication 
that is discussed in Appendix-1.  The second (Eq.3.2a) is applicable for any typical 
streamtube in which the velocity is u.  In simulations that neglect cross-sectional variations, 
it can be expressed for the whole cross-section using the mean velocity U instead of the 
local velocity u, thereby yielding plug-flow equations.  However, the focus herein is on 
more general cases with non-uniform velocity distributions. 
 
The remaining versions of the continuity equation are integral formulations using different 
weighting factors for the various streamtubes.  All are mathematically valid, although some 
are used more commonly than others.  The chosen weighting factors are δA, uδA and u2δA.  
The first two of these are referred to in the literature as area-weighted and flow-weighted, 
respectively.  The development of the first one is presented in full, but, for brevity, only 
the final forms of the others are presented. 
 

Continuity 
 (Plug flow): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

= 0 (3.1) 

 
Continuity 
(Streamtube): 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝑑𝑑 + 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝑑𝑑 + 𝜕𝜕
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

𝛿𝛿𝑑𝑑 = 0 (3.2a) 

 
Continuity 
 (Full section): 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑑𝑑𝑑𝑑
�

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑢𝑢
�

𝑑𝑑𝑑𝑑 + 𝜕𝜕�
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕�

𝑑𝑑𝑑𝑑 = 0 (3.2b) 

 
Continuity: 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

= 0 (3.2c) 

 
Continuity: 
(u.δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝜕𝜕
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

+
1
2
𝜕𝜕𝑈𝑈

𝜕𝜕𝛽𝛽
𝜕𝜕𝜕𝜕

= 0 (3.3) 

 
Continuity: 
(u2.δA-weighted) 𝛽𝛽

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝜕𝜕
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

+
1
3
𝜕𝜕𝑈𝑈

𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

= 0 (3.4) 

By inspection, the true area-weighted formulation (Eq.3.2c) is identical to the usual plug-
flow formulation (Eq.3.1) even though it allows explicitly for the velocity distribution.  
However, the other two formulations are more complex.  In part, this is because they 
involve the Boussinesq and Coriolis coefficients, but even more important, they involve 
spatial derivatives of these parameters.  These complications are highly restrictive because 
it is not possible to infer suitable values of any of these terms from one-dimensional 
considerations alone.  This is true even in steady flows, let alone in general, unsteady flows.  
Fortunately, however, as shown below, it is possible to work-around some of these 
limitations in a rigorous manner.  As a precursor to this, it is useful to re-express Eqs.3.3 
and 3.4 to highlight their potential use for eliminating ∂β/∂x and ∂α/∂x from other 
equations.  Using Eq.3.2c, these lead respectively to: 
 

∂β/∂x: 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −2(𝜕𝜕 − 1)
𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
 (3.5) 

 

∂α/∂x: 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −3(𝜕𝜕 − 𝜕𝜕)
𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
 (3.6) 

 
 
4  MOMENTUM 
 
The sequence followed for the continuity equation in the preceding Section is now repeated 
for the momentum equation.  Once again, the derivation of the area-weighted case is 
presented fully, but only the final forms of the u.δA-weighted and u2.δA-weighted  cases 
are given (NB: the last of these is not used herein.  It is included for completeness and for 
record purposes).  
 
Each of the following equations includes the influence of shear stresses even though the 
main thrust of the paper is restricted to inviscid flow behaviour.  This is done to serve as a 
reminder that some conclusions of the paper are not exactly true for real flows (although 
they are nearly true for strong waves of special interest in studies of pressure surges in 
pipes).  The parameter Fτ,wall is the shear force per unit length on the pipe wall.  The 
interpretation of all other terms in Fτ is given after all formulations of the equations have 
been presented. 
 

Momentum 
 (Plug flow): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

=
𝐹𝐹�,����

𝐴𝐴
 (4.1) 

 
Momentum 
(Streamtube): 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝐴𝐴 + 𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝐴𝐴 + 𝜌𝜌𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝐴𝐴 = 𝛿𝛿𝐹𝐹� (4.2a) 

 

Momentum 
 (Full section): 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑑𝑑𝐴𝐴
�

+ 𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

𝑑𝑑𝐴𝐴 + 𝜌𝜌 � 𝜕𝜕
�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝐴𝐴

= �
𝜕𝜕𝐹𝐹�

𝜕𝜕𝐴𝐴�
𝑑𝑑𝐴𝐴 = 𝐹𝐹�,����  

(4.2b) 

 
Momentum: 
(δA-weighted) 𝐴𝐴

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝐴𝐴
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝐴𝐴𝜌𝜌𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
1
2

𝐴𝐴𝜌𝜌𝜌𝜌� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐹𝐹�,����  (4.2c) 

 
Momentum: 
(δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜌𝜌𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+
1
2

𝜌𝜌𝜌𝜌� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐹𝐹�,����

𝐴𝐴
 (4.2d) 
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Momentum: 
(u.δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝛽𝛽𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
2

𝛽𝛽𝜕𝜕
𝜕𝜕𝛽𝛽
𝜕𝜕𝜕𝜕

+
1
3

𝛽𝛽𝜕𝜕� 𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

=
1

𝐴𝐴𝜕𝜕
� 𝑢𝑢

𝜕𝜕𝐹𝐹�

𝜕𝜕𝐴𝐴�
𝑑𝑑𝐴𝐴 ≡

𝐹𝐹��

𝐴𝐴𝜕𝜕
  

(4.3) 

 

Momentum: 
(u2.δA-weighted) 

𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜑𝜑𝛽𝛽𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
3

𝛽𝛽𝜕𝜕
𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

+
1
4

𝛽𝛽𝜕𝜕� 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

=
1

𝐴𝐴𝜕𝜕� � 𝑢𝑢� 𝜕𝜕𝐹𝐹�

𝜕𝜕𝐴𝐴�
𝑑𝑑𝐴𝐴 ≡

𝐹𝐹���

𝐴𝐴𝜕𝜕�  
(4.4) 

 
where δFτ denotes the net shear force per unit length acting on the lateral surfaces of a 
streamtube and FUτ, introduced solely for clarity, is defined as the integral immediately 
preceding it.  In general, the shear stress varies over the pipe cross-section and this must 
be allowed for in the evaluation of integrals over the cross-section.  Fortunately, however, 
in the case of the area-weighted formulation of the equation, the net result can be shown 
to be identical to that used in the plug-flow formulation.  That is, only the shear stress on 
the pipe wall itself contributes to the overall integral.  The corresponding integral for the 
flow-weighted formulation is less straightforward.  It depends on variation of velocities 
and shear stresses over the whole cross-section and so it cannot be expressed as a function 
of U and Fτ,wall alone.  This matter is discussed more fully by Brunone et al (1995) and by 
Vardy & Tijsseling (2022). 
 
In contrast with the continuity equation, the area-weighted formulation (Eq.4.2d) is not the 
same as the plug flow one (Eq.4.1).  The product of U ∂U/∂x is multiplied by β and there 
is an additional term in ∂β/∂x.  This matter is discussed more fully in Section 4.1.  First, 
however, it is noted that the flow-weighted formulation (Eq.4.3) enables a useful 
expression for ∂β/∂t to be developed in a similar manner to the development of expressions 
for ∂β/∂x and ∂α/∂x from the continuity relationships.  By subtracting Eq.4.1 from Eq.4.3 
and using Eq.3.5 to eliminate ∂β/∂x, we obtain (after a little manipulation): 
 

∂β/∂t: 
𝛽𝛽𝜕𝜕

𝜕𝜕𝛽𝛽
𝜕𝜕𝜕𝜕

= −2(𝛽𝛽 − 1)𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 2(𝛼𝛼 − 1)𝜕𝜕
𝜕𝜕(𝛽𝛽𝜕𝜕)

𝜕𝜕𝜕𝜕
+

2𝐹𝐹��

𝐴𝐴𝜕𝜕
−

2𝐹𝐹�,����

𝐴𝐴
 

(4.5) 

 
By inspection, there is a strong family resemblance between the expressions for ∂β/∂x, 
∂α/∂x and ∂β/∂t in Eqs.3.5, 3.6 and 4.5.  However, although all three of these can be used 
eliminate inconvenient derivatives of β and α from other equations, the use of Eq.4.5 to 
eliminate ∂β/∂t would carry a serious penalty in simulations where shear stresses are not 
neglected.  This is because there is no reason to suppose that the difference between the 
two shear force terms in the equation is negligible.   
 
The authors originally hoped that the use of a u2.δA-weighted formulation of the 
momentum equation would enable a convenient expression to be deduced in a similar 
manner for the derivative ∂α/∂t.  Unfortunately, this is not possible because the equation 
derived in this way – i.e. Eq.4.4 – also includes the derivative ∂φ/∂x. 
 
4.1  Practical form of the area-weighted momentum equation 
 
Although a few examples exist in which account has been taken of the Boussinesq and 
Coriolis coefficients, the authors are not aware of any cases in which their derivatives have 

been retained.  Instead, they have simply been discarded in the expectation (or hope) that 
they would be less important than the influence of the coefficients themselves.  However, 
it has been shown by Vardy & Tijsseling (2022) that this practice can be seriously 
misleading.  The reasoning presented in that paper can be summarised by comparing three 
forms of the momentum equation, namely: 
 
(i) Simple plug-flow approximation: 
 

Plug flow: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐹𝐹�,����
𝐴𝐴

 (4.5a) 

 
(ii) Area-weighted formulation, discarding the term in ∂β/∂x: 
 

δA-weighted: 
(Neglecting ∂β/∂x) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝜌𝜌𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐹𝐹�,����
𝐴𝐴

 (4.5b) 

 
(iii) Area-weighted formulation, using Eq.3.5 to eliminate ∂β/∂x: 
 

δA-weighted: 
(No simplifications) �1 − (𝛽𝛽 − 1)

𝜕𝜕�

𝑐𝑐�
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐹𝐹�,����
𝐴𝐴

 (4.5c) 

 
The third of these is nominally exact, in the sense that no approximations are made 
regarding the velocity distribution over the cross-section (NB: note that  is a function of 
x and t).  It can be used as a base of reference from which to compare the relative 
performances of the first two formulations, both of which use approximations.  It is shown 
in Section 5.1 below that the plug-flow approximation can be significantly more accurate 
than the approximation that allows for β, but discards ∂β/∂x.  This outcome is highly 
satisfactory for analysts of pressure surges because it justifies the use of plug-flow 
approximations – as is almost standard practice in the literature.  Nevertheless, it was 
initially a surprise for the authors.  Fortunately, it is easily explained with the benefit of 
hindsight by inspecting the coefficient of the first term in Eq.4.5c.  For simulations such 
as pressure surge in liquid-filled pipelines, the Mach number (M = U/c) is very small, and 
its square is even smaller.  Accordingly, the coefficient of ∂p/∂x will be very close to unity 
unless β >> 1.  Furthermore, it is shown in Appendix 1 that the coefficient remains almost 
unchanged during the passage of a wave.  For completeness, it is also shown that 
disregarding derivatives of β and α in the flow-weighted formulation leads to greater errors 
than either of the above approximations. 
 
 
5  MOC 
 
Analyses of transient flows in pipelines are commonly undertaken using the 1-D Method 
of Characteristics (MOC).  Equation 5.1 shows the resulting equations when the pressure 
and density are deemed to satisfy c2 = K/ρ, where K is the bulk modulus of a liquid, or 
c2 = γ p/ρ, where γ is the ratio of the principal specific heats of a perfect gas.  The 
interpretations of the parameter λ and the right-hand side terms (RHS) in the various 
formulations are listed in Table 1and the characteristic directions in which the equations 
are applicable are given in Table 2. 
 

MOC equations: 𝜆𝜆
𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

+ 𝜌𝜌𝑐𝑐
𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

= 𝑅𝑅𝑅𝑅𝑅𝑅 (5.1) 
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Momentum: 
(u.δA-weighted) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝛽𝛽𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
2

𝛽𝛽𝜕𝜕
𝜕𝜕𝛽𝛽
𝜕𝜕𝜕𝜕

+
1
3

𝛽𝛽𝜕𝜕� 𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

=
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𝐴𝐴𝜕𝜕
� 𝑢𝑢

𝜕𝜕𝐹𝐹�
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(4.3) 

 

Momentum: 
(u2.δA-weighted) 
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4
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𝜕𝜕𝜕𝜕

=
1
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𝜕𝜕𝐴𝐴�
𝑑𝑑𝐴𝐴 ≡

𝐹𝐹���

𝐴𝐴𝜕𝜕�  
(4.4) 

 
where δFτ denotes the net shear force per unit length acting on the lateral surfaces of a 
streamtube and FUτ, introduced solely for clarity, is defined as the integral immediately 
preceding it.  In general, the shear stress varies over the pipe cross-section and this must 
be allowed for in the evaluation of integrals over the cross-section.  Fortunately, however, 
in the case of the area-weighted formulation of the equation, the net result can be shown 
to be identical to that used in the plug-flow formulation.  That is, only the shear stress on 
the pipe wall itself contributes to the overall integral.  The corresponding integral for the 
flow-weighted formulation is less straightforward.  It depends on variation of velocities 
and shear stresses over the whole cross-section and so it cannot be expressed as a function 
of U and Fτ,wall alone.  This matter is discussed more fully by Brunone et al (1995) and by 
Vardy & Tijsseling (2022). 
 
In contrast with the continuity equation, the area-weighted formulation (Eq.4.2d) is not the 
same as the plug flow one (Eq.4.1).  The product of U ∂U/∂x is multiplied by β and there 
is an additional term in ∂β/∂x.  This matter is discussed more fully in Section 4.1.  First, 
however, it is noted that the flow-weighted formulation (Eq.4.3) enables a useful 
expression for ∂β/∂t to be developed in a similar manner to the development of expressions 
for ∂β/∂x and ∂α/∂x from the continuity relationships.  By subtracting Eq.4.1 from Eq.4.3 
and using Eq.3.5 to eliminate ∂β/∂x, we obtain (after a little manipulation): 
 

∂β/∂t: 
𝛽𝛽𝜕𝜕

𝜕𝜕𝛽𝛽
𝜕𝜕𝜕𝜕

= −2(𝛽𝛽 − 1)𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 2(𝛼𝛼 − 1)𝜕𝜕
𝜕𝜕(𝛽𝛽𝜕𝜕)

𝜕𝜕𝜕𝜕
+

2𝐹𝐹��

𝐴𝐴𝜕𝜕
−

2𝐹𝐹�,����

𝐴𝐴
 

(4.5) 

 
By inspection, there is a strong family resemblance between the expressions for ∂β/∂x, 
∂α/∂x and ∂β/∂t in Eqs.3.5, 3.6 and 4.5.  However, although all three of these can be used 
eliminate inconvenient derivatives of β and α from other equations, the use of Eq.4.5 to 
eliminate ∂β/∂t would carry a serious penalty in simulations where shear stresses are not 
neglected.  This is because there is no reason to suppose that the difference between the 
two shear force terms in the equation is negligible.   
 
The authors originally hoped that the use of a u2.δA-weighted formulation of the 
momentum equation would enable a convenient expression to be deduced in a similar 
manner for the derivative ∂α/∂t.  Unfortunately, this is not possible because the equation 
derived in this way – i.e. Eq.4.4 – also includes the derivative ∂φ/∂x. 
 
4.1  Practical form of the area-weighted momentum equation 
 
Although a few examples exist in which account has been taken of the Boussinesq and 
Coriolis coefficients, the authors are not aware of any cases in which their derivatives have 

been retained.  Instead, they have simply been discarded in the expectation (or hope) that 
they would be less important than the influence of the coefficients themselves.  However, 
it has been shown by Vardy & Tijsseling (2022) that this practice can be seriously 
misleading.  The reasoning presented in that paper can be summarised by comparing three 
forms of the momentum equation, namely: 
 
(i) Simple plug-flow approximation: 
 

Plug flow: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐹𝐹�,����
𝐴𝐴

 (4.5a) 

 
(ii) Area-weighted formulation, discarding the term in ∂β/∂x: 
 

δA-weighted: 
(Neglecting ∂β/∂x) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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=
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 (4.5b) 

 
(iii) Area-weighted formulation, using Eq.3.5 to eliminate ∂β/∂x: 
 

δA-weighted: 
(No simplifications) �1 − (𝛽𝛽 − 1)

𝜕𝜕�

𝑐𝑐�
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+ 𝜌𝜌
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𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐹𝐹�,����
𝐴𝐴

 (4.5c) 

 
The third of these is nominally exact, in the sense that no approximations are made 
regarding the velocity distribution over the cross-section (NB: note that  is a function of 
x and t).  It can be used as a base of reference from which to compare the relative 
performances of the first two formulations, both of which use approximations.  It is shown 
in Section 5.1 below that the plug-flow approximation can be significantly more accurate 
than the approximation that allows for β, but discards ∂β/∂x.  This outcome is highly 
satisfactory for analysts of pressure surges because it justifies the use of plug-flow 
approximations – as is almost standard practice in the literature.  Nevertheless, it was 
initially a surprise for the authors.  Fortunately, it is easily explained with the benefit of 
hindsight by inspecting the coefficient of the first term in Eq.4.5c.  For simulations such 
as pressure surge in liquid-filled pipelines, the Mach number (M = U/c) is very small, and 
its square is even smaller.  Accordingly, the coefficient of ∂p/∂x will be very close to unity 
unless β >> 1.  Furthermore, it is shown in Appendix 1 that the coefficient remains almost 
unchanged during the passage of a wave.  For completeness, it is also shown that 
disregarding derivatives of β and α in the flow-weighted formulation leads to greater errors 
than either of the above approximations. 
 
 
5  MOC 
 
Analyses of transient flows in pipelines are commonly undertaken using the 1-D Method 
of Characteristics (MOC).  Equation 5.1 shows the resulting equations when the pressure 
and density are deemed to satisfy c2 = K/ρ, where K is the bulk modulus of a liquid, or 
c2 = γ p/ρ, where γ is the ratio of the principal specific heats of a perfect gas.  The 
interpretations of the parameter λ and the right-hand side terms (RHS) in the various 
formulations are listed in Table 1and the characteristic directions in which the equations 
are applicable are given in Table 2. 
 

MOC equations: 𝜆𝜆
𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

+ 𝜌𝜌𝑐𝑐
𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

= 𝑅𝑅𝑅𝑅𝑅𝑅 (5.1) 

 



332 © TU/e 2023 Pressure Surges 14

 
TABLE 1.  Definitions of λ, RHS & dx/dt 

 
Formulation λ RHS 

Plug flow: ±1 𝑐𝑐
𝐹𝐹�,�
𝐴𝐴

 

δA-weighted: 
Replacing ∂β/∂x ±√[1 − (𝛽𝛽 − 1)𝑀𝑀�] 𝑐𝑐

𝐹𝐹�,�
𝐴𝐴

 

δA-weighted: 
Neglecting ∂β/∂x 

−½(𝛽𝛽 − 1)𝑀𝑀 
±√[¼(𝛽𝛽 − 1)�𝑀𝑀� + 1] 𝑐𝑐 �−½𝜌𝜌𝑈𝑈� 𝜕𝜕𝛽𝛽

𝜕𝜕𝜕𝜕
+
𝐹𝐹�,�
𝐴𝐴 � 

uδA-weighted: 
Neglecting ∂β/∂x 
 & ∂α/∂x 

−½�
𝛼𝛼
𝛽𝛽� − 1�𝑀𝑀 

±√�¼�
𝛼𝛼
𝛽𝛽� − 1�

�
𝑀𝑀� +

1
𝛽𝛽�� 

−½𝜆𝜆ρ𝑐𝑐�𝑈𝑈
𝜕𝜕𝛽𝛽
𝜕𝜕𝜕𝜕

 

+
𝑐𝑐
𝛽𝛽 �

−½𝜌𝜌𝑈𝑈
𝜕𝜕𝛽𝛽
𝜕𝜕𝜕𝜕

−⅓𝜌𝜌𝑈𝑈� 𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

+
𝐹𝐹��
𝐴𝐴𝑈𝑈�

 

 
TABLE 2.  Definition of dx/dt 

 
Formulation dx/dt 

Plug flow: U ± c 

δA-weighted: 
(No simplifications) U + λc 

δA-weighted: 
(Neglecting ∂β/∂x) βU + λc 

uδA-weighted: 
(Neglecting ∂β/∂x 
 & ∂α/∂x) 

(α/β)U + λc 

 
The equations are presented in this manner for clarity of comparisons and they are shown 
in a sequence of increasing complexity.  The second of these, in which Eq.3.5 has been 
used to eliminate ∂β/∂x as above, is the reference case.  The third and fourth are the 
conventional forms in which ∂β/∂x and ∂α/∂x appear in their own right, but are then 
neglected.  If this is done, the right-hand side terms in all of the formulations include only 
shear-stress terms. 
 
Attention is drawn to three features seen in the Table.  Firstly, only the plug-flow version 
is consistent with the standard form of the Joukowsky equation, namely Δp = ρcΔU.  The 
accurate area-weighted expression shows that, strictly, when account is taken of velocity 
distributions, a more correct form of the Joukowsky equation is [1(β1)M 2].Δp = ρcΔU.  
This change will have negligible influence in practical studies of pressure surges in liquid-
filled pipelines, although there are some instances where it could be significant in gas flows 
at moderate Mach numbers.  Secondly, the expression in square brackets is identical to the 
coefficient of ∂p/∂x in the corresponding momentum equation 4.5c.  As stated at the end 
of Section 4.1, it is almost unaffected by waves and so is may sensibly be regarded as 
locally constant during the integration of MOC equations.  This is another valuable 

property – although its direct use will usually be limited by a lack of knowledge of 
appropriate values of β.  Thirdly, the directions of applicability of the characteristic 
equations depend strongly on the value of λ. 
 
5.1 Numerical example 
 
Vardy & Tijsseling (2022) have given numerical examples of changes during the passage 
of a wavefront.  They illustrated a range of cases, each starting from a steady flow in which 
the value of β is deemed to be known.  This enabled the accuracy of the plug-flow and 
conventional area-weighted formulations to be assessed quantitatively, leading to the 
conclusions stated above.  However, they did not assess the conventional flow-weighted 
formulation.  This is done in Fig.2. 
 

 

 

 
Fig-2  Errors in calculated pressure change during the passage of a wavefront. 

(LH column:  Velocity change from +2 m/s to +6 m/s; 
RH column:  Velocity change from 6 m/s to 2 m/s) 

 
The Figure shows percentage errors in calculated pressure changes during the passage of 
a wavefront.  In the left-hand column, the velocity magnitude increases linearly from 2 m/s 
to 6 m/s and in the right-hand column, it decreases from 6 m/s to 2 m/s.  In both cases, the 
initial velocity profile is equivalent to a steady turbulent flow for which β = 1.02 although 
no account is taken of viscous phenomena during the passage of the wavefront.  Using a 
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TABLE 1.  Definitions of λ, RHS & dx/dt 

 
Formulation λ RHS 

Plug flow: ±1 𝑐𝑐
𝐹𝐹�,�
𝐴𝐴

 

δA-weighted: 
Replacing ∂β/∂x ±√[1 − (𝛽𝛽 − 1)𝑀𝑀�] 𝑐𝑐

𝐹𝐹�,�
𝐴𝐴

 

δA-weighted: 
Neglecting ∂β/∂x 

−½(𝛽𝛽 − 1)𝑀𝑀 
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TABLE 2.  Definition of dx/dt 

 
Formulation dx/dt 

Plug flow: U ± c 

δA-weighted: 
(No simplifications) U + λc 

δA-weighted: 
(Neglecting ∂β/∂x) βU + λc 

uδA-weighted: 
(Neglecting ∂β/∂x 
 & ∂α/∂x) 

(α/β)U + λc 

 
The equations are presented in this manner for clarity of comparisons and they are shown 
in a sequence of increasing complexity.  The second of these, in which Eq.3.5 has been 
used to eliminate ∂β/∂x as above, is the reference case.  The third and fourth are the 
conventional forms in which ∂β/∂x and ∂α/∂x appear in their own right, but are then 
neglected.  If this is done, the right-hand side terms in all of the formulations include only 
shear-stress terms. 
 
Attention is drawn to three features seen in the Table.  Firstly, only the plug-flow version 
is consistent with the standard form of the Joukowsky equation, namely Δp = ρcΔU.  The 
accurate area-weighted expression shows that, strictly, when account is taken of velocity 
distributions, a more correct form of the Joukowsky equation is [1(β1)M 2].Δp = ρcΔU.  
This change will have negligible influence in practical studies of pressure surges in liquid-
filled pipelines, although there are some instances where it could be significant in gas flows 
at moderate Mach numbers.  Secondly, the expression in square brackets is identical to the 
coefficient of ∂p/∂x in the corresponding momentum equation 4.5c.  As stated at the end 
of Section 4.1, it is almost unaffected by waves and so is may sensibly be regarded as 
locally constant during the integration of MOC equations.  This is another valuable 

property – although its direct use will usually be limited by a lack of knowledge of 
appropriate values of β.  Thirdly, the directions of applicability of the characteristic 
equations depend strongly on the value of λ. 
 
5.1 Numerical example 
 
Vardy & Tijsseling (2022) have given numerical examples of changes during the passage 
of a wavefront.  They illustrated a range of cases, each starting from a steady flow in which 
the value of β is deemed to be known.  This enabled the accuracy of the plug-flow and 
conventional area-weighted formulations to be assessed quantitatively, leading to the 
conclusions stated above.  However, they did not assess the conventional flow-weighted 
formulation.  This is done in Fig.2. 
 

 

 

 
Fig-2  Errors in calculated pressure change during the passage of a wavefront. 

(LH column:  Velocity change from +2 m/s to +6 m/s; 
RH column:  Velocity change from 6 m/s to 2 m/s) 

 
The Figure shows percentage errors in calculated pressure changes during the passage of 
a wavefront.  In the left-hand column, the velocity magnitude increases linearly from 2 m/s 
to 6 m/s and in the right-hand column, it decreases from 6 m/s to 2 m/s.  In both cases, the 
initial velocity profile is equivalent to a steady turbulent flow for which β = 1.02 although 
no account is taken of viscous phenomena during the passage of the wavefront.  Using a 
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result presented in Appendix 1, changes in the value of β during the passage of the 
wavefront are deemed to satisfy (β  1) ρ U 2 = constant, so it reduces in the first case, but 
increases in the second.  The Figure shows differences between the true change in pressure 
and the changes predicted by each of the three approximate methods.  By inspection, the 
plug-flow representation is highly accurate and the solution based on the conventional 
area-weighted formulation is also well within acceptable tolerances for engineering 
purposes.  However, the same is not true for the conventional flow-weighted solution in 
the case of deceleration even though the Mach number is small (less than 0.02 at all times). 
 
 
6  CONCLUSIONS 
 
The use of the Boussinesq and Coriolis coefficients in 1-D analyses of unsteady flows in 
pipes has been re-visited with a view to improving their use in flows where it is deemed 
unacceptable to approximate them to unity.  In such cases, it is standard practice to estimate 
numerical values of the coefficients, but to disregard terms in the equations that include 
their derivatives.  It has been shown that this practice is unsatisfactory and a much-
improved methodology has been developed.  The authors are not aware of any prior studies 
in which the new approach has been used. 
 
It has been shown that formal expressions for ∂β/∂x & ∂α/∂x can be inferred from 
alternative forms of the continuity equation and that a corresponding expression for ∂β/∂t 
can be inferred from these together with alternative forms of the momentum equation.  By 
using these expressions to eliminate these derivatives from alternative forms of the 
momentum equation, it has been shown that the simple, widely-used plug-flow equation is 
actually a good approximation even in relatively high Mach-number flows. 
 
The new formulation shows that, strictly, the conventional Joukowsky equation should be 
modified by a coefficient that depends on β and M.  Fortunately, it is found that (a) the 
coefficient is almost unaffected by the passage of waves and (b) it will almost never differ 
from unity by enough to justify its inclusion in studies of liquid flows in pipelines. 
 
For completeness, it is reiterated that the whole of the paper relates only to wave-induced 
changes in velocity.  No account is taken of viscosity-induced effects that cause much 
slower changes than the sudden wavefronts that are the focus herein. 
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APPENDIX 1 VARIATION OF β AND α DURING THE PASSAGE OF A 
WAVEFRONT  
 
In the main body of the paper, Eqs. 3.5 and 3.6 have been used to eliminate ∂β/∂x and ∂α/∂x 
from the equations of flow.  However, these equations also give valuable information in 
their own right. 
 
A1.1 Boussinesq coefficient 
 
First, it is shown that changes in β caused solely by a wavefront depend only on the 
variation in mass flow rate induced by the wavefront.  This is done by developing Eq.3.5 
as follows: 
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On integration, this gives 
  ln(𝜕𝜕 − 1) = −2 ln(𝜌𝜌𝜌𝜌) + 𝑓𝑓{𝑡𝑡} (A1.4) 

and so 
  (𝜕𝜕 − 1)𝜌𝜌�𝜌𝜌� = e�{�} (A1.5) 

 
The right-hand side of Eq.A1.5 is a function of time only.  Therefore, at any particular 
instant, spatial variations caused solely by the inertial consequences of waves must satisfy: 
 

  (𝜕𝜕 − 1)𝜌𝜌�𝜌𝜌� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝑡𝑡 (A1.6) 
 
This shows that, provided that a suitable value of β can be estimated for one particular 
value of ρU (the mass flow rate per unit area), Eq.A1.6 enables the corresponding value to 
be determined for any other value of ρU.  However, this is, of course, valid only along 
changes that are sufficiently compact for the influence of lateral diffusion to be neglected 
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– e.g. close to strong wavefronts, but not during long periods of readjustment between 
successive wavefronts. 
 
Use has been made of Eq.A1.6 in the development presented in Section 5.1 above. 
 
A1.2  Coriolis coefficient 
 
A similar process is now used to derive an equivalent expression describing variations in 
α.  In this case, however, the result is less simple, but its potential use in numerical 
simulations is nevertheless straightforward.  The development of this relationship begins 
with Eq.3.6. 
 

Eq.3.6: 
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(A1.9) 

 
If it could be assumed that the ratio (β  1) / (α  β) is independent of 'x', then, following the 
same reasoning as above, this would lead to: 

  (𝜕𝜕 − 𝛽𝛽)𝜌𝜌�𝜌𝜌� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (A1.10) 
where ψ is defined as 

  𝜓𝜓 =  
3𝜕𝜕 − 5𝛽𝛽 + 2

𝜕𝜕 − 𝛽𝛽
 (A1.11) 

 
Unfortunately, there are no grounds for assuming that the ratio (β  1) / (α  β) is 
independent of 'x' or even that it is nearly so.  Therefore, the authors acknowledge freely 
that Eq. A1.10 is not valid.  The purpose of presenting it herein is to highlight the difficulty 
in finding equations to describe the behaviour of α that are broadly analogous to those 
obtained above for β (especially Eq. A1.6).  Furthermore, even if Eq.A1.10 could be 
assumed to be approximately valid, the fact that ψ is a function of α and β, not a simple 
constant, would greatly complicate its use in numerical analyses.  It should also be noted 
that both α and β vary strongly when a wavefront causes the mean velocity of a 
well-established flow to become small.  In such cases, the direct use of either of Eqs.  A1.6 
and A1.10 in a numerical solution is likely to become unstable.  Indeed, both α and β 
become infinite when the mean velocity passes through zero and, moreover, the sign of α 
then reverses. 
 
Notwithstanding these major deficiencies, one final point is of possible interest, namely 
that, in the particular case of α = 3β – 2, which is commonly approximately true in quasi-
steady flows in pipes, Eq.A1.11 reduces to ψ = 2, so that – using Eq.A1.6 – it follows that 
(  1) ρ2

 U 2 = Constant.  The authors feel intuitively that this simple result could have a 
role to play in some circumstances, but they have not yet identified such a case. 
 

 
APPENDIX 2 A CONUNDRUM 
 
In the derivation of Eq.A1.6, the continuity and momentum equations are applied to 
individual streamtubes and the result is then integrated over the cross-section.  Intriguingly, 
a slightly different result was obtained by Kruisbrink and Tijsseling (2008) who also 
considered a step change in velocity.  The following analysis is broadly similar to theirs. 
 
Consider an arbitrary velocity distribution defined by u1 = u1{A} with a mean velocity U1 
and a Boussinesq coefficient β1.  If a uniform step change ΔU is imposed over the whole 
cross-section, the distribution will be u2{A} = u1{A} + ΔU, for which the mean velocity is 
U2 and the Boussinesq coefficient is β2.  Now express the product βAU 2 as follows (N.B. 
Each step in the development is presented to minimise any risk of ambiguity):  
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and so: (𝛽𝛽� − 1)𝑈𝑈�� = (𝛽𝛽� − 1)𝑈𝑈�� (A2.7) 
 
That is, the imposed step does not change the product (β  1) U 2. 
 
Although Eqs.A1.6 and A2.7 have a close family resemblance, they are not exactly 
equivalent. – because wave-induced changes in velocity necessarily imply changes in 
pressure and hence in density, however small.  When the authors first realised this, they 
assumed that at least one of the derivations must contain an error.  However, careful re-
development failed to reveal one, so it became necessary to explore the seemingly 
ridiculous possibility that both might be correct [cf: Sherlock Holmes observed that, when 
all possibilities have been exhausted, it is necessary to consider the impossible].  
Remarkably, with the benefit of hindsight, it turns out that both equations are indeed 
correct.  However, each is exact only when the assumptions on which it is based are 
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– e.g. close to strong wavefronts, but not during long periods of readjustment between 
successive wavefronts. 
 
Use has been made of Eq.A1.6 in the development presented in Section 5.1 above. 
 
A1.2  Coriolis coefficient 
 
A similar process is now used to derive an equivalent expression describing variations in 
α.  In this case, however, the result is less simple, but its potential use in numerical 
simulations is nevertheless straightforward.  The development of this relationship begins 
with Eq.3.6. 
 

Eq.3.6: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −3(𝜕𝜕 − 𝛽𝛽)
1

𝜌𝜌𝜌𝜌
𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
 (A1.7) 

 
 
 

1
(𝜕𝜕 − 𝛽𝛽)
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= −3
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𝜌𝜌𝜌𝜌
𝜕𝜕(𝜌𝜌𝜌𝜌)

𝜕𝜕𝜕𝜕
 (A1.8) 

 

Using Eq.3.5: 

1
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𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
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= −3
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(𝛽𝛽 − 1)
(𝜕𝜕 − 𝛽𝛽)
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𝜌𝜌𝜌𝜌

𝜕𝜕(𝜌𝜌𝜌𝜌)
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(A1.9) 

 
If it could be assumed that the ratio (β  1) / (α  β) is independent of 'x', then, following the 
same reasoning as above, this would lead to: 

  (𝜕𝜕 − 𝛽𝛽)𝜌𝜌�𝜌𝜌� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (A1.10) 
where ψ is defined as 

  𝜓𝜓 =  
3𝜕𝜕 − 5𝛽𝛽 + 2

𝜕𝜕 − 𝛽𝛽
 (A1.11) 

 
Unfortunately, there are no grounds for assuming that the ratio (β  1) / (α  β) is 
independent of 'x' or even that it is nearly so.  Therefore, the authors acknowledge freely 
that Eq. A1.10 is not valid.  The purpose of presenting it herein is to highlight the difficulty 
in finding equations to describe the behaviour of α that are broadly analogous to those 
obtained above for β (especially Eq. A1.6).  Furthermore, even if Eq.A1.10 could be 
assumed to be approximately valid, the fact that ψ is a function of α and β, not a simple 
constant, would greatly complicate its use in numerical analyses.  It should also be noted 
that both α and β vary strongly when a wavefront causes the mean velocity of a 
well-established flow to become small.  In such cases, the direct use of either of Eqs.  A1.6 
and A1.10 in a numerical solution is likely to become unstable.  Indeed, both α and β 
become infinite when the mean velocity passes through zero and, moreover, the sign of α 
then reverses. 
 
Notwithstanding these major deficiencies, one final point is of possible interest, namely 
that, in the particular case of α = 3β – 2, which is commonly approximately true in quasi-
steady flows in pipes, Eq.A1.11 reduces to ψ = 2, so that – using Eq.A1.6 – it follows that 
(  1) ρ2

 U 2 = Constant.  The authors feel intuitively that this simple result could have a 
role to play in some circumstances, but they have not yet identified such a case. 
 

 
APPENDIX 2 A CONUNDRUM 
 
In the derivation of Eq.A1.6, the continuity and momentum equations are applied to 
individual streamtubes and the result is then integrated over the cross-section.  Intriguingly, 
a slightly different result was obtained by Kruisbrink and Tijsseling (2008) who also 
considered a step change in velocity.  The following analysis is broadly similar to theirs. 
 
Consider an arbitrary velocity distribution defined by u1 = u1{A} with a mean velocity U1 
and a Boussinesq coefficient β1.  If a uniform step change ΔU is imposed over the whole 
cross-section, the distribution will be u2{A} = u1{A} + ΔU, for which the mean velocity is 
U2 and the Boussinesq coefficient is β2.  Now express the product βAU 2 as follows (N.B. 
Each step in the development is presented to minimise any risk of ambiguity):  
 

 𝛽𝛽�𝐴𝐴𝑈𝑈�� = � 𝑢𝑢��
�

𝑑𝑑𝐴𝐴 

 
(A2.1) 
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(A2.3) 

 
 𝛽𝛽�𝐴𝐴𝑈𝑈�� = 𝐴𝐴�𝛽𝛽�𝑈𝑈�

� + 2∆𝑈𝑈. 𝑈𝑈� + (∆𝑈𝑈)�� (A2.4) 
 

 𝛽𝛽�𝐴𝐴𝑈𝑈�� = 𝐴𝐴�(𝛽𝛽� − 1)𝑈𝑈�
� + (𝑈𝑈� + ∆𝑈𝑈)�� (A2.5) 

 
 𝛽𝛽�𝐴𝐴𝑈𝑈�� = 𝐴𝐴�(𝛽𝛽� − 1)𝑈𝑈�

� + 𝑈𝑈��� (A2.6) 
 

and so: (𝛽𝛽� − 1)𝑈𝑈�� = (𝛽𝛽� − 1)𝑈𝑈�� (A2.7) 
 
That is, the imposed step does not change the product (β  1) U 2. 
 
Although Eqs.A1.6 and A2.7 have a close family resemblance, they are not exactly 
equivalent. – because wave-induced changes in velocity necessarily imply changes in 
pressure and hence in density, however small.  When the authors first realised this, they 
assumed that at least one of the derivations must contain an error.  However, careful re-
development failed to reveal one, so it became necessary to explore the seemingly 
ridiculous possibility that both might be correct [cf: Sherlock Holmes observed that, when 
all possibilities have been exhausted, it is necessary to consider the impossible].  
Remarkably, with the benefit of hindsight, it turns out that both equations are indeed 
correct.  However, each is exact only when the assumptions on which it is based are 
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ABSTRACT 

 
The role that widely available statistical software can play in validating Computational 
Fluid Dynamics models is illustrated through a case study using “column separation” in 
water hammer. Neither the statistical methods nor the fluid transient models are original, 
but combining them for validation is. Statistical analysis demands quantitative evaluation 
of models using appropriately chosen performance criteria, but enables multiple issues to 
be assessed in contrast to the conventional “one factor at a time” approach. Even a simple 
laboratory experiment produces a range of column separation responses, highlighting the 
role of atypical behaviours of the water substance in conventional fluid transients practice.  
 
 
 
1 INTRODUCTION – A VALIDATION CASE STUDY 
 
Computational Fluid Dynamics (CFD) software validation (1-3 inter alia) through 
comparison with field or laboratory measurements involves a range of factors (4-5): 
 Physical assumptions underlying the models, including 
 representations of boundary conditions (especially transient internal boundaries). 
 Grid Dependency (truncation and rounding) of discretised numerical solutions. 
 Uncertainties (6), not only in the measured responses for model comparison, but also  
 for the physical data supplied to the computational model.  
Unpublished accident investigations where unexpected high pressures not considered at 
design (7-8) but estimated from post-event stress analysis for component damage have 
implied column separation-induced pressures higher than Joukowsky, eg: 
 Reversible pump-turbine lifted by “cascade” rapid closure of guide vanes (successive 

failures of protection links) leading to conservative (and thus expensive) design 
pressure for suction-side isolation valves in a subsequent pumped-storage scheme. 

 Distortion of pipe bridge expansion bellows on a low-pressure sewage transfer causing 
costly delay to service operation (reported by painter who had inadvertently covered 
any physical evidence of pipe movement magnitudes). 

respected.  The implications of this statement in the context of pressure surge analysis are 
spelt out in the following paragraphs. 
 
A strong clue to the dilemma can be obtained by noting that the derivation in this Appendix 
makes no use whatsoever of physical equations.  No concept of flowrate is necessary for 
this purpose.  If desired, the derivation can be regarded as a purely mathematical exercise 
yielding a relationship between mean-squares and square-means.  In a context of fluid 
mechanics, however, it can be interpreted as a relationship between outcomes obtained 
when a particular flow state is expressed relative to two co-ordinate axes moving at a 
relative velocity of ΔU.  As a simple example, imagine an idealistic case in which a flow 
along a straight pipe is exactly steady and is also exactly uniform.  Then describe the flow 
relative to two observers who are moving relative to each other.  Clearly, this does not 
change the flow itself even though the velocities relative to the two observers are different.  
Nevertheless, it does satisfy all of the conditions necessary to satisfy the derivation 
presented in this Appendix.  
 
In contrast, any finite change in velocity prescribed in the development of Eq.A1.6 
necessarily implies the existence of a wave and the equation shows that the product (β  1)  

U 2 does not remain constant, but instead varies inversely with the square of the density.  
Of course, analysts of pressure surges in liquid-filled pipelines may (reasonably) choose 
to simplify equations by disregarding the influence of density changes, but that will be 
merely a choice, not an assertion that such changes are truly irrelevant.  In summary: 
• Eq. A2.7 is valid for a change of axes describing the flow state at a single flow cross-
section; 
• Eq. A1.6 is valid for a two flow states expressed relative to the same axes. 
 
 




