
Parallel SAT Simplification
on GPU Architectures

Muhammad Osama(B) and Anton Wijs(B)

Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
{o.m.m.muhammad,a.j.wijs}@tue.nl

Abstract. The growing scale of applications encoded to Boolean Satis-
fiability (SAT) problems imposes the need for accelerating SAT simpli-
fications or preprocessing. Parallel SAT preprocessing has been an open
challenge for many years. Therefore, we propose novel parallel algorithms
for variable and subsumption elimination targeting Graphics Processing
Units (GPUs). Benchmarks show that the algorithms achieve an acceler-
ation of 66× over a state-of-the-art SAT simplifier (SatELite). Regarding
SAT solving, we have conducted a thorough evaluation, combining both
our GPU algorithms and SatELite with MiniSat to solve the simplified
problems. In addition, we have studied the impact of the algorithms on
the solvability of problems with Lingeling. We conclude that our algo-
rithms have a considerable impact on the solvability of SAT problems.

Keywords: Satisfiability · Variable elimination ·
Subsumption elimination · Parallel SAT preprocessing · GPU

1 Introduction

Algorithms to solve propositional Boolean Satisfiability (SAT) problems are
being used extensively for various applications, such as artificial intelligence, cir-
cuit design, automatic test pattern generation, automatic theorem proving, and
bounded model checking. Of course, SAT being NP-complete, scalability of these
algorithms is an issue. Simplifying SAT problems prior to solving them has proven
its effectiveness in modern conflict-driven clause learning (CDCL) SAT solvers [6,
9], particularly when applied on real-world applications relevant to software and
hardware verification [8,12,17,19]. It tends to produce reasonable reductions in
acceptable processing time. Many techniques based on, e.g., variable elimination,
clause elimination, and equivalence reasoning are being used to simplify SAT prob-
lems, whether prior to the solving phase (preprocessing) [8,10,12,15,16,24] or
during the search (inprocessing) [3,18]. However, applying variable and clause

M. Osama—This work is part of the GEARS project with project number TOP2.16.044,
which is (partly) financed by the Netherlands Organisation for Scientific Research
(NWO).
A. Wijs—We gratefully acknowledge the support of NVIDIA Corporation with the dona-
tion of the GeForce Titan Xp’s used for this research.

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 21–40, 2019.
https://doi.org/10.1007/978-3-030-17462-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17462-0_2&domain=pdf
http://orcid.org/0000-0002-5023-5348
http://orcid.org/0000-0002-2071-9624
https://doi.org/10.1007/978-3-030-17462-0_2

22 M. Osama and A. Wijs

elimination iteratively to large problems (in terms of the number of literals) can
be a performance bottleneck in the whole SAT solving procedure, or even increase
the number of literals, negatively impacting the solving time.

Recently, the authors of [2,11] discussed the current main challenges in par-
allel SAT solving. One of these challenges concerns the parallelisation of SAT
simplification in modern SAT solvers. Massively parallel computing systems such
as Graphics Processing Units (GPUs) offer great potential to speed up compu-
tations, but to achieve this, it is crucial to engineer new parallel algorithms
and data structures from scratch to make optimal use of those architectures.
GPU platforms have become attractive for general-purpose computing with the
availability of the Compute Unified Device Architecture (CUDA) programming
model [20]. CUDA is widely used to accelerate applications that are compu-
tationally intensive w.r.t. data processing and memory access. In recent years,
for instance, we have applied GPUs to accelerate explicit-state model check-
ing [26,27,30], state space decomposition [28,29] and minimisation [25], meta-
heuristic SAT solving [31], and SAT-based test generation [22].

In this paper, we introduce the first parallel algorithms for various techniques
widely used in SAT simplification and discuss the various performance aspects
of the proposed implementations and data structures. Also, we discuss the main
challenges in CPU-GPU memory management and how to address them. In a
nutshell, we aim to effectively simplify SAT formulas, even if they are extremely
large, in only a few seconds using the massive computing capabilities of GPUs.

Contributions. We propose novel parallel algorithms to simplify SAT formu-
las using GPUs, and experimentally evaluate them, i.e., we measure both their
runtime efficiency and their effect on the overall solving time, for a large bench-
mark set of SAT instances encoding real-world problems. We show how multiple
variables can be eliminated simultaneously on a GPU while preserving the orig-
inal satisfiability of a given formula. We call this technique Bounded Variable-
Independent Parallel Elimination (BVIPE). The eliminated variables are elected
first based on some criteria using the proposed algorithm Least-Constrained
Variable Elections (LCVE). The variable elimination procedure includes both
the so-called resolution rule and gate equivalence reasoning. Furthermore, we
propose an algorithm for parallel subsumption elimination (PSE), covering both
subsumption elimination and self-subsuming resolution.

The paper is organised as follows: Sect. 2 introduces the preliminaries. The
main GPU challenges for SAT simplification are discussed in Sect. 3, and the
proposed algorithms are explained in Sect. 4. Section 5 presents our experimental
evaluation. Section 6 discusses related work, and Sect. 7 provides a conclusion and
suggests future work.

2 Preliminaries

All SAT formulas in this paper are in conjunctive normal form (CNF). A CNF
formula is a conjunction of clauses

∧m
i=1 Ci where each clause Ci is a disjunction

of literals
∨k

j=1 �j and a literal is a Boolean variable x or its complement ¬x,

Parallel SAT Simplification on GPU Architectures 23

which we refer to as x̄. We represent clauses by sets of literals C = {�1, . . . , �k},
i.e., {�1, . . . , �k} represents the formula �1 ∨ . . . ∨ �k, and a SAT formula by a set
of clauses {C1, . . . , Cm}, i.e., {C1, . . . , Cm} represents the formula C1 ∧ . . .∧Cm.

Variable Elimination. Variables can be removed from clauses by either apply-
ing the resolution rule or gate-equivalence reasoning. Concerning the former,
we represent application of the resolution rule w.r.t. some variable x using a
resolving operator ⊗x on C1 and C2. The result of applying the rule is called
the resolvent [24]. It is defined as C1 ⊗x C2 = C1 ∪ C2 \ {x, x̄}, and can be
applied iff x ∈ C1, x̄ ∈ C2. The ⊗x operator can be extended to resolve sets of
clauses w.r.t. variable x. For a formula S, let Sx ⊆ S, Sx̄ ⊆ S be the set of all
clauses in S containing x and x̄, respectively. The new resolvents are defined as
Rx(S) = {C1 ⊗x C2 | C1 ∈ Sx ∧ C2 ∈ Sx̄ ∧ ¬∃y.{y, ȳ} ⊆ C1 ⊗x C2}. The last
condition addresses that a resolvent should not be a tautology, i.e. a self-satisfied
clause in which a variable and its negation exist. The set of non-tautology resol-
vents can replace S, producing an equivalent SAT formula.

Gate-Equivalence Reasoning. This technique substitutes eliminated variables
with deduced logical equivalent expressions. In this work, we focus on the rea-
soning of AND-OR gates since they are common in SAT-encoded problems and
OR gates are likely to be found if AND-equivalence reasoning fails. In general,
gate-equivalence reasoning can also be applied using other logical gates. A logi-
cal AND gate with k inputs �1, . . . , �k and output x can be captured by the two
implications x =⇒ �1∧. . .∧�k and �1∧. . .∧�k =⇒ x. In turn, these two implica-
tions can be encoded in SAT clauses {{x̄, �1}, . . . , {x̄, �k}} and {{x, �̄1, . . . , �̄k}},
respectively. Similarly, the implications of an OR gate x =⇒ �1 ∨ . . . ∨ �k and
�1 ∨ . . . ∨ �k =⇒ x are expressed by the SAT clauses {{x, �̄1}, . . . , {x, �̄k}} and
{{x̄, �1, . . . , �k}}, respectively.

For instance, consider the following formula:

S = {{x, ā, b̄}, {x̄, a}, {x̄, b}, {x, c}, {x̄, b̄}, {y, f}, {ȳ, d, e}, {y, d̄}, {y, ē}}
The first three clauses in S capture the AND gate (x, a, b) and the last three
clauses capture the OR gate (y, d, e). By substituting a∧b for x and d∨e for y in
the fourth, fifth, and sixth clauses, a new formula {{a, c}, {b, c}, {ā, b̄}, {d, e, f}}
can be constructed. Combining AND/OR-gate equivalence reasoning with the
resolution rule tends to result in smaller formulas compared to only applying the
resolution rule [8,23].

Subsumption Elimination. A clause C2 is said to subsume clause C1 iff C2 ⊆ C1.
The subsumed clause C1 is redundant and can be deleted from the original SAT
equation. A special form of subsumption is called self-subsuming resolution. It is
applicable for two clauses C1, C2 iff for some variable x, we have C1 = C ′

1 ∪ {x},
C2 = C ′

2 ∪ {x̄}, and C ′
2 ⊆ C ′

1. Consider the clauses: C1 = {x, a, b} and C2 =
{x̄, b}; C2 self-subsumes C1 since x ∈ C1, x̄ ∈ C2 and {b} ⊆ {a, b}. The self-
subsuming literal x can be discarded, producing clause C̃1 = {a, b}. In other
words, we say that C1 is strengthened by C2.

24 M. Osama and A. Wijs

3 GPU Challenges: Memory and Data

GPU Architecture. CUDA is a programming model developed by NVIDIA [20]
to provide a general-purpose programming paradigm and allow using the massive
capabilities of GPU resources to accelerate applications. Regarding the process-
ing hardware, a GPU consists of multiple streaming multiprocessors (SMs) and
each SM resembles an array of streaming processors (SPs) where every SP can
execute multiple threads grouped together in 32-thread scheduling units called
warps. On the programming level, a program can launch a kernel (GPU global
function) to be executed by thousands of threads packed in thread blocks of up to
1,024 threads or 32 warps. All threads together form a grid. The GPU manages
the execution of a launched kernel by evenly distributing the launched blocks to
the available SMs through a hardware warp scheduler.

Concerning the memory hierarchy, a GPU has multiple types of memory:

• Global memory is accessible by all threads with high bandwidth but also high
latency. The CPU (host) can access it as an interface to the GPU.

• Shared memory is on-chip memory shared by the threads in a block; it is
smaller in size and has lower latency than global memory. It can be used to
efficiently communicate data between threads in a block.

• Registers provide thread-local storage and provide the fastest memory.

To make optimal use of global memory bandwidth and hide its latency, using
coalesced accesses is one of the best practices in global memory optimisation.
When the threads in a warp try to access a consecutive block of 32-bit words,
their accesses are combined into a single (coalesced) memory access. Uncoalesced
memory accesses can for instance be caused by data sparsity or misalignment.

Regarding atomicity, a GPU is capable of executing atomic operations on
both global and shared memory. A GPU atomic function typically performs a
read-modify-write memory operation on one 32-bit or 64-bit word.

Memory Management. When small data packets need to be accessed frequently,
both on the host (CPU) and device (GPU) side (which is the case in the current
work), unified memory can play a crucial role in boosting the transfer rates by
avoiding excessive memory copies. Unified memory creates a pool of managed
memory that is shared between the CPU and GPU. This pool is accessible
to both sides using a single pointer. Another advantage of unified memory is
that it allows the CPU to allocate multidimensional pointers referencing global
memory locations or nested structures. However, if a memory pool is required
to be reallocated (resized), one must maintain memory coherency between the
CPU-side and GPU-side memories. A reallocation procedure is necessary for
our variable elimination algorithm, to make memory available when producing
resolvents and reduce the memory use when removing clauses.

To better explain the coherency problem in reallocation, suppose there is an
array A allocated and loaded with some data X, then X is visible from both
the CPU and GPU memories. When A is reallocated from the host side, the
memory is not physically allocated until it is first accessed, particularly when

Parallel SAT Simplification on GPU Architectures 25

using an NVIDIA GPU with the Pascal architecture [20]. Once new data Y is
written to A from the device side, both sides will observe a combination of X
and Y , leading to memory corruptions and page faults. To avoid this problem,
A must be reset on the host side directly after memory reallocation to assert
the physical allocation. After that, each kernel may store its own data safely
in the global memory. In the proposed algorithms, we introduce two types of
optimisations addressing memory space and latency.

Regarding memory space optimisation, allocating memory dynamically each
time a clause is added is not practical on a GPU while variables are eliminated
in parallel. To resolve this, we initially launch a GPU kernel to calculate an
upper bound for the number of resolvents to be added before the elimination
procedure starts (Sect. 4.1). After this, reallocation is applied to store the new
resolvents. Furthermore, a global counter is implemented inside our CNF data
structure to keep track of new clauses. This counter is incremented atomically
by each thread when adding a clause.

Concerning memory latency optimisation, when thread blocks produce resol-
vents, these can initially be stored in shared memory. Checking for tautologies
can then be done by accessing shared memory, and non-tautologies can be writ-
ten back to the global memory in a new CNF formula. Also, the definitions of
AND-OR gates can be stored in shared memory, to be used later when applying
clause substitution (see Sect. 4.1). This has the advantage of reducing the num-
ber of global memory accesses. Nevertheless, the size of shared memory in a GPU
is very limited (48 KB in most architectures). If the potential size of a resolvent
is larger than the amount pre-allocated for a single clause, our BVIPE algorithm
automatically switches to the global memory and the resolvent is directly added
to the new CNF formula. This mechanism reduces the global memory latency
when applicable and deals with the shared memory size limitation dynamically.

Data Structures. The efficiency of state-of-the-art sequential SAT solving and
preprocessing is to a large extent due to the meticulously coded data structures.
When considering SAT simplification on GPUs, new data structures have to be
tailored from scratch. In this work, we need two of them, one for the SAT formula
in CNF form (which we refer to as CNF) and another for the literal occurrence
table (occurTAB), via which one can efficiently iterate over all clauses containing
a particular literal. In CPU implementations, typically, they are created using
heaps and auto-resizable vectors, respectively. However, heaps and vectors are not
suitable for GPU parallelisation, since data is inserted, reallocated and sorted
dynamically. The best GPU alternative is to create a nested data structure
with arrays using unified memory (see Fig. 1). The CNF contains a raw pointer
(linear array) to store CNF literals and a child structure Clause to store clause
info. Each clause has a head pointer referring to its first literal. The occurTAB
structure has a raw pointer to store the clause occurrences (array pointers) for
each literal in the formula and a child structure occurList . The creation of an
occurList instance is done in parallel per literal using atomic operations. For
each clause C, a thread is launched to insert the occurrences of C’s literals in
the associated occurLists. One important remark is that two threads storing the
occurrences of different literals do not have to wait for each other. For instance,

26 M. Osama and A. Wijs

occurTAB in Fig. 1 shows two different atomic insertions executed at the same
time for literals 2 and –1 (if an integer i represents a literal x, then −i represents
x̄). This minimises the performance penalty of using atomics.

The advantages of the proposed data structures are: as mentioned above,
occurTAB instances can be constructed in parallel. Furthermore, coalesced
access is guaranteed since pointers are stored consecutively (the gray arrows
in Fig. 1), and no explicit memory copying is done (host and device pointers are
identical) making it easier to integrate the data structures with any sequential
or parallel code.

4 Algorithm Design and Implementation

4.1 Parallel Variable Elimination

In order to eliminate Boolean variables simultaneously in SAT formulas without
altering the original satisfiability, a set of variables should be selected for elimi-
nation checking that contains only variables that are independent of each other.
The LCVE algorithm we propose is responsible for electing such a subset from
a set of authorised candidates. The remaining variables relying on the elected
ones are frozen.

Fig. 1. An example of CNF and occurTAB data structures.

Definition 1 (Authorised candidates). Given a CNF formula S, we call A
the set of authorised candidates: A = {x | 1 ≤ h[x] ≤ μ ∨ 1 ≤ h[x̄] ≤ μ}, where

Parallel SAT Simplification on GPU Architectures 27

– h is a histogram array (h[x] is the number of occurrences of x in S)
– μ denotes a given maximum number of occurrences allowed for both x and its

complement, representing the cut-off point for the LCVE algorithm

Definition 2 (Candidate Dependency Relation). We call a relation D :
A × A a candidate dependency relation iff ∀x, y ∈ A, x D y implies that ∃C ∈
S.(x ∈ C ∨ x̄ ∈ C) ∧ (y ∈ C ∨ ȳ ∈ C)

Definition 3 (Elected candidates). Given a set of authorised candidates A,
we call a set ϕ ⊆ A a set of elected candidates iff ∀x, y ∈ ϕ. ¬(x D y)

Definition 4 (Frozen candidates). Given the sets A and ϕ, the set of frozen
candidates F ⊆ A is defined as F = {x | x ∈ A ∧ ∃y ∈ ϕ. x D y}

Before LCVE is executed, a sorted list of the variables in the CNF formula
needs to be created, ordered by the number of occurrences in the formula, in
ascending order (following the same rule as in [8]). From this list, the autho-
rised candidates A can be straightforwardly derived, using μ as a cut-off point.
Construction of this list can be done efficiently on a GPU using Algorithms 1
and 2. Algorithm 1 is labelled GPU, indicating that each individual step can be
launched as a GPU computation. In contrast, algorithms providing kernel code,
i.e., that describe the steps each individual GPU thread should perform as part
of a GPU computation, such as Algorithm 2, are labelled GPU kernel.

As input, Algorithm 1 requires a SAT formula S as an instance of CNF.
Furthermore, it requires the number of variables n occurring in S and a cut-off
point μ. At line 1, a histogram array h, providing for each literal the number
of occurrences in S, is constructed. This histogram can be constructed on the
GPU using the histogram method offered by the Thrust library [4,5]. At line
2, memory is allocated for the arrays A and scores. With h, these are input for
the kernel assignScores. Once the kernel execution has terminated, at line 4, the
candidates in A are sorted on the GPU based on their scores in scores and μ is
used on the GPU to prune candidates with too many occurrences. We used the
radix-sort algorithm as provided in the Thrust library [5].

In the kernel of Algorithm 2, at line 1, the tid variable refers to the thread
identifier in the launched grid where xThread is the thread index inside a block of
size blockDim and xBlock is the block index inside the entire grid of size gridDim.

28 M. Osama and A. Wijs

The stride variable is used to determine the distance between variables that
have to be processed by the same thread. In the subsequent while loop (lines
2–9), the thread index is used as a variable index (variable indices start at 1),
jumping ahead stride variables at the end of each iteration. At lines 5–8, a score is
computed for the currently considered variable x. This score should be indicative
of the number of resolvents produced when eliminating x, which depends on
the number of occurrences of both x and x̄, and can be approximated by the
formula h[x] × h[x̄]. To avoid score zero in case exactly one of the two literals
does not occur in S, we consider that case separately. On average, Algorithm 1
outperforms the sequential counterpart 52×, when considering our benchmark
set of problems [21].

LCVE Algorithm. Next, Algorithm 3 is executed on the host, given S, A, h
and an instance of occurTAB named OT. This algorithm accesses 2 · |A| num-
ber of occurList instances and parts of S. The use of unified memory significantly
improves the rates of the resulting transfers and avoids explicitly copying entire
data structures to the host side. The output is ϕ, implemented as a list. Function
abs is defined as follows: abs(x) = x and abs(x̄) = x. The algorithm considers
all variables x in A (line 2). If x has not yet been frozen (line 3), it adds x to ϕ
(line 4). Next, the algorithm needs to identify all variables that depend on x. For
this, the algorithm iterates over all clauses containing either x or x̄ (line 5), and
each literal � in those clauses is compared to x (lines 6–8). If � refers to a different
variable v, and v is an authorised candidate, then v must be frozen (line 9).

BVIPE GPU Algorithm. After ϕ has been constructed, a kernel is launched to
compute an upper bound for the number of resolvents (excluding tautologies)
that may be produced by eliminating variables in ϕ. This kernel accumulates the
number of resolvents of each variable using parallel reduction in shared memory
within thread blocks. The resulting values (resident in shared memory) of all
blocks are added up by atomic operations, resulting in the final output, stored in
global memory (denoted by |S̃|). Afterwards, the CNF is reallocated according to
the extra memory needed. The parallel variable elimination kernel (Algorithm 4)
is now ready to be performed on the GPU, considering both the resolution rule
and gate-equivalence reasoning (Sect. 2).

Parallel SAT Simplification on GPU Architectures 29

In Algorithm 4, first, each thread selects a variable in ϕ, based on tid (line 4).
The eliminated array marks the variables that have been eliminated. It is used to
distinguish eliminated and non-eliminated variabels when executing Algorithm 6.

Each thread checks the control condition at line 5 to determine whether the
number of resolvents (h[x] × h[x̄]) of x will be less than the number of deleted
clauses (h[x]+h[x̄]). If the condition evaluates to true, a list resolvents is created
in shared memory, which is then added to the simplified formula S̃ in global
memory after discarding tautologies (line 8). The markDeleted routine marks
resolved clauses as deleted. They are actually deleted on the host side, once the
algorithm has terminated.

At line 10, definitions of AND and OR gates are deduced by the gateReason-
ing routine, and stored in shared memory in the lists α and β, respectively. If at
least one gate definition is found, the clauseSubstitution routine substitutes the
involved variable with the underlying definition (line 11), creating the resolvents.

In some situations, even if h[x] or h[x̄] is greater than 1, the number of
resolvents can be smaller than the deleted clauses, due to the fact that some
resolvents may be tautologies that are subsequently discarded. For this reason,
we provide a third alternative to lookahead for tautologies in order to conclu-
sively decide whether to resolve a variable if the conditions at lines 5 and 10
both evaluate to false. This third option (line 15) has lower priority than gate
equivalence reasoning (line 10), since the latter in practice tends to perform more
reduction than the former.

The sequential running time of Algorithm 4 is O(k · |ϕ|), where k is the
maximum length of a resolved clause in S. In practice, k often ranges between 2

30 M. Osama and A. Wijs

and 10. Therefore, the worst case is linear w.r.t. |ϕ|. Consequently, the parallel
complexity is O(|ϕ|/p), where p is the number of threads. Since a GPU is capable
of launching thousands of threads, that is, p ≈ |ϕ|, the parallel complexity is an
amortised constant O(1). Our empirical results show an average speedup of 32×
compared to the sequential alternative [21].

4.2 Parallel Subsumption Elimination

Algorithm 5 presents our PSE algorithm. Notice that the subsumption check
(lines 6–7) has a higher priority than self-subsumption (lines 8–12) because the
former often results in deleting more clauses. We apply PSE on the most con-
strained variables, that is, the variables that occur most frequently in S, to max-
imise parallelism on the GPU. For each literal �, the PSE algorithm is launched
on a two-dimensional GPU grid, in which threads and blocks have two identi-
fiers. Each thread compares the two clauses in OT[�] that are associated with
the thread coordinates in the grid. At line 4, those two clauses are obtained. At
line 5, it is checked whether subsumption or self-subsumption may be applicable.
For this to be the case, the length of one clause needs to be larger than the other.
The sig routine compares the identifiers of two clauses. The identifier of a clause
is computed by hashing its literals to a 64-bit value [8]. It has the property of
refuting many non-subsuming clauses, but not all of them since hashing colli-
sions may occur. At line 6, the isSubset routine runs a set intersection algorithm
in linear time O(k) assuming that both clauses are sorted. If one clause is indeed
a subset of the other, the latter clause is marked for deletion later (line 7).

As an alternative, the applicability of self-subsumption is checked at line 8.
If C is not a unit clause, i.e., |C| > 1, then self-subsumption can be considered.
We exclude unit clauses, because they cannot be reduced in size; instead, they
should be propagated over the entire formula before being removed (doing so is
planned for future work). If applicable, the routine isSelfSub returns the position
in C of the literal to be removed, otherwise –1 is returned. This literal is marked
for removal in C, using an atomic operation, to avoid race conditions on writing

Parallel SAT Simplification on GPU Architectures 31

and reading the literal. Finally, the clause is marked as being altered by self-
subsumption (line 12), as after execution of the algorithm, the marked literals
need to be removed, and the clause resized accordingly.

Finally, following the concept of thread reuse, each thread jumps ahead stride
variables in both dimensions at the end of each while loop iteration (line 13).
Sequential subsumption elimination has time complexity O(k · |OT[�]|2). By
launching enough threads in both dimensions (i.e., |OT[�]|2 ≈ p), the paral-
lel complexity becomes O(k). In practice, the average speedup of PSE compared
to sequential SE is 9× [21].

Correctly Strenghtening Clauses in PSE. Strengthening self-subsumed clauses
cannot be done directly at line 9 of Algorithm 5. Instead, clauses need to be
altered in-place. Consider the case that a clause C can be self-subsumed by two
different clauses C1, C2 on two different self-subsuming literals, and that this
is detected by two different threads at the exact same time. We call this phe-
nomenon the parallel-effect of self-subsumption. Notice that the same result can
be obtained by applying self-subsumption sequentially in two successive rounds.
In the first round, C is checked against C1, while in the second round, what
is left of C is checked against C2. If C would be removed by t1 and replaced
by a new, strengthened clause, then t2 may suddenly be accessing unallocated
memory. Instead, C is atomically strengthened in-place at line 11; t marks the
self-subsumed literal using an atomic Compare-And-Swap operation. At the end,
all clauses marked as self-subsumed have to be shrunk in size, in essence, over-
writing reset positions. This is performed in a separate kernel call.

Parallel Hybrid Subsumption Elimination (PHSE). PHSE is executed on
elected variables that could not be eliminated earlier by variable elimination.

32 M. Osama and A. Wijs

(Self)-subsumption elimination tends to reduce the number of occurrences of
these non-eliminated variables as they usually eliminate many literals. After
performing PHSE (Algorithm 6), the BVIPE algorithm can be executed again,
after which PHSE can be executed, and so on, until no more literals can be
removed.

UnlikePSE, the parallelism in thePHSEkernel is achieved on the variable level.
In other words, each thread is assigned to a variable when executing PHSE. At line
4, previously eliminated variables are skipped. At line 6, a new clause is loaded,
referenced by OT[x], into shared memory (we call it the shared clause, sh C).

The shared clause is then compared in the loop at lines 7–12 to all clauses
referenced by OT[x̄] to check whether x is a self-subsuming literal. If so, both
the original clause C, which resides in the global memory, and sh C must be
strengthened (via the strengthenWT function). Subsequently, the strengthened
sh C is used for subsumption checking in the loop at lines 13–15.

Regarding the complexity of Algorithm 6, the worst-case is that a variable x
occurs in all clauses of S. However, in practice, the number of occurrences of x
is bounded by the threshold value μ (see Definition 1). The same applies for its
complement. Therefore, worst case, a variable and its complement both occur μ
times. As PHSE considers all variables in ϕ and worst case has to traverse each
loop μ times, its sequential worst-case complexity is O(|ϕ| · μ2) and its parallel
worst-case complexity is O(μ2).

5 Benchmarks

We implemented the proposed algorithms in CUDA C++ using CUDA toolkit
v9.2. We conducted experiments using an NVIDIA Titan Xp GPU which has
30 SMs (128 cores each), 12 GB global memory and 48 KB shared memory.
The machine equipped with the GPU was running Linux Mint v18. All GPU
SAT simplifications were executed in four phases iteratively. Every two phases,
the resulting CNF was reallocated to discard removed clauses. In general, the
number of iterations can be configured, and the reallocation frequency can be
also set to a desired value.

We selected 214 SAT problems from the industrial track of the 2013, 2016
and 2017 SAT competitions [13]. This set consists of almost all problems from
those tracks that are more than 1 MB in file size. The largest size of problems
occurring in this set is 1.2 GB. These problems have been encoded from 31
different real-world applications that have a whole range of dissimilar logical
properties. Before applying any simplifications using the experimental tools, any
occurring unit clauses were propagated. The presence of unit clauses immediately
leads to simplification of the formula. By only considering formulas without
unit clauses, the benchmark results directly indicate the true impact of our
preprocessing algorithms.

In the benchmark experiments, besides the implementations of our new GPU
algorithms, we involved the SatELite preprocessor [8], and the MiniSat and
Lingeling [6] SAT solvers for the solving of problems, and executed these on the
compute nodes of the DAS-5 cluster [1]. Each problem was analysed in isolation

Parallel SAT Simplification on GPU Architectures 33

on a separate computing node. Each computing node had an Intel Xeon E5-2630
CPU running at a core clock speed of 2.4 GHz with 128 GB of system memory,
and runs on the CentOS 7.4 operating system. We performed the equivalent of 6
months and 22 days of uninterrupted processing on a single node to measure how
GPU SAT simplification impacts SAT solving in comparison to using sequential
simplification or no simplification. The time out for solving experiments and
simplification experiments was set to 24 h and 5,000 s, respectively. Time outs
are marked ‘T’ in the tables in this section. Out-of-memory cases are marked
‘M’ in the tables.

Table 1 gives the MiniSat solving performance summed over the CNF families
for both the original and simplified problems produced by GPU SAT simplifica-
tion and SatELite. The ve+ and ve modes in GPU simplification represent vari-
able elimination with and without PHSE, respectively. The all mode involves
both ve+ and PSE. The numbers between brackets of columns 2 to 7 denote
the number of solved instances at each family. Bold results in column 6 indicate
that the combination of GPU SAT simplification and MiniSat reduced the net
solution times (preprocessing + solving), or allowed more problems to be solved
compared to the ve column of SatElite + MiniSat (column 3). Likewise, the
all column for our results (column 7) is compared to column 4. The final four
columns summarise the number of instances solved faster by MiniSat when using
GPU SAT simplification (GPU+M) compared to not using GPU SAT simplifica-
tion, and compared to using SatElite for simplification (SatElite+M). Numbers
in bold indicate that 50% or more of the CNF formulas were solved faster.

The final row accumulates all problems solved faster. The percentage expresses
the induced improvement by GPU SAT simplification over MiniSat and SatElite.
Similarly, Table 2 gives the performance of solving the problems with Lingeling and
GPU SAT simplification+Lingeling (GPU+L). Since SatELite is the groundwork
of preprocessing in Lingeling, there is no reason to apply it again.1

The presented data shows that GPU+L solved many instances faster than
SatElite with Lingeling, especially for the ak128, blockpuzzle, and sokoban prob-
lems. In addition, GPU SAT simplification allowed Lingeling to solve more
instances of the hwmcc, velev, and sncf models. This effect did not occur for
MiniSat.

Table 3 provides an evaluation of the achieved simplifications with GPU SAT
simplification and SatELite, where V, C, L are the number of variables, clauses,
and literals (in thousands), respectively, and t(s) is the runtime in seconds. In
case of GPU SAT simplification, t includes the transfer time between host and
device. Bold results indicate significant improvements in reductions on literals
for more than 50% of the instances.

On average, SatElite managed to eliminate more variables and clauses at
the expense of literals explosion. Regarding scalability, GPU SAT simplifica-
tion is able to preprocess extremely large problems (e.g., the esawn problem,
sokoban-p20.sas.ex.23, and the high-depth sncf model) in only a few seconds
while SatElite failed. For our benchmark set of SAT problems, GPU SAT

1 The full tables with all obtained results are available at [21].

34 M. Osama and A. Wijs

T
a
b
le

1
.
M

in
iS

a
t

so
lv

in
g

o
f
o
ri

g
in

a
l
a
n
d

si
m

p
li
fi
ed

fo
rm

u
la

s
(t

im
e

in
se

co
n
d
s)

.

F
a
m

il
y

(#
C

N
F
)

M
in

is
a
t

S
a
tE

li
te

+
M

in
is

a
t

G
P
U

+
M

in
is

a
t

G
P
U

+
M

v
s

M
in

iS
a
t

G
P
U

+
M

v
s

S
a
tE

li
te

+
M

v
e

a
ll

v
e

v
e
+

a
ll

v
e
+

a
ll

v
e
+

a
ll

d
sp

a
m

(8
)

7
2
6
(8

)
1
4
3
(8

)
8
6
(8

)
1
9
4
(8

)
1
2
7
(
8
)

5
1
(
8
)

6
3

6
7

A
C

G
(4

)
1
0
1
4
6
(4

)
5
3
7
6
(4

)
2
8
1
3
(4

)
9
5
9
7
(4

)
4
1
3
9
(4

)
3
5
5
8
(4

)
4

4
3

1

a
k
1
2
8
(3

0
)

1
7
3
5
3
(1

1
)

1
9
6
0
4
(1

1
)

5
2
1
8
5
(1

1
)

5
4
3
0
2
(1

1
)
3
4
0
0
1
(
1
2
)

5
0
4
5
(
1
2
)

1
2

7
1
2

1
2

h
w

m
c
c
(2

7
)

2
9
1
8
8
5
(1

0
)
2
9
4
6
4
6
(1

2
)
4
0
8
1
8
4
(1

4
)
2
0
5
0
9
9
(1

2
)

1
4
5
1
8
2
(1

1
)

2
6
2
5
3
9
(1

2
)

1
1

1
1

8
7

U
C

G
(3

)
3
0
4
8
(3

)
1
4
6
7
(3

)
1
0
2
2
(3

)
2
1
8
6
(3

)
1
8
3
1
(3

)
7
2
5
(
3
)

2
3

1
3

U
R

(3
)

1
2
6
4
8
(3

)
1
2
2
3
3
(3

)
4
2
2
1
(3

)
2
7
5
4
7
(3

)
6
4
3
1
(
3
)

2
0
2
4
0
(3

)
3

1
2

0

U
T

I(
1
)

4
5
9
4
(1

)
9
1
6
(1

)
1
9
0
8
(1

)
2
3
5
0
(1

)
4
1
9
2
(1

)
1
2
4
4
(
1
)

1
1

0
1

it
o
x
(6

)
7
(6

)
7
8
(6

)
1
5
1
(6

)
4
.2

(6
)

5
.7

(
6
)

1
2
(
6
)

3
0

6
6

m
a
n
o
l-
p
ip

e
(1

0
)

1
9
7
8
(1

0
)

3
9
0
9
(1

0
)

3
1
0
6
(1

0
)

1
4
3
2
(1

0
)

1
2
3
9
(
1
0
)

1
2
1
3
(
1
0
)

7
7

5
5

b
lo

c
k
p
u
z
z
le

(1
4
)

4
3
5
8
4
(1

3
)
1
7
7
5
4
5
(1

3
)

9
9
5
6
9
(1

0
)

3
6
6
9
8
(1

4
)
5
5
2
5
0
(
1
4
)

5
5
3
1
7
(
1
4
)

7
5

1
2

1
3

2
6
-s

ta
c
k
-c

a
s(

1
)

0
.9

(1
)

1
1
0
(1

)
1
1
0
(1

)
0
.6

7
(1

)
0
.8

(
1
)

2
.8

1
(
1
)

1
0

1
1

9
d
lx

-v
li
w

(1
0
)

1
4
0
9
3
(3

)
1
4
1
9
9
3
(5

)
1
3
3
8
5
9
(5

)
7
6
7
1
6
(4

)
3
3
3
0
6
(3

)
1
1
2
8
6
2
(
5
)

1
4

0
4

d
a
te

d
(1

)
3
7
1
1
(1

)
4
6
9
9
(1

)
3
7
1
1
(1

)
3
8
9
4
(1

)
4
5
5
3
(
1
)

3
8
3
3
(1

)
0

0
1

0

p
o
d
w

r0
0
1
(1

)
1
4
.5

(1
)

2
2
(1

)
5
3
(1

)
1
5
.7

(1
)

1
8
(
1
)

2
3
(1

)
0

0
1

1

tr
a
n
sp

o
rt

(3
)

2
9
3
5
(3

)
1
9
6
7
(3

)
2
8
0
4
(3

)
5
1
0
9
(3

)
2
3
6
6
(3

)
7
6
4
9
(3

)
1

1
0

1

v
a
lv

e
s(

1
)

3
1
2
0
(1

)
7
7
0
(1

)
7
0
2
(1

)
1
2
0
2
(1

)
1
2
3
7
(1

)
8
7
3
(1

)
1

1
0

0

m
iz

h
-m

d
5
(6

)
7
4
9
2
(6

)
3
2
7
2
(6

)
5
0
9
1
(6

)
7
5
1
9
(6

)
4
4
5
7
(6

)
5
8
0
5
(6

)
4

5
2

3

sy
n
th

e
si

s-
a
e
s(

6
)

1
5
8
6
8
(5

)
1
0
4
4
3
(6

)
5
4
3
4
8
(6

)
7
2
7
1
(6

)
7
6
4
5
(
6
)

8
7
9
7
(6

)
5

5
3

5

te
st

-c
1
-s

(6
)

3
2
2
7
7
(5

)
8
6
9
5
5
(6

)
2
3
5
9
6
(5

)
2
3
0
4
4
(5

)
2
8
7
1
6
(5

)
8
1
7
2
7
(5

)
4

5
1

2

c
u
b
e
-1

1
-h

1
3
(1

)
6
2
5
(1

)
3
2
4
(1

)
1
1
7
3
(1

)
3
1
9
(1

)
3
1
8
(
1
)

1
2
2
(
1
)

1
1

1
1

e
sa

w
n
-u

w
3
(1

)
2
2
4
(1

)
M

M
4
2
6
(1

)
5
6
3
(
1
)

6
1
0
(
1
)

0
0

1
1

ib
m

-2
0
0
2
(1

)
3
8
5
(1

)
6
6
(1

)
1
6
9
(1

)
6
1
(1

)
1
9
5
(1

)
7
3
(
1
)

1
1

0
1

si
n
2
(2

)
3
8
5
4
2
(2

)
4
4
6
9
1
(2

)
3
9
2
4
6
(2

)
4
5
9
8
1
(2

)
5
4
4
4
2
(2

)
3
8
0
1
6
(
2
)

1
1

1
2

tr
a
ffi

c
(1

)
1
3
4
(1

)
1
3
3
(1

)
2
0
6
(1

)
1
3
3
(1

)
4
1
(
1
)

2
8
2
(1

)
1

0
1

0

p
a
rt

ia
l(

8
)

1
6
9
6
(1

)
3
4
8
(1

)
6
0
5
(1

)
7
0
6
2
(2

)
7
3
5
(1

)
T

1
0

0
0

n
e
w

to
n
(4

)
2
4
9
2
6
(4

)
6
1
5
2
(4

)
5
4
6
4
(4

)
1
5
4
7
7
(4

)
1
9
6
4
5
(4

)
1
3
7
8
3
(4

)
4

4
2

2

sa
fe

(4
)

5
.5

(4
)

2
7
(4

)
1
0
2
(4

)
4
.5

(4
)

4
.2

(
4
)

2
0
(
4
)

2
0

4
4

a
rc

fo
u
r(

8
)

1
5
3
1
(3

)
8
3
1
(3

)
2
1
9
6

1
0
1
0
(3

)
1
0
4
6
(3

)
1
0
5
1
(
3
)

3
3

0
1

so
k
o
b
a
n
(3

3
)

1
2
7
5
2
3
(1

5
)
1
1
6
5
6
2
(1

9
)

9
1
5
5
5
(1

1
)
1
1
9
9
5
8
(1

6
)

1
0
1
1
6
6
(1

7
)
1
4
7
5
6
4
(
1
8
)

1
1

1
1

8
1
3

#
C

N
F

so
lv

e
d

fa
st

e
r

(P
e
rc

e
n
ta

g
e

%
)

9
8
/
1
3
5
(7

3
)
8
4
/
1
3
9
(6

1
)
8
2
/
1
4
0
(5

9
)

9
7
/
1
4
2
(6

8
)

Parallel SAT Simplification on GPU Architectures 35

Table 2. Lingeling solving of original and simplified formulas (time in seconds).

Family (#CNF) Lingeling
GPU + Lingeling GPU+L vs Lingeling

ve ve+ all ve+ all

dspam(8) 35(8) 52(8) 79(8) 65(8) 1 0

ACG(4) 1426(4) 1685(4) 1457(4) 1392(4) 3 3

ak128(30) 35692(16) 2602(16) 41275(17) 2649(16) 15 8

hwmcc15(27) 115970(27) 95530(27) 96329(27) 109925(27) 18 16

UCG(3) 605(3) 679(3) 762(3) 691(3) 0 1

UR(3) 2029(3) 1199(3) 2709(3) 1739(3) 1 2

UTI(1) 469(1) 412(1) 402(1) 362(1) 1 1

itox(6) 195(6) 153(6) 92(6) 106(6) 3 3

manol-pipe(10) 631(10) 662(10) 713(10) 659(10) 1 2

blockpuzzle(14) 30391(14) 57559(14) 57895(14) 15328(14) 7 7

26-stack-cas(1) 7(1) 1(1) 1(1) 3(1) 1 1

9dlx-vliw(10) 4287(10) 4713(10) 4579(10) 5121(10) 3 4

dated(1) 800(1) 704(1) 751(1) 657(1) 1 1

podwr001(1) 111(1) 108(1) 171(1) 93(1) 0 1

transport(3) 2526(3) 2246(3) 1012(3) 2025(3) 2 1

valves(1) 1536(1) 1501(1) 1288(1) 1455(1) 1 1

velev(2) 11717(2) 10645(2) 10695(2) 9381(2) 2 2

mizh-md5(6) 34104(6) 33327(6) 32589(6) 23096(6) 3 5

synthesis-aes(6) 49679(6) 16494(6) 31927(6) 16151(6) 3 6

test-c1-s(6) 84807(6) 55512(6) 17284(5) 4450(4) 3 2

cube-11-h13(1) 1495(1) 2022(1) 1217(1) 813(1) 1 1

esawn-uw3(1) 107(1) 271(1) 239(1) 463(1) 0 0

ibm-2002(1) 150(1) 191(1) 129(1) 194(1) 1 0

sin2(2) 4(1) 7(1) 4.2(1) 20(1) 0 0

traffic(1) 355(1) 694(1) 505(1) 869(1) 0 0

partial(8) 4691(2) 16026(2) 1276(2) 6735(2) 2 1

newton(4) 825(4) 913(4) 908(4) 861(4) 2 2

safe(4) 49(4) 57(4) 51(4) 63(4) 1 0

sncf-model(8) 73690(4) 135683(5) T 131301(5) 0 4

arcfour(8) 1293(3) 1338(3) 1319(3) 1451(3) 0 1

sokoban(33) 339236(26) 139509(23) 248439(24) 166542(24) 14 17

#CNF solved faster (Percentage %) 90/179(50) 93/179(52)

simplification methods ve+ and all achieve on average a speedup of 66× and
12× compared to SatElite ve and all, respectively [21].

Our appendix [21] presents larger tables, providing all our results related to
Tables 1, 2 and 3. In addition, it presents a comparison between our GPU simpli-
fication algorithms and directly ported to the CPU versions of the algorithms,
to provide more insight into the contribution of the GPU parallelisation. On
average, subsumption elimination is performed 9× faster on the GPU, hybrid

36 M. Osama and A. Wijs

T
a
b
le

3
.
C

o
m

p
re

h
en

si
v
e

ev
a
lu

a
ti

o
n

o
f
si

m
p
li
fi
ca

ti
o
n

im
p
a
ct

o
n

o
ri

g
in

a
l
C

N
F

si
ze

C
N
F

(O
ri
g
in

a
l)

S
a
tE

li
te

G
P
U

N
a
m

e
V

C
L

v
e

a
ll

v
e
+

a
ll

V
C

L
t(

s)
V

C
L

t(
s)

V
C

L
t
(s

)
V

C
L

t(
s)

d
sp

a
m

d
u
m

p
v
c
1
1
0
3

2
7
5

9
2
0

2
4
6
4

1
6
1

7
2
2

2
1
9
0

1
2
.9

1
5
5

6
9
5

2
0
9
2

1
5
.5

3
1
6
4

7
2
9

2
1
8
2

0
.6

9
1
6
4

7
2
9

2
1
7
8

3
.5

2

A
C
G

-2
0
-1

0
p
1

3
2
5

1
3
1
6

3
1
4
0

2
7
2

1
2
9
3

3
5
4
4

1
0
.4

2
5
0

1
1
9
4

3
1
5
4

2
0
.9

5
2
8
7

1
2
4
3

3
1
3
5

0
.3

2
2
8
7

1
2
4
2

3
1
3
4

5
.9

4

a
k
1
2
8
a
st

e
p
b
g
2
a
si
sc

2
6
0

8
4
4

2
1
4
4

1
3
0

6
8
1

2
1
7
6

4
.9

5
9
8

5
5
2

1
8
5
3

1
1
.3

2
1
6
2

6
1
7

1
7
2
2

0
.3

2
1
6
2

6
1
7

1
7
2
2

1
.1

2

h
w
m

c
c
1
5
d
e
e
p
-i
n
te

l0
3
2

4
2
6

8
8
2

2
0
5
1

6
9

3
3
4

1
2
3
5

8
8
.1

4
5

2
2
6

8
5
6

1
1
4
.8

1
0
4

3
9
1

1
1
7
1

0
.4

7
1
0
4

3
9
0

1
1
6
4

1
.5

1

U
C
G

-1
5
-1

0
p
1

1
5
1

7
5
7

1
8
4
5

1
1
9

7
3
9

2
1
3
2

5
.7

8
1
0
2

6
6
6

1
8
4
9

1
3
.5

1
1
2
2

7
0
0

1
8
3
8

0
.2

3
1
2
2

7
0
0

1
8
3
7

3
.5

0

U
R
-2

0
-5

p
1

1
7
8

9
3
8

2
3
2
0

1
4
0

9
1
8

2
6
6
1

6
.8

3
1
2
1

8
3
3

2
3
3
2

1
5
.9

7
1
4
5

8
7
4

2
3
1
7

0
.3

2
1
4
5

8
7
4

2
3
1
7

9
.3

7

U
T
I-
2
0
-1

0
p
1

2
0
3

1
0
7
5

2
6
5
6

1
6
0

1
0
5
1

3
0
4
2

7
.7

4
1
3
8

9
5
4

2
6
6
6

1
8
.1

7
1
6
6

1
0
0
1

2
6
5
1

0
.2

9
1
6
6

1
0
0
1

2
6
5
0

1
1
.8

it
o
x

v
c
1
0
3
3

1
1
1

3
3
9

8
9
8

3
5

1
7
6

6
3
9

1
2
.2

2
8

1
3
2

4
3
4

1
9
.9

2
4
2

1
9
5

6
2
9

0
.5

6
4
2

1
9
4

6
2
0

1
.4

2

m
a
n
o
l-
p
ip

e
-f
1
0
n
i

3
6
8

1
1
0
0

2
5
6
7

5
6

4
5
8

1
8
5
5

1
5
.2

5
6

4
5
6

1
8
4
4

1
7
.9

4
1
0
2

5
0
8

1
5
9
0

0
.7

5
1
0
2

5
0
8

1
5
8
9

5
.6

9

b
lo

ck
p
u
z
z
le

8
x
8

s1
f4

3
3
1
1

6
2
5

3
3
0
5

9
8
7

0
.9

1
3

3
0
3

7
9
4

3
.4

2
3

3
1
1

6
3
2

0
.0

8
3

3
1
1

6
3
2

6
.8

3

b
lo

ck
p
u
z
z
le

9
x
9

s1
f7

5
6
9
2

1
3
8
9

5
6
8
1

2
1
7
9

1
.8

4
5

6
7
8

1
7
6
4

8
.5

3
5

6
9
1

1
4
1
4

0
.1

3
5

6
9
1

1
4
1
4

6
.1

8

2
6

st
a
ck

c
a
s

lo
n
g
e
st

1
5
0
5

3
7
9
9

1
1
2
8
7

1
1
1

4
4

1
1
0

1
1
0

3
9

1
1
0
.4

3
1
5

4
3

0
.8

4
3

1
4

4
1

2
.8

0

9
d
lx

v
li
w

a
t

b
iq

8
3
7
1

7
1
7
0

2
0
8
7
2

3
0
3

7
0
4
2

2
2
7
0
8

1
3
6

3
0
3

6
9
9
4

2
1
6
9
0

6
0
7
.8

3
3
5

7
0
9
8

2
1
0
7
1

5
.8

0
3
3
3

7
0
6
9

2
0
4
0
8

4
8
.8

d
a
te

d
-1

0
-1

7
-u

1
7
7

8
1
3

1
9
1
4

1
3
4

7
4
0

2
0
7
4

8
.4

9
6
7

4
2
5

1
1
1
2

1
5
.9

6
1
2
7

6
7
8

1
7
6
4

0
.4

3
1
2
7

6
7
8

1
7
6
4

4
.2

2

v
a
lv

e
s-

g
a
te

s-
1
-k

6
1
7

9
7
0

3
0
6
2

7
8
4
2

3
0
2

1
7
7
7

6
0
2
7

3
0
.9

2
4
9

1
3
6
8

4
4
5
4

5
2
.4

0
3
7
1

1
6
8
0

4
9
7
0

1
.2

1
3
6
6

1
6
5
5

4
8
5
6

1
8
.5

v
e
le

v
-p

ip
e
-o

u
n
-1

.1
-0

5
2
3
6

7
6
7
6

2
2
7
8
2

1
4
3

7
4
9
1

2
3
9
3
3

4
5
.0

1
4
3

7
4
8
8

2
3
9
1
4

8
4
.8

5
1
7
8

7
5
6
1

2
2
6
8
3

1
1
.5

1
7
8

7
5
5
7

2
2
5
3
0

1
0
9

v
e
le

v
-v

li
w
-u

n
s-

2
.0

-u
q
5

1
5
1

2
4
6
5

7
1
4
1

1
2
0

2
4
0
7

7
6
5
3

4
1
.2

1
2
0

2
3
9
1

7
3
8
8

9
9
.1

7
1
3
1

2
4
2
4

7
1
8
1

1
.5

5
1
3
0

2
4
1
1

6
9
6
3

2
0
.3

e
sa

w
n

u
w
3
.d

e
b
u
g
g
e
d

1
2
2
0
0

4
8
0
4
9

1
3
3
1
2
7

n
/
a

n
/
a

n
/
a

M
n
/
a

n
/
a

n
/
a

M
7
3
6
1

3
6
1
8
4

1
0
8
3
3
1

1
6
.0

7
3
8
5

3
6
1
8
9

1
0
8
1
8
7

3
3
3

m
iz

h
-m

d
5
-1

2
6
9

2
2
6

5
8
5

2
8

1
7
1

5
7
6

1
.5

3
2
8

1
6
3

5
5
2

2
.1

7
3
7

1
6
3

4
8
2

0
.0

7
3
7

1
6
3

4
8
2

0
.3

2

m
iz

h
-m

d
5
-4

8
-5

6
1

2
3
8

6
8
9

3
4

1
9
3

6
4
1

1
.3

6
2
6

1
5
7

5
3
3

2
.3

1
2
6

1
6
7

5
6
3

0
.1

2
2
6

1
6
7

5
6
3

2
.0

5

sl
p
-s

y
n
th

e
si
s-

a
e
s-

to
p
3
0

9
7

3
0
4

7
4
5

3
7

2
1
1

1
1
1
0

4
1
.9

3
7

1
9
1

1
0
4
3

9
0
.0

4
4
2

2
1
5

6
5
8

0
.0

7
4
2

1
9
6

5
9
9

1
.7

1

ib
m

-2
0
0
2
-2

3
r-

k
9
0

2
0
9

8
6
4

2
1
7
6

8
0

6
0
1

2
1
7
9

9
.9

3
7
2

5
2
3

1
7
9
6

1
7
.7

4
1
0
7

6
5
2

1
8
9
9

0
.3

8
1
0
7

6
4
5

1
8
3
4

5
.2

6

n
e
w
to

n
.2

.3
.i
.s
m

t2
-c

v
c
4

3
0
2

1
3
0
9

3
6
2
5

1
9
3

1
1
1
6

3
6
6
9

1
9
.5

1
8
3

1
0
2
5

3
3
2
0

2
9
.7

9
2
1
5

1
0
7
9

3
1
9
3

0
.7

7
2
1
5

1
0
7
4

3
1
6
0

7
.1

2

p
a
rt

ia
l-
1
0
-1

9
-s

2
6
9

1
2
8
2

3
0
3
3

2
0
7

1
1
7
5

3
2
9
3

1
3
.0

1
6
8

9
9
5

2
7
5
0

2
5
.5

9
1
9
8

1
0
8
9

2
8
4
5

0
.5

6
1
9
8

1
0
8
9

2
8
4
5

7
.6

4

sa
fe

0
2
9

6
2

3
0
5

1
0
4
8

4
1

2
6
1

1
2
0
4

7
.9

2
4
0

2
5
1

1
0
9
5

2
3
.6

6
5
6

2
9
1

1
0
2
5

0
.2

7
5
6

2
9
0

9
3
2

3
.0

1

si
n
2
.c

.2
0
.s
m

t2
-c

v
c
4

1
9
6
2

7
9
5
4

2
1
6
3
8

1
0
6
3

6
6
8
4

2
2
5
7
9

1
3
6

8
6
7

5
6
4
7

1
9
5
9
1

3
0
6

1
1
9
6

6
0
7
2

1
8
1
6
7

3
.2

4
1
1
9
6

6
0
5
6

1
8
0
5
7

3
5
.2

sn
c
f
m

o
d
e
l
d
e
p
th

0
7

8
1
4

2
6
4
1

6
5
6
5

n
/
a

n
/
a

n
/
a

T
n
/
a

n
/
a

n
/
a

T
4
2
3

1
7
7
8

5
0
8
9

1
.9

7
4
2
4

1
7
7
8

5
0
8
4

7
.8

2

te
st

s1
8
1
6
0

4
1
1

1
8
3
1

5
1
0
4

2
6
6

1
5
9
5

5
1
7
0

2
3
.0

2
6
6

1
5
9
5

5
1
0
2

3
0
.2

3
0
6

1
6
0
7

4
7
7
0

0
.7

5
3
0
6

1
5
9
9

4
7
3
1

1
0
.6

tr
a
ff
ic

3
u
c

sa
t

1
4
2

1
3
1
2

4
5
5
8

1
4
1

1
3
1
1

4
5
5
6

3
.1

5
1
4
1

1
3
1
1

4
5
5
6

3
.2

2
1
4
1

1
3
1
1

4
5
5
7

1
.0

6
1
4
1

1
3
1
0

4
5
5
4

2
8
.5

a
rc

fo
u
r

6
1
4

1
0
5

4
0
4

1
1
7
2

6
0

3
1
6

1
3
6
5

4
.9

9
6
0

3
1
6

1
3
6
4

6
.1

3
7
2

3
4
1

1
1
1
4

0
.0

9
7
2

3
4
1

1
1
1
4

1
.2

1

so
k
o
b
a
n
-p

1
7
.s
a
s.
e
x
.1

1
6
0
6

8
7
6

2
3
1
2

6
1
5
1

1
0
2
3

4
9
.1

6
1
3
4

7
1
8

1
7
9

3
4

2
8
3

1
1
8
0

0
.5

3
3
4

2
8
2

1
0
2
6

2
.4

4

so
k
o
b
a
n
-p

2
0
.s
a
s.
e
x
.2

3
3
6
3
2

7
2
5
8

4
8
1
1
9

1
1
1

2
9
2
9

4
0
7
8
7

1
1
.0

n
/
a

n
/
a

n
/
a

T
2
7
6

3
7
1
6

4
1
5
3
6

0
.3

4
2
7
6

3
7
1
4

3
8
2
0
5

5
.9

6

Parallel SAT Simplification on GPU Architectures 37

subsumption elimination is performed 15× faster on the GPU, and BVE is con-
ducted 32× faster on the GPU.

6 Related Work

Subbarayan and Pradhan [24] provided the first Bounded Variable Elimination
(BVE) technique, called NiVER, based on the resolution rule of Davis-Putnam-
Logemann-Loveland (DPLL) [7]. Eén and Biere [8] extended NiVER with sub-
sumption elimination and clause substitution. However, the subsumption check
is only performed on the clauses resulting from variable elimination, hence no
reductions are obtained if there are no variables to resolve.

Heule et al. [14,16] introduced several approaches for clause elimination that
can be effective in SAT simplifications, such as Blocked Clause Elimination.
Bao et al. [3], on the other hand, have presented an efficient implementation
of Common Sub-clause Elimination (CSE) performed periodically during SAT
solving. CSE trims the search space, thereby decreasing the solving time, and
is stable, i.e., the outcome of CSE does not depend on the chosen clause order-
ing. Gebhardt and Manthey [10] presented the first attempt to parallelise SAT
preprocessing on a multi-core CPU using a locking scheme to prevent threads
corrupting the SAT formula. However, they reported only a very limited speedup
of on average 1.88× when running on eight cores.

All the above methods apply sound simplifications, but none are tailored
for GPU parallelisation. They may consume considerable time when processing
large problems.

Finally, it should be noted that BVE, as introduced in [8,10,16,24], is not
confluent, as noted by the authors of [16]. Due to dependency between variables,
altering the elimination order of these variables may result in different simplified
formulas. This drawback is circumvented by our LCVE algorithm, which makes
it possible to perform parallel variable elimination while achieving the confluence
property.

7 Conclusion

We have shown that SAT simplifications can be performed efficiently on many-
core systems, producing impactful reductions in a fraction of a second, even for
larger problems consisting of millions of variables and tens of millions of clauses.
The proposed BVIPE algorithm provides the first methodology to eliminate
multiple variables in parallel while preserving satisfiability. Finally, PSE and
PHSE have proven their effectiveness in removing many clauses and literals in a
reasonable amount of time.

Concerning future work, the results of this work motivate us to take the
capabilities of GPU SAT simplification further by supporting more simplification
techniques or balancing the workload on multiple GPUs.

38 M. Osama and A. Wijs

References

1. Bal, H., et al.: A medium-scale distributed system for computer science research:
infrastructure for the long term. IEEE Comput. 49(5), 54–63 (2016)

2. Balyo, T., Sinz, C.: Parallel satisfiability. In: Hamadi, Y., Sais, L. (eds.) Handbook
of Parallel Constraint Reasoning, pp. 3–29. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-63516-3 1

3. Bao, F.S., Gutierrez, C., Charles-Blount, J.J., Yan, Y., Zhang, Y.: Accelerating
boolean satisfiability (SAT) solving by common subclause elimination. Artif. Intell.
Rev. 49(3), 439–453 (2018)

4. Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for CUDA. In: GPU
computing gems Jade edition, pp. 359–371. Elsevier, Atlanta (2012)

5. Bell, N., Hoberock, J.: A parallel algorithms library. Thrust Github (2018). https://
thrust.github.io/

6. Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013.
In: Proceedings of SAT Competition, pp. 51–52 (2013)

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

8. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 5

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

10. Gebhardt, K., Manthey, N.: Parallel variable elimination on CNF formulas. In:
Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS (LNAI), vol. 8077, pp. 61–73.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40942-4 6

11. Hamadi, Y., Wintersteiger, C.: Seven challenges in parallel SAT solving. AI Mag.
34(2), 99 (2013)

12. Han, H., Somenzi, F.: Alembic: an efficient algorithm for CNF preprocessing. In:
Proceedings of 44th ACM/IEEE Design Automation Conference, pp. 582–587.
IEEE (2007)

13. Heule, M., Järvisalo, M., Balyo, T., Balint, A., Belov, A.: SAT Competition, vol.
13, pp. 16–17 (2018). https://satcompetition.org/

14. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF for-
mulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp.
357–371. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-
8 26

15. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)

16. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-12002-2 10

17. Järvisalo, M., Biere, A., Heule, M.J.: Simulating circuit-level simplifications on
CNF. J. Autom. Reasoning 49(4), 583–619 (2012)

18. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 28

19. Jin, H., Somenzi, F.: An incremental algorithm to check satisfiability for bounded
model checking. ENTCS 119(2), 51–65 (2005)

https://doi.org/10.1007/978-3-319-63516-3_1
https://doi.org/10.1007/978-3-319-63516-3_1
https://thrust.github.io/
https://thrust.github.io/
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-40942-4_6
https://satcompetition.org/
https://doi.org/10.1007/978-3-642-16242-8_26
https://doi.org/10.1007/978-3-642-16242-8_26
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.org/10.1007/978-3-642-31365-3_28

Parallel SAT Simplification on GPU Architectures 39

20. NVIDIA: CUDA C Programming Guide (2018). https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

21. Osama, M., Wijs, A.: Parallel SAT Simplification on GPU Architectures -Appendix
(2019). http://www.win.tue.nl/∼awijs/suppls/pss-app.pdf

22. Osama, M., Gaber, L., Hussein, A.I., Mahmoud, H.: An efficient SAT-based test
generation algorithm with GPU accelerator. J. Electron. Test. 34(5), 511–527
(2018)

23. Ostrowski, R., Grégoire, É., Mazure, B., Säıs, L.: Recovering and exploiting struc-
tural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 185–199. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46135-3 13

24. Subbarayan, S., Pradhan, D.K.: NiVER: non-increasing variable elimination reso-
lution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT
2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005). https://doi.org/
10.1007/11527695 22

25. Wijs, A.: GPU accelerated strong and branching bisimilarity checking. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 368–383. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 29

26. Wijs, A.: BFS-based model checking of linear-time properties with an application
on GPUs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
472–493. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 26

27. Wijs, A., Bošnački, D.: Many-core on-the-fly model checking of safety properties
using GPUs. Int. J. Softw. Tools Technol. Transfer 18(2), 169–185 (2016)

28. Wijs, A., Katoen, J.-P., Bošnački, D.: GPU-based graph decomposition into
strongly connected and maximal end components. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 310–326. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 20

29. Wijs, A., Katoen, J.P., Bošnački, D.: Efficient GPU algorithms for parallel decom-
position of graphs into strongly connected and maximal end components. Formal
Methods Syst. Des. 48(3), 274–300 (2016)

30. Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: unleashing GPU explicit-state
model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 694–701. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 42

31. Youness, H., Ibraheim, A., Moness, M., Osama, M.: An efficient implementation
of ant colony optimization on GPU for the satisfiability problem. In: 2015 23rd
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, pp. 230–235, March 2015

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.win.tue.nl/~awijs/suppls/pss-app.pdf
https://doi.org/10.1007/3-540-46135-3_13
https://doi.org/10.1007/3-540-46135-3_13
https://doi.org/10.1007/11527695_22
https://doi.org/10.1007/11527695_22
https://doi.org/10.1007/978-3-662-46681-0_29
https://doi.org/10.1007/978-3-319-41540-6_26
https://doi.org/10.1007/978-3-319-08867-9_20
https://doi.org/10.1007/978-3-319-08867-9_20
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-48989-6_42

40 M. Osama and A. Wijs

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Parallel SAT Simplification on GPU Architectures
	1 Introduction
	2 Preliminaries
	3 GPU Challenges: Memory and Data
	4 Algorithm Design and Implementation
	4.1 Parallel Variable Elimination
	4.2 Parallel Subsumption Elimination

	5 Benchmarks
	6 Related Work
	7 Conclusion
	References

