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Abstract. We present SIGmA (SAT sImplification on GPU Architec-
tures), a preprocessor to accelerate SAT solving that runs on NVIDIA
GPUs. We discuss the tool, focussing on its full functionality and how
it can be used in combination with state-of-the-art SAT solvers. SIGmA
performs various types of simplification, such as variable elimination,
subsumption elimination, blocked clause elimination and hidden redun-
dancy elimination. We study the effectiveness of our tool when applied
prior to SAT solving. Overall, for our large benchmark set of problems,
SIGmA enables MiniSat and Lingeling to solve many problems in less
time compared to applying the SatElite preprocessor.
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1 Introduction

Simplifying SAT formulas prior to solving them has proven to be effective in
modern SAT solvers [2,5], particularly when applied on SAT formulas encoding
software and hardware verification problems [7]. Many techniques based on vari-
able elimination, clause elimination, and equivalence reasoning are being used
to simplify SAT formulas [4,6,11]. However, applying variable and clause elim-
ination iteratively to large formulas may actually be a performance bottleneck,
or increase the number of literals, negatively impacting the solving time.

Graphics processors (GPUs) have become attractive for general-purpose
computing with the availability of the Compute Unified Device Architecture
(CUDA) programming model.1 CUDA is widely used to accelerate applications
that are computationally intensive w.r.t. data processing and memory access.
For instance, we have applied GPUs to accelerate explicit-state model check-
ing [3,12–15], metaheuristic SAT solving [16], and SAT-based test generation [9].
SIGmA is the first SAT simplifier to exploit GPUs.
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In related work, Eén et al. [4] provided the first powerful preprocessor
(SatElite) which applies variable elimination with subsumption elimination.
However, the subsumption check is only performed on the clauses resulting from
variable elimination, hence no reductions are obtained if there are no variables
to resolve. Gebhardt et al. [6] presented the first attempt to parallelise SAT
preprocessing on a multi-core CPU using a locking scheme to prevent threads
corrupting the SAT formula. Yet, they reported a limited speedup of 1.88× on
average when running on 8 cores. The methods above may still consume consid-
erable time when processing large problems.

Contributions. We present the SIGmA tool to accelerate SAT simplification on
CUDA-supported NVIDIA GPUs. In earlier work [10], we presented parallel
algorithms for variable elimination, subsumption elimination and self-subsuming
resolution. Implementations of these are now publicly available in SIGmA. More-
over, in this work, we have added new implementations for blocked clause elimi-
nation (BCE) and a new type of elimination we call hidden redundancy elimina-
tion (HRE). Finally, we propose a generalisation of all algorithms to distribute
simplification work over multiple GPUs, if these are available in a single machine.
We discuss the potential performance gain of SIGmA and its impact on SAT
solving for 344 problems, a larger set than considered previously in [10].

2 SIGmA Functionality and Architecture

SIGmA is developed in CUDA C/C++ version 9.2, runs on Windows and Linux,
and requires a CUDA-capable GPU with at least compute capability 3.5 (see
Footnote 1). It is freely available at https://gears.win.tue.nl/software. The tool
is published with a large set of benchmarks and detailed documentation.

SIGmA accepts as input a SAT formula in Conjunctive Normal Form (CNF),
stored in the DIMACS format.2 A CNF formula is a conjunction of clauses, where
each clause Ci is a disjunction of literals, and each literal �i is a Boolean variable
x or its negation x̄ (or ¬x). Below, we interpret a formula as a set of clauses, and
a clause as a set of literals. The output of SIGmA is a simplified CNF formula in
the DIMACS format, and hence can directly be used as input for state-of-the-art
SAT solvers.

SIGmA’s architecture is depicted in Fig. 1. First, we consider running SIGmA
on a single GPU. Once an input formula has been parsed and loaded into the
GPU global memory, an Occurrence Table (OT) is created using atomic write
operations. This OT stores for each variable x references to all clauses containing
either x or x̄. Next, a configured combination of simplifications can be applied.
The various types of simplification supported by the tool are:

– Variable elimination (VE). This eliminates a set of variables by applying res-
olution [11] and substitution (also known as gate equivalence reasoning) [4].
When resolution is applied for a variable x, pairs of clauses C1, C2 with

2 See https://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html.

https://gears.win.tue.nl/software
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x ∈ C1, x̄ ∈ C2 are combined into a new clause C = C1 ∪ C2 \ {x, x̄},
called a resolvent. We add such a resolvent C to the formula iff C is not a
tautology, i.e., there exists no variable y for which both y ∈ C and ȳ ∈ C. Sub-
stitution detects patterns encoding logical gates, and substitutes the involved
variables with their gate-equivalent counterparts. For instance, in the formula
{{x, ā, b̄}, {x̄, a}, {x̄, b}, {x, c}}, the first three clauses together encode a logi-
cal AND-gate, hence in the final clause, we can substitute a ∧ b for x. After
removal of the AND-gate, we end up with the new formula {{a, c}, {b, c}}.
SIGmA supports substitution for both AND- and OR-gates. The SAT-
encoded representation of the OR gate x = a ∨ b is {{x̄, a, b}, {x, ā}, {x, b̄}}.

– Hybrid subsumption elimination (HSE) [10]. It performs self-subsuming reso-
lution followed by subsumption elimination [4]. The former can be applied on
clauses C1, C2 iff for some variable x, we have C1 = C ′

1 ∪{x}, C2 = C ′
2 ∪{x̄},

and C ′
2 ⊆ C ′

1. In that case, x can be removed from C1. The latter is applied
on clauses C1, C2 with C2 ⊆ C1. In that case, C1 is redundant and can be
removed. For instance, consider the formula S = {{a, b, c}, {ā, b}, {b, c, d}}.
The first clause is self-subsumed by the second clause over variable a and
can be strengthened to {b, c} which in turn subsumes the last clause {b, c, d}.
The subsumed clause is removed from S and the simplified formula will be
{{b, c}, {ā, b}}.

– Blocked clause elimination (BCE) [8]. It removes clauses on which vari-
able elimination can be applied, but doing so results only in tautologies.
Consider the formula {{a, b, c, d}, {ā, b̄}, {ā, c̄}}. Both the literals a and c
are blocking the first clause, since resolving a produces the tautologies
{{b, c, d, b̄}, {b, c, c̄, d}}. Likewise, resolving c yields the tautology {{a, b, ā, d}.
Hence the blocked clause {a, b, c, d} can be removed from S.

– Hidden redundancy elimination (HRE) is a new elimination procedure which
repeats the following until a fixpoint has been reached: for a given formula S
and clauses C1 ∈ S, C2 ∈ S with x ∈ C1 and x̄ ∈ C2 for some variable x, if
there exists a clause C ∈ S for which C ≡ C1 ⊗x C2 and C is not a tautology,
then let S := S \ {C}. The clause C is called a hidden redundancy and can
be removed without altering the original satisfiability. For example, consider
the formula

S = {{a, c̄}, {c, b}, {d̄, c̄}, {b, a}, {a, d}}
Resolving the first two clauses gives the resolvent {a, b} which is equivalent
to the fourth clause in S. Also, resolving the third clause with the last clause
yields {a, c̄} which is equivalent to the first clause in S. HRE can remove
either {a, c̄} or {a, b} but not both.

The general workflow of SIGmA and the challenges are discussed next.

Variable Dependency and Completeness. To exploit parallelism in SIGmA, each
simplification is applied on several variables simultaneously. Doing so is non-
trivial, since variables may depend on each other; two variables x and y are
dependent iff there exists a clause C with (x ∈ C ∨ x̄ ∈ C) ∧ (y ∈ C ∨ ȳ ∈ C). If
both x and y were to be processed for simplification, two threads might manip-
ulate C at the same time. To guarantee soundness and completeness, we apply
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Fig. 1. SIGmA architecture with supported options.

our least constrained variable elections algorithm (LCVE) [10]. This algorithm
is responsible for electing a set of mutually independent variables from a set of
authorised candidates. The remaining variables relying on the elected ones are
frozen. These notions are defined by Definitions 1–4.

Definition 1 (Authorised candidates). Given a CNF formula S, we call
A the set of authorised candidates: A = {x | 1 ≤ h[x] ≤ μ ∨ 1 ≤ h[x̄] ≤ μ},
where

– h is a histogram array (h[x] is the number of occurrences of x in S).
– μ denotes a given maximum number of occurrences allowed for both x and its

negation x̄, representing the cut-off point for the LCVE algorithm.

Definition 2 (Candidate Dependency Relation). We call a relation D :
A × A a candidate dependency relation iff ∀x, y ∈ A, x D y implies that ∃C ∈
S.(x ∈ C ∨ x̄ ∈ C) ∧ (y ∈ C ∨ ȳ ∈ C).

Definition 3 (Elected candidates). Given a set of authorised candidates A,
we call a set Φ ⊆ A a set of elected candidates iff ∀x, y ∈ Φ. ¬(x D y).

Definition 4 (Frozen candidates). Given the sets A and Φ, the set of frozen
candidates F ⊆ A is defined as F = {x | x ∈ A ∧ ∃y ∈ Φ. x D y}.

SIGmA Modes of Operation. SIGmA simplifies formulas in two stages (Fig. 1).
In the first stage, variable elimination is applied. Hence, the first stage is exe-
cuted only if VE is selected, and may in addition apply HSE and/or BCE. Before
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applying VE, a parallel GPU algorithm is run to estimate the number of resol-
vents that will be produced, in order to appropriately allocate memory. HSE
can be executed after VE to remove or strengthen (self)-subsumed clauses of
non-eliminated variables. VE and HSE can be applied iteratively until no more
literals can be removed, with the VE+ option. The phases=<n> option (outer
loop for the first stage in Fig. 1), applies the first stage for a configured number
of iterations, with increasingly large values of the threshold μ.

The second stage is entirely focussed on eliminating redundant clauses, using
a configured combination of HSE/BCE/HRE.

Multi-GPU Support. By default SIGmA runs on the first GPU of the computing
machine, i.e., the one installed on the first PCI-Express bus, which we refer to as
GPU0. The command gpus=<n> utilises SAT simplification on n identical GPUs
installed in the same machine. When n > 1, the variables in Φ are distributed
evenly among the GPUs. This distribution is based on the number of literal
occurrences of each variable. Figure 1 shows an example of such a distribution,
after LCVE in the first stage. The variables are ordered by the number of literals
in the formula; the variable with ID 5 has the smallest number, while the last
one with ID 2 has the largest number. These variables are distributed over the
GPUs in a ‘ping-pong’ fashion: in the example, starting with the variable with
the largest number of literals, the first three variables are distributed over the
three GPUs, followed by the next three, which are distributed in reversed order,
etc. Finally, in general, in case the number of variables is not a multiple of the
number of GPUs, the left-over variables are assigned to GPU0, which in the
example is the case for variable 5. As the number of literals is indicative of the
computational effort needed to eliminate a variable, this distribution method
achieves good load balancing.

At the end of the distribution, every GPU d gets its own set of elected
variables Φd. For n GPUs, we say that

⋃
0≤d<n Φd = Φ and for all 0 ≤ d, d′ < n

(d �= d′), we have Φd ∩ Φd′ = ∅. We can now define the subformula of S assigned
to GPU d based on the occurrence list of each variable in Φd as follows.

Definition 5 (GPU sub-formula). Given the input formula S and a set of
elected variables Φd, we define subformula Sd ⊆ S as

Sd = {C | C ∈ S ∧ ∃x ∈ Φd.x ∈ C ∨ x̄ ∈ C}

Definition 6 (non-elected sub-formula). Given the input formula S and
set of elected variables Φ. The non-elected sub-formula Sne ⊆ S is defined as

Sne = {C | C ∈ S ∧ ¬∃x ∈ Φ.x ∈ C ∨ x̄ ∈ C}

The remaining part of S that belongs to the non-elected variables (Defini-
tion 6) can be processed by GPU0. In Fig. 1, the global barrier acts as a syn-
chronisation point for all GPUs, and in the subsequent merge step, all simplified
subformulas are sent to GPU0. HRE cannot be run on multiple GPUs, because
the entire formula must be accessed.
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Table 1. SIGmA performance analysis with CPU and one GPU configurations.

Table 2. SIGmA performance analysis with one and two GPU configurations.

3 Benchmarks

We evaluated SIGmA using two NVIDIA Titan Xp GPUs. Each GPU has 30
streaming multiprocessors, with 128 cores each, 12 GB global memory and 48
KB shared memory. The GPU machine is running Linux Mint 18.3, has a 3.5
GHz Intel Core i5 CPU, and 32 GB of memory.

We selected 344 SAT problems from the application track of the 2013–2017
SAT competitions.3 This set consists of all problems from that track that are
more than 1 MB in file size. The largest size of problems occurring in this set is
1.2 GB. These problems have been encoded from 46 real-world applications with
dissimilar logical properties. Before applying simplifications, any occurring unit
clauses (clauses with a single literal) were propagated. Unit clauses immediately
lead to simplification. By eliminating them, the results more clearly indicate the
impact of SIGmA.

In the experiments, we involved a CPU-only version of SIGmA and the
SatELite preprocessor [4] for simplification, and the MiniSat and Lingeling [2]
SAT solvers for solving. We chose Minisat as it forms the basis for many CDCL
SAT solvers, and Lingeling, since it was the winner of several SAT competitions.
The CPU-version of SIGmA applies the same simplifications on the elected vari-
ables as the GPU version, but performs them sequentially. All these were exe-
cuted on the compute nodes of the DAS-5 cluster [1]. Each problem was analysed
in isolation on a separate node. Each node has an Intel Xeon E5-2630 2.4 GHz
CPU with 128 GB memory, and runs on the CentOS 7.4 operating system. We
performed the equivalent of four years of uninterrupted processing on a single
node to measure how SIGmA impacts SAT solving.

For all experiments, we set μ initially to 64, which in practice tends to produce
good results. Tables 1 and 2 summarise the amount of speedup and the number
3 See http://www.satcompetition.org.

http://www.satcompetition.org
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Table 3. SIGmA performance compared to SatElite and Lingeling simplifiers.

SIGmA (mode) Counterpart Speedup #CNF Simp. faster

SIGmA (CPU:ve+/sub) SatElite (ve/sub) 36.96× 339 (98%)

SIGmA (GPU:ve+/sub) SatElite (ve/sub) 69.25× 339 (98%)

SIGmA (GPU:all) SatElite (ve/sub) 49.32× 326 (94%)

SIGmA (GPU:all) Lingeling 32.19× 315 (91%)

of problems simplified faster by running SIGmA on one and two GPUs.4 We
compare the single GPU mode of SIGmA with both the CPU-only version and
the two GPUs mode of SIGmA. For the CPU-GPU comparison, we used two
modes, (-ve+ -sub -bce -hre) and (-ve -bce -hre) which represent one full
iteration of the first stage, followed by the second stage (see Fig. 1). The former is
called all in Table 1. For the hybrid mode (-ve+), we measured the acceleration
achieved by using a GPU for both ve and hse as part of ve+. It appears that
the speedup obtained by bce is influenced by the application of hse, while other
methods (ve, hre) maintain similar speedups. Compared to CPU-only SIGmA,
the GPU achieves an acceleration of up to 36.5×. The average speedups of
ve/bce/hre and all modes are 10× and 14×, respectively.

For the comparison of SIGmA’s single/multiple GPU modes, we disabled
-hre, which is only supported in single GPU mode. If we ignore the time needed
for data transfer between the GPUs (tc), SIGmA’s runtime scales very well with
the number of GPUs. In mode (-ve+ -sub -bce), the average acceleration is
2.64×, and overall, the average speedup is 1.96×. When we consider data trans-
fer, the latter drops to 0.85×. Still, disabling hse in the second mode (-ve+ -sub
-bce) positively influences the performance of bce. The speedup of this method
has improved for the multi-GPU configuration by 5 times higher compared to
using a single GPU with hse enabled. The overall speedup with and without
data transfer has grown to 2.6× and 1×, respectively.

Moreover, in the second mode, SIGmA managed to simplify 129 (38%) prob-
lems faster compared to the single GPU mode, even if the communication over-
head is taken into account. We expect that hardware improvements of inter-GPU
communication in the future will make the multi-GPU mode of SIGmA increas-
ingly attractive.

Table 3 compares SIGmA against the best sequential simplifiers available
(SatElite and the preprocessing module of Lingeling, which is very similar to
SatElite). Similar to the multi-GPU experiments, we used the heavy mode (-ve+)
in combination with other simplifications in all of SIGmA’s benchmarks. On aver-
age, CPU SIGmA is faster than SatElite by 37× since we only consider eliminat-
ing elected variables and exclude those occurring in the resolvents (their length
grows exponentially by resolution). Moreover, the OT is created once before
elimination. The GPU-version, with all simplifications enabled, beats SatElite
and Lingeling by accelerations up to 49× and 32× respectively.

4 Tables with all the data are available at http://gears.win.tue.nl/software.

http://gears.win.tue.nl/software
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Table 4. MiniSat solving of original and simplified formulas (timeout: 24 h).

Evaluation MiniSat (org) SIGmA+MiniSat SatElite+MiniSat

ve+ ve/bce ve/hre ve/bce/hre ve ve/sub

#Formulas solved 192 (56%) 228 (66%) 227 (66%) 218 (63%) 230 (67%) 215 (62%) 201 (58%)

Processing time (h) 3989 3201 3256 3354 3214 3474 3754

Table 5. Lingeling solving of original and simplified formulas (timeout: 24 h).

Evaluation Lingeling (org) SIGmA+Lingeling

ve+ ve/bce ve/hre ve/bce/hre

#Formulas solved 252 (73%) 282 (82%) 283 (82.3%) 281 (82%) 283 (82.3%)

Processing time (h) 2566 1826 1862 1880 1854

For the subsequent experiments, we set phases to 5, and doubled μ each time
before SIGmA performed another iteration of the first stage. With this setup,
Table 4 shows the impact of SIGmA in various modes on SAT solving when
combined with MiniSat. The processing time includes the solving times of the
entire set (344) up to the timeouts, and the simplification and data transfer times
in case of SIGmA and SatElite. Based on the experiments, we conclude that the
new simplifications (BCE, HRE) proposed in this paper, when combined with all
other options, allow 230 problems (67%) to be solved, thereby outperforming all
the alternatives. Moreover, the processing time of the (-ve -bce -hre) mode
(3,214 h) is still shorter than when MiniSat is applied without simplification,
and when SatElite is used for simplification. Likewise, Table 5 shows SIGmA’s
impact on the Lingeling solver. Again, mode (-ve -bce -hre) is at least as
good as all the alternatives, allowing 283 instances (82.3%) to be solved. The
best competitor, mode (-ve -bce), took more time to be applied.

4 Conclusion

We have presented the SIGmA tool, the first simplifier for SAT formulas that
exploits the power of GPUs. It can be configured to apply a combination of
various elimination procedures, among which is a new one (HRE) proposed by
us. Experimentally, we have demonstrated the impact of SIGmA on state-of-
the-art SAT solving. In particular, our new mode, involving BCE and HRE,
positively affects both the solving speed and the ability to solve formulas, when
using the MiniSat and Lingeling solvers.
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