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Abstract. The effective parallelisation of Bounded Model Checking is
challenging, due to SAT and SMT solving being hard to parallelise. We
present ParaFROST, which is the first tool to employ a graphics proces-
sor to accelerate BMC, in particular the simplification of SAT formulas
before and repeatedly during the solving, known as pre- and inprocessing.
The solving itself is performed by a single CPU thread. We explain the
design of the tool, the data structures, and the memory management, the
latter having been particularly designed to handle SAT formulas typically
generated for BMC, i.e., that are large, with many redundant variables.
Furthermore, the solver can make multiple decisions simultaneously. We
discuss experimental results, having applied ParaFROST on programs
from the Core C99 package of Amazon Web Services.
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1 Introduction

Bounded Model Checking (BMC) [5] determines whether a model M satisfies a
certain property ϕ expressed in temporal logic, by translating the model check-
ing problem to a propositional satisfiability (SAT) problem or a Satisfiability
Modulo Theories (SMT) problem. The term bounded refers to the fact that the
BMC procedure searches for a counterexample to the property, i.e., an execution
trace, which is bounded in length by an integer k. If no counterexample up to this
length exists, k can be increased and BMC can be applied again. This process
can continue until a counterexample has been found, a user-defined threshold has
been reached, or it can be concluded (via k-induction [38]) that increasing k fur-
ther will not result in finding a counterexample. CBMC [14] is an example of a
successful BMC model checker that uses SAT solving. CBMC can check ANSI-C
programs. The verification is performed by unwinding the loops in the program
under verification a finite number of times, and checking whether the bounded
executions of the program satisfy a particular safety property [22]. These prop-
erties may address common program errors, such as null-pointer exceptions and
array out-of-bound accesses, and user-provided assertions.

? This work is part of the GEARS project with project number TOP2.16.044, which
is (partly) financed by the Netherlands Organisation for Scientific Research (NWO).
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(a) The amount of variable redundancy in CBMC formulas
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(b) The amount of variable redundancy w.r.t. the number of vari-
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Fig. 1: Variable redundancy in CBMC SAT formulas

The performance of BMC heavily relies on the performance of the solver.
Over the last decade, efficient SAT solvers [3,6,17,26] have been developed and
applied for BMC [5, 10–12, 25]. Effectively parallelising BMC is hard. Parallel
SAT solving often involves running several solvers, each solving the problem in
its own way [18]. For BMC, multiple solvers can be used to solve the problem for
different values of the bound k in parallel [1, 21]. However, in these approaches,
the individual solvers are still single-threaded.

Recently, Leiserson et al. [23] concluded that in the future, advances in com-
putational performance will come from many-threaded algorithms that can em-
ploy hardware with a massive number of processors. Graphics processors (GPUs)
are an example of such hardware. Multi-threaded BMC model checkers have been
proposed, such as in [13,19,35], but these address tens of threads, not thousands.

In this paper, we propose the application of GPUs to accelerate SAT-based
BMC. To the best of our knowledge, this is the first time this is being addressed.
Recently, GPUs have been applied for explicit-state model checking and graph
analysis [8, 9, 40, 41]. In SAT solving, we used GPUs to accelerate test pattern
generation [31], metaheuristic search [42], preprocessing [32, 33] and inprocess-
ing [34]. In these operations, a given SAT formula is simplified, i.e., it is rewritten
to a formula with fewer variables and/or clauses, while preserving satisfiability,
using various simplification rules. In preprocessing, this is only done once be-
fore the solving starts, while in inprocessing, this is done periodically during
the solving. While the impact of accelerating these procedures has been demon-
strated [34], its impact on BMC has not yet been addressed.

The structure of typical BMC SAT formulas suggests that GPU pre- and
inprocessing will be effective. Fig. 1a shows for a BMC benchmark set taken
from the Core C99 package of Amazon Web Services (AWS) 1 [2], consisting of
168 problems of various data structures, that propositional formulas produced
by CBMC tend to have a substantial amount of redundant variables that can
be removed using simplification procedures. For approximately 50% of the cases,
40% of the variables can be removed. Furthermore, Fig. 1b presents the amount
of redundancy in relation to the total number of variables in the formula. It

1 We thank Daniel Kroening and Natasha Jebbo for pointing us to this package.
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indicates that when a formula contains one million variables or more, at least
25% of those are redundant, and often many more. In the benchmark set, the
maximum number of variables in one formula is 13 million (encoding the verifi-
cation of the priority-queue shift-down routine), of which 65% is redundant.
In contrast, the largest formula we encountered in the application track of the
2013-2020 SAT competitions that is not encoding a verification problem only
has 0.2 million variables (it encodes a graph coloring problem [29]).

Contributions. We present the SAT solver ParaFROST that applies Con-
flict Driven Clause Learning (CDCL) [26] with GPU acceleration of pre- and
inprocessing [32–34], tuned for BMC. It has been implemented in CUDA C++
v11 [28], is based on CaDiCaL [6], and interfaces with CBMC.

Having to deal on a GPU with large formulas with a lot of redundancy offers
particular challenges. The elimination of variables typically leads to actually
adding new clauses, and since the amount of memory on a GPU is limited, this
cannot be done carelessly. Therefore, first of all, we have worked on compacting
the data structure used to store formula clauses in ParaFROST as much as
possible, while still allowing for the application of effective solving optimisations.
Second of all, we introduce memory-aware variable elimination, to avoid running
out of memory due to adding too many new clauses. In practice, we experienced
this problem when applying the original procedure of [34] for BMC.

Additionally, to support BMC, ParaFROST must be an incremental solver,
i.e., it must exploit that a number of very similar SAT problems are solved in
sequence [16]. The procedure in [34] does not support this, so we extended it.

Finally, because of the many variables in BMC SAT formulas, ParaFROST
supports Multiple Decision Making (MDM) in the solving procedure, as pre-
sented in [30]. With MDM, multiple decisions can be made at once, periodically
during the solving. In case there are many variables, there is more potential
to make many decisions simultaneously. We have generalised the original MDM
decision procedure [30], making it easier to integrate MDM in solvers other than
MiniSat and Glucose [3]. The effectiveness of MDM in BMC has never been
investigated before, nor has been combined with GPU pre- and inprocessing.

2 Background

SAT solving. We assume that SAT formulas are in conjunctive normal form
(CNF). A CNF formula is a conjunction of m clauses C1 ∧ · · · ∧ Cm, and each
clause Ci is a disjunction of n literals `1∨· · ·∨`n. A literal is a Boolean variable x
or its negation ¬x, also referred to as x̄. The domain of all literals is L. A clause
can be interpreted as a set of literals, i.e., {`1, . . . , `n} encodes `1∨ . . .∨`n, and a
SAT formula S as a set of clauses, i.e., {C1, . . . , Cm} encodes C1∧ . . .∧Cm. With
Var(C), we refer to the set of variables in C: Var(C) = {x | x ∈ C ∨ x̄ ∈ C}.
The set S` consists of all clauses in S containing `: S` = {C ∈ S | ` ∈ C}.

In CDCL, clauses are LEARNT or ORIGINAL. A LEARNT clause has been derived
by the CDCL clause learning process during solving, and an ORIGINAL clause is
part of the formula. We refer with L to the set of LEARNT clauses.
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For a set of assignments Σ, consisting of all literals that have been assigned
true, a formula S evaluates to true iff ∀C ∈ S.∃` ∈ C.` ∈ Σ. When a decision
is made, a literal is picked and added to Σ. Each assignment is associated with a
decision level (time stamp) to monitor the assignment order. We call a clause C
unit iff a single literal in it is still unassigned, and the others are assigned false,
i.e., |Var(C) \Var(Σ)| = 1 and C ∩Σ = ∅.

Variable-Clause Elimination (VCE). Variables and clauses can be removed
from formulas by applying simplification rules [15, 20]. They rewrite a formula
to an equi-satisfiable one with fewer variables and/or clauses. Applying them is
referred to as pre- and inprocessing, before and during the solving, respectively.

Incremental Bounded Model Checking. Since 2001, incremental BMC has
been applied to hardware and software verification [16, 39]. It relies on incre-
mental SAT solving [16]. In CDCL, clauses are learnt during the solving each
time a wrong decision has been made, to avoid making those decisions again in
the future. Incremental SAT solving builds on this: when multiple SAT formulas
with similar characteristics are solved sequentially, then in each iteration, the
clauses learnt in previous iterations are reused. An efficient approach to add and
remove clauses is by using assumptions [16], which are initial assignments.

For BMC, the transition relation of a system design and the (negation of) the
property to be verified are encoded in a SAT formula. A predicate I(s0) identifies
the initial states, δ(si, si+1) encodes the transition relation at trace depth i, and
E(i) =

∨
0≤j≤i e(sj) encodes the reachability of an error state up to trace depth i,

where e(sj) is true iff state sj is an error state. For incremental BMC, additional
unit clauses σi are used. These predicates are combined to define the following
series of SAT formulas S(i) that must be solved incrementally:

S(0) = I(s0) ∧ (E(0) ∨ σ0), under assumption ¬σ0

S(i+ 1) = S(i) ∧ δ(si, si+1) ∧ σi ∧ (E(i+ 1) ∨ σi+1), under assumption ¬σi+1

Formula S(i) is satisfiable iff an error state is reachable via a trace with a length
up to i [16, 39]. At iteration i+ 1, we know that E(i), included via S(i), cannot
be satisfied (otherwise iteration i+ 1 would not have been started). This means
that E(i) must be removed to avoid that S(i+ 1) is unsatisfiable. To effectively
remove E(i), σi is assigned true, resulting in E(i)∨σi being satisfied. In general,
at iteration i, σi is assigned false, while in iterations i′ > i, it is assigned true.

GPU Programming. CUDA [28] is NVIDIA’s parallel computing platform
that can be used to develop general purpose GPU programs. A GPU consists of
multiple streaming multiprocessors (SMs), and each SM contains several stream-
ing processors (SPs). A GPU program consists of a host part, executed on a
CPU, and device functions, or kernels, executed on a GPU. Each time a kernel
is launched, the number of threads that need to execute it is given. On the SPs,
the threads are executed. Compared to a CPU thread, GPU threads perform
a relatively simple task. In particular, they read some data, perform a com-
putation, and write the result. This allows the SPs to switch contexts easily.
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Fig. 2: An activity diagram for the workflow of ParaFROST.

In practice, one to two orders of magnitude more threads are typically launched
than the number of SPs, which results in hiding the memory latency: whenever a
thread is waiting for some data, the associated SP can switch to another thread.

A GPU has various types of memory. Relevant here are registers and global
memory. Global memory is used to copy data between the host and the device.
Registers are used for on-chip storage of thread-local data. Global memory has a
much higher latency than registers. We use unified memory [28] to store clauses.
Unified memory creates one virtual memory pool for host and device. In this way,
the same memory addresses can be used by the host and the device, combining
the main memory of the host side and the global memory of the device side.

3 GPU-Accelerated Bounded Model Checking

We implemented ParaFROST2 with CUDA C++ v11. It is a hybrid CPU-GPU
tool, with (sequential) solving done on the host side, and (parallel) VCE done
on the device side. An interface with CBMC is implemented in C++. CBMC is
patched to read a configuration file before ParaFROST is instantiated. This
file contains all options supported by ParaFROST.

The workflow. Fig. 2 presents the general workflow of ParaFROST in the
form of an activity diagram with host and device lanes. The diagram is focussed
on inprocessing; preprocessing works similarly on the device. First, the host
performs a predetermined number of solving iterations. Once those have finished,
and (un)satisfiability has not yet been proven, relevant clause data is copied to
the global memory. To hide the latency of this operation as much as possible,
clauses are copied asynchronously in batches. One batch is copied while the
next is formatted for the GPU, as not all clause information on the host side
is relevant for the device (see the next paragraph on data structures). On the
device, signatures are computed for fast clause comparison, and the clauses are
sorted for VCE (more on VCE later). Next, the device constructs a histogram,
for fast lookup of clauses, and sorts the variables. The Thrust library is used
for sorting.3 After that, the host schedules variables for VCE, marking those

2 The tool is available at https://gears.win.tue.nl/software/gpu4bmc.
3 https://docs.nvidia.com/cuda/thrust.

https://gears.win.tue.nl/software/gpu4bmc
https://docs.nvidia.com/cuda/thrust
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variables in the global memory using unified memory. Next, the device applies
VCE, marking clauses to be removed as DELETED. The host propagates units
(literals in unit clauses are assigned true), which directly has an effect on the
formula in the global memory. The VCE procedure is repeated until it has been
performed a predetermined number of times. After each time, DELETED clauses
are removed, and after the last iteration, this is done while the new clauses are
copied to the host. Once this has been done, the overall procedure is repeated.

Data structures and memory management. We have worked on making
the storage of each clause in the GPU global memory as efficient as possible.
However, we also wanted to annotate each clause with sufficient information for
effective optimisations. In ParaFROST, the following information is stored for
each clause:
– The state field (2 bits) stores if the state is ORIGINAL, LEARNT or DELETED.
– The used field (2 bits) keeps track of how many search iterations a LEARNT

clause can still be used. LEARNT clauses are used at most twice [6].
– Two fields (1 bit each) are used for VCE bookmarking.
– The literal block distance (lbd) (26 bits) stores the number of decision levels

contributing to a conflict, if there is one [3]. A maximum value of 226 turns
out to be sufficient. This field is updated when the clause is altered.

– The size (32 bits) of the clause, i.e., the number of literals.
– A signature sig (32 bits) is a clause hash, for fast clause comparison [15].

In addition, a list of literals is stored, each literal taking 32 bits (1 bit to
indicate whether it is negated or not, and 31 bits to identify the variable). In
total, a clause requires 12 + 4t bytes, with t the number of literals in the clause.
For comparison, MiniSat only requires 4 + 4t bytes, but it does not involve the
used, lbd and sig fields, thereby not supporting the associated optimisations.
CaDiCaL [6] uses 28 + 4t bytes, since it applies solving and VCE on the same
structures. In ParaFROST, the GPU is only used for VCE, in which infor-
mation for probing [24] and vivification [36], for instance, is irrelevant. Finally,
in [34], 20 + 4t bytes are used, storing the same information as ParaFROST.

To store a formula S, a clause array is preallocated in the global memory,
and filled with the clauses of S. More space is allocated than the size of S, to
allow the addition of clauses that result from VCE. As the amount of allocated
space is the limiting factor for the addition of new clauses, we have developed a
memory-aware VCE mechanism, which we explain later in the current section.

Parallel VCE. ParaFROST supports the VCE rules substitution (i.e., gate
equivalence reasoning), resolution (RES), subsumption elimination (SUB) and
eager redundancy elimination (ERE) [15, 20]. Substitution applies to patterns
representing logical gates, and substitutes the involved variables with their gate
definitions. ParaFROST supports AND/OR, Inverter, If Then Else and XOR.

In Fig. 3, we provide rewrite rules for SUB and RES. If clauses exist in S of
the form expressed by the left hand side of a rule, then the rule is applicable,
and the involved clauses are replaced by the clauses (called resolvents) on the
right hand side. RES is applicable if there are two clauses of the form x∪C1 and
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RES: x ∪ C1, x̄ ∪ C2 ⇒ C1 ∪ C2 (x ∪ C1 6∈ L ∧ x̄ ∪ C2 6∈ L)

SUB1: x ∪ C1 ∪ C2, x̄ ∪ C2 ⇒ C1 ∪ C2, x̄ ∪ C2

SUB2: C1 ∪ C2, C2 ⇒ C2 (C2 ∈ L =⇒ L′
= L \ {C2})

ERE: x ∪ C1, x̄ ∪ C2, C1 ∪ C2 ⇒ x ∪ C1, x̄ ∪ C2 ({x ∪ C1, x̄ ∪ C2} ∩ L 6= ∅ =⇒ C1 ∪ C2 ∈ L)

Fig. 3: VCE rules in ParaFROST. C1 and C2 are non-empty sets of literals.

x̄ ∪ C2, and applying it results in replacing those with a clause C1 ∪ C2. SUB
consists of two rules; the second is applied once the first is no longer applicable.

Conditions are given between parentheses. For RES, only ORIGINAL clauses
are considered. Besides that, if C1 ∪ C2 evaluates to true, it is actually not
created. As LEARNT clauses are sometimes deleted during solving, SUB2 should
only produce ORIGINAL clauses; if C2 is LEARNT before applying the rule, it will
become ORIGINAL (L′ refers to the set of LEARNT clauses after application). For
ERE, LEARNT clauses cannot cause the deletion of an ORIGINAL clause.

VCE is applied in parallel by ParaFROST by scheduling sets of mutually-
independent variables for analysis. Two variables x and y are independent in S
iff S does not contain a clause containing literals that refer to both variables,
i.e., Sx ∪ Sx̄ and Sy ∪ Sȳ are disjoint. This ensures that two threads focussing
on x and y, respectively, does not lead to data races. In incremental solving,
variables referred to by assumptions must be excluded from VCE. In each VCE
iteration, a different set Ψ of variables is selected. This is achieved by using
an upper-bound µ for the number of occurrences of a variable in S. After each
iteration, µ is increased, allowing the selection of more variables. ParaFROST
supports configuring µ and the number of VCE iterations.

As already mentioned, clauses that can be removed are marked DELETED

before they are removed. The removal of clauses is done once VCE has finished
(see Fig. 2) to avoid data races. However, because of this, VCE may at first
require more memory to store clauses. The clauses added during VCE must fit
in the memory, otherwise the procedure fails. To ensure this, we have developed
a memory-aware mechanism for VCE. Next, we explain this mechanism for the
RES rule and substitution, as the application of those rules results in new clauses.

Alg. 1 presents how RES and substitution are applied in ParaFROST. It
requires S, stored in a clause array clauses. As clauses are of varying sizes, we
need an array references that provides a reference to each clause. In addition,
arrays varinfo, cindex and rindex are given, which are filled in the first lines.

At line 1, the kernel VceScan is called in which a different thread is assigned
to each variable x ∈ Ψ . Each thread checks the applicability of VCE rules
on its variable and computes the number of clauses and literals that will be
produced by the first applicable rule. A thread with ID i stores the type τ of the
applicable rule (NONE, RESOLVE, or SUBSTITUTE) and the number of clauses β and
literals γ produced by that rule in one integer at varinfo[i]. At lines 2-3, kernels
computeClauseIndices and computeClauseRefIndices are called to add
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Algorithm 1: Parallel memory-aware application of RES and substi-
tution

Input : global Ψ , clauses, references, varinfo, cindex, rindex

1 varinfo ← VceScan(Ψ,S)
2 cindex ← computeClauseIndices(varinfo, size(clauses))
3 rindex ← computeClauseRefIndices(varinfo, size(references))
4 VceApply(Ψ, clauses, references, varinfo, cindex, rindex)
5 kernel VceApply(Ψ, clauses, references, varinfo, cindex, rindex):
6 for all i ∈ [0, |Ψ |〉 do in parallel
7 register cidx← cindex[i], ridx = rindex[i]
8 register τ, β, γ ← varinfo[i]
9 if τ = RESOLVE ∧ memorySafe(ridx, cidx, β, γ) then

10 ResApply(clauses, references, x, ridx, cidx)
11 if τ = SUBSTITUTE ∧ memorySafe(ridx, cidx, β, γ) then
12 SubApply(clauses, references, x, ridx, cidx)

13 device function memorySafe(ridx , cidx , β, γ):
14 reqSpace← cidx + 12× β + (4 · γ) // required number of bytes
15 if reqSpace > capacity(clauses) then return false
16 numRefs← ridx + β // required number of clause references
17 if numRefs > capacity(references) then return false
18 return true

up the β’s and γ’s to obtain offsets into the arrays references and clauses

(the method size(A) refers to the amount of data in array A). Both methods
apply a parallel exclusive prefix sum [37], involving the β’s and γ’s. The result
is that thread i, assigned to x, is instructed to start writing clause references
at references[rindex[i]] and clauses at clauses[cindex[i]] when applying the
next VCE rule for x. Whether the data actually fits is checked later.

Next, the kernel VceApply is called (lines 5-12). To each variable in Ψ , a
thread is assigned. It retrieves the precomputed data (lines 7-8) and either applies
the RES rule (lines 9-10), substitution (lines 11-12), or nothing, in case τ = NONE.
However, a condition for applying a rule is that there is enough space, which is
checked using the device function memorySafe (lines 13-18). The amount of
allocated space for A is reflected by capacity(A), and memorySafe checks if
there is enough space in clauses, starting at cidx (lines 14-15). If there is, it is
checked if the references can be stored in references (lines 16-17).

4 Multiple Decision Making in Incremental Solving

Given the fact that BMC SAT formulas often have many variables, a recently
proposed extension of CDCL [30], in which periodically multiple decisions are
made (MDM) at the same time, has much potential to speed up BMC. When the
MDM method is called, it constructs a setM = {` ∈ L | Var({`})∩Var(Σ) = ∅}
such that there does not exist a clause C ∈ S with |Var(C) \ Var(Σ)| = 1. In
other words, the decisions M do not lead to logical follow-up assignments, i.e.,
implications. The reason for this restriction is that implications may lead to
conflicts (clauses that cannot be satisfied). When a single decision is made, this
decision needs to be rolled back when a conflict is caused, but when multiple
decisions are made, detecting which decisions actually cause a conflict is more
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Algorithm 2: Decision making method decide, with integrated MDM
Input: Σ,L, decqueue, r,nConflicts,ConfFactor, prevMDsize

1 freevars ← Var(L) \ Var(Σ)
2 if r > 0 then
3 M← MDM(freevars, decqueue)
4 r← r− 1, prevMDsize← |M|
5 else
6 M← singleDecision(freevars, decqueue)
7 if r = 0 ∧ |freevars| ≥ prevMDsize then
8 r← periodicFuse(nConflicts,ConfFactor)
9 returnM

10 function periodicFuse(nConflicts,ConfFactor):
11 if nConflicts ≥ ConfFactor then
12 updateFactor(ConfFactor)
13 return mdmrounds

14 else
15 return 0

difficult. Note that MDM cannot always make multiple decisions; implications
are needed to solve a formula, so single decisions still have to be made frequently.

In [30], MDM was integrated into MiniSat and Glucose, and since multiple
decisions should be selected periodically, a mechanism was proposed that decides
when to make multiple decisions based on the solver restart policy. However,
since solvers can differ greatly in this policy, we wanted to create an alternative
mechanism not depending on this. ParaFROST is based on CaDiCaL [6],
which has a very different restart policy compared to MiniSat and Glucose.

Alg. 2 presents ParaFROST’s decide method, which is called every time a
decision must be made. Besides Σ and L, it is given a queue decqueue, in which
the variables are ordered based on a decision heuristic. In ParaFROST, the
heuristics Variable State Independent Decaying Sum (VSIDS) [27] and Variable
Move-To-Front (VMTF) [7] are alternatingly used. The latter was not used be-
fore in [30]. decide also gets a variable r, initially set to the constant mdmrounds.
These values are used to control the periodic call of MDM, in which a set of mul-
tiple decisions is made per round. Experiments have shown that mdmrounds = 3
is effective [30]. Finally, the number of conflicts so far (nConflicts), a variable
ConfFactor used to switch MDM on and off, and a variable prevMDsize, storing
the size of the most recent set of multiple decisions, are given.

To select new decisions, the set of unassigned variables is created at line 1.
If we are calling MDM mdmrounds times (line 2), then MDM is called again
and r is updated. The alternative is to make a single decision (line 6). If we
have stopped calling MDM, and enough unassigned variables are present (line
7), method periodicFuse is called, which either sets r back to mdmrounds or to
0, depending on nConflicts (lines 10-15). There are enough unassigned variables
if there are more unassigned variables than variables in the most recent multiple
decisions set. In periodicFuse, nConflicts is compared to ConfFactor , which is
initially set to a configurable value (default 2,000). ConfFactor is updated using
a function updateFactor. This makes ConfFactor grow linearly, to achieve a
suitable balance between ConfFactor and nConflicts as the solving progresses.
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5 Benchmarks

We conducted experiments with CBMC in combination with MiniSat (the
default), Glucose, CaDiCaL, ParaFROST, ParaFROST with MDM, and
a CPU-only version, referred to as ParaFROST (noGpu).4 We used the AWS
benchmarks in which the data structures hash table, array list, array buff,
linked list, priority queue, byte cursor and string were analysed. The
loop unwinding upper-bounds 8, 16, 64, 128 and 1,000 were used, resulting in
168 different verification problems.

All experiments were executed on the DAS-5 cluster [4]. Each program was
verified in isolation on a separate node, with a time-out of 3,600 seconds. Each
node had an Intel Xeon E5-2630 CPU (2.4 GHz) with 64 GB of memory, and an
NVIDIA RTX 2080 Ti, with 68 SMs (64 cores/SM) and 11 GB global memory.

Fig. 4 presents the decision procedure runtime, and how much time was spent
on VCE. ParaFROST outperforms all sequential solvers including CaDiCaL
(plot 4a). Even though ParaFROST is based on CaDiCaL, its different data
structures, simplification mechanism and parameters tuned for large formulas
makes ParaFROST more effective in these experiments. MDM further im-
proves ParaFROST. Plot 4b demonstrates that CBMC with MiniSat often
spends most of the time on VCE. ParaFROST significantly reduces the time
spent on VCE compared to other solvers.

In Table 1, the Verified column lists per solver the number of verified pro-
grams, and PAR-2 gives the penalized average runtime-2 metric. PAR-2 score
accumulates the running times of all solved instances with 2× the time-out of
unsolved ones, divided by the total number of formulas. The solver with the
lowest score is the winner. The triangles N and H mean significantly better and
worse, respectively. The MiniSat column lists how many programs were veri-
fied faster with the other solvers compared to MiniSat. Between parentheses,
it is given how many of those programs were not solved by MiniSat at all. The
final four columns serve the same purpose for the other solvers. For example,
ParaFROST-MDM verified 123 programs faster than CaDiCaL, in which 12
could not be verified by the latter. The last two rows provide a similar compari-
son. Clearly, ParaFROST-MDM verified the largest number of programs, with
the lowest score.

Fig. 5 presents the speedups of the ParaFROST configurations for the indi-
vidual cases. Overall, SAT solving was accelerated effectively with ParaFROST
and ParaFROST-MDM. Compared to ParaFROST (noGpu), ParaFROST
(and ParaFROST-MDM), accelerated multiple instances by up to 18× (and
27×), and the geometric average speedup for all programs was 1.3× (and 1.6×).

4 We also tried to use CBMC with Z3, but were not able to correctly configure this
combination at the time of writing.
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Fig. 4: CBMC runtimes for all solvers over the benchmark suite.

Table 1: CBMC performance analysis using the various solvers.
Configuration Verified PAR-2 MiniSat Glucose CaDiCaL PFCPU PFGPU

CBMC + MiniSat 143 1219 n/a n/a n/a n/a n/a

CBMC + Glucose 139 H 1388 H 49 (-4) n/a n/a n/a n/a

CBMC + CaDiCaL 143 1226 43 53 (+4) n/a n/a n/a

CBMC + PFCPU 154 824 51 (+11) 62 (+15) 83 (+11) n/a n/a

CBMC + PFGPU 155 N 765 N 66 (+12) N 83 (+16) N 96 (+12) 120 (+1) n/a

CBMC + PFGPU-MDM 155 N 743 N 84 (+12) N 102 (+16) N 123 (+12) 133 (+1) 121

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Programs Verified

10 1

100

101

102

Sp
ee

du
p

GPU vs CPU
MDM-GPU vs CPU

Fig. 5: Speedups of the individual cases.

6 Conclusion

We have presented ParaFROST, the first tool to accelerate BMC using GPUs.
Given that BMC formulas tend to have much redundancy, ParaFROST ef-
fectively reduces solving times with GPU pre- and inprocessing, and by using
MDM, which is particularly effective when many variables are present. In the
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future, we will combine our approach with (existing) multi-threaded BMC. We
expect these techniques to strengthen each other.
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