
Towards Verified Construction of Correct and
Optimised GPU Software

Marieke Huisman
m.huisman@utwente.nl
University of Twente

Enschede, The Netherlands

Anton Wijs
A.J.Wijs@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Abstract
Techniques are required that support developers to produce
GPU software that is both functionally correct and high-
performing. We envision an integration of push-button for-
mal verification techniques into a Model Driven Engineering
workflow. In this paper, we present our vision on this topic,
and how we plan to make steps in that direction in the com-
ing five years.

CCS Concepts: • Software and its engineering → Soft-
ware verification and validation; Software functional
properties; System description languages.

Keywords: GPU software, formal verification, model trans-
formation, code generation
ACM Reference Format:
Marieke Huisman and Anton Wijs. 2020. Towards Verified Con-
struction of Correct and Optimised GPU Software. In Proceedings
of the 22th ACM SIGPLAN International Workshop on Formal Tech-
niques for Java-Like Programs (FTfJP ’20), July 23, 2020, Virtual, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3427761.
3428344

1 Introduction
The use of graphics processors (GPUs) for general purpose
computing has greatly impacted the computational capabili-
ties regarding linear algebra (e.g., matrix-vector multiplica-
tion [44, 88]), computational biology (e.g., genomics [85]
and genetic network reconstruction [16]), statistics [63],
physics (e.g., fluid dynamics [9]), image processing [64],
formal verification [6–8, 33, 87, 89, 92, 93], and machine
learning (deep learning [57]). However, to effectively use
GPUs, expert knowledge is required about the hardware
characteristics, and even then, software development can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
FTfJP ’20, July 23, 2020, Virtual, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8186-4/20/07. . . $15.00
https://doi.org/10.1145/3427761.3428344

time-consuming and frustrating. Proper techniques to make
the development and maintenance of GPU software more
insightful and less prone to introduce bugs, while helping
the developer to introduce performance optimisations, are
lacking [43, 50, 73]. The existence of such tools would make
GPU computing a far more attractive option for most soft-
ware developers. In the current paper, we outline our vision
to integrate formal verification techniques [5, 12, 26, 38, 70]
into a Model Driven Engineering (MDE) [17, 75] workflow, to
provide suitable GPU software development tools. It is cru-
cial that those techniques do not require expert knowledge
on formal verification, to make them usable for the average
software developer.

In MDE, one reasons about the system under development
in terms of a model written in a Domain-Specific Language
(DSL) [41, 65]. Model transformations are applied on models,
for instance, to add more information, to rewrite the model
in a different DSL, or to generate source code.
MDE enables a very structured way of software develop-

ment, and improves flexibility: the model can be updated,
and code can be regenerated and optimised at any time.
However, MDE currently provides no guarantees that the
resulting software will be correct and efficient, i.e. a) that it
does what it is supposed to do, and b) that it does this while
realising the full potential of the hardware it is running on.

2 Our Envisioned MDEWorkflow
In the coming five years, in the ChEOPS project1, we plan
to use formal verification techniques to establish in every
step of an MDE workflow that the produced GPU system
will be functionally correct and preserve the semantics of
the model. First, a model is constructed that describes the de-
sired functionality using an appropriate DSL. This model is
formally verified to determine whether it correctly addresses
the intended functionality. Next, a GPU implementation of
the system is generated. Verification of such an implementa-
tion with a code verification tool, such as VerCors [15] and
VeriFast [78], can be very time-consuming and typically re-
quires a formal verification expert. Therefore, the approach
we plan to follow is to automatically annotate the code with
the semantics of the model, such that those tools can be used
with the push of a button. Recently, we have applied this

1http://cheops.win.tue.nl.

10

https://doi.org/10.1145/3427761.3428344
https://doi.org/10.1145/3427761.3428344
https://doi.org/10.1145/3427761.3428344
http://cheops.win.tue.nl

FTfJP ’20, July 23, 2020, Virtual, USA Marieke Huisman and Anton Wijs

approach to achieve verified generation of multi-threaded
software [86]. Finally, in a number of steps, the produced
source code can be transformed to optimise it for specific
GPU hardware. In these steps, annotations will be refined
along with the code and code verification will be reapplied.

To achieve this, a number of topics need to be addressed.

2.1 Specifying and Verifying GPU Program Models
In the literature, many DSLs have been proposed to spec-
ify parallel systems, some of which targeting GPU systems,
e.g. [2, 31, 34, 36, 39, 47, 53, 59, 81]. The ability to produce
high-performance GPU systems is an obvious criterion, but
much less attention has been given to the verifiability of
the produced models. We believe that DSLs are needed that
allow reasoning at an abstraction level that is not too high,
to be able to still address the relevant behaviour, but also
not too low, since that would make verification infeasible.
Developers also need to be supported in specifying desired
functional properties. Various proposals have been made
for the specification of functional properties of parallel sys-
tems, for instance to use some form of message sequence
charts [18, 25, 54, 55, 61]. However, it is yet to be determined
whether such approaches are suitable for GPU systems.

To verify models, we plan to use model checking [5, 26,
89, 93], because of its push-button nature. Previously, GPU
programs have been model checked w.r.t. specific properties
such as data races and pointer safety [66], but no experi-
ence has been reported on checking whether models of GPU
software satisfy user-defined functional properties.

2.2 Verified Generation of Code by Means of
Model-to-Code Transformations

As GPU code will be produced by using model-to-code trans-
formations, it is crucial to establish that those transforma-
tions preserve the semantics of the source model.

Existing approaches, such as [1, 13, 24, 29, 35, 71, 76, 79, 80,
82–84], are not general enough for our purpose; they do not
directly support the development of GPU software (or other
types of parallel software). Moreover, they do not achieve a
push-button approach. For model-to-model transformations,
we have developed such techniques [32, 90, 91], but model-
to-code transformations pose extra challenges related to the
target hardware and programming language.

By generating annotated code, existing tools such as Open-
JML [27], KeY [3] and Dafny [58] can be applied. Originally
aimed at sequential code, these techniques are currently
extended to support concurrent and parallel software. On
the one hand, there is a line of very active research defin-
ing highly advanced program logics for fine-grained con-
currency such as CAP [37], TaDa [28], and Iris [52, 56].
On the other hand, there are tools that support the veri-
fication of concurrent and parallel programs, such as Ver-
Cors [4, 14, 15, 30, 74] (using Viper [67]), and VeriFast [78].
Techniques specifically designed for the analysis of GPU

software, such as GPUverify [10, 11] and PUG [60], address
crucial correctness issues, such as thread divergence and
data races, but they do not support checking user-defined
functional requirements.
Regarding the generation of program annotations, we

observe that many auxiliary annotations can be generated
automatically. In particular, there exists a large body of lit-
erature on invariant generation, see e.g., [42, 46, 51, 72, 77].
However, most of those techniques are not applied in pro-
gram verification, as they do not always match directly with
what is needed. For instance, for program verification, one
often needs invariants that express properties about arrays
or other kinds of data types, but hardly any techniques to au-
tomatically generate those have been developed. We believe
that this is an important topic to address.

2.3 Correct Transformation of Source Code to
Achieve High-Performance Software

When focussing on correctness, performance should not
be ignored, especially when developing software for par-
allel hardware architectures. The main purpose of DSLs is
to allow developers to reason at a comfortably high level
of abstraction about the intended functionality of the sys-
tem. Performance-related aspects necessarily require a more
technical, low-level view, since optimisations involve closely
mapping the software to the hardware. This discrepancy
means that an implementation generated from a DSL model
is typically not optimised for performance, and additional
transformations at the program level are necessary.

In the literature, a large collection of program transforma-
tions to improve performance of GPU applications is avail-
able, see e.g. [22, 48, 94]. Only in a few cases, formal correct-
ness of these is addressed, for instance in [68].

We will work on producing GPU programs that come with
detailed annotations describing which parts of the memory
are accessed and changed bywhich parts of the code (see [49]
for preliminary ideas). Besides making a program verifiable,
these annotations will also provide valuable information to
determine which transformations can be applied to optimise
the program. Work on algorithmic classification, which clas-
sifies a given program and based on that suggests to apply
certain optimisations, is relevant here [19–21, 23, 40, 45, 69].
Moreover, we observe that the information in the annota-
tions can be used to speed up the auto-tuning process, i.e., the
process to identify which program configuration achieves
the best performance. Optimal tuning can be a timely pro-
cess, and the use of information to reduce the state space for
tuning can have substantial impact [62]. Because of the very
precise information available from our program annotations,
we believe that we can substantially reduce the overhead of
this process. Using detailed program annotations for both
verification and optimisation is very new, and we strongly
believe that it can be used effectively to produce high-quality
GPU software.

11

Towards Verified Construction of Correct and Optimised GPU Software FTfJP ’20, July 23, 2020, Virtual, USA

References
[1] L. Ab. Rahim and J. Whittle. 2010. Verifying Semantic Conformance

of State Machine-to-Java Code Generators. In Proceedings of MODELS
2010 (Lecture Notes in Computer Science, Vol. 6394). Springer, 166–180.

[2] P. Adamczyk. 2003. The anthology of the finite state machine design
patterns. In Proceedings of PLoP 2003.

[3] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, and M. Ulbrich.
2016. Deductive Software Verification - The KeY Book: From Theory to
Practice. Lecture Notes in Computer Science, Vol. 10001. Springer.

[4] A. Amighi, C. Haack, M. Huisman, and C. Hurlin. 2015. Permission-
based separation logic for multithreaded Java programs. Logical Meth-
ods in Computer Science 11, 1 (2015). https://doi.org/10.2168/LMCS-
11(1:2)2015 arXiv:1411.0851v1

[5] C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. The MIT
Press.

[6] J. Barnat, P. Bauch, L. Brim, and M. Češka. 2012. Designing fast LTL
model checking algorithms for many-core GPUs. J. Parallel and Distrib.
Comput. 72, 9 (2012), 1083–1097. https://doi.org/10.1016/j.jpdc.2011.
10.015

[7] E. Bartocci, R. DeFrancisco, and S. A. Smolka. 2014. Towards a GPGPU-
parallel SPIN Model Checker. In Proceedings of SPIN 2014. ACM Press,
87–96.

[8] S. Berkovich, B. Bonakdarpour, and S. Fischmeister. 2013. GPU-based
runtime verification. In Proceedings of IPDPS 2013. IEEE Computer
Society Press, 1025–1036. https://doi.org/10.1109/IPDPS.2013.105

[9] C. Bertolli, A. Betts, G. Mudalige, M. Giles, and P. Kelly. 2012. Design
and performance of the OP2 library for unstructured mesh applica-
tions. In Proceedings of CGWS 2011 (Lecture Notes in Computer Science,
Vol. 7155). Springer, 191–200. https://doi.org/10.1007/978-3-642-29737-
3-22

[10] A. Betts, N. Chong, and A. F. Donaldson. 2012. GPUVerify: a verifier
for GPU kernels. In Proceedings of OOPSLA 2012. ACM Press, 113–132.
https://doi.org/10.1145/2398857.2384625

[11] A. Betts, N. Chong, A. F. Donaldson, J. Ketema, S. Qadeer, P. Thom-
son, and J. Wickerson. 2015. The Design and Implementation of
a Verification Technique for GPU Kernels. ACM Transactions on
Programming Languages and Systems 37, 3 (2015), 1–49. https:
//doi.org/10.1145/2743017

[12] P. Bjesse. 2005. What is Formal Verification? ACM SIGDA Newsletter
35, 24 (2005).

[13] J.O. Blech, S. Glesner, and J. Leitner. 2005. Formal Verification of Java
Code Generation from UML Models. In 3rd International Fujaba Days
2005 - MDD In Practice. 49–56.

[14] S. Blom, M. Huisman, and M. Mihelčić. 2014. Specification and Ver-
ification of GPGPU programs. Science of Computer Programming 95
(2014), 376–388. Issue 3.

[15] S. C. C. Blom, S. Darabi, M. Huisman, and W. Oortwijn. 2017. The
VerCors tool set: Verification of parallel and concurrent software. In
Proceedings of iFM 2017 (Lecture Notes in Computer Science, Vol. 10510).
Springer, 102–110. https://doi.org/10.1007/978-3-319-66845-1_7

[16] D. Bošnački, M. R. Odenbrett, A. J. Wijs, W. P. A. Ligtenberg, and
P. A. J. Hilbers. 2012. Efficient Reconstruction of Biological Networks
via Transitive Reduction on General Purpose Graphics Processors.
BMC Bioinformatics 13 (2012), 281.

[17] M. Brambilla, J. Cabot, and M. Wimmer. 2012. Model Driven Software
Engineering in Practice. Morgan & Claypool Publishers.

[18] P. Brosch, U. Egly, S. Gabmeyer, G. Kappel, M. Seidl, H. Tompits, M.
Widl, and M. Wimmer. 2012. Towards scenario-based testing of UML
diagrams. In Proceedings of TAP 2012 (Lecture Notes in Computer Science,
Vol. 7305). Springer, 149–155. https://doi.org/10.1007/978-3-642-30473-
6_12

[19] W. Caarls. 2008. Automated Design of Application-Specific Smart Cam-
era Architectures. Ph.D. Dissertation. Delft University of Technology.

[20] W. Caarls, P. P. Jonker, and H. Corporaal. 2006. Algorithmic skeletons
for stream programming in embedded heterogeneous parallel image
processing applications. In Proceedings of IPDPS 2006. IEEE Computer
Society Press. https://doi.org/10.1109/IPDPS.2006.1639351

[21] D. K. G. Campbell. 1996. Towards the Classification of Algorithmic
Skeletons. Technical Report. University of York. 1–20 pages. http:
//www.cs.uiuc.edu/{~}snir/PPP/skeleton/classification.pdf

[22] P. Cantiello and B. Di Martino. 2012. Automatic source code transfor-
mation for GPUs based on program comprehension. In Proceedings of
Euro-Par 2011 (Lecture Notes in Computer Science, Vol. 7156). Springer,
188–197. https://doi.org/10.1007/978-3-642-29740-3-22

[23] L. Carrington, M. Tikir, C. Olschanowsky, M. Laurenzano, J. Peraza,
A. Snavely, and S. Poole. 2011. An Idiom-finding Tool for Increasing
Productivity of Accelerators. In Proceedings of ICS-25. ACM, 202–212.

[24] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. 2004. Modular
verification of software components in C. IEEE Transactions on Software
Engineering 30, 6 (2004), 388–402. https://doi.org/10.1109/TSE.2004.22

[25] A. Cimatti, S. Mover, and S. Tonetta. 2011. Proving and ex-
plaining the unfeasibility of message sequence charts for
hybrid systems. In Proceedings of FMCAD 2011. IEEE Com-
puter Society Press, 54–62. http://www.scopus.com/inward/
record.url?eid=2-s2.0-84857756993{&}partnerID=40{&}md5=
25e8cfbd3b30de6b6275ce8d7e66253f

[26] E. M. Clarke, O. Grumberg, and D. A. Peled. 1999. Model Checking.
The MIT Press.

[27] David R. Cok. 2014. OpenJML: Software verification for Java 7 using
JML, OpenJDK, and Eclipse. In Proceedings of F-IDE 2014 (Electronic
Notes in Theoretical Computer Science, Vol. 149). Elsevier, 79–92. https:
//doi.org/10.4204/EPTCS.149.8 arXiv:1404.6608

[28] P. Da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. 2014. TaDA:
A logic for time and data abstraction. In Proceedings of ECOOP 2014
(Lecture Notes in Computer Science, Vol. 8586). Springer, 207–231. https:
//doi.org/10.1007/978-3-662-44202-9_9

[29] M. Dalvandi, M. Butler, and A. Rezazadeh. 2015. From Event-B models
to Dafny code contracts. In Proceedings of FSEN 2015 (Lecture Notes
in Computer Science, Vol. 9392). Springer, 308–315. https://doi.org/10.
1007/978-3-319-24644-4_21

[30] S. Darabi, S.C.C. Blom, andM. Huisman. 2017. A Verification Technique
for Deterministic Parallel Programs. In NASA Formal Methods (NFM)
(LNCS, Vol. 10227), C. Barrett, M. Davies, and T. Kahsai (Eds.). 247 –
264.

[31] S.M.J. de Putter, A.J. Wijs, and D. Zhang. 2018. The SLCO Framework
for Verified, Model-driven Construction of Component Software. In
Proceedings of FACS 2018 (Lecture Notes in Computer Science, Vol. 11222).
Springer, 288–296.

[32] S. M. J. de Putter and A. J. Wijs. 2018. A formal verification technique
for behavioural model-to-model transformations. Formal Aspects of
Computing 30, 1 (2018), 3–43. https://doi.org/10.1007/s00165-017-
0437-z

[33] R. DeFrancisco, S. Cho, M. Ferdman, and S. A. Smolka. 2019. Swarm
Model Checking on the GPU. In Proceedings of SPIN 2019 (Lecture Notes
in Computer Science, Vol. 11636). Springer, 94–113. https://doi.org/10.
1007/978-3-030-30923-7_6

[34] P. Deligiannis, A. F. Donaldson, J. Ketema, A. Lal, and P. Thomson.
2015. Asynchronous Programming, Analysis and Testing with State
Machines. In Proceedings of PLDI 2015 (ACM SIGPLAN Notices, Vol. 50).
ACM Press, 154–164.

[35] E. Denney, B. Fischer, J. Schumann, and J. Richardson. 2005. Automatic
certification of kalman filters for reliable code generation. In IEEE
Aerospace Conference Proceedings. IEEE Computer Society Press, 1–10.
https://doi.org/10.1109/AERO.2005.1559605

[36] A. Desai, V. Gupta, E. K. Jackson, S. Qadeer, S. K. Rajamani, and D.
Zufferey. 2013. P: Safe Asynchronous Event-Driven Programming. In
Proceedings of PLDI 2013 (ACM SIGPLAN Notices, Vol. 48). ACM Press,

12

https://doi.org/10.2168/LMCS-11(1:2)2015
https://doi.org/10.2168/LMCS-11(1:2)2015
https://arxiv.org/abs/1411.0851v1
https://doi.org/10.1016/j.jpdc.2011.10.015
https://doi.org/10.1016/j.jpdc.2011.10.015
https://doi.org/10.1109/IPDPS.2013.105
https://doi.org/10.1007/978-3-642-29737-3-22
https://doi.org/10.1007/978-3-642-29737-3-22
https://doi.org/10.1145/2398857.2384625
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2743017
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-642-30473-6_12
https://doi.org/10.1007/978-3-642-30473-6_12
https://doi.org/10.1109/IPDPS.2006.1639351
http://www.cs.uiuc.edu/{~}snir/PPP/skeleton/classification.pdf
http://www.cs.uiuc.edu/{~}snir/PPP/skeleton/classification.pdf
https://doi.org/10.1007/978-3-642-29740-3-22
https://doi.org/10.1109/TSE.2004.22
http://www.scopus.com/inward/record.url?eid=2-s2.0-84857756993{&}partnerID=40{&}md5=25e8cfbd3b30de6b6275ce8d7e66253f
http://www.scopus.com/inward/record.url?eid=2-s2.0-84857756993{&}partnerID=40{&}md5=25e8cfbd3b30de6b6275ce8d7e66253f
http://www.scopus.com/inward/record.url?eid=2-s2.0-84857756993{&}partnerID=40{&}md5=25e8cfbd3b30de6b6275ce8d7e66253f
https://doi.org/10.4204/EPTCS.149.8
https://doi.org/10.4204/EPTCS.149.8
https://arxiv.org/abs/1404.6608
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-319-24644-4_21
https://doi.org/10.1007/978-3-319-24644-4_21
https://doi.org/10.1007/s00165-017-0437-z
https://doi.org/10.1007/s00165-017-0437-z
https://doi.org/10.1007/978-3-030-30923-7_6
https://doi.org/10.1007/978-3-030-30923-7_6
https://doi.org/10.1109/AERO.2005.1559605

FTfJP ’20, July 23, 2020, Virtual, USA Marieke Huisman and Anton Wijs

321–332.
[37] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V.

Vafeiadis. 2010. Concurrent abstract predicates. In Proceedings of
ECOOP 2010 (Lecture Notes in Computer Science, Vol. 6183). Springer,
504–528. https://doi.org/10.1007/978-3-642-14107-2_24

[38] D. A. Duffy. 1991. Principles of Automated Theorem Proving. JohnWiley
& Sons Ltd.

[39] L. J. P. Engelen. 2012. From Napkin Sketches To Reliable Software. Ph.D.
Dissertation. Eindhoven University of Technology.

[40] J. Enmyren and C. W. Kessler. 2010. SkePU: a multi-backend skeleton
programming library for multi-GPU systems. In Proceedings of HLPP-4.
ACM, 5–14. https://doi.org/10.1145/1863482.1863487

[41] M. Fowler and R. Parsons. 2010. Domain-Specific Languages. Addison-
Wesley.

[42] J. P. Galeotti, C. A. Furia, E. May, G. Fraser, and A. Zeller. 2015. Inferring
loop invariants by mutation, dynamic analysis, and static checking.
IEEE Transactions on Software Engineering 41, 10 (2015), 1019–1037.
https://doi.org/10.1109/TSE.2015.2431688 arXiv:arXiv:1407.5286v2

[43] S. Garfinkel. 2008. History’s Worst Software Bugs. http://www.wired.
com/software/coolapps/news/2005/11/69355?currentPage=all.

[44] D. Grewe and A. Lokhmotov. 2011. Automatically generating and
tuning GPU code for sparse matrix-vector multiplication from a high-
level representation. In Proceedings of GPGPU-4. 1. https://doi.org/10.
1145/1964179.1964196

[45] P. Hijma, C. J. H. Jacobs, R. V. van Nieuwpoort, and H. E. Bal. 2015.
Cashmere: Heterogeneous Many-Core Computing. In Proceedings of
IPDPS 2015. IEEE Computer Society Press, 135–145.

[46] K. Hoder, L. Kovács, and A. Voronkov. 2011. Invariant generation
in vampire. In Proceedings of TACAS 2011 (Lecture Notes in Computer
Science, Vol. 6605). Springer, 60–64. https://doi.org/10.1007/978-3-642-
19835-9_7

[47] S. Hong, S. Salihoglu, J. Widom, and K. Olukotun. 2014. Simplifying
Scalable Graph Processing with a Domain-Specific Language. In Pro-
ceedings of CGO 2014. ACM Press, 208–218. https://doi.org/10.1145/
2581122.2544162

[48] D. Huang, M. Wen, C. Xun, D. Chen, X. Cai, Y. Qiao, N. Wu, and C.
Zhang. 2014. Automated transformation of GPU-specific OpenCL
kernels targeting performance portability on multi-core/many-core
CPUs. In Proceedings of Euro-Par 2014 (Lecture Notes in Computer
Science, Vol. 8632). Springer, 210–221. https://doi.org/10.1007/978-3-
319-09873-9_18

[49] M. Huisman, S. Blom, S. Darabi, and M. Safari. 2018. Program Correct-
ness by Transformation. In 8th International Symposium On Leverag-
ing Applications of Formal Methods, Verification and Validation (ISoLA)
(LNCS, Vol. 11244). Springer.

[50] ISTAG. 2012. Software Technologies - The Missing Key Enabling
Technology: Toward a Strategic Agenda for Software Technologies in
Europe.

[51] M. Janota. 2007. Assertion-based loop invariant generation. RISC-
Linz 03 (2007). http://www.risc.uni-linz.ac.at/publications/download/
risc{_}3128/proceedings.pdf{#}page=23

[52] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning. In Proceedings of POPL 2015, Vol. 50.
ACM Press, 637–650. https://doi.org/10.1145/2775051.2676980

[53] N. Kapre and S. Bayliss. 2016. Survey of domain-specific languages for
FPGA computing. In Proceedings of FPL 2016. IEEE Computer Society
Press, 1–12. https://doi.org/10.1109/FPL.2016.7577380

[54] A. Knapp, S. Merz, and C. Rauh. 2002. Model Checking Timed UML
State Machines and Collaborations. In Proceedings of FTRTFT 2002
(Lecture Notes in Computer Science, Vol. 2469). Springer, 395–416. https:
//doi.org/10.1007/3-540-45739-9_23

[55] A. Knapp and J. Wuttke. 2006. Model Checking of UML 2.0 Interactions.
In Proceedings of ELS 2006 (Lecture Notes in Computer Science, Vol. 4364).

Springer, 42–51. https://doi.org/10.1007/978-3-540-69489-2_6
[56] R. Krebbers, R. Jung, A. Bizjak, J. H. Jourdan, D. Dreyer, and L. Birkedal.

2017. The essence of higher-order concurrent separation logic. In
Proceedings of ESOP 2017 (Lecture Notes in Computer Science, Vol. 10201).
Springer, 696–723. https://doi.org/10.1007/978-3-662-54434-1_26

[57] Q. V. Le, A. Coates, B. Prochnow, and A. Y Ng. 2011. On Optimization
Methods for Deep Learning. In Proceedings of ICML 2011. Omnipress,
265–272. https://doi.org/10.1.1.220.8705

[58] K. R. M. Leino. 2010. Dafny: An automatic program verifier for func-
tional correctness. In Proceedings of LPAR-16 (Lecture Notes in Computer
Science, Vol. 6355). Springer, 348–370. https://doi.org/10.1007/978-3-
642-17511-4_20

[59] R. Leißa, K. Boesche, S. Hack, R. Membarth, and P. Slusallek. 2015.
Shallow embedding of DSLs via online partial evaluation. In Proceed-
ings of GPCE 2015. ACM Press, 11–20. https://doi.org/10.1145/2814204.
2814208

[60] G. Li and G. Gopalakrishnan. 2012. Parameterized verification of
GPU kernel programs. In Proceedings of IPDPSW 2012. IEEE Computer
Society Press, 2450–2459. https://doi.org/10.1109/IPDPSW.2012.302

[61] X. Li, J. Hu, L. Bu, J. Zhao, and G. Zheng. 2005. Consistency checking
of concurrent models for scenario-based specifications. In Proceedings
of SDL 2005 (Lecture Notes in Computer Science, Vol. 3530). Springer,
298–312.

[62] R. Lim, B. Norris, and A. Malony. 2017. Autotuning GPU Kernels
via Static and Predictive Analysis. In Proceedings of ICPP 2017. IEEE
Computer Society Press, 523–532. https://doi.org/10.1109/ICPP.2017.
61 arXiv:1701.08547

[63] X. Liu, S. Tan, andH.Wang. 2012. Parallel Statistical Analysis of Analog
Circuits by {GPU}-accelerated Graph-based Approach. In Proceedings
of DATE 2012. IEEE Computer Society Press, 852–857. https://doi.org/
10.1109/DATE.2012.6176615

[64] T. G. Mattson, B. A. Sanders, and B. L. Massingill. 2004. Patterns for
Parallel Programming. Addison-Wesley.

[65] M. Mernik, J. Heering, and A. M. Sloane. 2005. When and How to
Develop Domain-Specific Languages. Comput. Surveys 37, 4 (2005),
316–344.

[66] F.R. Monteiro, E.H. Alves, I. Silva, H.I. Ismail, L.C. Cordeiro, and E.B. de
Lima Filho. 2018. ESBMC-GPU: A Context-Bounded Model Checking
Tool to Verify CUDA Programs. Science of Computer Programming
152 (2018), 63–69.

[67] P. Müller, M. Schwerhoff, and A. J. Summers. 2016. Viper: A verifica-
tion infrastructure for permission-based reasoning. In Proceedings of
VMCAI 2016 (Lecture Notes in Computer Science, Vol. 9583). Springer,
41–62. https://doi.org/10.1007/978-3-662-49122-5_2

[68] K. Namjoshi and N. Singhania. 2016. Loopy: Programmable and For-
mally Verified Loop Transformations. In Proceedings of SAS 2016 (Lec-
ture Notes in Computer Science, Vol. 9837). Springer, 383–402.

[69] C. Nugteren. 2014. Improving the Programmability of GPU Architectures.
Ph.D. Dissertation. Eindhoven University of Technology.

[70] S. Owre, J. M. Rushby, and N. Shankar. 1992. PVS: a Prototype Verifica-
tion System. In Proceedings of CADE 1992 (Lecture Notes in Computer
Science, Vol. 607). Springer, 748–752.

[71] A. Pnueli, O. Shtrichman, and M. Siegel. 1998. The Code Validation
Tool CVT: Automatic Verification of a Compilation Process. Software
Tools for Technology Transfer 2 (1998), 192–201.

[72] E. Rodríguez-Carbonell and D. Kapur. 2007. Automatic generation of
polynomial invariants of bounded degree using abstract interpretation.
Science of Computer Programming 64, 1 SPEC. ISS. (2007), 54–75. https:
//doi.org/10.1016/j.scico.2006.03.003

[73] D. Rosenberg. 2009. Avoiding the software ’fail whale’. http://news.
cnet.com/8301-13846{_}3-10349034-62.html.

[74] M. Safari, W. Oortwijn, S.J.C. Joosten, and M. Huisman. 2020. Formal
Verification of Parallel Prefix Sum. In NASA Formal Methods (NFM)
(LNCS), R. Lee, S. Jha, and A. Mavridou (Eds.). Springer.

13

https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/1863482.1863487
https://doi.org/10.1109/TSE.2015.2431688
https://arxiv.org/abs/arXiv:1407.5286v2
http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all
http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all
https://doi.org/10.1145/1964179.1964196
https://doi.org/10.1145/1964179.1964196
https://doi.org/10.1007/978-3-642-19835-9_7
https://doi.org/10.1007/978-3-642-19835-9_7
https://doi.org/10.1145/2581122.2544162
https://doi.org/10.1145/2581122.2544162
https://doi.org/10.1007/978-3-319-09873-9_18
https://doi.org/10.1007/978-3-319-09873-9_18
http://www.risc.uni-linz.ac.at/publications/download/risc{_}3128/proceedings.pdf{#}page=23
http://www.risc.uni-linz.ac.at/publications/download/risc{_}3128/proceedings.pdf{#}page=23
https://doi.org/10.1145/2775051.2676980
https://doi.org/10.1109/FPL.2016.7577380
https://doi.org/10.1007/3-540-45739-9_23
https://doi.org/10.1007/3-540-45739-9_23
https://doi.org/10.1007/978-3-540-69489-2_6
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1.1.220.8705
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/2814204.2814208
https://doi.org/10.1145/2814204.2814208
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/ICPP.2017.61
https://doi.org/10.1109/ICPP.2017.61
https://arxiv.org/abs/1701.08547
https://doi.org/10.1109/DATE.2012.6176615
https://doi.org/10.1109/DATE.2012.6176615
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1016/j.scico.2006.03.003
https://doi.org/10.1016/j.scico.2006.03.003
http://news.cnet.com/8301-13846{_}3-10349034-62.html
http://news.cnet.com/8301-13846{_}3-10349034-62.html

Towards Verified Construction of Correct and Optimised GPU Software FTfJP ’20, July 23, 2020, Virtual, USA

[75] D. C. Schmidt. 2006. Model-Driven Engineering. IEEE Computer 39, 2
(2006), 25–31.

[76] J. Schumann, B. Fischer, M. Whalen, and J. Whittle. 2003. Certification
support for automatically generated programs. In Proceedings of HICSS
2003. IEEE Computer Society Press, 1–10. https://doi.org/10.1109/
HICSS.2003.1174914

[77] R. Sharma, I. Dillig, T. Dillig, and A. Aiken. 2011. Simplifying loop
invariant generation using splitter predicates. In Proceedings of CAV
2011 (Lecture Notes in Computer Science, Vol. 6806). Springer, 703–719.
https://doi.org/10.1007/978-3-642-22110-1_57

[78] J. Smans, B. Jacobs, and F. Piessens. 2012. Verifying Java Programs
with VeriFast. Aliasing in Object-oriented Programming 2 (2012),
1–18. http://www.csc.kth.se/utbildning/kth/kurser/DD2460/Tools/
VeriFast/verifast-java.pdf

[79] M. Staats and M. Heimdahl. 2008. Partial Translation Verification
for Untrusted Code-generators. In Proceedings of ICFEM 2008 (Lecture
Notes in Computer Science, Vol. 5256). Springer, 226–237.

[80] K. Stenzel, N. Moebius, and W. Reif. 2011. Formal Verification of QVT
Transformations for Code Generation. In Proceedings of MoDELS 2011
(Lecture Notes in Computer Science, Vol. 6981). Springer, 533–547.

[81] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. 2014. Delite: A Compiler Architecture for Performance-
Oriented Embedded Domain-Specific Languages. ACM Transactions
on Embedded Computing Systems 13, 4s (2014), 1–25. https://doi.org/
10.1145/2584665

[82] M. Sulzmann and A. Zechner. 2012. Model Checking DSL-Generated
C Source Code. In Proceedings of SPIN 2012 (Lecture Notes in Computer
Science, Vol. 7385). Springer, 241–247.

[83] J. Whittle and B. Gajanovic. 2005. Model Transformations Should Be
More Than Just Model Generators. In Satellite Events at the MoDELS
2005 Conference (Lecture Notes in Computer Science, Vol. 3844). Springer,
32–38.

[84] J. Whittle, J. Van Baalen, J. Schumann, P. Robinson, T. Pressburger, J.
Penix, P. Oh, M. Lowry, and G. Brat. 2001. Amphion/NAV: Deductive
Synthesis of State Estimation Software. In Proceedings of ASE 2001.

IEEE Computer Society Press, 395–399.
[85] S. Wienke, P. Springer, C. Terboven, and D. An Mey. 2012. OpenACC -

First experiences with real-world applications. In Proceedings of Eu-
roPar 2012 (Lecture Notes in Computer Science, Vol. 7484). Springer,
859–870. https://doi.org/10.1007/978-3-642-32820-6_85

[86] A.J. Wijs and M. Wiłkowski. 2019. Modular Indirect Push-button
Formal Verification of Code Generators. In Proceedings of SEFM 2019
(Lecture Notes in Computer Science, Vol. 11724). Springer, 410–429.

[87] A. J. Wijs. 2015. GPU Accelerated Strong and Branching Bisimilarity
Checking. In Proceedings of TACAS 2015 (Lecture Notes in Computer
Science, Vol. 9035). Springer, 368–383.

[88] A. J. Wijs and D. Bošnački. 2012. Improving GPU Sparse Matrix-Vector
Multiplication for Probabilistic Model Checking. In Proceedings of SPIN
2012 (Lecture Notes in Computer Science, Vol. 7385). Springer, 98–116.

[89] A. J. Wijs and D. Bošnački. 2014. GPUexplore: Many-Core On-The-Fly
State Space Exploration Using GPUs. In Proceedings of TACAS 2014
(Lecture Notes in Computer Science, Vol. 8413). Springer, 233–247.

[90] A. J. Wijs and L. Engelen. 2014. REFINER: Towards formal verification
of model transformations. Vol. 8430 LNCS. https://doi.org/10.1007/978-
3-319-06200-6_21

[91] A. J. Wijs and L. J. P. Engelen. 2013. Efficient Property Preservation
Checking of Model Refinements. In Proceedings of TACAS 2013 (Lecture
Notes in Computer Science, Vol. 7795). Springer, 565–579.

[92] A. J. Wijs, J. P. Katoen, and D. Bošnački. 2016. Efficient GPU algorithms
for parallel decomposition of graphs into strongly connected and
maximal end components. Formal Methods in System Design 48, 3
(2016), 274–300. https://doi.org/10.1007/s10703-016-0246-7

[93] A. J. Wijs, T. Neele, and D. Bošnački. 2016. GPUexplore 2.0: Unleashing
GPU explicit-state model checking. In Proceedings of FM 2016 (Lecture
Notes in Computer Science, Vol. 9995). Springer, 694–701. https://doi.
org/10.1007/978-3-319-48989-6_42

[94] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter. 2015. Enabling and
Exploiting Flexible Task Assignment on GPU through SM-Centric
Program Transformations. In Proceedings of ICS 2015. ACM Press, 119–
130. https://doi.org/10.1145/2751205.2751213

14

https://doi.org/10.1109/HICSS.2003.1174914
https://doi.org/10.1109/HICSS.2003.1174914
https://doi.org/10.1007/978-3-642-22110-1_57
http://www.csc.kth.se/utbildning/kth/kurser/DD2460/Tools/VeriFast/verifast-java.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DD2460/Tools/VeriFast/verifast-java.pdf
https://doi.org/10.1145/2584665
https://doi.org/10.1145/2584665
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-319-06200-6_21
https://doi.org/10.1007/978-3-319-06200-6_21
https://doi.org/10.1007/s10703-016-0246-7
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1145/2751205.2751213

	Abstract
	1 Introduction
	2 Our Envisioned MDE Workflow
	2.1 Specifying and Verifying GPU Program Models
	2.2 Verified Generation of Code by Means of Model-to-Code Transformations
	2.3 Correct Transformation of Source Code to Achieve High-Performance Software

	References

