
Towards Verified Construction of Correct and
Optimised GPU Software

Marieke Huisman
m.huisman@utwente.nl
University of Twente

Enschede, The Netherlands

Anton Wijs
A.J.Wijs@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Abstract
Techniques are required that support developers to produce
GPU software that is both functionally correct and high-
performing. We envision an integration of push-button for-
mal verification techniques into a Model Driven Engineering
workflow. In this paper, we present our vision on this topic,
and how we plan to make steps in that direction in the com-
ing five years.
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ware verification and validation; Software functional
properties; System description languages.
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1 Introduction
The use of graphics processors (GPUs) for general purpose
computing has greatly impacted the computational capabili-
ties regarding linear algebra (e.g., matrix-vector multiplica-
tion [44, 88]), computational biology (e.g., genomics [85]
and genetic network reconstruction [16]), statistics [63],
physics (e.g., fluid dynamics [9]), image processing [64],
formal verification [6–8, 33, 87, 89, 92, 93], and machine
learning (deep learning [57]). However, to effectively use
GPUs, expert knowledge is required about the hardware
characteristics, and even then, software development can be
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time-consuming and frustrating. Proper techniques to make
the development and maintenance of GPU software more
insightful and less prone to introduce bugs, while helping
the developer to introduce performance optimisations, are
lacking [43, 50, 73]. The existence of such tools would make
GPU computing a far more attractive option for most soft-
ware developers. In the current paper, we outline our vision
to integrate formal verification techniques [5, 12, 26, 38, 70]
into a Model Driven Engineering (MDE) [17, 75] workflow, to
provide suitable GPU software development tools. It is cru-
cial that those techniques do not require expert knowledge
on formal verification, to make them usable for the average
software developer.

In MDE, one reasons about the system under development
in terms of a model written in a Domain-Specific Language
(DSL) [41, 65]. Model transformations are applied on models,
for instance, to add more information, to rewrite the model
in a different DSL, or to generate source code.
MDE enables a very structured way of software develop-

ment, and improves flexibility: the model can be updated,
and code can be regenerated and optimised at any time.
However, MDE currently provides no guarantees that the
resulting software will be correct and efficient, i.e. a) that it
does what it is supposed to do, and b) that it does this while
realising the full potential of the hardware it is running on.

2 Our Envisioned MDEWorkflow
In the coming five years, in the ChEOPS project1, we plan
to use formal verification techniques to establish in every
step of an MDE workflow that the produced GPU system
will be functionally correct and preserve the semantics of
the model. First, a model is constructed that describes the de-
sired functionality using an appropriate DSL. This model is
formally verified to determine whether it correctly addresses
the intended functionality. Next, a GPU implementation of
the system is generated. Verification of such an implementa-
tion with a code verification tool, such as VerCors [15] and
VeriFast [78], can be very time-consuming and typically re-
quires a formal verification expert. Therefore, the approach
we plan to follow is to automatically annotate the code with
the semantics of the model, such that those tools can be used
with the push of a button. Recently, we have applied this

1http://cheops.win.tue.nl.
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approach to achieve verified generation of multi-threaded
software [86]. Finally, in a number of steps, the produced
source code can be transformed to optimise it for specific
GPU hardware. In these steps, annotations will be refined
along with the code and code verification will be reapplied.

To achieve this, a number of topics need to be addressed.

2.1 Specifying and Verifying GPU Program Models
In the literature, many DSLs have been proposed to spec-
ify parallel systems, some of which targeting GPU systems,
e.g. [2, 31, 34, 36, 39, 47, 53, 59, 81]. The ability to produce
high-performance GPU systems is an obvious criterion, but
much less attention has been given to the verifiability of
the produced models. We believe that DSLs are needed that
allow reasoning at an abstraction level that is not too high,
to be able to still address the relevant behaviour, but also
not too low, since that would make verification infeasible.
Developers also need to be supported in specifying desired
functional properties. Various proposals have been made
for the specification of functional properties of parallel sys-
tems, for instance to use some form of message sequence
charts [18, 25, 54, 55, 61]. However, it is yet to be determined
whether such approaches are suitable for GPU systems.

To verify models, we plan to use model checking [5, 26,
89, 93], because of its push-button nature. Previously, GPU
programs have been model checked w.r.t. specific properties
such as data races and pointer safety [66], but no experi-
ence has been reported on checking whether models of GPU
software satisfy user-defined functional properties.

2.2 Verified Generation of Code by Means of
Model-to-Code Transformations

As GPU code will be produced by using model-to-code trans-
formations, it is crucial to establish that those transforma-
tions preserve the semantics of the source model.

Existing approaches, such as [1, 13, 24, 29, 35, 71, 76, 79, 80,
82–84], are not general enough for our purpose; they do not
directly support the development of GPU software (or other
types of parallel software). Moreover, they do not achieve a
push-button approach. For model-to-model transformations,
we have developed such techniques [32, 90, 91], but model-
to-code transformations pose extra challenges related to the
target hardware and programming language.

By generating annotated code, existing tools such as Open-
JML [27], KeY [3] and Dafny [58] can be applied. Originally
aimed at sequential code, these techniques are currently
extended to support concurrent and parallel software. On
the one hand, there is a line of very active research defin-
ing highly advanced program logics for fine-grained con-
currency such as CAP [37], TaDa [28], and Iris [52, 56].
On the other hand, there are tools that support the veri-
fication of concurrent and parallel programs, such as Ver-
Cors [4, 14, 15, 30, 74] (using Viper [67]), and VeriFast [78].
Techniques specifically designed for the analysis of GPU

software, such as GPUverify [10, 11] and PUG [60], address
crucial correctness issues, such as thread divergence and
data races, but they do not support checking user-defined
functional requirements.
Regarding the generation of program annotations, we

observe that many auxiliary annotations can be generated
automatically. In particular, there exists a large body of lit-
erature on invariant generation, see e.g., [42, 46, 51, 72, 77].
However, most of those techniques are not applied in pro-
gram verification, as they do not always match directly with
what is needed. For instance, for program verification, one
often needs invariants that express properties about arrays
or other kinds of data types, but hardly any techniques to au-
tomatically generate those have been developed. We believe
that this is an important topic to address.

2.3 Correct Transformation of Source Code to
Achieve High-Performance Software

When focussing on correctness, performance should not
be ignored, especially when developing software for par-
allel hardware architectures. The main purpose of DSLs is
to allow developers to reason at a comfortably high level
of abstraction about the intended functionality of the sys-
tem. Performance-related aspects necessarily require a more
technical, low-level view, since optimisations involve closely
mapping the software to the hardware. This discrepancy
means that an implementation generated from a DSL model
is typically not optimised for performance, and additional
transformations at the program level are necessary.

In the literature, a large collection of program transforma-
tions to improve performance of GPU applications is avail-
able, see e.g. [22, 48, 94]. Only in a few cases, formal correct-
ness of these is addressed, for instance in [68].

We will work on producing GPU programs that come with
detailed annotations describing which parts of the memory
are accessed and changed bywhich parts of the code (see [49]
for preliminary ideas). Besides making a program verifiable,
these annotations will also provide valuable information to
determine which transformations can be applied to optimise
the program. Work on algorithmic classification, which clas-
sifies a given program and based on that suggests to apply
certain optimisations, is relevant here [19–21, 23, 40, 45, 69].
Moreover, we observe that the information in the annota-
tions can be used to speed up the auto-tuning process, i.e., the
process to identify which program configuration achieves
the best performance. Optimal tuning can be a timely pro-
cess, and the use of information to reduce the state space for
tuning can have substantial impact [62]. Because of the very
precise information available from our program annotations,
we believe that we can substantially reduce the overhead of
this process. Using detailed program annotations for both
verification and optimisation is very new, and we strongly
believe that it can be used effectively to produce high-quality
GPU software.
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