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Abstract. In model-driven development, the automated generation of
a multi-threaded program based on a model specifying the intended sys-
tem behaviour is an important step. Verifying that such a generation
step semantically preserves the specified functionality is hard. In related
work, code generators have been formally verified using theorem provers,
but this is very time-consuming work, should be done by an expert in
formal verification, and is not easily adaptable to changes applied in the
generator. In this paper, we propose, as an alternative, a push-button ap-
proach, combining equivalence checking and code verification with pre-
vious results we obtained on the verification of generic code constructs.
To illustrate the approach, we consider our Slco framework, which con-
tains a multi-threaded Java code generator. Although the technique can
still only be applied to verify individual applications of the generator, its
push-button nature and efficiency in practice makes it very suitable for
non-experts.

1 Introduction

Model-driven software development (MDSD) [23] aims to make the software de-
velopment process more transparent and less error-prone. In an MDSD workflow,
Domain Specific Languages (DSLs) are used to model the system under devel-
opment, and model transformations are applied to initially refine the model,
and finally generate source code that either fully or partially implements the
program. The development of concurrent software is particularly complex, and
techniques to support developers are sorely needed. Formal verification can play
a vital role in that regard, to ensure that the artifacts produced in an MDSD
workflow are functionally correct.

The correctness of models and source code has been investigated for many
years, for instance see [8,19,21,25,46]. On the other hand. the transformation of
a model to another model or code has received less attention [2]. To ensure that
the final program is correct, it must be proven that the source code captures the
intended functionality as specified by the models.

Verifying model tranformations, that transform an artifact into another arti-
fact, is fundamentally more complex than verifying the artifacts themselves [2].
This is particularly true for model-to-code transformations (or code generators),
due to the usual difference in abstraction level between input model and output
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Fig. 1. Model-to-code verification workflow.

source code, and the usual lack of formal semantics of the target programming
language. Still, in recent years, techniques have been developed to directly verify
code generators (and compilers) [7, 9, 24, 26, 27]. These techniques use theorem
provers [6, 15,30,37]. Their advantage is that they can establish that the gener-
ators are guaranteed to provide correct output, but their drawback is the effort
that is required to construct the proofs, the expertise needed to do so, and their
inflexibility when the requirements of the generator change.

Alternatively, indirect approaches try to prove for a concrete input model
that a generator produces correct output, every time the generator is applied.
This is in practice often good enough, as the programs produced by generators
are deployed, not the generators themselves, and it is much less complex to
verify the output of a transformation rather than the transformation itself [2,7].
However, most existing indirect approaches do not support multi-threaded code,
have limited scalability, or check the preservation of particular properties, as
opposed to full semantics preservation [1, 13,33,38–40].

In this paper, we propose an indirect technique to verify semantics preser-
vation for generators of multi-threaded code. Its main features are that 1) it is
push-button, requiring no additional input from the user when the generator is
applied, and 2) it is modular, meaning that it scales linearly as the program size
increases. We demonstrate our technique in the context of the Simple Language
of Communicating Objects (Slco) framework [35], which includes a generator
for multi-threaded Java code, but the technique can be adapted to other DSLs
and programming languages.

An overview of the technique workflow is given in the Activity diagram of
Fig. 1. Initially, a given model is formally verified, by means of the mCRL2 model
checker [11], to determine whether it satisfies a list of desired properties (for more
information on this, see [35]). If it does, it can be subjected to code generation.
Verification of this step is the topic of the current paper, and is done in two
procedures that can be performed independently. In one procedure, for each
state machine in the model, corresponding with one thread in the source code, a
control flow graph (CFG) is extracted from both the model and the code. These
CFGs are interpreted as Kripke structures, converted to Labelled Transition
Systems, and finally compared by means of bisimulation checking [16,31]. In the
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other procedure, implementations of individual state changes in the model are
formally verified by means of the code verifier VerCors [8]. The separation logic
specifications of those implementations, expressing the semantics of the model,
are automatically generated. Together, the two verification results imply that
the individual threads have been correctly implemented. Interaction between the
threads is guaranteed to be correct, since the generator uses a mechanism for this
that we have proven to be correct in the past, by means of the VeriFast code
verifier [21,47]. All in all, we exploit the strengths of model checking, equivalence
checking, and code verification to achieve verified MDSD.

Structure of the paper. Section 2 presents the preliminary concepts. Slco and
code generation are discussed in Section 3. In this section, the formal semantics
of Slco and an updated code generator are presented for the first time. Our code
generator verification technique is explained in Section 4. Its implementation and
experimental results are discussed in Section 5. Related work is considered in
Section 6, and finally, Section 7 contains our conclusions.

2 Preliminaries

The semantics of a system can be formally expressed by a Labelled Transition
System (LTS) as presented in Def. 1.

Definition 1 (Labelled Transition System). An LTS G is a tuple (S,A, T ,
ŝ), with

– S a finite set of states;
– A a set of action labels;
– T ⊆ S ×A× S a transition relation;
– ŝ ∈ S the initial state.

Action labels in A are denoted by a, b, c, etc. A transition (s, a, s′) ∈ T , or
s

a−→ s′ for short, denotes that LTS G can move from state s to state s′ by
performing the a-action.

To compare LTSs, we use strong bisimulation, which is an equivalence rela-
tion, i.e., it is reflexive, symmetric and transitive.

Definition 2 (Strong bisimulation). A binary relation B between two LTSs
G1 = (S1,A1, T1, ŝ1) and G2 = (S2,A2, T2, ŝ2) is a strong bisimulation iff for all
s ∈ S1 and t ∈ S2, s B t implies:

1. if s a−→ s′ then t a−→ t′ and s′ B t′;
2. if t a−→ t′ then s a−→ s′ and s′ B t′.

Two states s, t are (strongly) bisimilar, denoted by s ↔ t, iff there is a
bisimulation relation B such that s B t. Two LTSs G1 = (S1,A1, T1, ŝ1), G2 =
(S2,A2, T2, ŝ2) are (strongly) bisimilar, denoted by G1 ↔ G2, iff ŝ1 ↔ ŝ2.

An alternative way to define the semantics of systems is by means of a Kripke
structure, which is labelled on the states as opposed to the transitions.
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Definition 3 (Kripke structure). A Kripke structure is a tuple K = (S,P, T ,
L, ŝ), with

– S a finite set of states;
– P a finite set of atomic propositions;
– T ⊆ S × S a total transition relation;
– L : S → 2P a state labelling function.
– ŝ ∈ S the initial state.

With s −→ t, we denote that (s, t) ∈ T . We refer to the domain of LTSs as
LTS, and to the domain of Kripke structures as KS.

In [29, 36], a translation from Kripke structures to LTSs is defined that pre-
serves bisimilarity.1

Definition 4 (Kripke structure into LTS embedding). The embedding
lts : KS→ LTS is defined as lts(K) = (S ′,A, T , ŝ) for arbitrary Kripke struc-
tures K = (S,P, T ,L, ŝ), where

– S ′ = S ∪ {s̄ | s ∈ S}, with for all s ∈ S, we have s̄ 6∈ S;
– A = 2P ∪ {⊥};
– T ⊆ S ′ × A × S ′ is the least relation satisfying the following rules for all
s, t ∈ S:

s
⊥−→ s̄ s̄

L(s)−−−→ s

s −→ t

s
L(t)−−−→ t

The fresh symbol ⊥ is used to indicate that from the target state of a ⊥-
transition, an outgoing transition will be present with the original (Kripke) label
of the target state of the latter transition.

3 Slco and the Generation of Java Code

Fig. 2 presents the meta-model of version 2.0 of Slco. An Slco model consists
of a number of classes, instances of those classes called objects, multiple chan-
nels via which these objects can communicate with each other, and user-defined
actions. Each class specifies the potential behaviour of a system component, and
consists of a finite number of state machines, a set of object-local variables that
can be accessed by each state machine in the class, and ports that are connected
to channels, via which state machines can communicate with state machines in
other objects. Variables can be of type Boolean, Integer or Byte, or Array of any
of those types.

A state machine consists of a number of states, including one initial state,
and transitions between those states, indicating possible state changes. Further-
more, a state machine may have a finite number of state machine-local variables,
1 We omit a definition of bisimilarity for Kripke structures. For the details, see [36].
Also, in contrast to [29,36], the translation as defined here does not treat transitions
between equally labelled states as internal LTS steps, since no such transitions are
present in our Kripke structures (see Section 4.2).

4



Model

name: String

<<enumeration>>
PrimitiveTypeEnum

Integer
Byte
Boolean

Channel
Object

name: String

Class

name: String

Port StateMachine

name: String

Transition

priority: Integer

Statement

State

name: String

Variable

name: String
defvalues: List(VALUES)

Type

base: PrimitiveTypeEnum
size: Integer

**
*

1

* *

** * *initial

* * 1 type

*
1source

*
1

target

Action

*

Fig. 2. The metamodel of Slco 2.0.

and with each transition, a (possibly empty) sequence (or block) of statements
is associated. Those statements can access (read and update) both the state
machine-local variables and the variables of the instance (object) of the class in
which the state machine resides. A transition can be fired if the current state
of the state machine is the source state of the transition, and the associated
block is enabled. A block is enabled iff its first statement is enabled. The order
in which the outgoing transitions of a particular state should be considered for
firing can be specified using transition priorities, but we do not consider these
in the current paper. Here, we consider three types of statement:

– Expression: a statement evaluating to either true or false, e.g. x = 0. It is
enabled iff it evaluates to true.

– Assignment: a statement assigning a value to either a state machine-local
or object-local variable, e.g. x := 1. It is always enabled.

– Composite: a sequence of assignments, optionally preceded by an expres-
sion, e.g. [x = 0; x := 1]. It is enabled iff its first substatement is enabled.

In the current paper, we do not consider channels and ports (hence those
concepts are marked with dashed lines in Fig. 2), focussing instead completely
on concurrent behaviour represented by multiple state machines within a class.
Hence, in the following, we do not discuss channels, nor do we consider actions.
For more information on these concepts, see the Slco tool paper [35]. The
complete Slco language also has the statements send and receive, for sending
and receiving messages over channels. Nevertheless, in Section 4, we explain
that including channels (and hence send and receive statements), actions and
transition priorities actually requires only a minor extension of our verification
approach. In other words, the fragment of Slco that we focus on in this paper
is sufficient to demonstrate our approach.
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assign
s⇒ (x := e)s′∧ ↓σ (x := e)

〈σ, s〉 x:=e−−−→ 〈σ[ξσ(e)/x], s′〉
expr

s⇒ (e)s′ ∧ ξσ(e)
〈σ, s〉 e−→ 〈σ, s′〉

comp
s⇒ ([e;x1 := e1; . . . ;xn := en])s

′ ∧ ξσ(e)∧ ↓σ (x1 := e1; . . . ;xn := en)

〈σ, s〉 [e;x1:=e1;...;xn:=en]−−−−−−−−−−−−−→ 〈σ[ξσ(e1)/x1] · · · [ξσ(en)/xn], s′〉

nonterm
s⇒ (E)s′∧ ↑σ (E)

〈σ, s〉 E−→  

par
〈σ, s, S〉 E−→ 〈σ′, s′, S′〉

〈σ, s||t, S, T 〉 E−→ 〈σ′, s′||t, S′, T 〉

〈σ, t||s, S, T 〉 E−→ 〈σ′, t||s′, S′, T 〉

Fig. 3. Slco SOS rules for assignment, expression, and composite statements

When a transition is fired, its block of statements is executed. The formal
semantics of this for basic Slco, a version of Slco in which each transition has
up to one statement, is presented by means of SOS rules in Fig. 3. Slco models
can be transformed to basic Slco models by introducing additional states and
transitions, and breaking up multiple-statement transitions into single-statement
transition sequences. For the SOS rules, we denote with s ⇒ (E)s′ that in the
state machine, there is a transition with statement E from state s to state s′.
Furthermore, we reason about the current state of an Slco model by means of
situations. A situation is a tuple 〈σ, s1|| . . . ||sn〉, with σ a total function mapping
the variables in the model to values of the appropriate types, and s1|| . . . ||sn
the combination of the current states s1, . . . , sn of state machines 1 to n. The
conclusions of the SOS rules are transitions in an LTS capturing the semantics
of an Slco model, where the LTS states represent situations of the model.

The predicate ↓σ (E) evaluates to true iff execution of statement E under
σ (i.e., the variables have the values defined by σ) successfully terminates. In
particular, no out-of-bound accesses of array variables occur. The negation of
this is denoted by ↑σ (E) and whenever this is applicable, trying to execute E
results in reaching the error situation  (rule nonterm). Function ξσ(e) is used
to evaluate expression e, and in case e is of type Boolean, ξσ(e) holds iff ↓σ (e)
and e evaluates to true, and σ[ξσ(e)/x] denotes an updated σ, in which ξσ(e)
has been assigned to variable x, the latter not being of type Array (but possibly
an element of an array).

As indicated by SOS rule par, Slco has an interleaving semantics. If, in a
given situation with a state s, a statement E can be fired, then so can it be fired
in a situation consisting of the parallel composition of several states including s.
Furthermore, note that the rules define that the execution of individual state-
ments is atomic, i.e., cannot be interrupted by the execution of other statements.

Generation of multi-threaded Java code. The Slco framework includes a gener-
ator for multi-threaded Java code, in which each state machine in a given Slco
model is transformed into a separate thread. Fig. 4 presents part of an exam-
ple Slco model, named RE, on the left, and part of the translation of state
machine SM1, contained in RE, on the right. Checking for the code-equivalent
of enabled transitions and executing associated statement translations is done
in the method exec as part of the SM1 Java thread. Depending on the current
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1 model RE {
2 classes
3 P {
4 variables Boolean [3] x
5 state machines
6 SM1 {
7 variables Integer i
8 initial S0 states S1
9 transitions

10 S0 -> S1 {
11 [not x[i]; x[i+1]:=x[i]]
12 }
13 S0 -> S1 {}
14 S1 -> S0 {
15 i := (i+1) % 2;
16 }
17 }
18 SM2 { ... }
19 }
20 objects p: P(x:=[False ,True ,True])
21 }

1 ...
2 public void exec() {
3 // variable to store non -deterministic choices
4 int j_choice;
5 while(true) {
6 switch(j_currentState) {
7 case S0:
8 j_choice = j_randomGenerator.nextInt (2);
9 switch(j_choice) {

10 case 0:
11 if (execute_S0_0 ()) {
12 j_currentState = RE.j_State.S1;
13 }
14 break;
15 case 1:
16 if (execute_S0_1 ()) {
17 j_currentState = RE.j_State.S1;
18 }
19 break;
20 }
21 case S1:
22 if (execute_S1_0 ()) {
23 j_currentState = RE.j_State.S0;
24 }
25 break;
26 default:
27 return;
28 }
29 }
30 }
31 ...

Fig. 4. An example Slco model (left) and part of its Java implementation (right)

state (j_currentState), the execution of the statements of a translated outgoing
transition is attempted, and if successful, the associated state change is applied.
Non-determinism is translated by the code generator by using a random num-
ber generator (line 8 in the code) to randomly select the code of an outgoing
transition. Note that for each Slco transition, a dedicated transition method is
implemented that executes a translation of the block associated to the transition.

In Fig. 5, implementations of the transition methods execute_S0_0 and exe-
cute_S1_0 are given, which map one-to-one on the blocks in RE. Each method
returns a Boolean value reflecting whether or not the statement block was suc-
cessfully executed. Note that for shared (object-local) variables, a locking mecha-
nism is required, to ensure that no inconsistent behaviour occurs due to multiple
threads accessing and updating the same variables simultaneously. This locking
mechanism is based on the concept of ordered locking [18]: each variable is asso-
ciated with a separate lock, the locks are sorted, and acquiring locks should be
done in that specified order. In the example, each element of array x has its own
lock, and the locks for x[i] and x[i+1] both need to be acquired before the update
can be performed. After adding the lock IDs to an array java_lockIDs (lines 3-4
in method execute_S0_0), and sorting the IDs (line 5), the locks are requested
from the Java object java_kp (line 6). After evaluation and/or execution of the
statement, the locks are released (lines 8 and 12).

Finally, instances of the java_Keeper class, such as java_kp in Fig. 5, manage
the locks of the implementation of an Slco object in an array of reentrant locks;
given a number of lock IDs in an array l, a lock method tries to acquire the locks
in the specified order, and an unlock method releases the locks in that order.

7



1 boolean execute_S0_0 () {
2 // [not x[i]; x[i + 1] := x[i]]
3 java_lockIDs [0] = 0 + i;
4 java_lockIDs [1] = 0 + i + 1;
5 Arrays.sort(java_lockIDs ,0 ,2);
6 java_kp.lock(java_lockIDs , 2);
7 if (!(!(x[i]))) {
8 java_kp.unlock(java_lockIDs , 2);
9 return false;

10 }
11 x[i + 1] = x[i];
12 java_kp.unlock(java_lockIDs , 2);
13 return true;
14 }

1 boolean execute_S1_0 () {
2 // i := (i + 1) % 2
3 i = (i + 1) % 2;
4 return true;
5 }

Fig. 5. Methods execute_S0_0 and execute_S1_0 for RE

4 Verification of Code Generation

4.1 Verification Overview

Fig. 1 presents an Activity diagram of our workflow for the verification of the
code generator. In the current section, we discuss the various steps from the
transform activity onwards, and reason about the fact that together, these steps
provide a correctness proof for individual applications of the code generator. As
input, we expect an Slco model that is functionally correct, i.e., that has the
desired functional properties and the absence of out-of-bound array accesses.

The code generator uses a library of generic constructs that can be reused
each time the generator is applied on a model. In general, the content of such
a library is DSL-specific. For Slco, we have added implementations for the
channel construct, and the ordered locking scheme. Implementations of generic
constructs can be formally verified once, and then safely reused in each appli-
cation of the generator. In the past, we have verified both constructs using the
VeriFast code verifier [21,47]. For the ordered locking scheme, we have verified
that no deadlocks can be introduced by locking, and that the scheme ensures
that atomicity of the statements is preserved. Hence, as long as the generated
code adheres to the scheme it is guaranteed that concurrent executions of state-
ments do not interfere with each other, and that no deadlocks occur when trying
to acquire locks. It is straightforward to check this for our generated code, since
the locks are only accessed via generic lock and unlock methods that are part of
the verified ordered locking scheme implementation, and that have been proven
to implement lock acquisition and release correctly, using VeriFast.

Isolating the locking scheme has multiple advantages for the remaining ver-
ification task. First of all, the locking steps can be ignored, and we can focus
on the behavioural aspects specified by the model. Second of all, it makes the
remaining verification task modular; as the shared variables are the only means
for the state machines in the model to communicate, the interaction of the cor-
responding threads in the program is guaranteed to be correct. Furthermore, as
statement atomicity is preserved, we know that no inconsistent system states
can be reached when the threads execute in parallel. What remains is to prove
that each individual state machine is correctly translated into a thread.
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Listing 4.9: IR instructions

data Ins = Conditional Expr Block

|��Switch��Expr��[(Expr,��Block)]��
|��Nondeterm��[Block]
|��Loop��Expr��Block
|��Assign��VariableRef��Expr
|��MethodInv��MethodCall

Nondeterm - a statement which will branch to multiple other statements.

The chosen path is not depending on any rule and an arbitrary branch

can be chosen instead.

Loop - a statement that will repeat for as long as the condition is satisfied.

Break - a statement that will break the current computation and link

directly to the next instruction following the surrounding Switch or Loop.

Switch - an extension of the Branch statement. The di↵erence is that

Break statement will only break the Switch and not the Branch.

Assign - an assignment statement.

MethodInv - a named method invocation.

Exp - an expression statement.

BlockIns - a sequence of statements.

4.7.2 Translating SLCO to IR

The SLCO translation to the IR is heavily influenced by the way the Java

code is generated. We want the end representations of both SLCO and Java

to be as close as possible. Since SLCO is of higher abstraction than Java, we

specify all the missing details during the translation to IR. The code that is

generated by the Java generator includes a separate Thread object for each

SLCO statemachine. In IR translation, we thus take each statemachine and

convert it to a sequence of instructions.

To reduce the size of the control flow graph, as well as to simplify the transla-

tion process, we use the results of [33] that tell us that the atomicity properties

will be preserved between the SLCO model and the target Java source code.

37
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Fig. 7. Translating BIR to CFG

To do the latter, each time the generator is applied on a given Slco model,
two verification steps can be performed independently: checking for equivalence
of the CFGs of each state machine and its corresponding Java thread, to deter-
mine whether they have equivalent control flows, and verifying semantics preser-
vation when the blocks of individual transitions are translated to Java methods,
to determine whether the individual steps in the control flows are equivalent. In
Section 4.2, we discuss the former. The latter is addressed in Section 4.3.

The two steps nicely complement each other, together addressing the seman-
tics (Fig. 3). The CFG equivalence checking step establishes that in all reachable
program states, each transition method will be considered for execution iff the
corresponding transition is an outgoing transition of the corresponding model
state. The transition method verification step establishes that execution of a
transition method indeed has the intended effect on the current state, i.e., all
transition methods correctly implement the block of their transition. In Sec-
tion 4.4, we discuss what is required to support the complete Slco language,
including the use of channels, actions, and transition priorities.

4.2 Constructing and Comparing CFGs

To extract accurate CFGs from Slco state machines and Java threads, we have
defined the Behaviour Intermediate Representation (BIR) language. This lan-
guage has enough concepts to capture both types of CFGs: on the one hand,
it can reflect how the Java code implements the statements of an Slco model,
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Fig. 8. Transforming the Slco and Java CFGs of RE.

and therefore support if-then, switch, and loop constructs. On the other hand, it
supports modelling concepts such as non-deterministic choice.

Fig. 6 lists a definition of the main BIR instructions. An Expr can be evalu-
ated and a Block is a sequence of instructions. Furthermore:
– A Conditional guards a Block with an Expr condition. If the latter evalu-

ates to true, the block can be executed. It can be used to represent if-then
Java constructs.

– A Loop expresses that execution of the involved Block should be repeated
as long as the involved Expr condition evaluates to true.

– A Switch branches to multiple instructions, where the branches represent
the different possible outcomes of evaluating the first Expr instruction. It
can be used to represent Java switch constructs.

– A Nondeterm branches to multiple instructions non-deterministically. It can
represent non-deterministic choice in Slco models.

– An Assign expresses that the evaluation of the Expr instruction should be
assigned to the given variable reference.

– A MethodInv represents a method invocation.
BIR descriptions of state machines and threads can be represented by CFGs.

How partial CFGs are derived from the various BIR instructions is shown in
Fig. 7. For the Conditional, Switch, Loop, Assign and Nondeterm instruc-
tions, direct translations are given (MethodInv is processed similar to Assign),
with BIR.Effect being used as a placeholder for nested instructions that need
to be translated recursively. In addition, there are various types of expression, to
reflect their type and whether they are literals or more complex expressions. In
the CFGs, nodes are labelled with BIR instructions, and edges are either labelled
with Fallthrough, representing unconditional flow of execution, choice, repre-
senting an option for a non-deterministic choice, or some value, representing the
result of an evaluation for a branching instruction (IF-node).

While the CFG of a Java program can be directly obtained by transforming
all constructs to BIR instructions, the transformation of Slco models is more
involved: first, each statement block is transformed, after which for each state
machine state, an additional instruction is created, and those state instructions
are connected with each other via the BIR representations of the blocks. On the
left in Fig. 8, the CFG of SM1 (Fig. 4) is given, where F is short for Fallthrough,
C is short for choice, and S0_0, S0_1 and S1_0 represent the various transitions.
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IF(S0_0) IF(S0_1)

False:
IF(True)

True:
currentState:=(S1)

IF(True)

False:
IF(True)

True:
currentState:=(S0)

IF(True)

True:
currentState:=(S1)

False:
IF(True)

IF(True)

IF(True)

IF(currentState)

IF(Nondeterm)

IF(S0_0)
IF(S0_1)

currentState:=(S1) currentState:=(S1)

IF(S1_0)

currentState:=(S0)

Fig. 9. The LTS produced for the RE example, both for the model and the code.

Once the CFGs of an Slco model and corresponding generated Java code
have been constructed, some transformations have to be applied on them to bring
them semantically together. First of all, nodes representing Slco blocks must
have the same label as their corresponding Java translations (their actual se-
mantic equivalence is addressed in Section 4.3). Besides this, we apply two other
transformations: 1) we introduce a mechanism on the Slco side to keep track of
the current state, as this is also done on the Java side, and 2) we directly intro-
duce nondeterminism on the Java side by means of the Nondeterm instruction.
We have proven manually that both transformations are semantics preserving.
Fig. 8 presents the application of those transformations on the RE example. On
the Slco side, the nodes representing state machine states are removed, and
the control flow is replaced by a switch instruction involving a new variable
currentState, to keep track of the current state, inside a Loop instruction with
condition true, i.e., an infinite loop. The instructions representing the various
blocks are turned into IF-nodes, and are connected to the new switch instruc-
tion via the appropriate value of currentState. After each block instruction,
the current state is updated if execution of the block was successful. Otherwise,
the state machine remains in the same state.

On the Java side, every occurrence of the j_choice variable, which involves
obtaining a new random value followed by a switch instruction using j_choice,
is replaced by a new Nondeterm instruction.

When the CFGs have been transformed, what remains is to remove the edge
labelling, such that the CFGs can be interpreted as Kripke structures. Labels
Fallthrough and choice can be safely removed, but the conditional labels need
to be preserved, in order to maintain the guarded control flow. As the nested
instructions inside Conditional, Switch and Loop all have exactly one incoming
edge, coming from an IF-node (Fig. 7), we can move the conditional edge labels
to the target nodes of those edges. For instance, in case of Switch in Fig. 7, we
relabel the branch 1 node to 1: branch 1, and so on.

Finally, we transform the resulting Kripke structures to LTSs (Def. 4), and
check whether the LTSs are strongly bisimilar (Def. 2). In case of the RE example,
the two LTSs are in fact identical. Fig. 9 presents one of those LTSs. For ease
of presentation, each state ŝ (black circle) in Fig. 9 in fact represents a state
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s together with a companion state s̄, connected via a ⊥-transition from s to s̄
and a transition labelled with the associated grey label in Fig. 9 back from s̄ to
s. All in- and outgoing transitions of a state ŝ in Fig. 9 are connected to s (as
opposed to s̄). The top state in the figure is the initial state. This is indicated
by the large incoming arrow head.

4.3 Verification of Transition Methods

1 /*@
2 pure boolean updated_S0_0_x(int x_index , int i0, boolean b1 ,
3 boolean x_old) {
4 return (( x_index == i0) ? b1 : x_old);
5 }
6
7 given int i;
8 given boolean [] x;
9 given boolean b0;

10 given int i0;
11 given boolean b1;
12 invariant x != null;
13 context (\ forall* int slco_i ; 0 <= slco_i < x.length ;
14 Perm(x[slco_i],write ));
15 ensures b0 ==> \result == true;
16 ensures !b0 ==> \result == false;
17 ensures b0 ==> (\ forall* int slco_i ; 0 <= slco_i < x.length ;
18 x[slco_i] == updated_S0_0_x(slco_i , i0, b1, \old(x[slco_i ])));
19 ensures !b0 ==> (\ forall* int slco_i ; 0 <= slco_i < x.length ;
20 x[slco_i] == \old(x[slco_i ]));
21 @*/
22 boolean execute_S0_0 () {
23 // SLCO statement: [not x[i]; x[i + 1] := x[i]]
24 /*@ assume 0 <= i < x.length; @*/
25 /*@ b0 = !(x[i]); @*/
26 if (!(!(x[i]))) { return false; }
27 /*@ assume 0 <= i + 1 < x.length; @*/
28 /*@ assume 0 <= i < x.length; @*/
29 /*@ i0 = i + 1; b1 = x[i]; @*/
30 x[i + 1] = x[i];
31 return true;
32 }
33
34 /*@
35 given int i;
36 given boolean [] x;
37 given int i_old;
38 invariant x != null;
39 ensures \result == true;
40 ensures (i == (i_old + 1) % 2);
41 @*/
42 boolean execute_S1_0 () {
43 // SLCO statement: i := (i + 1) % 2
44 /*@ i_old = i; @*/
45 i = (i + 1) % 2;
46 return true;
47 }

Fig. 10. Methods execute_S0_0 and execute_S1_0 for RE, with VerCors specifica-
tions.

To verify the transformation of each Slco block, we use the VerCors tool
set [8]. With it, we can check whether Java code satisfies a specification written
in permission-based separation logic [4]. Its verification engine is Viper [28].
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We have extended our Slco-to-Java code generator with a feature to gen-
erate a list of the transition methods implementing the Slco blocks of a given
Slco model, with VerCors specifications. In Fig. 10, methods execute_S0_0
and execute_S1_0 of the RE example model are listed with their specifications.
The specifications formally express the effect of executing Slco statements, as
defined by the corresponding SOS rules (Fig. 3). Note the absence of locking,
as this can be abstracted away safely, making it easier to construct VerCors
specifications.

To isolate the methods from the complete program, we specify which vari-
ables each method can access (the given ... statements at lines 7-8 and 35-36).
Furthermore, for all arrays, we specify that they have been properly initialised
(invariant x != null, lines 12 and 38), and in case array elements are updated by
the method, appropriate write permission is given (lines 13-14).

To properly express postconditions, ghost variables are used. In case of an
Slco Assignment translation, such as execute_S1_0, the old value of the up-
dated variable (here i) is stored (in a variable i_old), which allows us to specify
the effect (line 40). Furthermore, we specify that true is returned (line 39).

In case a Composite statement is translated (execute_S0_0), the specifi-
cation is more elaborate, as multiple variables can be updated, and there is
optionally a guard. Ghost variables are used to store all intermediate results,
such that they can be referred to in the specification. Note that before each ar-
ray access, an assumption has been added to specify that no out-of-bound array
accesses can be performed, relying on the Slco model having been verified in
this regard. Depending on the evaluation of the guard, the method either re-
turns true or false (lines 15-16), and the array is either updated or not (lines
17-20). Finally, when an array is updated in a Composite statement, an auxil-
iary function is defined (for example, see lines 2-5), since array elements may be
updated multiple times in a single Composite, and in general, when expressions
are used to compute array indices, this cannot be detected statically. In case an
element is updated multiple times, only the final update should be specified in
the post-condition, and the auxiliary function allows us to relate each element
to their final update.

The final case, not applicable in the example, is that a method implements
an Slco Expression. The postcondition of such a method addresses that true
is returned iff a guard implementing the Expression evaluates to true.

4.4 Supporting the Complete Slco Language

The approach, as presented in the previous sections, verifies that a model written
in a specific fragment of the Slco language is correctly transformed into multi-
threaded Java code. To support the complete Slco language, the verification
approach needs to be extended in a number of ways. In this section, we discuss
these extensions, which require only minor changes to the approach as it exists
currently. Implementing those extensions is planned for future work.

1. Slco has the concept of channel to model the communication between state
machines of different objects by means of message passing. In earlier work,
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we have formally verified that a (lock protected) Java channel correctly im-
plements the semantics of the Slco channel [10]. This implementation is
now part of our library of generic constructs. To support channels, the veri-
fication approach proposed in the current paper only needs to be extended
to match send and receive statements in the CFGs of Slco state machines
and their corresponding Java threads. As those statements are implemented
using the verified send and receive methods of the generic implementation
of Slco channel, the actual effect of sending and receiving a message via a
channel does not need to be verified anymore.

2. User-defined actions are Slco statements that allow the definition of model-
specific instructions. For instance, these can refer to calling standard Java li-
brary methods. Our verification approach can be extended straightforwardly
to match the actions in the CFGs of the state machines and their correspond-
ing Java threads.

3. Finally, Slco supports transition priorities that allow the user to specify
the order in which transitions should be fired. In Java, this order is im-
plemented by placing implementations of the associated statements inside
if-then-else constructs. First of all, the BIR language (more specifically,
the Nondeterm instruction) must be extended with priorities. Second of all,
a transformation needs to be defined to transform if-then-else constructs
implementing those priorities in Java to Nondeterm instructions, similar to
how implementations of non-determinism are transformed to such instruc-
tions in the current approach.

5 Implementation and Experiments

The Slco framework has been developed in Python 3, using TextX [14] for
meta-modelling and Jinja22 for model transformations. Hence, the generation
of VerCors specifications has also been implemented in Python. The CFG
extractor, including the transformations from CFG to Kripke structures and
from Kripke structures to LTSs, has been written in Haskell. For bisimulation
checking of LTSs, we use the mCRL2 toolset, which has a tool called ltscompare
that implements efficient bisimulation checking with complexityO(m log n), with
n the number of states and m the number of transitions in an LTS [16,31].

To validate the effectiveness of our approach, we ran a number of experiments
on a MacBook Pro with a 3.1 GHz Intel Core i5 processor and 16 GB RAM, run-
ning macOSMojave. We selected 50 models from the Beem benchmark suite [32].
These models stem from well-known examples and case studies, modelling mu-
tual exclusion algorithms, communication protocols, controllers, leader election
algorithms, planning and scheduling problems, and puzzles. Originally written
in the DVE language, the models have first been translated to Slco using a
model transformation. This is a straightforward task, as all language concepts
of DVE can be translated to similar concepts in Slco. In most cases, a model
contains a single object with one or more state machines. Furthermore, in many
2 http://jinja.pocoo.org.
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Fig. 11. VerCors verification runtimes

cases, thousands of lines of code were produced when translating the models to
Java code. The largest instance overall that we considered, msmie.4, resulted in
12,157 lines of source code, implementing a program with ten threads.

Due to the modular approach of our verification procedure, allowing us to
isolate individual state machines, the CFG equivalence checking step never re-
quired more than 0.5 seconds to process, given a model, all its state machines and
their translations. Regarding the time required for the verification of transition
methods, Fig. 11 presents the runtime results for VerCors for a representative
selection of 13 models. For each model, we have processed multiple instances, be-
tween three and eight, that are all part of the Beem benchmark set. This allows
us to investigate how the runtime scales as the number of transition methods is
increased. For the other models, similar scalability results have been obtained. As
expected, in most cases, the runtime scales linearly, but not to the same degree
for all models. For instance, for the msmie instances, although they have many
methods, the verification time is very short, since the methods are not complex,
most of them containing only unguarded assignments. On the other hand, the
peg solitaire instances have transition methods with guards and relatively com-
plex expressions to refer to array elements, resulting in the runtime increasing
much more rapidly as the number of methods is increased. For a few models,
such as phils, this phenomenon results in the runtime not linearly increasing as
the number of methods is increased. Some instances have more methods than
others, yet fewer of those are guarded, or involve array accesses.

Concluding, the CFG equivalence checking step scales very well, and can be
used to reason about the CFGs of large models and programs. Moreover, for the
verification of transition methods, VerCors is very suitable, but to improve
scalability, we will have to work on reducing the amount of verification work,
for instance by detecting functional duplicates among the transition methods. In
case of the Beem models, many models contain such duplicates. In those cases,
the involved state machines are all very similar, specifying the same computation
to be performed on different data. In future work, we plan to exploit that.
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6 Related Work

Equivalence checking has been applied in the past to directly verify semantics
preservation of model transformation rules, for instance see [5, 20, 34, 44]. This
approach requires that a model transformation can be formally defined, and
hence that both the source and target modelling language has a formal seman-
tics. Furthermore, programming languages describe systems at a much lower
abstraction level than modelling languages, making equivalence checking more
directly suitable for model-to-model than for model-to-code transformations. In
the current paper, we use equivalence checking as well, but we also apply CFG
transformations and code verification to bridge the gap between abstraction lev-
els.

For an overview of applying formal verification on model-to-code transfor-
mations, see [2]. Formal verification of a statechart-to-Java generation algorithm
using the Isabelle/HOL theorem prover [30] is described in [7]. Similar to our ap-
proach, their proof aims to demonstrate bisimulation between model and code,
but their modelling language does not support variables. They prove once that
the generator algorithm is correct, but note that for full verification, it may be
more suitable to verify on a case-by-case basis, like we do, to ensure that the
implementation of the generator algorithm is correct as well.

In [39], a Java code generator framework based on QVT is presented. The
KIV theorem prover [15] is used to prove particular security properties. Staats
and Heimdahl [38], on the other hand, apply model checking on both the model
and the code to verify the preservation of selected LTL properties. In [40], DSL-
generated C code is checked using the Spin model checker [19]. A Promela
model is generated in which the generated C code is embedded, and LTL prop-
erties are formulated for checking. Pnueli et al. [33] propose the CVT tool that
uses refinement checking to detect whether properties, proven to be satisfied by
a given Statemate model, have been preserved in generated C code. In [13], the
preservation of properties is verified by means of transforming Event-B models [3]
to specifications for the Dafny code verification tool [25].

In contrast to all the approaches above, we check for the preservation of the
complete model semantics. In our view, a list of concrete properties can serve
to verify that a model is correct, although the question always remains whether
such a list completely covers the intended functionality. For a code generation
step, on the other hand, it must be guaranteed that the generated code exactly
implements what the model specifies. If this is the case, then any property sat-
isfied by the model will be preserved by the code generator. Additionally, most
of the above approaches do not support the generation of multi-threaded code,
even though constructing such programs is particularly error-prone.

Ab Rahim and Whittle [1] propose an interactive technique in which the user
initially supplies assertions about generated code that are later added automat-
ically to code using a separate model tranformation. A software model checker
is applied to verify that assertions hold in generated code. Our technique, on
the other hand, does not require additional user input, and due to its modular
approach, scales much better than one directly using model checking.
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Techniques for compiler verification are similar to code generator verification
techniques, and can be used to further strengthen the development workflow
to verify that code is correctly compiled into an executable. In [26,27], the Coq
theorem prover [6] is used to both implement and verify a C compiler. A compiler
for the block diagram language Lustre [17] is verified using Coq in [9]. Finally,
Kumar et al. [24] use the HOL4 theorem prover [37] to verify that programs
described in their language, called CakeML, are compiled correctly. These results
are impressive, yet we question how flexible the techniques are when the code
generation or compilation procedure needs to be updated.

Finally, software model checking techniques, such as [12, 22], offer another
approach to verify code. Tools such as Java PathFinder [41] could be useful to
verify parts of the generated code. We plan to investigate how such techniques
can be applied effectively in the near future.

7 Conclusions

In this paper, we have presented a push-button formal verification technique to
indirectly verify generators of multi-threaded code, that can be automatically
performed each time the generator is applied. Besides its push-button nature,
its main strength is its modularity, which is enabled by our earlier results [10,47]
on verifying generic constructs that are used to implement the communication
between threads. This allows us to focus the technique proposed in the current
paper to focus on individual threads in isolation. Due to this, it can verify the
generation of thousands of lines of code in a few minutes. Furthermore, it can be
easily adapted to changes, and made applicable to other DSLs and programming
languages, as long as mappings to CFGs via our BIR language and the generation
of separation logic specifications are constructed and updated accordingly.

Concerning future work, we have so far proven manually that transforma-
tions, such as the ones illustrated in Fig. 8, are correct. We will work on formally
proving this using a theorem prover. Furthermore, as the current performance
bottleneck is transition methods verification, we will work on the detection of
functionally equivalent transitions, to reduce the amount of verification work.
Furthermore, we will extend our method with support for the complete Slco
language, and further extensions including timed behaviour [42, 43, 45]. Finally,
we will also apply the same approach to other DSLs and programming languages,
in particular for the generation of software for graphics processors.
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