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Abstract. Over the years, researchers have developed many formal method
tools to support software development. However, hardly any studies
are conducted to determine whether the actual problems developers en-
counter are sufficiently addressed. For the relatively young field of GPU
programming, we would like to know whether the tools developed so
far are sufficient, or whether some problems still need attention. To this
end, we first look at what kind of problems programmers encounter in
OpenCL and CUDA. We gather problems from Stack Overflow and cate-
gorise them with card sorting. We find that problems related to memory,
synchronisation of threads, threads in general and performance are essen-
tial topics. Next, we look at (verification) tools in industry and research,
to see how these tools addressed the problems we discovered. We think
many problems are already properly addressed, but there is still a need
for easy to use sound tools. Alternatively, languages or programming
styles can be created, that allows for easier checking for soundness.

Keywords: GPU - GPGPU - Formal methods - Verification - Bugs
- CUDA - OpenCL

1 Introduction

General-purpose GPU (GPGPU) programming has been around for over 10 years
now, but is notoriously hard to do. In this work, we want to explore what kind
of problems people experience during GPGPU programming and understand
what the difficulties are in overcoming these problems. We accomplish this in
two steps. First we find the problems and next we analyse current solutions
in the domain of formal methods. We view this work as a way of identifying
further research challenges and directions in this domain, with the aim to ease
the difficulty of programming for a GPU.

To find the problems programmers encounter, we looked at Stack Overflow,
which is a widely known website where programmers can ask questions related
to programming. We took a sample of questions that are related to OpenCL
and CUDA, the two dominant GPGPU programming languages, and categorise
them using card sorting. These categories give us an up-to-date overview of
(most) problems people encounter.
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The next step is finding verification tools. Many tools have been devel-
oped that help people in their GPU programming work, like GPUVerify [17],
Oclgrind [12], GKLEE [33], VerCors [18] and CUDA-MEMCHECK [2]. Al-
though, only some of these have been picked up by developers of GPGPU pro-
grams. We look at scientific conferences and industry companies for tools. We
narrow the scope to correctness issues and link the tools that solve these issues
and indicate what improvements research can make.

In conclusion, in this work, we aim to help other researchers to focus their
research on GPGPU programming problems that are not or incompletely ad-
dressed with and tools.

We make the following contributions.

1. An overview of common problems people struggle with whilst programming
a GPGPU (Section 3).

2. Addressing problems of Section 3 where we think formal methods can make
a direct contribution. We discuss solutions of existing tools and new research
opportunities (Section 4).

2 Background

We base this section mostly on the CUDA Programming Guide [3]. GPUs are
massive parallel compute devices, that work via the Single Instruction Multiple
Threads (SIMT) execution model, which means that multiple threads are exe-
cuting the same instruction in parallel, but with other data. In this paper, we
consider mainly the CUDA and OpenCL programming languages. We work with
the CUDA terms, but give the corresponding OpenCL terms in parentheses in
this section. CUDA compiles to PTX [7], a pseudo-assembly language, which we
call the instruction level, similarly OpenCL compiles to SPIR [3].

Functions that are executed on the GPU are called kernels. One can start
kernels from the CPU, which we call the host. The GPU itself is called the device.
Data stored on the RAM is not automatically accessible on the GPU and must
be sent from the host to the device before invoking the kernel that uses the
data. The programmer can schedule memory transfers and kernel executions in
a queue.

Threads (Work-items) When scheduling a kernel, you specify how many
threads (work-items) are going to be executing this kernel. Threads are grouped
together in thread blocks (workgroups) and all the thread blocks together form the
grid (NDRange). From the hardware perspective, thread blocks are subdivided
into warps (sub-groups or AMD calls them wavefronts), that typically have a size
of 32 (64 on AMD devices) threads. Threads of a warp are executed in lockstep,
meaning that they execute all the instruction at the same time.? If threads of a

3 Although this is not exactly true any more for Nvidia’s Volta architecture and on-
ward. See https://developer.nvidia.com/blog/inside-volta/
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warp take different execution paths, e.g. due to if statements, the warp executes
each path, but disables threads that are not on that path. This is called thread
divergence, which can lead to performance loss.

A GPU consists of multiple streaming multiprocessors, which execute the
warps in lockstep. Each thread block is assigned to one streaming multiproces-
SOTS.

Memory model A programmer has to manage the memory of a GPU manually.
It has global memory, where transferred data from the host is stored, and any
thread can access it. Shared memory (local memory) is shared in a thread block,
which is faster than global memory. One can use it to share results within a
thread block or to have faster access when data is reused. Per thread data is
automatically stored in fast-access registers, or slow local memory in case not
enough registers are available. For optimal global memory accesses, the accesses
should be fully coalesced: this happens if threads of a warp call consecutive
memory addresses and the first address is a multiple of the warp size.

Synchronization When two threads do a read and write, or two writes to
the same memory address, and this could happen simultaneously, this is called
a data race. Data races lead to non-determinism and are considered a bug. A
GPU can synchronize with a barrier on the thread block level, which ensures
that all threads wait for each other before continuing execution. It also makes
sure that after the synchronization, all writes to global and shared memory are
performed, or depending on the barrier, only to shared memory. Thus, barriers
can prevent intra-block data races in a thread block. All threads in a thread
block must reach the same barrier, otherwise it results in undefined behaviour
and is called barrier divergence.

In between threads of different thread blocks, synchronization is not possible
with a (standard) global barrier, although Sorensen et al. [50] show how this
can be constructed. Data races in between thread blocks are called inter-block
data races. When lockstep execution of warps is not ensured also intra-warp data
races can occur.

Synchronization can also be achieved via fine-grained synchronization using
locks or atomics. Locks can make sure that only one thread has access to a specific
memory address. Atomics allow for communication via memory, without risks
of data races and GPUs typically implement them more efficiently than locks. A
GPU has a weak memory model [10], which means that memory actions within
a thread can be reordered by the hardware if there exist no dependencies within
the thread. Therefore, when using fine-grained synchronization, specific memory
actions may not yet be visible to other threads. Memory fences can be inserted
to enforce a memory order, which might be needed to make sure that no weak-
memory data races occur.

Other features Some other features are less used, although we do want to
mention them since they come up in this work. Dynamic parallelism allows parent



4 L. B. van den Haak, A. Wijs, M. van den Brand, and M. Huisman

kernels, to launch child kernels. A parent and child kernel have a consistent view
of global memory at the start of the launch, but this is not guaranteed while
executing. The parent kernel can synchronize with the child kernels it launched.
A child kernel can recursively call a new child kernel. Warp-level primitives (sub-
group primitives) are primitives that allow communication between threads in a
warp, via the faster registers. For instance, one can use them to make a faster
scan and reduction operation.

3 GPGPU Programming Problems

To know how formal methods can help solve GPGPU problems, we first need
to know with what actual developers are struggling with. Therefore, we look at
Stack Overflow, which is the go-to place for programming-related questions and
is used by many programmers as a reference. Of the languages programmers use
for GPGPU programming, CUDA (729 questions), OpenMP (471) and OpenCL
(311) are the most popular, based on the number of question asked on Stack
Overflow in 2019*. We focus on CUDA and OpenCL since OpenMP does not
solely focusses on the GPU.

We first explain our approach for gathering and categorizing the results (3.1).
Next, we present the categories of programming problems we found, which we
again ordered into themes and sub-themes for a clear overview (3.2).

3.1 Approach

Gathering Problems As argued above, we look at OpenCL and CUDA on
Stack Overflow. Looking at the general tag gpgpu, cuda and opencl, we found
that the 7 most related tags are gpu, c++, nvidia, c, parallel-processing,
thrust and nvcc. The first five tags we consider too general, which would pollute
our results. The tags thrust and nvcce are a specific CUDA library and compiler,
which we do not want to focus on. Therefore, we stick with the tags gpgpu, cuda
and opencl. On March 2, 2020 there are 17,539 questions on stack overflow that
have the tag cuda, opencl or gpgpu.” We look at 376 Stack Overflow questions,
which is a representative sample with a confidence level of 95% and a confidence
interval of 5%s. Thus, with a 95% chance, we identify the problems which are
present in at least 5% of the questions in the tags mentioned above.

Categorizing Problems On the gathered questions, we performed open card
sorting [37, Card-sorting: From Text To Themes], which creates categories in
an unknown data set. We decided to look at the title, body and answers of the
questions, to determine the categories. The first author, together with another
PhD student, sorted the first 84 questions, where they achieved a mutual un-
derstanding of categories and held discussions for any corner cases.The next 43

* https://data.stackexchange.com/stackoverflow/query/1258739/gpgpu-tags
® https://data.stackexchange.com/stackoverflow /query /1258838 /gpgpu
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cards were sorted separately, but in the same room, which allowed discussion on
difficult cards. Eventually, this led to 26 different categories. The last 260 cards
were sorted alone by the first author, and we ended up with 34 categories. For
cards we could sort in multiple categories, we made new overlapping category or
sorted them to the most appropriate category. After the sorting, we went over
the relevant questions once more, to see if a newly made category would be more
suitable.

Relevant Problems for Formal Methods In the 34 categories, we make two
distinctions. First, we mark problems that are interesting for GPGPU program-
ming; these are 28 of the 34 categories. The non-relevant categories are related to
(GPU) hardware, errors in the host code (unrelated to CUDA or OpenCL API
calls), installing the correct CUDA and OpenCL drivers or libraries, setting up
a development environment, linking libraries and questions related to OpenGL.
In total, we found that 220 of the 376 were relevant to GPGPU programming.

We present the 28 GPGPU categories in the remainder of this section. We
mark the ones (10) where we think formal methods are directly applicable to
solve correctness problems underlying these questions.

3.2 Results

The results of the card sort are visible in Figure 1. To organize the results,
we have put some structure into them. We identified two themes: memory and
threads and synchronization. We place the remaining categories in the general
theme. Within each theme, we distinguish between bugs and performance-related
questions as sub-themes. The results of this can be viewed in Figure 2. We will
explain each theme with its associated categories in the following subsections.

Memory We first consider the bugs sub-theme categories: ‘memory transfer
bug’, ‘out of bounds’ and ‘memory bug’ An out of bounds error occurs when
an array is indexed outside its bounds, which will be reported on at runtime.
A memory transfer bug happens when not all necessary data was transferred
to the device and causes uninitialized memory accesses. We assign the category
memory bug to questions where a memory error happened, but the cause was
unclear from the post. We think that formal methods could help detect these
bugs or possibly ensure programmers that such bugs are not present in their
program. For instance, CUDA-MEMCHECK [2] and ESBMC-GPU [38] are tools
that can detect these kinds of bugs.

Next we consider the memory performance sub-theme: ‘manage memory
spaces’ and ‘memory performance’. A GPU has to manage its own (faster) shared
memory space. This management can be difficult and error-prone to do but is
an essential optimization strategy. We also added questions related to a better
understanding of the memory model here. We label other questions as memory
performance when they are related to access patterns (coalesced) or other ways
to optimize memory usage.



6 L. B. van den Haak, A. Wijs, M. van den Brand, and M. Huisman
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Fig. 1. Results of open card sorting 376 GPGPU related questions. We only show the
220 questions and categories relevant to GPGPU programming. The categories labelled
FM Opportunities are the ones where we think formal methods could play a role in
solving the underlying correctness issues.

The last two categories are ‘host transfer’ and ‘data types’. Both are related to
getting memory from the host to the device. The host transfer category is more
general. It is related to doing transfers efficiently, asynchronously, transferring
the data back, transferring arrays, parameters or constants, and handling arrays
too big for global memory. We also assign questions related to aligning and
pinning memory here. Actual bugs related to this we report in the ‘memory
transfer bug’ category. We assign questions about overlapping transfers to the
‘optimizing kernel launches’ category. The data types category is more specific.
It contains questions related to correctly transferring a composite data type
(‘struct’ in C) and making sure it has a correct corresponding data type on
the device. We also consider questions related to Structure of Arrays (SoA)
or Arrays of Structures (AoS) here. Although we think that tools can help to
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Themes Sub-themes Categories
-Memory transfer bug (2.7%)
Out of bounds (0.9%)
Memory bug (0.9%)
Performance (15.9%) }il\:lanage memory spaces (8.6%)
Memory performance (7.3%)
g Host transfer (7.7%)

Data types (5.9%)

Memory (34.1%)

Data races (5%)
Incorrect thread conf. (3.2%)
Barrier divergence (0.9%)
Optimise thread conf. (2.7%)
Thread divergence (1.4%)
Threads — general (3.6%)
Synchronization (1.4%)

Bugs (9.1%)

Performance (4.1%)

Threads & Sync
(18.2%)

GPGPU (100%)

General bug (4.1%)
Bug in dependency (1.8%)

Bugs (6.4%) -
Dynamic parallelism bug (0.5%)
Performance (12.3%) b Performance (8.6%)
Optimizing kernel launches (3.6%)

How to do algorithm (14.5%)
Basics (4.1%)
Profiling (2.7%)
Higher level patterns (1.8%)
Sparse matrices (1.8%)
Multi GPU (1.8%)
Limitation (1.4%)
Kernel launches (0.5%)
CUDA memcheck (0.5%)

General (47.7%)

Fig. 2. Overview of the card sort, where we place the categories under themes and sub-
themes. Similar to Figure 1 we only show categories relevant to GPGPU programming.
The underlined questions are the ones where we think formal methods could play a
role in solving the underlying correctness issues. The percentages indicate how many
questions are under a specific category, where 100% corresponds to all 220 relevant
GPGPU questions.

solve problems in checking correct correspondence of data types, a programming
language could do this automatically.

Threads & Synchronization Under the bug sub-theme, we consider ‘data
races, ‘incorrect thread configuration‘ and ‘barrier divergence’. We assign the
category data race to questions where this occurs. A data race is a problem that
is hard to detect: it is non-deterministic by nature, and it is hard to reason about.
Incorrect thread configuration happens when a programmer configures the wrong
number of threads or goes over the maximum amount of threads possible. Some
incorrect configurations will be reported at runtime, while others will run without
errors but do not process all the input. We assign barrier divergence to questions,
where not all threads in a thread block reach the same barrier. This is not allowed
in the general GPU programming model and leads to undefined results. Data
races and barrier divergence bugs are already the study of many formal method
tools, like GPUVerify [17] and GKLEE [33]. We think formal methods can also
reason about thread configurations, where a tool figures out if the indexing of the
input by the threads corresponds with the size of the input or detects memory-
related bugs which are caused by incorrect configurations. Another idea is to
check whether kernels work the same for each thread configuration.
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The ‘optimise thread configuration’ and ‘threads divergence’ categories are
related to the performance sub-theme. When optimising the amount of threads,
one can choose the number of threads per thread block and how much work each
thread does, which both influence performance. Thread divergence, on the other
hand, could lead to bad performance, which a programmer can sometimes avoid.

The threads - general category consists of questions related to understanding
the execution model of threads, and what correct configurations are. Synchro-
nization is used to prevent data races from happening by using barriers or atom-
ics. General questions on how to use this, about using warp primitives or what
can and cannot be synchronized we give this tag. We think formal methods can
help people understand when barriers are necessary, or maybe even place bar-
riers automatically. For instance, the Simulee [51] tool can detect unnecessary
barriers.

General First we consider the bug sub-theme. We have a general bug category,
which means something is wrong in the program, but not one of the previously
mentioned bugs. This can be incorrect usage of the available resources (e.g.
registers), people computing something incorrectly, incorrect use of the Thrust
library or it is not yet clear what is wrong. Formal methods, for instance Ver-
Cors [18], can check for functional correctness of programs when something is
incorrectly calculated. Bug in dependency consists of all bugs in Thrust that
were fixed in later versions of the library, and are therefore not considered for
formal methods later on. Dynamic parallelism bug consists of a single question
(s0/19527301), where a bug was encountered using dynamic parallelism, al-
though it is unclear what exactly went wrong. Formal methods tools could also
reason about correctness in this case, although dynamic parallelism would have
to be supported.

General performance are questions, where people want to understand, given
a program, algorithm or function, the performance and how to improve it. Ques-
tions about overlapping computations and memory transfers, and ideal schedul-
ing of computation kernels we place in the optimizing kernel launches category.

We came across many questions where people wondered how a specific prob-
lem or algorithm should be programmed on the GPU, or if a library contained
a specific functionality. We placed these in the how to do algorithm category.
Formal methods could help to prove the equivalence between a sequential and
parallel implementation. The basics category has questions related to how certain
concepts are called (e.g. what is a thread block), how they work, how specific API
calls work, or some basic easy to fix mistakes that prevent correct compilation.
Some questions arose about using higher level patterns in CUDA and OpenCL,
for instance using templated functions. We think these problems are best solved
by a beginners GPU programming book or by using a higher-level programming
language. Profiling are questions related to how to use the profiling tools avail-
able or how to measure runtimes correctly. Sparse matrices are questions on
how to process matrices, or on how to use the cuSparse library. Multi GPU are
questions related to how to use multiple GPUs for computations. The limitation
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category consists of questions related to the limitation of the CUDA/ OpenCL
programming model. For example, the CUDA runtime library can only be called
from the main scope of a C++ program (S0/55819758.) Kernel launches are
questions related how to start a computation on the GPU correctly. CUDA
memcheck is about using that specific tool for debugging.

3.3 Insights

Summarizing, we observe that 32.3% of the relevant questions are related to
performance, 34.1% to memory, 20% to bugs and 18.2 % to threads and syn-
chronization. These are the areas developers on Stack Overflow are most inter-
ested in. Performance makes sense since programmers will use a GPU to get
better performance, otherwise they would have used the CPU. Memory related
questions are important since memory management works quite differently from
CPU programs. The transferring of data is error-prone, and the management
of memory without race conditions is hard to do. We also think that many de-
velopers are just interested in the result: have a faster parallel version of their
original (sequential) code, which is related to our ‘how to do algorithm’ category.
Concluding, there is potential for formal methods to help solve correctness re-
lated issues that GPGPU programmers experience. We will further discuss this
in Section 4.

3.4 Threats to Validity

External Validity There is a bias in the results since we look only at ques-
tions located at Stack Overflow. This may not address the general population of
GPGPU developers. We suspect that there will be more questions by beginning
GPGPU programmers, than by more experienced ones. Therefore, we might not
discover the problems of more experienced users.

Internal Validity As the categories have been manually created, there is an
internal bias, meaning that if other people were to perform this study with the
same questions, there could be a different outcome. We think that although the
categories might be different, the general topics would be similar. Also, part
of the categorizing is done together with another PhD student for exactly this
reason.

4 Formal verification solutions

In Section 3, we looked at problems that programmers struggle with when coding
in CUDA and OpenCL. In this section we focus on the problems where we think
formal methods can make a direct contribution, and provide an overview of tools
that (partially) solve these problems. Again, we focus mainly on correctness.
First we explain how we selected these verification tools (Section 4.1). Next, we
discuss for each of the selected problems the available solutions and possible
research directions (Section 4.2).
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4.1 Approach

In order to find as many tools as possible that target the verification of GPU
applications, we took the following steps in finding them. First, we looked at
the industry. We considered the websites of Nvidia, AMD (gpuopen.com), the
Khronos group, and a list® found on the IWOCL conference site. Next we looked
at important conferences, based on the Microsoft Academic’s field ratings”. We
looked in the areas of programming languages, software verification and parallel
computing and selected the following conferences: PLDI, POPL, TACAS, CAV
and IPDPS. For each these conferences, we looked through the years 2015-2020.

This was the initial set of tools we considered, and we snowballed, by looking
at any tools that the original papers referenced. Lastly, we searched Google
Scholar with the following query: “(cuda OR opencl OR gpu) AND (bugs OR
problems OR verification OR formal)”.

4.2 Available solutions

In this section we consider the problems that we discussed in Section 3, where
we identified categories. In Table 1, we provide an overview of the tools we
found. We distinguish between three types of tools (inspired by Donaldson et
al. [24, Chapter 1]): Dynamic tools check for one specific input. Symbolic tools
execute the input symbolically, allowing for more different paths to be tested
at once. Static tools make (sound) approximations of the source code and will
try to prove existence or absence of bugs. We indicate if a tool checks for data
races (Race), barrier divergence (Bar), memory problems (Mem), functional cor-
rectness (Func) or equivalence (Eq), or if it helps with synchronization Sync or
thread configuration (7Thr) in the ‘Solves’ column. With ‘Auto‘, we refer to the
degree of automation: is it completely automatic, or does the user need to be
involved in the checking, for instance by writing annotations? The Corr. column
indicates if the tool can prove the absence of bugs in certain settings. We also
list any limitations or other remarks in the table.

Data races Ideally, a tool in this category reports existing data races with
precise details or guarantees that data races are not present.

Many dynamic tools are practical and require no manual input, but do not
guarantee the absence of data races. Solely for checking for a specific input, we
think CURD is most suitable, it checks on instruction level, thus can also be
used for higher-level languages. Only the approach of Leung et al. [31] gives
some guarantees for a dynamic tool and can be used to ‘prove’ absence of data
races for specific invariant kernels. One can combine this approach with other
dynamic tools.

Symbolic tools, such as GKLEE and ESBMC-GPU, can test for more in-
put, and one can (mostly) use them automatically although they can also suffer

5 https://www.iwocl.org/resources/opencl-libraries-and-toolkits/
" https:/ /academic.microsoft.com/home
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Table 1. Overview of different tools we discuss in this section. We indicate the type
of tool, the problems (which we consider in this section) they solve, the degree of
automation (Auto.), any correctness guarantees (Corr.) it can give, on which languages
it works, and any limitations and other remarks.

Tool Type Solves|Auto. |Corr.|Languages |Limitations Remarks
Race
Oclgrind [12] Dynamic |Bar |High X SPIR Simulates execution.
Mem
| Race X X
CUDA Dynamic [Bar |High « CUDA No global memory for
Memcheck [2] v Race.
Mem
GRACE [53] Dynamic |Race |High |x |CUDA No global memory and
b atomics for Race.
LDetector [30] Dynamic |Race |High % CUDA No atomics and intra- Dos%s valfle che(jk}ng, to determine a race,
warp checks for Race. |which might miss races.
Needs a hardware implementation, but is now
HAccRG [26] Hardware|Race |- X CUDA simply simulated. Can check fine-grained
synchronization.
BARRACUDA [25]|Dynamic Race High X PTX No intra-warp checks Can check fine-grained synchronization.
Bar for Race.
CURD [39] Dynamic g:f" High |x [PTX Faster version of BARRACUDA
Checks on races for one input and determines
| Dynamic |, . i . if memory accesses are the same for each input.
Leung et al. [51] /Static Race |- + CUDA No atomics If they are the same, this proves race freedom
for all inputs.
ARCHER [13] Dynamic [Race [Medium|x OpenMP Runs dynamically on the CPU, not GPU specific.
Race Can’t check floating
PUG [32] Static Bar |Low v CUDA point values for Func. |Scales badly f.OI‘ correctne5§ checking. Cén be
Only asserts for Func. |unsound and incomplete. Needs annotations.
Func
Only checks kernels
Race No indirect accesses
[T ons al with fals PR
GPUVerify [17] Static Bar |Low v cu DA‘ Only asserts for Func. NCCdS annotations to dcftl with hljc positives
OpenCL for races. Is only sound for some CUDA features.
Func Only checks kernels i
Race
VerCors [15] Static Bar |Low v |OpenCL Needs annotations to prove correctness
Func
- . Race . CUDA C,a.n't check floating Difficult to scale for more threads. Generate’s
GKLEE [33] Symbolic [Bar | Medium|x point values for Func. .
? (LLVM-IR) N concrete tests for races.
Func Only asserts for Func.
. . |Race . | Checks for equivalence on symbolic output,
KLEE-CL [22] Symbolic Eq Medium)x OpenCL although false positives are possible for this.
CUDA Similar to GKLEE, but concretize values when
SESA [34] Symbolic [Race |[High + S possible to reduce runtimes. Can be sound and
(LLVM-IR. . .
complete under specific circumstances.
Race Hich Can be run automatically, but needs
ESBMC-GPU [35] |Symbolic |Mem |, o CUDA Only asserts for Func. |assertions for functional correctness
Medium
Func checks.
Can check fine-grained synchronization.
Xing et al. [72] Static Race |High |+ |PTX It has to unrolls loops, which can
cause unsoundness.
Banerjee et al. [15] |Static P?a(:e High v OpenMP Equivalent version qul{valen(:e checking is sound, but might not be
Eq should be similar. possible for complex programs
It is based on a warp specialized programming
model. It can only verify programs which
. s Race |,.. PTX No global memory and|are completely predictable, e.g. it cannot have
WEFT [7) Static Bar High v (CUDA) |atomics for Race. dependencies on the input for memory locations
and control flow. It will check named barriers,
which are only accesible via PTX.
Race OpenMP Can use the languages interchangeably, but
CIVL [15] Symbolic [Eq  |Medium|? CUDA No atomics has no support for specific GPU capabilities.
Mem Chapel Need some annotations for checking.
) . . LLVM-IR Can only prove block size independence for
Alur et al. [17] Symbolic Thr | High + (CUDA) synchronization free programs
- . DR . LLVM-IR Simulates a GPU memory model, and generates
Simulee [51] Dynamic (Bar |High |x . . . e
N Syne (CUDA) memory via evoluationary computing for it.
Vericuda [30] Static Func |Low v |CUDA Race-free Needs annotations to prove correctness
and can only prove this for race-free programs.

from longer verification times. GPUVerify is the most practical static verifier,
although it needs annotations to overcome false positives. The tool from Xing
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et al. is interesting and checks on instruction level, but uses loop unrolling,
which makes it unsound. It could use ideas from GPUVerify, which generates
loop invariants. VerCors can give the most guarantees but needs a serious effort

in annotating. For example, see the work of Safari et al. [45], which verifies a
prefix-sum algorithm.
WEFT, CIVL, Archer, and the tool of Banerjee et al. [15] serve a more

specific purpose, like checking OpenMP or warp-specialised programs.

Overall, many steps have been made to verify data races in GPGPU pro-
grams. Checking on instruction level is a good idea since other programming
languages benefit from this as well. We also think there are proper steps made
to check for fine-grained synchronisation and memory fences which one need
for this kind of synchronisation (e.g., BARRACUDA checks on this). From the
benchmarks that the authors of the tools consider, it seems to be clear though
that there is no tool that always detects or proves the absence of data races.
Also, each author uses a different set of benchmarks. It would be interesting to
test all the mentioned tools with the benchmark suite created by the work of
Schmitz et al. [46], for a fair comparison between tools.

Memory bugs Here we look for solutions for the categories: ‘memory bug’, ‘out
of bounds’ and ‘memory transfer bug’. Thus, tools should check that memory
addresses which are accessed are valid and initialised.

CUDA-MEMCHECK detects the above errors dynamically for CUDA. The
OCLgrind tool does the same for OpenCL. ESBMC-GPU verifies on index out of
bounds. CIVL checks on array index-out-of bounds. These tools can also check
for memory leaks.

For these memory issues, we see an opportunity to check on the instruction
level. The dynamic tools seem to cover the properties of interests, but this is
not yet the case for the (symbolic) verification tools. For instance, it is unclear
if ESBMC-GPU checks on accessing uninitialised memory. Lastly, only VerCors
could guarantee correctness for the ‘out of bounds’ issues, but it will only check
kernels, not host code and needs annotations.

Barriers & synchronization Barrier divergence is also a source of bugs, which
can be verified by GPUVerify and GKLEE. CUDA-MEMCHECK detects this
dynamically. Another interesting topic, which can help developers with ‘syn-
chronisation’, is placing barriers automatically or notifying the user about un-
necessary barriers. The Simulee tool checks for the latter, but no tool addressed
the former to the best of our knowledge. Automatic barrier placement could be
implemented together with race check tools to afterwards verify for race freedom.

Thread configuration The tool by Alur et al. [12] can verify if a synchronisation-
free program is blocksize independent: does the program behave the same if the
number of blocks is changed, but the total amount of threads stays the same.
We think such an approach can be helpful for newer programmers. (And would
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be a good programming style to begin with.) By making one’s program work
for any block size, it is easier to optimise. Or even better, verify that one’s pro-
gram behaves the same for any number of threads®. A thread-invariant program
lets one freely try different thread configurations without introducing new bugs.
Thus, we see an opportunity for verification tools addressing this.

Dynamic Parallelism As far as we know, there are no tools that support
dynamic parallelism, although we are not sure if tools working at the instruction
level, e.g. BARRACUDA, support this. Support for dynamic parallelism is the
first step to ensure that a tool can check kernels using this concept. One can also
come across new bugs like data races between parent and child kernels. Specific
to dynamic parallelism is the fact that there is a maximum recursion depth of
new kernels and a maximum number of child kernels. A formal methods tool can
check both of these restrictions.

Functional correctness VerCors [19] allows deductive checking of functional
correctness of programs, although it needs non-trivial annotations.

On a similar vein, the work of Kojima et al. [29] proposes a Hoare logic for
GPU programs, which the Vericuda tool [30] verifies when one provides Hoare
tuples. However, the latter tool requires that the checked program is data race
free, which should be verified by another program.

ESBMC-GPU, CIVL, GPUVerify and GKLEE allow the programmer to
place assertions. These assertions do not give complete correctness but allow
more flexibility in checking certain aspects of the program.

We think VerCors has potential, although the need for annotations makes it
difficult to use out of the box. An interesting research direction is making the
reuse of annotations easier after a program has been slightly changed, e.g. due
to an optimisation.

Equivalence checking Instead of fully verifying a specification, one can do
equivalence checking: take a (simple), possibly sequential, version of a program,
which you know is correct and prove that a parallel implementation is equivalent.
The CIVL tool can do this. Kamil et al. [28] use a similar approach. They
transform Fortran stencil codes to Halide (an image processing DSL), and proof
functional equality, while being able to optimise the program in Halide further.
The tool by Banerjee et al. [15] does something similar. It verifies equivalence
for parallelising loop transformations from OpenMP and also verifies data race
freedom.

4.3 Research directions

We think much progress has already been made by formal methods that address
many issues that developers encounter. We make the following observations.

8 https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels- grid-stride-loops/ .
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In general, we think that checking on instruction level is valuable. Typically,
all GPU programs will eventually compile to the instruction level, and thus
allows the tool to be used for more programming languages.

No verification tool is completely sound yet, which might be impossible for
the full flexibility of the CUDA and OpenCL languages, but should be the goal.
Tools should support as many program features as possible while staying sound.
Certainly, since programmers use a lot of low-level features when optimising
code, this is an ambitious goal.

Another take on this is to identify which patterns and programming features
are sound to verify. This can give rise to a particular programming style, which
can be enforced by a different (domain-specific) language.

In the papers presenting the various tools, those tools are compared with
each other to show that for specific kernels, the new tool is, at that point in
time, the best. It would be better to use a standard benchmark suite, like the
suite by Schmitz et al. [16], which is uniformly used and addresses the errors
we mention in this paper. Additionally, it should support all the CUDA and
OpenCL features. This suite then makes it clear what errors tools can check and
what programming features they do or do not support. For instance, we think
that tools that deal with fine-grained synchronisation are essential.

5 Related Work

GPGPU problems The study by Wu et al. [51] is similar to our work. Instead
of Stack Overflow, they look at open source repositories on Github to collect
CUDA bugs. They identify 5 root causes for bugs, which is coarser than our
results. We can match most of our categories with one of their root causes.
Only their ‘poor portability’ we can not match, and is more related to specific
platforms issues, which were questions we marked as irrelevant. Also, the nature
of Stack Overflow means we have more questions related to solely understanding
GPU programming (e.g. ‘Basics’ or ‘How to do algorithm’) and are not things
you could find in commit messages. Because of that reason, the exact numbers
on how often certain issues arise are hard to compare, but we don’t think that
is too important. Both of these methods give a good overview of what kind of
bugs to expect whilst GPGPU programming.

The work of Donaldson et al. [14, Chapter 1] gives an overview of what kind of
correctness issues occur with GPGPU programming and gives a comparison be-
tween the tools GPUVerify, GKLEE, Oclgrind and CUDA-MEMCHECK. They
name four different correctness issues: data races, weak memory behaviours, lack
of forward progress guarantees and floating point accuracy. Of these issues, we
have only come across data races in our study. We think the other issues are more
particular for experienced users, and less so for novice users. As mentioned be-
fore, we think Stack Overflow attracts mostly novice users. The taxonomy made
by Donaldson et al. of the considered tools inspired the current work, although
we consider a wider range of tools overall.
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Stack Overflow studies There were many other studies performed on Stack
Overflow concerning other subjects, for example concurrency [41,9] mobile de-
velopment [44] and machine learning [27]. In [41,9,44] topic modelling is used to
categorize all the questions. We chose to not use topic modeling, since we think
that we can make a finer subdivision of the categories with open card sorting. In
[27] something more related to our work was done, but experts pre-determined
the categories. In our case the goal was to discover problems, therefore it makes
no sense to pre-determine the categories.

6 Discussion

In this work, we showed the problems GPGPU programmers struggle with,
while programming for the GPU using OpenCL or CUDA. We see that mem-
ory, synchronization, threads and performance are essential topics for GPGPU
programming. Next, we looked at (formal method) tools and how they ad-
dress the correctness issues we found. In general, the research community ad-
dresses most problems, but we identified several interesting research directions.
The data used for the categorization with card sorting is available here: https:
//github.com/sakehl /StackOverflow-GPU-Questions.

Acknowledgements We want to thank Jan Martens for his help with the card
sorting.
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