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Abstract. Various techniques have been proposed to accelerate explicit-
state model checking with GPUs, but none address the compact storage
of states, or if they do, at the cost of losing completeness of the checking
procedure. We investigate how to implement a tree database to store
states as binary trees in GPU memory. We present fine-grained parallel
algorithms to find and store trees, experiment with a number of GPU-
specific configurations, and propose a novel hashing technique, called
Cleary-Cuckoo hashing, which enables the use of Cleary compression on
GPUs. We are the first to assess the effectiveness of using a tree database,
and Cleary compression, on GPUs. Experiments show processing speeds
of up to 131 million states per second.
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1 Introduction

Major advances in computation increasingly need to be obtained via parallel soft-
ware, as Moore’s Law is ending [30]. In the last decade, GPUs have been success-
fully applied to accelerate various computations relevant for model checking, such
as probability computations for probabilistic model checking [8,25,48], counter-
example construction [54], state space decomposition [52], parameter synthesis
for stochastic systems [12], and SAT solving [34–38,40,43,56,57]. VoxLogicA-
GPU applies model checking to analyse (medical) images [9].

In the earliest work on GPU explicit state space exploration, GPUs performed
part of the computation, specifically successor generation [18, 19] and property
checking once the state space has been generated [5]. This was promising, but
the data copying between main and GPU memory and the computations on
the CPU were detrimental for performance. The first tool that performed the
entire exploration on a GPU was GPUexplore [33, 50, 51, 53]. It was later
extended to support LTL model checking [49]. A similar exploration engine was
later proposed in [55]. An approach that applied a GPU to explore the state
space of Promela models, i.e., the models for the Spin model checker [21], was
presented in [6]. This was later adapted to the swarm checker Grapple [16],
which can efficiently explore very large state spaces, but at the cost of losing
completeness. Finally, the model checker ParaMoC for pushdown systems was
presented in [46, 47].
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The above techniques demonstrate the potential for GPU acceleration of state
space exploration and (explicit-state) model checking, being able to accelerate
those procedures tens to hundreds of times, but they all have serious practical
limitations. Several limit the size of state vectors to 64 bits [6, 55] or the size
of transition encodings to 64 bits [46, 47]. GPUexplore does not efficiently
support models with variables [50, 53]. When adding variables, the amount of
memory needed rapidly grows, due to the growing input model and inefficient
state storage. Grapple requires less memory, but uses bitstate hashing. This
rules out the ability to detect that all reachable states have been explored, which
is crucial to prove the absence of undesired behaviour. ParaMoC verifies push-
down systems, but does not support concurrency, and abstracts away data.

Contributions. We propose how to perform memory-efficient complete state
space exploration on a GPU for concurrent Finite-State Machines (FSMs) with
data. To make this possible, we are the first to investigate the storage of binary
trees in GPU hash tables, propose new algorithms to find and store trees in a
fine-grained parallel fashion, experiment with a number of GPU-specific config-
urations, and propose a novel hashing technique called Cleary-Cuckoo hashing,
which enables the use of Cleary compression [13,15] on GPUs. To achieve this, we
have to tackle the following challenges: 1) CPU-based algorithms are recursive,
but GPUs are not suitable for recursion, and 2) accessing GPU global memory,
in which the hash tables reside, is slow. This work marks an important step
to pioneer practical GPU accelerated model checking, as it can be extended to
checking functional properties of models with data, and paves the way to inves-
tigate the use of Binary Decision Diagrams [29] for symbolic model checking.

The structure of the paper is as follows. In Section 2, we discuss related
work on GPU hash tables. Section 3 presents background information on GPU
programming, and Section 4 contains an overview of the state space exploration
engine. Section 5 addresses the challenges when designing a GPU tree table, and
presents our new algorithms. Experimental results are given in Section 6, and in
Section 7, conclusions and our future work plans are discussed.

2 Related Work

An overview of related work on GPU acceleration of model checking is given in
Section 1. In the current section, we focus on hash tables [14] for the GPU. In
explicit state space exploration, states are typically stored in a hash table. Such
a table is often implemented as an array, where the elements represent the hash
table buckets. A recent survey of GPU hash tables [31] identifies that when using
integer data items and unordered insertions and queries, Cuckoo hashing [41]
is (currently) the best option, compared to techniques such as chaining [3] or
robin hood hashing [20], and the Cuckoo hashing of [1] is particularly effective.
In Cuckoo hashing, collisions, i.e., situations where a data item e is hashed to
an already occupied bucket, are resolved by evicting the encountered item e′,
storing e, and moving e′ to another bucket. A fixed number of m hash functions
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is used to have multiple storage options for each item. Item look-up and storage
is therefore limited to m memory accesses, but can lead to chains of evictions.
In [1], it is demonstrated that with four hash functions, a hash table needs
around 1.25N buckets to store N items.1 Recent research [4] has demonstrated
that using larger buckets, spanning multiple elements, that still fit in the GPU
cache line is beneficial for performance, and increases the average load factor,
i.e., how much the hash table can be filled until an item cannot be inserted, to
99%. We address this in detail in Section 3. However, in [4], an older NVIDIA
GPU of the Volta architecture was used (2017), while more recent GPUs are
supposedly less susceptible to optimisations exploiting the cache line. In this
work, we experimentally assess this for hash table buckets.

Besides buckets, we also consider Cuckoo hashing as used in [1, 4], but we
are the first to investigate the storage of binary trees, and the use of Cleary
compression to store more data in less space. Libraries offering GPU hash tables,
such as [23], do not offer these capabilities. Furthermore, we are the first to
investigate the impact of using larger buckets for binary tree storage embedded
in a state space exploration engine.

The model checker GPUexplore [11, 50, 53] uses multiple hash functions
to store a state. State evictions are never performed, as each state is stored in
a sequence of integers, making it not possible to store states atomically. This
can lead to storing duplicate states, which tends to be worsened when states
are evicted, making Cuckoo hashing not practical [51]. Besides compact state
storage, a second benefit of using trees with each node being stored in a single
integer is that it allows arbitrarily large states to be stored atomically, i.e., a
state is stored the moment the root of its tree is stored.

Because we store trees, with the individual nodes referencing each other,
we do not consider alternative storage approaches, such as using a list that
is repeatedly sorted, even though Alcantara et al. identified that using radix-
sort [32] is competitive to hashing [1].

3 GPU programming

CUDA2 is a programming interface that enables general purpose programming
for a GPU. It has been developed and continues to be maintained by NVIDIA
since 2007. In this work, we use CUDA with C++. Therefore, we use CUDA
terminology when we refer to thread and memory hierarchies.

The left part of Fig. 1 gives an overview of a GPU architecture. For now,
ignore the bold-faced words and the pseudo-code. A GPU consists of a finite
number of streaming multiprocessors (SM), each containing hundreds of cores.
For instance, a Titan RTX, which we used for this work, has 72 SMs containing
together 4,608 cores. A programmer can implement functions, named kernels, to

1 This refers to the single-level version of their Cuckoo hashing [1], which we consider
in this work. Their two-level version is more complex and less efficient.

2 https://developer.nvidia.com/cuda-zone.

https://developer.nvidia.com/cuda-zone
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Fig. 1: State space exploration on a GPU architecture.

be executed by a predefined number of GPU threads. Parallelism is achieved by
having these threads work on different parts of the data.

When a kernel is launched, threads are grouped into blocks, usually of a size
equal to a power of two, often 512 or 1,024. Each block is executed by one SM, but
an SM can interleave the execution of many blocks. When a block is executed, the
threads inside are scheduled for execution in smaller groups of 32 threads called
warps. A warp has a single program counter, i.e., the threads in a warp run in
lock-step through the program. This concept is referred to as Single Instruction
Multiple Threads (SIMT): each thread executes the same instructions, but on
different data. The threads in a warp may also follow diverging program paths,
leading to a reduction in performance. For instance, if the threads of a warp
encounter an if C then P1 else P2 construct, and for some, but not all, C

holds, all threads will step through the instructions of both P1 and P2, but each
thread only executes the relevant instructions.

GPU threads can use atomic instructions to manipulate data atomically, such
as a compare-and-swap on 32- and 64-bit integers: atomicCAS(addr, compare,
val) atomically checks whether at address addr, the value compare is stored. If
so, it is updated to val, otherwise no update is done. The actual value read at
addr is returned.

There are various types of memory on a GPU. The global memory is the
largest of these, 24 GB in the case of the Titan RTX, and is used to copy data
between the host (CPU-side) and the device (GPU-side). It can be accessed by
all GPU threads, and has a high bandwidth, but also a high latency. Having
many threads executing a kernel helps to hide this latency; the cores can rapidly
switch contexts to interleave the execution of multiple threads, and whenever
a thread is waiting for the result of a memory access, the core uses that time
to execute another thread. Another way to improve memory access times is by
ensuring that the accesses of a warp are coalesced : if the threads in a warp try to
fetch a consecutive block of memory in size not larger than the cache line (128
bytes for a Titan RTX), then the time needed to access that block is the same
as the time needed to access an individual memory address.

Other types of memory are shared memory and registers. Shared memory is
fast on-chip memory with a low latency, that can be used as block-local memory;
the threads of a block can share data with each other via this memory. In a Titan
RTX, each block can use up to 49,152 bytes of shared memory. Register memory
is the fastest, and is used to store thread-local data. It is very small, though,
and allocating too much memory for thread-local variables may result in data
spilling over into global memory, which can dramatically limit the performance.

SM n

global memory (state storage)

shared mem. (state cache)

threads (successor generation)
SM 0

shared mem. (state cache)

threads (successor generation)
while there are unexplored states:
    - select set of unexplored states S
        (mark them explored)
    - for all successors s' of all s ∈ S:
          - store s' in the (local) state cache
    - sync. cache with global memory
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Finally, the threads in a warp can communicate very rapidly with each other
by means of intra-warp instructions. There are various instructions, such as
shuffle to distribute register data among the threads and ballot to distribute
the results of evaluating a predicate. Since CUDA 9.0, threads can be partitioned
into cooperative groups. If these groups have a size that completely divides the
warp size, i.e., it is a power of two smaller than or equal to 32, then the threads
in a group can use intra-warp instructions among themselves.

In Section 2, we mentioned the use of buckets in a GPU hash table. When a
hash table is divided into buckets, each containing 1 < n ≤ 32 elements, that still
fit in the cache line, then cooperative groups of n threads each can be created,
and the threads in a group can work together for the fetching and updating
of buckets. This results in more coalesced memory accesses and reduces thread
divergence. However, it also means that fewer tasks can be performed in parallel,
and starting with the Turing architecture (2018), which the Titan RTX is built
on, NVIDIA has been working on making computations less reliant on coalesced
memory accessing.

4 GPU state space exploration

Slco. For this work, we extended the state space exploration engine of GPU-
explore 2.0 [53] to support models of finite-state concurrent systems written
in the Simple Language of Communicating Objects (Slco), version 2.0 [44]. An
Slco model consists of a finite number of FSMs. The FSMs can communicate
via globally shared variables, and each FSM can have its own local variables.
Variables can be of type Bool, Byte and (32-bit) Integer, and there is support
for arrays of these types. We refer with (system) states s, s′, . . . to entire states of
the system, and with FSM states σ, σ′, . . . to the states of an individual FSM. A
system state is essentially a vector, containing all the information that together
defines a state of the system, i.e., the current states of the FMSs and the values
of the variables.

An FSM transition tr = σ
st−→ σ′ indicates that the FSM can change state

from σ to σ′ iff the associated statement st is enabled. A statement is either an
assignment, an expression or a composite. Each can refer to the variables in the
scope of the FSM. An assignment is always enabled, and assigns a value to a
variable, an expression is a predicate that acts as a guard: it is enabled iff it eval-
uates to true. Finally, a composite is a finite sequence of statements st0; . . . ; stn,
with st0 being either an expression or an assignment, and st1, . . . , stn being as-
signments. A composite is enabled iff its first statement is enabled. A transition

tr = σ
st−→ σ′ can be fired if it is enabled, which results in the FSM atomically

moving from state σ to state σ′, and any assignments of st being executed in
the specified order. When tr is fired while the system is in a state s, then after
firing, the system is in state s′, which is equal to s, apart from the fact that σ
has been replaced by σ′, and the effect of st has been taken into account. We
call s′ a successor of s.
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The formal semantics of Slco defines that each transition is executed atom-
ically, i.e., cannot be interrupted by the execution of other transitions. The
FSMs execute concurrently, using an interleaving semantics. Finally, the FSMs
may have non-deterministic behaviour, i.e., at any point of execution, an FSM
may have several enabled transitions.

State space exploration. Given an Slco model with n FSMs, first, CUDA
functions f1, . . . fn are generated, using a new code generator, that take as input
a state s, and produce as output the successors of s which can be reached by
firing a transition enabled in s of the ith FSM. When the state space is generated,
each state s can be analysed in parallel by n threads t1, . . . , tn, where each ti
executes fi to obtain some of the successors of s.

Fig. 1 presents how the different components of the state space exploration
engine map on a GPU. We explain how the engine works insofar is needed.
For more details, we refer the reader to [50, 51, 53]. Even though the type of
input model has changed, as GPUexplore only supports models without data
variables, the core of the engine has remained the same.

In the global memory, a large hash table (we call it G) is maintained to store
the states visited so far. At the start, the initial state of the input model is stored
in G. Each state in G has a Boolean flag new, indicating whether the state has
already been explored, i.e., whether or not its successors have been constructed.

On the right in Fig. 1, the state space exploration algorithm is explained from
the perspective of a thread block. While the block can find unexplored states in
G, it selects some of those for exploration. In fact, every block has a work tile
residing in its shared memory, of a fixed size, which the block tries to fill with
unexplored states at the start of each exploration iteration. Such an iteration is
initiated on the host side by launching the exploration kernel. States are marked
as explored when added by threads to their tile.

Next, every block processes its tile. For this, each thread in the block is
assigned to a particular state/FSM combination. Each thread accesses its desig-
nated state in the tile, and analyses the possibilities for its designated FSM to
change state, as explained before. Hence, the threads in a group can generate
successors for a single state in parallel.

The generated successors are stored in a block-local state cache, which is a
hash table in the shared memory. This avoids repeated accessing of global mem-
ory, and local duplicate detection filters out any duplicate successors generated
at the block-level. Once the tile has been processed, the threads in the block
together scan the cache once more, and store the new states in G if they are
not already present. When states require no more than 32 or 64 bits in to-
tal (including the new flag), they can simply be stored atomically in G using
compare-and-swap. However, sufficiently large systems have states consisting of
more than 64 bits. In this paper, we therefore focus on working with these larger
states, and consider storing them as binary trees.
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Fig. 2: An example of storing state vectors as binary trees.

5 A Compact GPU Tree Database

5.1 CPU Tree Storage

The number of data variables in a model, and their types, can have a drastic effect
on the size of the states of that model. For instance, each 32-bit integer variable in
a model requires 32 bits in each state. As the amount of global memory on a GPU
is limited, we need to consider techniques to store states in a memory-efficient
way. One technique that has proven itself for CPU-based model checkers is tree
compression [7], in which system states are stored as binary trees. A single hash
table can be used to store all tree nodes [27]. Compression is achieved by having
the trees share common subtrees. Its success relies on the observation that states
and their successors tend to be different in only a few data elements. In [27],
it is experimentally assessed that tree compression compresses better than any
other compression technique identified by the authors for explicit state space
exploration. They observe that the technique works well for a multi-threaded
exploration engine. Moreover, they propose an incremental variant that has a
considerably improved runtime performance, as it reduces the number of required
memory accesses to a number logarithmic in the length of the state vector.

Fig. 2 shows an example of applying tree compression to store four state
vectors. The black circles should be ignored for now. Each letter represents a
part of the state vector that is k bits in length. We assume that in k bits, also
a pointer to a node can be stored, and that each node therefore consists of 2k
bits. The vector <A,B,C,D,E> is stored by having a root node with a left leaf
sibling <A,B>, and the right sibling being a non-leaf that has both a left leaf
sibling <C,D>, and the element E. In total, storing this tree requires 8k bits. To
store the vector <A’,B,C’,D,E>, we cannot reuse any of these nodes, as <A’,B>
and <C’,D> have not been stored yet. This means that all pointers have to be
updated as well, and therefore, a new root and a new non-leaf containing E are
needed. Again, 8k bits are needed. For <A,B’,C,D,E’>, we have to store a new
node <A,B’> and a new root, and a new non-leaf storing E’, but the latter can
point to the already existing node <C,D>. Hence, only 6k bits are needed to
store this vector. Finally, for <A’,B,C,D,E’>, we only need to store a new root
node, as all other nodes already exist, resulting in only needing 2k bits. It has
been demonstrated that as more and more state vectors are stored, eventually
new vectors tend to require 2k bits each [26, 27].

To emphasise that GPU tree compression has to be implemented vastly dif-
ferently from the typical CPU approach, we first explain the latter, and the
incremental approach [27]. Checking for the presence of a tree and storing it if

A B E

C D

<A,B,C,D,E> <A',B,C',D,E>

A' B

C' D

E

<A,B',C,D,E'>

A B' E'

<A',B,C,D,E'>

0

0 1

1
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Algorithm 1: Tree-based Find-or-put, CPU version.
1 function findorput-cpu(node t* G, node t node):
2 if has-left-sibling(node) and is-updated(left-sibling(node)) then
3 node.left ← findorput-cpu(G, left-sibling(node))
4 if has-right-sibling(node) and is-updated(right-sibling(node)) then
5 node.right ← findorput-cpu(G, right-sibling(node))
6 addr ← store(G, node)
7 return addr

not yet present is typically done by means of recursion (outlined by Alg. 1). For
now, ignore the red underlined text. The store function returns the address
of the given node in G, if present, otherwise it stores the node and returns its
address, and the findorput-cpu function first recursively checks whether the
siblings of the node are stored, and if not, stores them, after which the node
itself is stored. A node has pointers left and right to addresses of G, and there
are functions to check for the existence of, and retrieve the siblings of a node.

In the incremental approach, when creating a successor s′ of a state s, the
tree for s, say T (s), is used as the basis for the tree T (s′). When T (s′) is created,
each node inside it is first initialised to the corresponding node in T (s), and the
leaves are updated for the new tree. This ‘updated’ status propagates up: when
a non-leaf has an updated sibling, its corresponding G pointer must be updated
when T (s′) is stored in G, but for any non-updated sibling, the non-leaf can
keep its G pointer. When incorporating the red underlined text in Alg. 1, the
incremental version of the function is obtained. With this version, tree storage
often results in fewer calls to store, i.e., fewer memory accesses.

There are two main challenges when considering GPU incremental tree stor-
age: 1) Recursion is detrimental to performance, as call stacks are stored in global
memory (and with thousands of threads, a lot of memory would be needed for
call stacks), and 2) The nodes of a tree tend to be spread all over the hash table,
potentially leading to many random accesses. To address these, we propose a
procedure in which threads in a block store sets of trees together in parallel.

5.2 GPU Tree Generation

When states are represented by trees, the tile of each thread block cannot store
entire states, but it can store the roots of trees. To speed up successor generation,
and avoid repeated uncoalesced global memory accessing, the trees of those roots
are retrieved and stored in the shared memory (state cache) by the thread block.
Once this has been done, successor generation can commence.

Fig. 3 shows an example of the state cache evolving over time as a thread
generates the successor s′ =<A,B’,C,D,E’> of s =<A,B,C,D,E>, with the trees
as in Fig. 2. Each square represents a k-bit cache entry. In addition to two entries
needed to store a node, we also use one (grey) entry to store two cache pointers
or indices, and assume that k bits suffice to store two pointers (in practice, we
use k = 32, which is enough, given the small size of the state cache). Hence, every
pair of white squares followed by a grey square constitutes one cache slot. Initially
(shown at the top of the figure), the tile has a cache pointer to the root of s, of
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Fig. 3: Successor generation: deriving <A,B’,C,D,E’> from <A,B,C,D,E>.

which we know that it contains the G addresses a0 and a1 to refer to its siblings.
In turn, this root points, via its cache pointers, to the locally stored copies of
its siblings. The non-leaf one contains the global address a2. A leaf has no cache
pointers, denoted by ‘-’. When creating s′, first, the designated thread constructs
the leaf <A,B’>, by executing the appropriate generated CUDA function (see
Section 4), and stores it in the cache. In Fig. 3, it is coloured black, to indicate
that it is marked as new. Next, the thread creates a copy of <a2,E>, together
with its cache pointers, and updates it to <a2,E’>. Finally it creates a new root,
with cache pointers pointing to the newly inserted nodes. This root still has
global address gaps to be filled in (the ‘?’ marks), since it is still unknown where
the new nodes will be stored in G.

The reason that we store global addresses in the cache is not to access the
nodes they point to, but to achieve incremental tree storage: in the example, as
the global address a2 is stored in the cache, there is no need to find <C,D> in
G when the new tree is stored; instead, we can directly construct <a2,E’>. This
contributes to limiting the number of required global memory accesses.

Note that there is no recursion. Given a model, the code generator determines
the structure of all state trees, and based on this, code to fetch all the nodes of a
tree and to construct new trees is generated. As we do not consider the dynamic
creation and destruction of FSMs, all states have the same tree structure.

5.3 GPU Tree Storage at Block Level

Once a block has finished generating the successors of the states referred to by
its tile, the state cache content must be synchronised with G. Alg. 2 presents how
this is done. The findorput-many function is executed by all threads in the
block simultaneously. It consists of an outer while-loop (l.5-28), that is executed
as long as there is work to be done. The code uses a cooperative group called bg,
which is created to coincide with the size of a bucket (bucketsize). When no
buckets are used, these groups can be interpreted as consisting of only a single
thread each. At l.4, the offset of each thread is determined, i.e., its ID inside
its group, ranging from 0 to the size of the group.

Every thread that still has work to do (l.5) enters the for-loop of l.7-27, in
which the content of the state cache is scanned. The parallel scanning works
as follows: every thread first considers the node at position tid− offset of the
cache, with tid being the thread’s block-local ID. This node is assigned to the
thread with bg ID 0. If that index is still within the cache limits, all threads of

Tile: Cache:
E A B - C D -

E A B - C D - A B' -

E A B - E' C D - A B' -

? ? E A B - E' C D - A B' -

time
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Algorithm 2: Tree-based Find-or-put-many, at thread block level.
1 device function findorput-many(node t* G):
2 node t p, q; index t addr; bool work to do ← true; bool ready; byte ballot result
3 auto bg ← tiled-partition〈bucketsize〉(this-thread-block())
4 byte offset ← bg.thread-rank()
5 while work to do do
6 work to do ← false
7 for i← tid − offset; i < CACHE SIZE; i← i + BLOCK SIZE do
8 ready ← false
9 if i + offset < CACHE SIZE then

10 p ← cache[i + offset]
11 if is-new-leaf(p) then ready ← true
12 else if is-new-nonleaf(p) then
13 if left-gap(p) then
14 cache[i + offset] ← set-left-gaddr(p, cache[left-caddr(p)])
15 if right-gap(p) then
16 cache[i + offset] ← set-right-gaddr(p, cache[right-caddr(p)])
17 if ¬(left-or-right-gap(p)) then ready ← true
18 else work to do ← true

19 ballot result ← bg.ballot(ready)
20 while ballot result do
21 lane ← find-first-set(ballot result) - 1; q ← bg.shuffle(p, lane)
22 addr ← findorput-single(bg, G, q)
23 if offset = lane then
24 ready ← false
25 if addr = FULL then signal hash table full
26 else set-gaddr(cache[i], addr)

27 ballot result ← bg.ballot(ready)

28 work to do ← bg.ballot(work to do)

bg have to move along, regardless of whether they have a node to check or not.
At the next iteration of the for-loop, the thread jumps over BLOCK SIZE nodes
as long as the index is within the cache limits.

The main goal of this loop is to check which nodes are ready for synchroni-
sation with G. Initially, this is the case for all nodes without global address gaps
(see Subsection 5.2). Each thread first checks whether its own index is still within
the cache limits (l.9). If so, the node p is retrieved from the cache at l.10. If it is
a new leaf, ready is set to true, to indicate that the active thread is ready for
storage (l.11). If the node is a new non-leaf (l.12), it is checked whether the node
still has global address gaps. If it has a gap for the left sibling (l.13), this left sib-
ling is inspected via the cache pointer to this sibling (retrieved with the function
left-caddr (l.14)). The function set-left-gaddr checks whether the cache
pointers of that sibling have been replaced by a global memory address, and if
so, uses that address to fill the gap. The same is done for the right sibling at
l.15-16. If, after these operations, the node p contains no gaps (l.17), ready is
set to true. If the node still contains a gap, another loop iteration is required,
hence work to do is set to true (l.18).

At l.19, the threads in the group perform a ballot, resulting in a bit sequence
indicating for which threads ready is true. As long as this is the case for at least
one thread, the while-loop at l.20-27 is executed. The function find-first-
set identifies the least significant bit set to 1 in ballot result (l.21), and
the shuffle instruction results in all threads in bg retrieving the node of the
corresponding bg thread. This node is subsequently stored by bg, by calling
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findorput-single (l.22) (explained later). Finally, the thread owning the node
(l.23) resets its ready flag (l.24), and if the hash table is considered full, reports
this globally (l.25). Otherwise, it records the global address of the stored node
(l.26). After that, ballot result is updated (l.27). Finally, once the for-loop is
exited, the bg threads determine whether they still have more work to do (l.28).

5.4 Single Node Storage at Bucket Group Level

In this section, we address how individual nodes are stored by a cooperative
group bg. Before we explain the algorithm for this, Alg. 3, in detail, we consider
our options for hashing, and propose a novel combination of existing techniques.

In Section 2, we argued that Cuckoo hashing is very effective on a GPU.
However, as it frequently moves elements, it is not suitable for a single hash
table, since the non-leaves of a tree refer to the positions of other nodes. We
address this by maintaining two hash tables, one for tree roots, and one for
the other nodes, as done in [26]. The roots are then not referred to, and hence
Cuckoo hashing can be applied on the root table.

In fact, when using two hash tables, we can be even more memory-efficient.
In [26], it was shown that Cleary tables [13, 15] can be very effective to store
state spaces. To handle collisions in Cleary tables, order-preserving bidirectional
linear probing [2] is used, which involves moving nodes to preserve their order.
This makes Cleary tables, like Cuckoo hashing, not suitable to store entire trees,
but they can be used to store the roots of the trees. In a Cleary table for roots
of size 2k, each root r is hashed (bit scrambled) with a hash function h to a 2k
bit sequence, from which w < k bits are taken to be used as the address to store
r in a table with exactly 2w buckets, and at this position, the remaining 2k−w
bits (the remainder) are actually stored. To enable decompression, h must be
invertible; given a remainder and an address, h−1 can be applied to obtain r.

In a multi-threaded CPU context, this approach scales well [26], but the
parallel approach of [26, 45] divides a Cleary table into regions, and sometimes,
a region must be locked by a thread to safely reorder nodes. Unfortunately, the
use of any form of locking, also fine-grained locking implemented with atomic
operations, is detrimental for GPU performance. Further, the absence of coherent
caches in GPUs means that expensive global memory accesses may be needed
when a thread repeatedly checks the status of an acquired lock.

As an elegant alternative, we propose Cleary-Cuckoo hashing, which combines
Cleary compression with Cuckoo hashing. We use m hash functions that are
invertible (as with Cuckoo hashing) and capable of scrambling the bits of a
root to a 2k bit sequence (as in Cleary tables). When we apply a function hi
(0 ≤ i < m) on a root r, we get a 2k bit sequence, of which we use w bits for an
address d, and store at d the remainder r′ consisting of 2k − w + dlog2(m)e+ 1
bits. The dlog2(m)e bits are needed to store the ID of the used hash function
(i), and the final bit is needed to indicate that the root is new (unexplored). It
is possible to retrieve r by applying h−1i on d and r′ without the hash function
ID and the new bit. When a collision occurs, the encountered root is evicted,



A GPU Tree Database for Many-Core Explicit State Space Exploration 695

Algorithm 3: Single node find-or-put, at bucket group level.
1 device function index t findorput-single(tile t bg, node t* G, node t p):
2 node t q; index t addr
3 (q, addr) ← fop-cuckoo-root(bg, G, p)
4 for i← 0; q 6= p and i < MAX EVICT; i← i + 1 do
5 (q, addr) ← fop-cuckoo-root(bg, G, q)
6 return (i = MAX EVICT? FULL; addr)

7 device function (node t, index t) fop-cuckoo-root(tile t bg, node t* G, node t p):
8 comprnode t cp, cq; node t q
9 hs← get-hash-start(p); byte offset ← bg.thread-rank()

10 for i← 0; i < NUM HASH FUNCTIONS; i← i + 1 do
11 (addr, cp) ← addr-compr-root(p, h(hs+i) mod NUM HASH FUNCTIONS)

12 (cq, pos) ← ht-find(bg, offset, G, addr, cp)
13 if cq = cp then return (p, addr + pos)
14 if cq = EMPTY then
15 hs ← h(hs+i) mod NUM HASH FUNCTIONS

16 break

17 if i = NUM HASH FUNCTIONS then (cp, addr) ← addr-compr-root(p, hs)
18 (cq, pos) = ht-insert-cuckoo(bg, offset, G, addr, cp)
19 if cq 6= EMPTY and cq 6= cp then
20 q ← get-decompr-root(cq, addr)
21 return (q, addr + pos)

22 return (p, addr + pos)

decompressed, and stored again using the hash function next in line for that root.
We refer to the application of Cleary compression to roots as root compression.

Alg. 3 presents one version of the findorput-single function, to which a
call in Alg. 2 is redirected when a root is provided. Here, G is a Cleary-Cuckoo
table that is only used to store roots. In findorput-single, a second function
fop-cuckoo-root (l.7-22) is called repeatedly, as long as nodes are evicted
or until the pre-configured MAX EVICT has been reached, which prevents infinite
eviction sequences (l.4). The function fop-cuckoo-root returns the address
where the given node was found or stored, and a node, which is either the node
that had to be inserted or the one that was already present.

In the fop-cuckoo-root function, lines highlighted in purple are specific for
root compression, i.e., Cleary compression of roots, while the green highlighted
lines concern Cuckoo hashing, addressing node eviction. The ID of the first
hash function to be used for node p, encoded in p itself, is stored in hs (l.9),
and each thread determines its bg offset. Next, the thread iterates over the hash
functions, starting with function hs (l.10-16). The G address and node remainder
are computed at l.11. If the node is new, the remainder is marked as new. If
root compression is not used, we have p = cp. Then, the function ht-find is
called to check for the presence of the remainder in the bucket starting at addr

(l.12). If ht-find returns the remainder, then it was already present (l.13), and
this can be returned. Note that the returned address is (addr + pos), i.e., the
offset at which the remainder can be found inside the bucket is added to addr.
Alternatively, if EMPTY is returned, the node is not present and the bucket is not
yet full. In this case, a bucket has been found where the node can be stored. The
used hash function is stored in hs (l.15) and the for-loop is exited (l.16).

At l.17, if a suitable bucket for insertion has not been found, the initial hs is
selected again. At l.18, the function ht-insert-cuckoo is called to insert cp.
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Algorithm 4: Single node insertion, at bucket group level.
1 device function (comprnode t, index t) ht-insert-cuckoo(tile t bg, byte offset, node t*
G, index t addr, comprnode t cp):

2 comprnode t cq ← G[addr + offset]; byte ballot result ← bg.ballot(cq = cp)
3 if ballot result then return (cp, find-first-set(ballot result) - 1)
4 while ballot result ← bg.ballot(cq = EMPTY) do
5 if offset = find-first-set(ballot result) - 1 then
6 cq ← atomicCAS(G[addr + offset], EMPTY, cp)
7 cq ← bg.shuffle(cq, find-first-set(ballot result) - 1)
8 if cq = EMPTY or cq = cp then return (cq, find-first-set(ballot result) - 1)
9 cq ← G[addr + offset]

10 byte i← get-eviction-pos(cp)
11 if offset = i then cq ← atomicExch(G[addr + offset], cp)
12 cq ← bg.shuffle(cq, i)
13 return (cq, i)

This function is presented in Alg. 4. Finally, if a value other than the original
remainder cp or EMPTY is returned, another (remainder of a) node has been
evicted, which is decompressed and returned at l.20-21. Otherwise, p is returned
with its address (l.22). When Cuckoo hashing is not used, evictions do not occur,
and at l.20-21, it is returned that the bucket is full.

Finally, we present ht-insert-cuckoo in Alg. 4. The function ht-find is
not presented, but it is almost equal to l.2-3 of Alg. 4. At l.2, each thread in
bg reads its part of the bucket G[addr + offset], and checks if it contains cp,
the remainder of p. If it is found anywhere in the bucket, the remainder with its
position is returned (l.3). In the while-loop at l.4-9, it is attempted to insert cp
in an empty position. In every iteration, an empty position is selected (l.5) and
the corresponding thread tries to atomically insert cp (l.6). At l.7, the outcome
is shared among the threads. If it is either EMPTY or the remainder itself, it can
be returned (l.8). Otherwise, the bucket is read again (l.9). If insertion does not
succeed, l.10 is reached, where a hash function is used by get-eviction-pos to
hash cp to a bucket position. The corresponding thread exchanges cp with the
node stored at that position (l.11). After the evicted node has been shared with
the other threads (l.12), it is returned together with its position (l.13).

6 Experiments

We implemented a code generator in Python, using textX [17] and Jinja2,3

that accepts an Slco model and produces CUDA C++ code to explore its state
space. The code is compiled with CUDA 11.4 targeting compute capability 7.5.
Experiments were conducted on a machine running Linux Mint 20 with a
4-core Intel Core i7-7700 3.6 GHz, 32GB RAM, and a Titan RTX GPU.

The goal of the experiments is to assess how fast GPU next state computation
with the tree database is w.r.t. 1) the various options we have for hashing, 2)
state-of-the-art CPU tools, and 3) other GPU tools. For 2), we compare with
multi-core Depth-First Search (DFS) of Spin 6.5.1 [22] and (explicit-state) multi-
core Breadth-First Search (BFS) of LTSmin 3.0.2 [24, 28].

3 https://palletsprojects.com/p/jinja/.

https://palletsprojects.com/p/jinja/
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Fig. 4: Speed obtained by different GPU configurations.

In our implementation, we use 32 invertible hash functions. Root compression
(cmp) can be turned on or off. When selected, we have a root table with 232

elements, 32 bits each, and a non-root table with 229 elements, 64 bits each.
This enables storing 58-bit roots (two pointers to the non-root table) in 58 −
32 + �log2(32)� + 1 = 32 bits. When using buckets with more than one element
(cmp+bu), we have root buckets of size 8, and non-root buckets of size 16. The
non-root buckets make full use of the cache line, but the root buckets do not.
Making the latter larger means that too many bits for root addressing are lost
for root compression to work (the remainders will be too large).

Root compression allows turning Cuckoo hashing on (cmp(+bu)+cu) or off
(cmp(+bu)). When it is off, essentially Cleary-Cuckoo is still performed, except
that evictions are not allowed, meaning that hashing fails as soon as all possible
32 buckets for a node are occupied.

In the configuration bu, neither root compression nor Cuckoo hashing is
applied. We use one table with 230 64-bit elements and buckets of size 16. For
reasons related to storing global addresses in the state cache, we cannot make
the table larger. The 32 hash functions are used without allowing evictions.

Finally, multiple iterations can be run per kernel launch. Shared memory is
wiped when a kernel execution terminates, but the state cache content can be
reused from one iteration to the next when a kernel executes multiple iterations,
by which trees already in the cache do not need to be fetched again from the
tree database. We identified 30 iterations to be effective in general (i30), and
experimented with a single iteration per kernel launch (i1).

With the CPU tools, we performed reachability analysis on 1- and 4-core
configurations, denoted by Sp-1 and Sp-4 for Spin, and Lm-1 and Lm-4 for
LTSmin. We only enabled state compression and basic reachability (without
property checking), to favour fast exploration of large state spaces.

For benchmarks, we used models from the Beem benchmarks [42] of con-
current systems, translated to Slco and Promela (for Spin). We scaled some
of them up to have larger state spaces. Those are marked in Table 1 with ‘+’.
Timeout is set to 3600 seconds for all benchmarks.
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Table 1: Millions of states per second for various reachability tools and configura-
tions. Pink cells: out of memory. Yellow cells: timeout. Green cell: best average.
o.m.: out of memory at initialisation. SU: speedup of (cmp + i30) vs. (Lm-1).

Input CPU tools GPUexplore + Slco Configurations

Model States Sp-1 Sp-4 Lm-1 Lm-4 Bits CR
bu cmp cmp + bu cmp + cu cmp cmp + cu SU

+ i1 + i1 + i1 + i1 + i30 + i30

adding.20+ 84,709,120 1.128 3.223 1.211 3.938 100 1.96 49.597 56.793 48.879 36.934 74.026 47.694 61x

adding.50+ 529,767,730 0.856 o.m. 1.354 5.356 100 1.96 48.403 103.872 77.243 49.625 131.444 57.968 97x

anderson.6 18,206,917 0.623 1.362 0.516 1.309 122 1.82 14.814 16.035 13.647 11.265 34.111 17.649 62x

anderson.7 538,699,029 0.599 o.m. 0.448 1.583 141 2.75 9.309 21.192 14.244 10.426 22.326 10.435 41x

at.5 31,999,440 0.646 1.495 0.653 1.880 85 1.86 19.894 29.158 23.633 18.204 38.457 21.375 59x

at.6 160,589,600 0.454 0.869 0.695 2.387 85 1.90 17.901 38.275 27.275 19.498 38.418 20.359 55x

at.7 819,243,816 0.527 o.m. 0.666 2.372 97 1.98 12.415 23.629 17.381 13.194 22.329 13.378 34x

at.8+ 3,739,953,204 0.534 o.m. 0.555 1.817 97 1.97 5.452 7.246 7.593 11.698 7.287 11.854 13x

bakery.5 7,866,401 1.400 2.570 0.410 0.904 140 2.51 11.504 7.838 7.585 6.407 19.362 12.782 47x

bakery.7 29,047,471 1.228 2.592 0.580 1.618 140 2.49 13.236 9.361 9.021 7.698 29.783 17.456 51x

bakery.8 841,696,300 0.760 1.269 0.690 2.436 140 2.40 3.745 29.410 23.957 17.116 32.778 18.215 48x

elevator2.3 7,667,712 0.554 1.099 0.463 0.985 189 3.96 4.890 3.259 3.185 2.817 6.261 4.827 14x

elevator2.4 91,226,112 0.263 0.561 0.623 1.945 213 3.97 3.025 3.746 2.907 3.087 3.267 2.703 5x

elevator2.5+ 1,016,070,144 0.189 o.m. 0.473 1.630 317 5.95 1.540 1.871 1.545 1.520 1.839 1.491 4x

frogs.4 17,443,219 1.044 2.228 0.553 1.423 219 3.49 8.423 10.253 8.686 7.767 11.549 8.168 21x

frogs.5 182,772,126 0.531 1.048 0.751 2.630 251 3.84 6.766 9.573 8.214 6.898 9.846 6.943 13x

lamport.6 8,717,688 1.277 1.375 0.490 1.096 96 1.91 11.813 5.126 5.225 4.697 27.966 19.335 57x

lamport.7 38,717,846 1.001 1.822 0.672 1.979 116 1.98 18.176 23.205 18.915 16.170 34.321 20.641 51x

lamport.8 62,669,317 0.917 1.776 0.698 2.194 116 1.98 17.717 25.947 21.015 17.132 35.387 20.864 50x

loyd.2 362,880 1.278 0.758 0.255 0.497 90 1.05 7.339 4.204 4.220 3.723 3.243 3.930 13x

loyd.3 239,500,800 0.633 o.m. 0.650 2.338 114 1.96 18.268 44.073 28.970 26.556 48.328 28.248 74x

mcs.5 60,556,519 0.706 0.615 0.453 1.489 148 2.97 14.504 24.498 19.537 14.710 29.635 15.912 65x

mcs.6 332,544 1.240 0.244 0.181 0.331 156 2.75 6.037 3.003 3.097 2.751 3.446 3.131 19x

peterson.5 131,064,750 0.711 1.617 0.727 2.435 140 2.98 16.034 31.975 21.394 17.813 32.331 16.681 42x

peterson.6 174,495,861 0.852 0.756 0.720 2.451 140 2.98 15.503 32.725 22.975 17.198 34.902 17.030 45x

peterson.7 142,471,098 0.683 1.496 0.652 2.269 175 2.63 13.077 25.667 18.603 13.868 26.183 13.120 37x

phils.6 14,348,906 0.208 0.422 0.240 0.670 150 1.49 4.410 7.458 5.528 4.789 7.084 4.543 30x

phils.7 71,934,773 0.179 0.297 0.246 0.764 151 1.49 3.585 5.702 4.762 4.064 5.382 3.885 22x

phils.8 43,046,720 0.160 0.361 0.243 0.788 160 1.49 4.842 9.151 6.987 5.119 8.973 5.089 37x

szymanski.5 79,518,740 0.665 1.571 0.535 1.815 180 2.91 11.944 17.803 14.416 11.653 18.357 11.674 33x

Average 0.728 1.309 0.58 1.844 n/a 13.139 21.068 16.355 12.813 26.621 15.246 40x

Fig. 4 compares the speeds of the different GPU configurations in millions
of states per second, averaged over 5 runs. For each configuration, we sorted
the data to observe the overall trend. The higher the speed the better. The
cmp + i30 mode (without Cuckoo hashing or larger buckets) is the fastest for the
majority of models. On the other hand, it fails to complete exploration for at.8,
the largest state space with 3.7 billion states, due to running out of memory. If
Cuckoo hashing is enabled with root compression, all state spaces are successfully
explored, which confirms that higher load factors can be achieved [4]. However,
Cuckoo hashing negatively impacts performance, which contradicts [4]. Although
it is difficult to pinpoint the cause for this, it is clear that it results from our
hashing being done in addition to the exploration tasks, while in papers on GPU
hash tables [1, 4], hashing is analysed in isolation. With the extra variables and
operations needed for exploration, hashing should be lightweight, and Cuckoo
hashing introduces handling evictions. The more complex code is compiled to a
less performant program, even when evictions do not occur.

Table 1 compares GPU performance with Spin and LTSmin. We refer to
our tool as GPUexplore +Slco. From the results of Fig. 4, we selected a
set of configurations demonstrating the impact of the various options. For each
model, Bits and CR gives the state vector length in bits and the compression
ratio, defined as (number of roots × number of leaves per tree) / (number of
nodes). With the compression ratio, we measure how effective the node sharing
is, compared to if we had stored each state individually without sharing. In
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Table 2: Millions of states per second for various GPU tools.

Tool anderson.6 anderson.7 lamport.8 peterson.5 peterson.6 peterson.7 szymanski.5

Grapple 2.138 14.299 n/a 10.941 9.074 8.967 n/a
GPUexplore 2.0 15.863 8.737 33.063 16.874 16.705 13.581 26.454
GPUexplore + Slco (cmp+i30) 34.111 22.326 35.387 32.331 34.902 26.183 18.357

addition, the speed in millions of states per second is given. Regarding out of
memory, we are aware that Spin has other, slower, compression options, but we
only considered the fastest, to favour the CPU speeds. Times are restricted to
exploration; code generation and compilation always take a few seconds. The
best GPU results are highlighted in bold. To compute the speedup (SU), the
result of cmp + i30, the overall best configuration, has been divided by the Lm-1
result (the single-core configuration that completely explored all state spaces
except one). All GPU experiments have been done with 512 threads per block,
and 3,240 blocks (45 blocks per SM). We identified this configuration as being
effective for anderson.6, and used it for all models.

While LTSmin tends to achieve near-linear speed-ups (compare Lm-1 and
Lm-4), the speed of GPUexplore +Slco heavily depends on the model. For
some models, as the state spaces of instances become larger, the speed increases,
and for others, it decreases. The exact cause for this is hard to identify, and we
plan to work on further optimisations. For instance, the branching factor, i.e.,
average number of successors of a state, plays a role here, as large branching
factors favour parallel computation (many threads will become active quickly).

Our overall fastest configuration does not use larger buckets, nor Cuckoo
hashing. Regarding buckets, as already noted in Section 3, starting with the
Turing architecture, NVIDIA GPUs are less sensitive to uncoalesced accesses,
and our results confirm that. Performing fewer tasks in parallel seems to be more
harmful for performance than a larger number of uncoalesced accesses.

Finally, Table 2 compares GPUexplore +Slco with GPUexplore 2.0 and
Grapple. A comparison with ParaMoc was not possible, as it targets very dif-
ferent types of (sequential) models. The models we selected are those available
for at least two of the tools we considered. Unfortunately, Grapple does not
(yet) support reading Promela models. Instead, a number of models are en-
coded directly into its source code, and we were limited to checking only those
models. It can be observed that in the majority of cases, our tool achieves the
highest speeds, which is surprising, as the trees we use tend to lead to more global
memory accesses, but it is also encouraging to further pursue this direction.

7 Conclusions and Future Work

We discussed new algorithms to achieve a GPU tree database, which enables
memory-efficient explicit state space exploration for FSMs with data. We pro-
posed Cleary-Cuckoo hashing, which makes it possible to use, for the first time,
Cleary compression on GPUs. Experiments show processing speeds of up to 131
million trees per second. In the last decade, new GPUs have been increasingly
effective for state space exploration [10], and in the future, they are expected to
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be more capable of handling thread divergence, which still heavily occurs when
accessing G. Therefore, we are optimistic about further improvements. In the
future, we will focus on optimisations and verifying temporal logic formulae.

Data Availability Statement. The datasets generated and analysed during
the current study are available in the Zenodo repository [39].
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