q

Check for
updates

GPUEXPLORE 3.0: GPU Accelerated State
Space Exploration for Concurrent
Systems with Data

Anton Wijs®)® and Muhammad Osama

Eindhoven University of Technology, Eindhoven, The Netherlands
{a.j.wijs,o.m.m.muhammad}@tue.nl

Abstract. GPUEXPLORE 3.0 is an explicit state space exploration tool
that runs entirely on a graphics processing unit (GPU), and supports
models of concurrent systems with data variables. We discuss its work-
flow and modelling language, present several design decisions regarding
work distribution and retrieval, and experimentally evaluate the impact
of those decisions. Our tool achieves acceleration up to 115x and 28X
compared to single- and four-core LTSMIN, respectively. It currently
checks for deadlocks, with verification of temporal logic formulae planned
for the near future.

Keywords: Explicit state space exploration - finite-state machines -
GPU

1 Introduction

Graphics processing units (GPUs) are successfully applied for a plethora of appli-
cations, ranging from fluid dynamics [3] to deep learning [21], to drastically speed
up computations, and in the last decade, also have contributed to accelerat-
ing explicit-state model checking [2,5,8,23,34,35,38-41,43], term rewriting [12],
symbolic model checking [24,28], and SAT solving [25-27,29,44,45]. Initially,
they were used to speed up specific aspects of model checking, such as prob-
ability computations for probabilistic model checking [4,17,36], successor gen-
eration [10,11], property checking after the state space had been constructed
on the CPU [1], and counter-example construction [42]. GPUEXPLORE [39,41]
was the first tool to explicitly explore state spaces entirely on a GPU, with-
out any computations performed by the CPU. Soon, other tools followed, most
notably GRAPPLE [8], a swarm-based explorer, PARAMOC, a model checker for
pushdown automata [35], and VoxLocIcA-GPU [5], a spatial model checker to
reason about (medical) images.

In GPUEXPLORE 2.0, each individual process in a concurrent system is
encoded as a Labelled Transition System (LTS) [20] that is stored in memory
as a sparse matrix [32]. However, this does not allow efficient encodings of con-
current systems with variables. For example, consider a system with two 32-bit
integer variables x and y, and one process in which y is assigned the value of = at
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

G. Caltais and C. Schilling (Eds.): SPIN 2023, LNCS 13872, pp. 188-197, 2023.
https://doi.org/10.1007/978-3-031-32157-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32157-3_11&domain=pdf
http://orcid.org/0000-0002-2071-9624
http://orcid.org/0000-0002-5023-5348
https://doi.org/10.1007/978-3-031-32157-3_11

GPUEXPLORE 3.0: GPU Accelerated State Space Exploration 189

Fig. 1. Handling variables in GPUEXPLORE 2.0.

some point. Allowing for all possible values, GPUEXPLORE 2.0 requires that the
LTS describing this process contains at least 232 states, just to distinguish all
possible values assigned to y (see Fig.1). Thus, as variables are introduced, the
matrices grow rapidly. Furthermore, GPU state space exploration tools are not
user-friendly. Providing input is tedious, requiring manually setting up low-level
descriptions of models [8,41] or using a chain of other tools [35,41].

For GPUEXPLORE 3.0, we wanted to change that, and directly support a
richer modelling language. The tool altogether avoids storing the input model
in memory. To make this possible and high-performant, we developed a code
generator that produces GPU code specific for verifying a given input model.
Conceptually, this is similar to how SPIN transforms PROMELA models to pan
code [14]. GPUEXPLORE 3.0 is the first GPU tool to apply this. Although, at
a high level, its exploration mechanism has remained the same, its code base
has drastically changed, the result of three years of work. The tool can check for
deadlocks, and we plan to add support for Linear Temporal Logic (LTL).

In fact, this code generation extends further than is typical for CPU-based
model checkers such as SPIN. With the introduction of variables in input mod-
els, states grow in size. GPUEXPLORE 3.0 is the first GPU tool in general, to
maintain a tree database [18,19]. The states of input models are stored as binary
trees, which enables effective data sharing. This requires code generation of the
storage functions, as the structure and size of trees depend on the input model,
and tree storage has to be performed in a non-recursive way, since recursion is
detrimental to GPU performance. In addition, it is the first GPU tool to apply
Cleary compression [6,7] to store tree roots, allowing 64-bit roots to be stored in
32-bit integers. This combination means that once a few million states have been
stored, the storage of each additional state requires only 32 bits, independent of
its size. This is completely novel for GPU hash tables in general [22].

In this paper, we present the workflow and modelling language of GPU-
EXPLORE 3.0, discuss design decisions regarding work distribution and work
fetching, and we experimentally evaluate the impact of those decisions.

2 Workflow and Modelling Language

Workflow. Figure2 presents the workflow of GPUEXPLORE 3.0. The tool
accepts models written in the Simple Language of Communicating Objects
(SLco) [31], described in more detail later. Given an input model, a code

190 A. Wijs and M. Osama

icpu Generic g Thread Thread
1 GPUEXPLORE i block block
code worker worker

GPUEXPLORE
executable

sLco Y
model CUDA
code generator
Model specific

GPUEXPLORE
code

Global state storage

Fig. 2. The workflow of GPUEXPLORE 3.0.

generator, implemented in PYTHON using TEXTX [9] and JINJA2!, produces
model-specific code written in NVIDIA’s CUDA C++. This code entails next-
state computation functions, i.e., functions that given a system state s, produce
the successor system states that can be reached from s by executing a transi-
tion. SLCO models consist of a finite number of Finite State Machines (FSMs)
that concurrently execute transitions. In the model-specific code, one next-state
computation function is produced for each FSM in the model, allowing for the
successor states of a single state to be constructed in parallel, with the functions
executed by different threads. This parallel construction of successors does not
influence the correctness of the exploration: together, the threads end up explor-
ing all possible execution paths of the input SLCO model. In addition, the model
specific code involves the handling of state trees, the structure and size of which
depend on the input model.

Combined with GPUEXPLORE’s generic code, which implements the control
flow and hash table, the code is compiled using NVIDIA’s Nvcc compiler. The
resulting executable is suitable for CUDA-compatible GPUs with at least com-
pute capability 7.0 and 24 GB global memory. GPUEXPLORE launches many
thread blocks of 512 threads each. Each block uses fast on-chip memory? to
maintain a state cache, in which the resulting successors of next state computa-
tion are stored, before the block checks the global tree database, access to which
is much slower. The database is located in global memory, which is the largest
on a GPU (24GB in a Titan RTX). GPUEXPLORE operates in iterations. In
each iteration, each block obtains states that require processing, computes suc-
cessors, and stores them in the tree database if needed. This is repeated until
all discovered states have been processed.

Srco. SLCO models contain a finite number of FSMs and have global and FSM-
local variables. The types Boolean, Integer, Byte, and arrays of those types
are supported. Each FSM contains a finite number of transitions between its
states, with one executable (atomic) statement associated with each transition.
Statements can refer to all shared variables and those of the corresponding FSM,
and are of the form [e; xg := eg;...; T, := €,]. The z;’s are references to variables
or array elements and each e; is an expression of the same type as xz;, and is
constructed by combining references to variables and /or array elements using the
typical logical and numerical operators, and e is a Boolean expression. Statement

! https://palletsprojects.com/p/jinja,/ .
2 On a Titan RTX, used for this work, on-chip memory is 49,152 bytes in size.

https://palletsprojects.com/p/jinja/

GPUEXPLORE 3.0: GPU Accelerated State Space Exploration 191

switch (current_state) {

model M { case O0:
classes {
GlobalClass { // Allocate register memory
variables // to process transition(s).
Byte ¢ := 1 elem_inttype buf32_0, buf32_1;
Integer x1, x2 indextype bufaddr_0, bufaddr_1;
state machines
so { // Q@ --{ [¢ < 20; x1 :=c] }-->R
initial Q
states R S mode = STORED;
transitions // Fetch values of unguarded variables.
Q -> R { partl = get_vectorpart(node_index, 0);
[c < 20; x1 := c] part2 = get_vectorpart(node_index, 1);
¥ get_globalObject_c(&buf32_0, partl,
R -> 8 { part2);
[x1 := x1 + c] // Statement computation.
} if (buf32_0 < 20) {
e target = 1;
¥ buf32_1 = buf32_0;
S1 { mode = (mode == STORED ? TO_CACHE :
R TO_GLOBAL) ;
} while (mode != STORED
} 4% mode != GLOBAL_STORED) {
// Store new state vector in the
objects globalObject: cache
GlobalClass () // or the global hash table.
}
(a) SLCO model M (b) Generated CUDA code for M

Fig. 3. Translating SLCO models into CUDA.

[xo :=eq;...;Tpn := ey] is shorthand for [true;zg :=ep;...;x, = €,], and [e] is
a statement without assignments. The semantics of a transition is (informally) as
follows: if e of its statement evaluates to true, the assignments xg := eg;. ..z, =
en can be executed in sequence, by which the variables are updated, and the FSM
atomically changes state, moving from the source state of the transition to the
target state. If multiple transitions can be executed, the FSM changes state non-
deterministically. Regarding concurrency, SLCO has an interleaving semantics.
Figure 3 presents an example SLCO FSM and part of the generated code.
The FSM is taken from a translation of the adding.1 model from the BEEM
benchmark suite [30]. It has three process states, Q being the initial state. The
transition statements refer to two of the three variables in the model, ¢ and x1.
Given a system state and an FSM, a GPU thread generates successors by
executing the corresponding next-state computation function. This function con-
tains a big switch statement to consider the execution of transitions based on
the current state of the FSM. In the example, if this FSM state, fetched from
the system state and stored in the variable current_state, is Q (encoded as 0),
then the thread will retrieve the value of ¢, and store it in the variable buf32_0,
located in thread-local register memory. If this value is smaller than 20, the tar-
get FSM state is set to 1 (R) and the register variable buf32_1, associated with

192 A. Wijs and M. Osama

| left ref. | right ref. |

e

Fig. 4. State tree example.

x1, is assigned the value of buf32_0, i.e., c. Next, the thread will construct the
new successor state by combining the original state with the new values, and
store the new state in the state cache or, if it is full, the global tree database.

System states are stored as binary trees, with each tree node being a 64-bit
integer. Each node can store up to 62 bits of information, with 2 bits used for
bookkeeping. Figure4 shows an example of such a tree, for the FSM given in
Fig. 3. The leaf on the left stores the current state of FSM S0, which requires 2
bits, followed by the values of the variables. For x2, the value is stored in two
leaves. The root consists of two references to the leaves, each requiring 29 bits
to refer to a position in a hash table for non-roots with 229 entries, but can be
physically stored as a 32-bit integer in a separate root table with 232 entries,
using Cleary compression [6]. For this, invertible hash functions h; are used.
Given a node n, h;(n) provides both an address a and a remainder n’ of less
than 32 bits, which is stored at a. Given a remainder n’ stored at a, n can be
reconstructed by computing h; 1(a, n'). More details about the state storage can
be found in [37].

3 Work Distribution and Retrieval Optimisations

Work Distribution over Thread Blocks. Each thread block has a work tile
of a fixed size, which is filled with states that require processing at the start of
each iteration. As the block produces new states, it can claim them for processing
in the next iteration, but as soon as it produces more states than it can fit in
its tile, the remaining work is left in the tree database for other blocks. In this
way, GPUEXPLORE does not apply work stealing, but rather work sharing.

Work Distribution Inside a Block. Inside a block, threads execute in groups
of 32 threads, called warps. Each warp has a single program counter, hence the
threads run in lock-step. This means that whenever the threads in a warp diverge,
i.e., execute different lines of code, performance deteriorates, as the whole warp
has to move over a line of code if at least one thread needs to execute it. For
GPUEXPLORE 3.0, we experimented with several options for work distribution in
a block. At the top in Fig. 5, a strategy is visualised called thread-to-FSM. In this
example, the model contains three FSMs, and their FSM states for the i-th state
in the work tile are named S¢, Si and S. The colours represent different warps.
For ease of presentation, we assume that a warp has four threads. Given that

GPUEXPLORE 3.0: GPU Accelerated State Space Exploration 193

Thread-to-FSM work distribution:

Sp S 83 ﬂsi Sy || Si| St 83| S| S| Ss

Warp-to-FSM work distribution:

Fig. 5. Thread group tile processing strategies.

for each FSM, we have a separate next-state function, this distribution leads
to the threads inside a warp diverging when they call the next-state function
for their FSM. Another distribution is illustrated at the bottom of Fig. 5, called
warp-to-FSM. Now, all threads in a warp are assigned the same FSM, resulting
in those threads calling the same function using different data.

Reducing thread divergence can be taken further. Two threads that execute
the same function but have different current FSM states still diverge, as they
execute different switch cases (see Fig.3). To minimise this, we sort the tile
for each warp w.r.t. the current FSM state of its designated FSM. This results
in all states with the same FSM state for the designated FSM being placed at
consecutive positions in the tile, thereby stimulating that threads with consec-
utive IDs access states with the same current FSM state. Since the work tile is
sufficiently small for the threads in a warp to store the tile in their combined
register memory, sorting can be done in the register memory with intra-warp
bitonic merge sort [15], using fast intra-warp instructions.

Multiple Iterations. Another optimisation is to execute multiple iterations
in each exploration function call. GPUEXPLORE calls an exploration function
to execute one or more next state iterations. Shared memory is wiped once a
function execution finishes. With multiple iterations, a block can reuse the trees
in its state cache constructed in one iteration, for exploration in the next one.

4 Tool Evaluation

Our code generator® can be launched with python slcotogpuexplore.py <in-
put-model>.slco [options]. It takes an SLCO model as input and produces
CUDA code. Several options can be given such as selecting a work distribution
scheme or specifying the number of iterations per kernel launch. The code can
be compiled with CUDA 11+ to produce an executable gpuexplore that can be
launched with ./gpuexplore [-k <#ITERATIONS>].

For evaluation, we used SLCO models translated from a representative subset
of the BEEM benchmark suite [30]. We scaled up some models, marked with ‘+.
For all experiments, we used CUDA 11.4, and a machine with a 4-core CPU i7-
7700 operating at 3.6 GHz, 32GB RAM, and a Titan RTX GPU, running LINUX
MINT 20.

3 GPUEXPLORE is available for download here: https://bit.ly/3CUXTYS.

https://bit.ly/3CUXTY8

194 A. Wijs and M. Osama

Table 1. Speed in millions of states per second. tF: thread-to-FSM, wF: warp-to-FSM,
wFs (+<n>): wF + sorting (+n iterations), SU-<to>: Speedup of wFs+30 vs. <to>, -0.M.-:
out of memory.

Model States Spin | LTSmin GPUexplore 3.0 SU-Spin | SU-LTSmin SU-tF
4-core | 1-core | 4-core | tF wk wFs wFs+10 | wFs+30 | wFs+50 | wFs+70 | 4-core | l-core |4-core
adding.20+ | 84,709,120 322 140 |3.94 58.02| 55.65| 57.18| 83.36 | 77.89 | 67.12 | 59.60 |24.2x |55.8x [19.8x|1.2x
adding.50+ | 529,767,730 |-0.M.- |[1.29 |5.36 |106.19|100.10 | 102.73 | 143.09 | 148.28 | 145.99 | 144.86 |- 114.7x | 27.7x | 1.4x
anderson.6 | 18,206,917 136 |0.67 |1.31 9.58| 13.80| 16.02 | 31.58 | 31.57 | 31.82 | 31.71 |23.2x |47.2x |24.1x|3.3x
anderson.7 | 538,699,029 |-0.M.-|0.38 |-0.M.-| 7.93| 15.43| 20.95| 20.95 | 19.78 | 19.75 | 19.68 |— 52.5x |- 2.5x
at.5 31,999,440 1.50 |0.61 |1.88 14.05| 23.79| 28.73| 36.74 | 36.54 | 37.19 | 36.58 |24.4x |60.4x |19.4x|2.6x
at.6 160,589,600 |0.87 |0.66 |2.39 14.39| 27.76 | 38.34 | 40.83 | 40.56 | 40.59 | 40.62 46.7x |61.9x |17x |2.8x
at.7 819,243,816 |-0.M.- |0.63 |2.37 8.91| 17.15| 23.42| 23.60 | 23.16 | 23.19 | 23.09 |- 36.7x |9.8x |2.6x

bakery.5 7,866,401 2.57 10.62 |0.90 752 7.71 7.46| 11.29 | 19.02 | 20.15 | 19.98 |7.4x 30.9x |21x |2.7x
bakery.7 29,047,471 2.59 0.76 |1.62 8.47| 9.10 9.06 | 20.80 | 29.12 | 30.98 | 31.13 |11.2x |38.5x |18x |3.7x
bakery.8+ 841,696,300 |1.27 |0.65 |2.44 13.06| 20.85| 29.71 | 34.11 | 34.21 | 34.31 | 34.04 | 27x 52.5x |1l4x | 2.6x
elevator2.3 | 7,667,712 1.10 |0.46 |0.99 3.48| 3.32 3.24| 5.98 6.06 6.20 6.10 | 5.5x 13.1x |6.2x |1.8x
elevator2.4+ | 91,226,112 0.56 |0.57 |1.95 297 3.74| 3.79| 322 3.28 3.33 3.34 | 5.8x 5.8x 1.7x | 1.1x

elevator2.5+ | 1,016,070,144 | -0.M.- [0.45 | 1.63 1.72| 1.88| 1.88 1.85 1.83 1.83 1.82 |- 4.1x 1.1x |1.1x
frogs.4 17,443,219 223 |0.50 |1.42 7.37| 10.06 9.75| 11.13 | 11.43 | 11.32 | 11.26 |5.1x 22.9x |8x 1.5x
frogs.5 182,772,126 | 1.05 |0.70 |2.63 6.45| 9.63 9.61| 10.27 | 10.31 | 10.23 | 10.18 |9.8x 14.6x | 3.9x |1.6x

lamport.6 | 8,717,688 1.38 1049 |1.10 5.07| 5.20 5.09| 17.94 | 27.35 | 27.99 | 27.80 |19.9x |55.6x |25x |5.5x
lamport.7 | 38,717,846 1.82 |0.62 |1.98 11.00| 18.13| 23.04 | 33.50 | 34.47 | 34.45 | 34.55 |18.9x |55.5x |17.4x|3.1x
lamport.8 | 62,669,317 1.78 |0.80 |2.19 10.73| 18.55| 25.45| 34.31 | 34.92 | 35.12 | 35.35 | 19.7x | 43.9x |15.9x|3.3x
loyd.3 239,500,800 |-0.M.-|0.61 | 2.34 43.35| 45.91| 43.25| 50.63 | 50.46 | 50.89 | 51.04 |- 82.3x |21.6x | 1.2x
mes.5 60,556,519 0.62 042 |1.49 12.07| 19.44| 24.26 | 29.98 | 30.44 | 30.34 | 30.25 |49.5x |72.1x |20.4x |2.5x
peterson.5 | 131,064,750 |1.62 |0.73 |2.44 11.75| 21.13| 28.44| 31.61 | 31.28 | 30.76 | 30.70 ' 19.3x |43.1x |12.8x|2.6x
peterson.6 | 174,495,861 | 0.76 |0.68 |2.45 12.05| 21.04| 30.47 | 33.72 | 33.58 | 33.31 | 33.19 44.4x |49.4x |13.7x|2.8x
peterson.7 | 142,471,098 |1.50 |0.72 |2.27 10.17| 20.93 | 22.37 | 25.74 | 25.44 | 25.21 | 25.21 |17x 35.4x |11.2x | 2.5x

phils.7 71,934,773 0.30 0.23 |0.76 1.87| 4.59 5.57| 5.66 | 5.64 5.61 5.59 |19x 24.4x |T.4x |3x
phils.8 43,046,720 0.36 |0.28 |0.79 264 9.07 8.96| 9.35 9.27 9.21 9.17 |25.7x |33.5x |11.8x|3.5x
szymanski.5 | 79,518,740 1.57 0.50 |1.82 7.07| 12.15| 17.02| 19.03 | 18.34 | 18.31 | 18.35 |11.7x |37x 10.1x | 2.6x
Average 1.43 |0.63 |2.00 15.30| 19.85| 22.99 | 29.63 | 30.55 | 30.20 | 29.81 | 20.7x |44x 14x | 3x

Table 1 shows the results, comparing the impact of the presented options with
four-core SPIN 6.5.1 [13] and single- and four-core LTSMIN 3.0.2 [16]. We only
enabled state compression and basic reachability (without property checking) in
those tools, to favour fast exploration of large state spaces. As GPUEXPLORE
3.0 does not yet have support for on-the-fly reduction methods, such as partial-
order reduction [23], these have been disabled for all tools. Since LTSMIN scales
near-linearly with the number of cores [33], the results indicate how many cores
LTSMIN needs to be as fast as GPUEXPLORE. The best speeds are highlighted
in bold. Overall, warp-to-FSM with sorting and 30 iterations is most successful.

Table 2. Millions of states per second for GPUEXPLORE 3.0 vs. version 2.0.

Tool anderson.6 | anderson.7 | lamport.8 | peterson.5 | peterson.6 | peterson.7 | szymanski.5
2.0 15.863 -0.M.- 33.063 16.874 16.705 13.581 26.454
3.0/ 34.111 22.326 35.387 |32.331 34.902 26.183 18.357

Finally, in Table 2, we compared GPUEXPLORE 3.0 with version 2.0 on the
Titan RTX. In the comparison, we used all BEEM models for which corresponding
GPUEXPLORE 2.0 models exist: anderson.6 and .7, lamport.8, peterson.5,

GPUEXPLORE 3.0: GPU Accelerated State Space Exploration 195

.6 and .7 and szymanski.5. GPUEXPLORE 2.0 ran out of memory on the
anderson.7 model while GPUEXPLORE 3.0 was able to explore all models with
an average acceleration of 1.8x. A comparison with GRAPPLE is discussed in a
recent paper [37].

References

10.

11.

12.

13.

14.

Barnat, J., Bauch, P., Brim, L., Ceska, M.: Designing fast LTL model checking
algorithms for many-core GPUs. JPDC 72(9), 1083-1097 (2012). https://doi.org/
10.1016/.jpdc.2011.10.015

Bartocci, E., DeFrancisco, R., Smolka, S.A.: Towards a gpgpu-parallel spin model
checker. In: SPIN 2014, pp. 87-96. ACM, New York (2014). https://doi.org/10.
1145/2632362.2632379

Bertolli, C., Betts, A., Mudalige, G., Giles, M., Kelly, P.: Design and performance
of the OP2 library for unstructured mesh applications. In: Alexander, M., et al.
(eds.) Euro-Par 2011. LNCS, vol. 7155, pp. 191-200. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29737-3_22

Bognacki, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model
checking on general purpose graphics processors. STTT 13(1), 21-35 (2011).
https://doi.org/10.1007/s10009-010-0176-4

Bussi, L., Ciancia, V., Gadducci, F.: Towards a spatial model checker on GPU. In:
Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 188-196.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0-12

Cleary, J.: Compact hash tables using bidirectional linear probing. IEEE Trans.
Comput. c-33(9), 828-834 (1984). https://doi.org/10.1109/TC.1984.1676499
Darragh, J., Cleary, J., Witten, I.: Bonsai: a compact representation of trees. Softw.
Pract. Exp. 23(3), 277-291 (1993). https://doi.org/10.1002/spe.4380230305
DeFrancisco, R., Cho, S., Ferdman, M., Smolka, S.A.: Swarm model checking on
the GPU. Int. J. Softw. Tools Technol. Transf. 22(5), 583-599 (2020). https://doi.
org/10.1007/s10009-020-00576-x

Dejanovié, 1., Vaderna, R., Milosavljevié, G., Vukovié, Z: TextX: a python tool for
domain-specific language implementation. Knowl.-Based Syst. 115, 1-4 (2017).
https://doi.org/10.1016/j.knosys.2016.10.023

Edelkamp, S., Sulewski, D.: Efficient explicit-state model checking on general pur-
pose graphics processors. In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS,
vol. 6349, pp. 106-123. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16164-3_8

Edelkamp, S., Sulewski, D.: External memory breadth-first search with delayed
duplicate detection on the GPU. In: van der Meyden, R., Smaus, J.-G. (eds.)
MoChArt 2010. LNCS (LNAI), vol. 6572, pp. 12-31. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20674-0_2

van Eerd, J., Groote, J.F., Hijma, P., Martens, J., Osama, M., Wijs, A.: Innermost
many-sorted term rewriting on gpus. Sci. Comput. Program. 225, 102910 (2023).
https://doi.org/10.1016/j.scico.2022.102910

Holzmann, G.J.: Parallelizing the spin model checker. In: Donaldson, A., Parker,
D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 155-171. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31759-0-12

Holzmann, G.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279-295
(1997). https://doi.org/10.1109/32.588521

https://doi.org/10.1016/j.jpdc.2011.10.015
https://doi.org/10.1016/j.jpdc.2011.10.015
https://doi.org/10.1145/2632362.2632379
https://doi.org/10.1145/2632362.2632379
https://doi.org/10.1007/978-3-642-29737-3_22
https://doi.org/10.1007/s10009-010-0176-4
https://doi.org/10.1007/978-3-030-78089-0_12
https://doi.org/10.1109/TC.1984.1676499
https://doi.org/10.1002/spe.4380230305
https://doi.org/10.1007/s10009-020-00576-x
https://doi.org/10.1007/s10009-020-00576-x
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1007/978-3-642-16164-3_8
https://doi.org/10.1007/978-3-642-16164-3_8
https://doi.org/10.1007/978-3-642-20674-0_2
https://doi.org/10.1016/j.scico.2022.102910
https://doi.org/10.1007/978-3-642-31759-0_12
https://doi.org/10.1109/32.588521

196

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A. Wijs and M. Osama

Hou, K., Liu, W., Wang, H., Feng, W.: Fast segmented sort on gpus. In: Gropp,
W.D., Beckman, P., Li, Z., Cazorla, F.J. (eds.) ICS, pp. 12:1-12:10. ACM (2017).
https://doi.org/10.1145/3079079.3079105

Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692-707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_61

Khan, M.H., Hassan, O., Khan, S.: Accelerating SpMV multiplication in proba-
bilistic model checkers using GPUs. In: Cerone, A., Olveczky, P.C. (eds.) ICTAC
2021. LNCS, vol. 12819, pp. 86-104. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85315-0-6

Laarman, A.: Optimal compression of combinatorial state spaces. Innov. Syst.
Softw. Eng. 15, 235-251 (2019). https://doi.org/10.1007/s11334-019-00341-7
Laarman, A., van de Pol, J., Weber, M.: Parallel recursive state compression for
free. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp. 38-56.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22306-8_4

Lang, F.: Refined interfaces for compositional verification. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 159—
174. Springer, Heidelberg (2006). https://doi.org/10.1007/11888116_13

Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On opti-
mization methods for deep learning. In: Getoor, L., Scheffer, T. (eds.) ICML, pp.
265-272. Omnipress (2011)

Lessley, B.: Data-parallel hashing techniques for GPU architectures. IEEE Trans.
Parallel Distrib. Syst. 31(1), 237-250 (2019). https://doi.org/10.1109/TPDS.2019.
2929768

Neele, T., Wijs, A., Bosnacki, D., van de Pol, J.: Partial-order reduction for GPU
model checking. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 357-374. Springer, Cham (2016). https: //doi.org/10.1007/978-3-319-
46520-3-23

Osama, M.: GPU Enabled Automated Reasoning. Ph.D. thesis, Eindhoven Uni-
versity of Technology (2022). ISBN: 978-90-386-5445-4

Osama, M., Gaber, L., Hussein, A.I., Mahmoud, H.: An efficient SAT-based test
generation algorithm with GPU accelerator. J. Electron. Test. 34(5), 511-527
(2018). https://doi.org/10.1007/s10836-018-5747-4

Osama, M., Wijs, A.: Parallel SAT simplification on GPU architectures. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 21-40. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17462-0_2

Osama, M., Wijs, A.: SIGmA: GPU accelerated simplification of SAT formulas. In:
Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 514-522.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34968-4_29

Osama, M., Wijs, A.: GPU acceleration of bounded model checking with
ParaFROST. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp.
447-460. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9_21
Osama, M., Wijs, A.) Biere, A.: SAT solving with GPU accelerated inprocessing.
In: TACAS 2021. LNCS, vol. 12651, pp. 133-151. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-72016-2_8

Peldanek, R.: BEEM: benchmarks for explicit model checkers. In: Bosnacki, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263-267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6_17

https://doi.org/10.1145/3079079.3079105
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-030-85315-0_6
https://doi.org/10.1007/978-3-030-85315-0_6
https://doi.org/10.1007/s11334-019-00341-7
https://doi.org/10.1007/978-3-642-22306-8_4
https://doi.org/10.1007/11888116_13
https://doi.org/10.1109/TPDS.2019.2929768
https://doi.org/10.1109/TPDS.2019.2929768
https://doi.org/10.1007/978-3-319-46520-3_23
https://doi.org/10.1007/978-3-319-46520-3_23
https://doi.org/10.1007/s10836-018-5747-4
https://doi.org/10.1007/978-3-030-17462-0_2
https://doi.org/10.1007/978-3-030-34968-4_29
https://doi.org/10.1007/978-3-030-81688-9_21
https://doi.org/10.1007/978-3-030-72016-2_8
https://doi.org/10.1007/978-3-030-72016-2_8
https://doi.org/10.1007/978-3-540-73370-6_17

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

GPUEXPLORE 3.0: GPU Accelerated State Space Exploration 197

de Putter, S., Wijs, A., Zhang, D.: The SLCO framework for verified, model-driven
construction of component software. In: Bae, K., Olveczky, P.C. (eds.) FACS 2018.
LNCS, vol. 11222, pp. 288-296. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02146-7_15

Saad, Y.: Iterative Methods for Sparse Linear Systems. STAM, Philadelphia (2003)
van der Vegt, S., Laarman, A.: A parallel compact hash table. In: Kotéasek, Z.,
Bouda, J., Cern4, 1., Sekanina, L., Vojnar, T., Antos, D. (eds.) MEMICS 2011.
LNCS, vol. 7119, pp. 191-204. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-25929-6_18

Wei, H., Chen, X., Ye, X., Fu, N., Huang, Y., Shi, J.: Parallel model checking on
pushdown systems. In: ISPA /TUCC/BDCloud/SocialCom/SustainCom, pp. 88-95.
IEEE (2018). https://doi.org/10.1109/BDCloud.2018.00026

Wei, H., Ye, X., Shi, J., Huang, Y.: ParaMoC: A Parallel Model Checker for
Pushdown Systems. In: ICA3PP. LNCS, vol. 11945, pp. 305-312. Springer (2019).
https://doi.org/10.1007/978-3-030-38961-1_26

Wijs, A.J., Bosnacki, D.: Improving GPU sparse matrix-vector multiplication for
probabilistic model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 98-116. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31759-0_9

Wijs, A., Osama, M.: A GPU tree database for many-core explicit state space
exploration. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS,
vol. 13993, pp. 684-703. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-30823-9_35

Wijs, A.: BFS-based model checking of linear-time properties with an application
on GPUs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
472-493. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_26
Wijs, A., Bosnacki, D.: GPUexplore: many-core on-the-fly state space exploration
using GPUs. In: Abrahdm, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 233-247. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8_16

Wijs, A., Bosnacki, D.: Many-core on-the-fly model checking of safety properties
using GPUs. Int. J. Softw. Tools Technol. Transf. 18(2), 169-185 (2015). https://
doi.org/10.1007/s10009-015-0379-9

Wijs, A., Neele, T., Bosnacki, D.: GPUexplore 2.0: unleashing GPU explicit-state
model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 694-701. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6_42

Wu, Z., Liu, Y., Liang, Y., Sun, J.: GPU accelerated counterexample generation in
LTL model checking. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 413-429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11737-
927

Wu, Z., Liu, Y., Sun, J., Shi, J., Qin, S.: GPU accelerated on-the-fly reachability
checking. In: ICECCS 2015, pp. 100-109 (2015). https://doi.org/10.1109/ICECCS.
2015.21

Youness, H., Osama, M., Hussein, A., Moness, M., Hassan, A.M.: An effective
SAT solver utilizing ACO based on heterogenous systems. IEEE Access 8, 102920
102934 (2020). https://doi.org/10.1109/ACCESS.2020.2999382

Youness, H.A., Ibraheim, A., Moness, M., Osama, M.: An efficient implementation
of ant colony optimization on gpu for the satisfiability problem. In: PDP, pp. 230-
235. IEEE (2015). https://doi.org/10.1109/PDP.2015.59

https://doi.org/10.1007/978-3-030-02146-7_15
https://doi.org/10.1007/978-3-030-02146-7_15
https://doi.org/10.1007/978-3-642-25929-6_18
https://doi.org/10.1007/978-3-642-25929-6_18
https://doi.org/10.1109/BDCloud.2018.00026
https://doi.org/10.1007/978-3-030-38961-1_26
https://doi.org/10.1007/978-3-642-31759-0_9
https://doi.org/10.1007/978-3-642-31759-0_9
https://doi.org/10.1007/978-3-031-30823-9_35
https://doi.org/10.1007/978-3-031-30823-9_35
https://doi.org/10.1007/978-3-319-41540-6_26
https://doi.org/10.1007/978-3-642-54862-8_16
https://doi.org/10.1007/978-3-642-54862-8_16
https://doi.org/10.1007/s10009-015-0379-9
https://doi.org/10.1007/s10009-015-0379-9
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-11737-9_27
https://doi.org/10.1007/978-3-319-11737-9_27
https://doi.org/10.1109/ICECCS.2015.21
https://doi.org/10.1109/ICECCS.2015.21
https://doi.org/10.1109/ACCESS.2020.2999382
https://doi.org/10.1109/PDP.2015.59

	GPUexplore 3.0: GPU Accelerated State Space Exploration for Concurrent Systems with Data
	1 Introduction
	2 Workflow and Modelling Language
	3 Work Distribution and Retrieval Optimisations
	4 Tool Evaluation
	References

