
Lock and Fence When Needed: State Space Exploration
+ Static Analysis = Improved Fence and Lock Insertion

Sander de Putter and Anton Wijsr0000´0002´2071´9624s

Eindhoven University of Technology, The Netherlands
{s.m.j.d.putter, a.j.wijs}@tue.nl

Abstract. When targeting modern parallel hardware architectures, constructing
correct and high-performing software is complex and time-consuming. In particu-
lar, reorderings of memory accesses that violate intended sequentially consistent
behaviour are a major source of bugs. Applying synchronisation mechanisms to
repair these should be done sparingly, as they negatively impact performance.
In the past, both static analysis approaches and techniques based on explicit-state
model checking have been proposed to identify where synchronisation fences have
to be placed in a program. The former are fast, but the latter more precise, as they
tend to insert fewer fences. Unfortunately, the model checking techniques suffer a
form of state space explosion that is even worse than the traditional one.
In this work, we propose a technique using a combination of state space exploration
and static analysis. This combination is in terms of precision comparable to purely
model checking-based techniques, but it reduces the state space explosion problem
to the one typically seen in model checking. Furthermore, experiments show
that the combination frequently outperforms both purely model checking and
static analysis techniques. In addition, we have added the capability to check for
atomicity violations, which is another major source of bugs.

1 Introduction

When developing parallel software it is very challenging to guarantee the absence of bugs.
Achieving the intended execution order of instructions while obtaining high performance
is extremely hard. This is particularly the case on parallel hardware architectures where
memory accesses may be reordered. Reorderings that break the intended sequential and
atomic behaviour are a major source of bugs [31]. These can be avoided by appropriately
using synchronisation mechanisms such as fences, semaphores, hardware-level atomic
operations, and software/hardware transactional memory [37]. However, overusing these
can cause contention, as experimentally demonstrated in [4], which negatively impacts
performance and therefore defeats the purpose of using parallelism in the first place.

Sequential consistency is arguably the best understood concurrency model. An (ex-
ecution) trace of a concurrent program is Sequentially Consistent (SC) iff all memory
accesses are performed in program order, atomicity constraints are respected, and ac-
cesses of all threads are serviced as if from a single First In First Out queue [27]. As this
model does not deviate from the software developers’ specification it is very intuitive.

SC is very restrictive and does not benefit from modern compiler and processor
optimisations. It is sufficient, however, that traces produce results that are observably
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equivalent to SC traces. Traces that do not do this, which we refer to as non-SC traces,
produce results different from SC traces, i.e., they read and write combinations of values
from/ to memory locations that an SC trace cannot produce. Such traces violate the
behaviour intended by the software developer.
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Fig. 1. Interleaving under
weak memory models

In earlier work, either explicit-state model check-
ing or static analysis was used to detect non-SC
behaviour. Static analysis techniques [4–6, 16, 19,
28, 39], based on the seminal work of Shasha and
Snir [36], estimate the possible SC behaviour, and de-
rive which violations can occur when accesses are re-
ordered according to what the memory model allows.
These techniques are fundamentally limited regard-
ing their accuracy. In particular, when pointers and
guards (if-statements) are used, over-approximations
cannot in general be avoided (are two pointers point-
ing to the same object? And when does the condition
of an if-statement evaluate to true?).

An alternative is to use explicit-state model
checking for fence insertion [1, 2, 8, 14, 23, 25, 29]. In those approaches, program specifi-
cations are extended to allow the model checker to systematically traverse all behaviour
allowed by the memory model. For instance, to specify the memory store behaviour via
thread-local caches, allowed by Total Store Order (TSO) [33,38] and weaker models, ad-
ditional store buffers must be modelled. The benefit of these approaches is their accuracy.
However, their main issue is scalability; exploring non-SC executions makes the state
space explosion problem even worse. Not surprisingly, very weak memory models such
as ARMv7 [7] and POWER [22] have not yet been considered. In Fig. 1, all possible
interleavings are given for four memory accesses performed by two threads: the first
should execute a1 followed by a2, the second should execute b1 followed by b2. Starting
at the initial state (the one with the incoming arrow), the typical diamond of interleavings
is indicated by the black states and transitions between them. This diamond represents
all possible SC traces. If the memory model under consideration can also reorder a2
before a1 and reorder b2 before b1, then the grey states and transitions also need to be
explored. Clearly, as the number of accesses and threads increases, the number of states
grows even more rapidly than when only considering SC traces.

Contributions. We propose to combine the state space exploration approach used by
techniques based on explicit-state model checking, with the core concept of static analysis
approaches, the latter working as a postprocessing procedure, to keep the precision of
model checking while restricting state space exploration to SC traces. First, we apply a
model checker to explore the state space of a program specification. This specification
describes all possible interleavings of program instructions, and its state space contains
all possible SC executions, as is common for model checking.1 This state space is used
to extract an abstract event graph (AEG), which more accurately represents conflicts

1In order for this analysis to terminate, it is important that the system is finite-state, or at least
has a finite-state quotient that can be derived prior to state space generation [32]. It may perform
infinite executions, though, i.e., have cyclic behaviour between its states.
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between the memory accesses of instructions than statically derived ones. Next, this
graph is analysed using our postprocessing tool. Experiments show that constructing
the AEG via state space exploration benefits the overall runtime performance, even
compared to a state-of-the-art static analysis approach.

Besides this different workflow, compared to earlier work, we also support the speci-
fication of atomic instructions, thereby incorporating the atomicity checking originally
addressed in [36]. When code does not enforce atomicity, non-SC behaviour can still
occur, and only inserting fences does not suffice. In our approach, sets of accesses that
are supposed to be executed atomically, i.e., without interruption by other threads, are
marked for synchronisation if they are involved in non-SC behaviour. In the final code,
these atomic instructions can be enforced by means of locks.

Our technique is the first model checking-based technique to support memory models
as weak as ARMv7. We have implemented it by translating state machine specifications
to mCRL2, such that the mCRL2 model checking toolset [15] can be used, and developed
a new tool for the postprocessing. We demonstrate our technique for the memory models
TSO, Partial Store Order (PSO) [38] and ARMv7/POWER, but it can be straightfor-
wardly adapted to other memory models. During postprocessing, the technique reasons
about the (un)safety of thread program paths by means of path rewrite rules.

Finally, it should be stressed that we reason about programs in which initially no
synchronisation primitives are used. Therefore, the current work is not about reasoning
about the semantics and SC guarantees of fences, atomic instructions, transactions, etc.
When we talk about (atomic) instructions, we are referring to computation steps that are
specified as atomic; whether they need to be implemented using some synchronisation
primitive still needs to be determined. We acknowledge that in order to make an imple-
mentation correct, it is crucial to know the semantics and guarantees of those primitives;
there are excellent studies on those for Java, C/C++11, and OpenCL [11, 12, 26], and
various architectures [7, 33, 35], and applying their insights can be seen as the next step.
Here, we focus on detecting the need for synchronisation. Earlier work on SC violation
checking, such as [4, 6, 29], reasons about synchronisation primitives as well, but this is
not really needed if one entirely relies on automatic insertion of synchronisation points.

This work is also not about optimally implementing synchronisation. An architecture
may provide several types of fences, with various guarantees and performance penalties.
We aim to optimise the number of places in which a program needs synchronisation, not
how that should be implemented. Related work [4] provides methods for that.

Structure of the paper. In Section 2, we consider parallel program specifications, and
recall the notions of SC, access conflicts and cycle detection in AEGs. We define the
notion of (un)safety of thread program paths in Section 3, and present how we extract an
AEG from a state space constructed by an explicit-state model checker in Section 4. The
non-SC detection procedure is discussed in Section 5. Experimental results are discussed
in Section 6. Finally, conclusions and pointers to future work are given in Section 7.

2 Preliminaries

Parallel program specifications. We assume that a parallel program involving shared
variables is specified. Fig. 2 gives an overview of the concepts related to such a program
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used in this work. A program consists of a set of threads T, each performing a (possibly
infinite) sequence of instructions called a thread program. Such a specification can, for
instance, be given as a Promela [21] or mCRL2 model [15], in which the processes
represent the threads, and each instruction represents an atomic execution step. Each
instruction is either of the form e, e; x1 “ e1; . . . ; xn “ en or x1 “ e1; . . . ; xn “ en

(n ě 1), with e and the ei expressions, and the xi memory locations. First, an optional
condition e is checked (an expression evaluating to true or false). If the condition
evaluates to true, or there is no condition, zero or more assignments can be performed
that assign the outcome of interpreting ei to xi. For brevity, we do not define the form
of expressions here (the usual logical and arithmetic operators can be used to combine
variable references), and we assume that expressions are type correct. The data types we
consider are Integer, Boolean, and arrays of Integers or Booleans. Extending this basic
setup is not fundamentally relevant for the purpose of the current paper.

Program

Thread
(program)

program order po

Instruction atomicity relation at

Access Location

1..* (T)

1..*

0..* (V)
1 (L)

Fig. 2. Overview of a program

Program behaviour. To reason about SC behaviour
of a concurrent program we consider its execution on,
and its effects on the memory of, a multi-core machine.
To this end we assume that the state of the machine
is defined by the values stored in its storage locations.
The set of storage locations of a machine is denoted by
L. A location may be a register or a memory location
(associated to some variable). Fig. 2 presents that an
instruction executes zero or more accesses to locations.

An access reads from, or writes to, a location x P L
and reads or writes a value. We write Rx and Wx to
refer to a read and write access from/to x, respectively.
When both the type (read or write) and the location are
irrelevant, we use a, b, . . .. An access is performed atomically, i.e., two accesses on the
same location behave as if they occur in some serial order. The set of accesses of a thread
t P T is denoted by Vt. The set of all accesses of a program is defined as V “

Ť

tPT Vt.
For SC checking, only shared memory locations are relevant, i.e., those that can be

accessed by multiple threads. Therefore, when we refer to memory locations, it is always
implied that they are shared, and accesses always address shared locations.

The execution order of accesses in the program, or the program order, is defined by
a per-thread total order po Ď Vˆ V. Accesses of different threads are unrelated, hence
po is the union of the (thread-local) total execution orders of accesses of all the threads.

The instructions of a specification are defined using an equivalence relation at Ď
Vˆ V identifying classes of accesses that are to be performed (observably) atomically.
Like po, at only relates accesses of the same thread. With rαs, we refer to the (atomic)
set of accesses associated with an instruction α. With res consisting of read accesses for
all locations referenced in expression e, we define rαs as re; x1 “ e1; . . . ; xn “ ens “

res Y
Ť

1ďiďntWxiu Y reis and rx1 “ e1; . . . ; xn “ ens “
Ť

1ďiďntWxiu Y reis. With
xxαyy, we refer to the set of read accesses performed to evaluate the condition of α:
xxe; x1 “ e1; . . . ; xn “ enyy “ res and xxx1 “ e1; . . . ; xn “ enyy “ H.

A thread execution trace π is a sequence of accesses a ăt b ăt . . ., with ăt a
irreflexive, antisymmetric, non-transitive binary relation, describing the order in which
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accesses of thread t are (visibly) performed. The set of accesses in π is called rπs. A
program execution trace is an interleaving of thread execution traces, ordered by ă

(which is also, for convenience in Section 4, non-transitive).
Programmers rely on a programming paradigm where executions appear to be inter-

leavings of instructions, and the instructions appear to be executed in programmed order
without interruption. That is, they expect their program to be sequentially consistent [27].
The following definition is based on the one given by Shasha and Snir [36].

Definition 1 (Sequential Consistency). A program execution trace π “ aăbă . . . is
sequentially consistent (SC) iff ă can be extended to a total order ăă that satisfies:
1. po Ď ăă, so that if a po b then aăăb;
2. at-equivalent accesses occur in consecutive places in the sequence defined by ăă: if

a at b but  pa at cq, then either căăa and căăb, or aăăc and băăc.

By condition 2 of Def. 1, an SC trace retains atomicity of instructions.
In practice, it is sufficient that a trace is observably equivalent to an SC trace, which

is the case if it computes the same values as an SC trace. The potential values of a
location x P L may depend on the order in which two accesses on x are executed. In this
case, those accesses are said to be in conflict. In the literature, various types of conflicts
have been formalised [6, 7], but for fence insertion analysis, the symmetric competing
pairs relation (cmp) [4], stemming from data race detection algorithms [24], typically
suffices. We have a cmp b iff a and b access the same location and at least one of them
is a write. A trace π is observably equivalent to an SC trace π1 if we can obtain π1 by
commuting consecutive accesses in π that are not conflicting.
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Fig. 3. Example cycles

We recall the SC violation detection theory of Shasha and
Snir [36], rephrased to be in line with recent work [4,6,7]. To
detect non-SC behaviour, an abstract event graph (AEG) for
a program can be constructed, in which the nodes are accesses
and edges represent po and cmp. Shasha and Snir prove that
cycles in the AEG with at least one cmp-edge and one po-
edge represent all possibilities for non-SC executions if we
run the program on an architecture without the guarantee that
po is always respected (i.e., that has a weak memory model).

Consider the cycle σ1 “ α1 : Rx po ¨ ¨ ¨ po α2 :
Wy cmp α4 :Ry po α4 : Wx cmp α1 : Rx in Fig. 3, with
α : a indicating access a of instruction α. The grey boxes indicate the atomic instructions,
i.e., they define at. Given the direction of σ1, the involved accesses would lead to non-SC
behaviour if either the trace π1 “ α4 : Wx ă α1 : Rx ă α2 : Wy ă α4 : Ry or the trace
π2 “ α2 : Wy ă α4 : Ry ă α4 : Wx ă α1 : Rx is executed, since they contradict the
po-order between α4 : Ry and α4 : Wx, and between α1 : Rx and α2 : Wy, respectively.
That both traces are non-SC can be seen when trying to obtain an SC trace by commuting
consecutive, non-conflicting accesses. For instance, in π1, the accesses of α4 would need
to be commuted next to each other, but α1 : Rx and α2 : Wy prevent α4 : Wx from
moving to the right and α4 : Ry from moving to the left, respectively, due to conflicts,
unless we reorder α1 : Rx and α2 : Wy, but then those instructions would be removed
from each other and the trace would still not be SC. Traces π1 and π2 are not possible on
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architectures respecting po. However, as we discuss in Section 3, for some architectures,
a compiler may ignore the po-order of some accesses, thereby breaking the cycle, and
making non-SC traces possible. In [4,6,28], a po-path from access a to access b is called
unsafe for an architecture if the latter’s memory model allows b to be executed before a.
The remedy to prevent non-SC behaviour is to enforce unsafe po-paths that are part of a
cycle, by placing a delay, i.e., indicating that synchronisation is required, somewhere
along the unsafe po-path.2 The delays ensure the cycle remains.
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Wx
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𝛼 𝛽 𝛼 𝛽

po po po

cmp

cmp
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Fig. 4. Atomicity breaking examples

Shasha and Snir demonstrate that
in the analysis, redundant work can be
avoided by only considering cycles that
are simple (they involve each vertex and
edge at most once) and that have no
chords. A chord is an edge between
vertices in the cycle that are not each
other’s neighbour in the cycle. For in-

stance, in Fig. 3, we also have cycles σ2 “ α1 : Rx po ¨ ¨ ¨ po α2 : Wy cmp α4 :
Ry po α4 : Wx cmp α3 : Wx cmp α1 : Rx and σ3 “ α1 : Rx po ¨ ¨ ¨ po α2 :
Wy cmp α4 : Ry po α4 : Wx cmp α3 : Rx po α3 : Wx cmp α1 : Rx, but both have
the chord α4 : Wx cmp α1 : Rx. The po-path α3 : Rx po α3 : Wx will be considered
when the cycle σ4 “ α4 : Wx cmp α3 : Rx po α3 : Wx cmp α4 : Wx is analysed,
hence analysis of σ2 and σ3 is redundant. We call a cycle critical if it is simple, has no
chords, and contains at least one unsafe po-path.

Concerning atomicity, in Fig. 4, graph (i) represents the common situation of an
instruction α reading and writing from/to the same location, for instance to increment
a counter. A write to the same location can lead to an atomicity violation: If this
write is performed between the read and write of the instruction, the effect of the
former write will be lost. Shasha and Snir explain that for atomicity checking, it is
even needed to go against the direction of po-edges inside instructions. By doing so,
we get one cycle in graph (i), α :Rx cmp β :Wx cmp α :Wx po α :Rx, and two
cycles in graph (ii), namely α :Wx cmp β :Rx po β :Ry cmp α :Wy po α :Wx and
β :Rx cmp α :Wx po α :Wy cmp β :Ry po β :Rx. The cycles in graph (ii) represent
the reading instruction retrieving an inconsistent state in which only one location has
been updated. The remedy is to enforce po-edges against their direction, resulting in
cyclic dependencies. These cannot be resolved in practice using fences, but require
locks [36]. Recent work [1, 2, 4, 6–8, 14, 16, 19, 23, 25, 28, 29, 39] does not address this,
allowing non-SC behaviour due to atomicity violations.

Next, we consider unsafety of po-paths w.r.t. a given weak memory model. The
information is obtained from [4, 6, 7, 18]. The novelty is that we apply path rewriting.

3 Guarantees of Weak Memory Models

Over the years, various weak memory multiprocessor architectures have been developed,
for instance with x86 [33], SPARC [38], ARMv7 [7], ARMv8 [20] and POWER [22]

2We use the term ’delay’ here to refer to the remedy for non-SC behaviour [36], and not, as for
instance later done in [4, 6, 7], to refer to the problem, i.e., the unsafe behaviour itself.
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Table 1. Intra-thread safety guarantees under various memory models (x , y)
Case Subtrace SC TSO PSO ARMv7
1 Wxj ă Rxk X 7 7 7

2 Wxj ă Ryk X 7 7 7

3 Rxj ă Rxk X X X 7

4 Rxj ă Ryk X X X Xðñ Ryk addr Rxj
5 Wxj ă Wxk X X X X
6 Wxj ă Wyk X X 7 7

7 Rxj ă Wxk X X X Xðñ Wxk addr Rxj _ Wxk dp Rxj
8 Rxj ă Wyk X X X Xðñ Wyk addr Rxj _ Wyk dp Rxj

processors. For each, suitable memory models have been derived, to reason about the
access reorderings they may apply [3, 6, 18]. For the x86 and some SPARC processors,
the TSO memory model is applicable, while other SPARC architectures support the
PSO model. The POWER and ARMv7 processors can apply many types of reordering,
requiring a very weak memory model.

To reason about the order of accesses, we use a relation ă, which is initially equal to
po´, the transitive reduction of po, i.e., a po´ b cannot be decomposed into multiple
po-connections between accesses from a to b. With ă, we define paths of accesses
a ă b ă . . .. Paths should not be confused with traces: a trace is a concrete execution
of accesses, while a path indicates the order in which accesses may be executed. For
accesses a and b, we say that a ă b is safe for a memory model iff any trace executing
a and b executes a before b. This is formally expressed as a ppo b, with ppo a safe
subrelation of po [4, 6].

Table 1 gives an overview of the guarantees provided by the aforementioned memory
models for accesses performed by the same thread.3 Case 5 expresses that the order of
two writes to the same location is guaranteed under all memory models. For cases 4, 7
and 8 of ARMv7/POWER, a reordering is allowed if the latter access is not dependent
on the former. We define the following (intra-thread) dependency relations [6, 7]:
1. The address relation addr relates address dependent accesses. We have b addr a iff

a is a read access and is done to (possibly via local variables) compute an address
for access b (for instance an address of an array element). For example, in order to
access in an array v element v[i], first, the value of i must be retrieved.

2. The relation dp combines two dependency relations. We have b dp a iff either
– b needs to write a value dependent on a (for example, to perform x = y, the

value of y must be retrieved before assigning it to x), or
– a is a read needed to evaluate a condition which must hold for the program

branch containing b to be executed (for example, in if (x==0) {y = z}, the
write to y and the read from z are both dp-dependent on the read from x).

Note that case 4 for ARMv7 requires only addr-dependency. A read access b may
be performed even before a condition that guards b has been evaluated, unless b is
address dependent on the read access(es) of the condition. For example, in if (x==0)
{y=z}, the read access from z can be performed before the read from x. This is called

3We ignore rdw and detour dependencies between threads under ARMv7/POWER [7], since
those cannot be checked thread-locally. The penalty is that we under-approximate the guarantees
of those memory models, but the effect seems marginal, as experimentally observed in [7].
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speculative execution. Cases 7 and 8 for ARMv7 imply that speculative writing is never
allowed, i.e., in the example, the writing to y cannot be done before the read from x.

Next, we define safety of po-paths, i.e., paths of accesses with ă “ po´, in terms
of string rewriting. Table 1 can be used to define rewrite rules for TSO, PSO and
ARMv7/POWER: if a model does not guarantee the order of accesses a and b (i.e.,
a ă b), then the rewrite rule pa ă bq ñ pb ă aq is applicable. We refer to the set of
rewrite rules for a model as Σ, and say that a po-path is safe w.r.t. Σ iff it is safe under a
model with rewrite rules Σ. The transitive closure of ă is ă`.

Definition 2 (po-path safety). Given a po-path q between accesses a and b (a ă` b
with ă “ po´), and a set of rewrite rules Σ, we say that q is safe w.r.t. Σ iff it cannot be
rewritten, using the rewrite rules in Σ, to a path q1 with b ă` a.

In other words, safety of a po-path between accesses a and b w.r.t. Σ can be deter-
mined by applying a path rewriting algorithm that tries to reorder a and b.

We already covered the case of two writes related via cmp. For accesses a and b with
at most one being a write, if we have both a po b and a cmp b, then order guarantee of
a ă b does not depend on cmp under any of the memory models. For instance, if a and b
are not related via either addr or dp, a is a write and b is a read, then b can use the result
of a before a is globally visible. Concerning cmp-related accesses of different threads,
ARMv7/POWER has a property called store atomicity relaxation (ARMv8 [20, 35] no
longer allows this). Because of this, a cmp-edge in the AEG between a write a and a
read b must be considered as unsafe in the direction from a to b [6]. To remedy this, a
so-called A-cumulative fence must be placed along the po-path following the cmp-edge
in the cycle [6]. The other memory models do not have this problem.

4 Deriving po and cmp via State Space Exploration
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1
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2

1: b1

3

4

3: v[x] = v[x] - 14: v[x] > 0

T0:
x = f()
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0

1

0: b1 = true

2

1: b0

3

4

4: v[x] > 0

2: b1 = false

3: v[x] = v[x] - 1

T1:
x = g()

Fig. 5. State machines T0 and T1

Given a formal parallel program specification
M, containing a specification of the individ-
ual threads, i.e., which atomic instructions each
thread performs in which SC order, and the vari-
ables (thread-local and program-global) each
instruction accesses, we can construct its state
space using an explicit-state model checker. As
mentioned in Section 2, M can be expressed
using a formal modelling language such as
Promela [21] or mCRL2 [15]. In the next exam-
ple, we use a state machine to specify a thread.

Example 1. Fig. 5 provides the specification of two threads T0 and T1, each with a local
variable x. The initial value of this variable is provided by function f and g, respectively.
We assume that f and g are too complex to derive by means of static analysis whether or
not they return the same value. From the initial states of T0 and T1, i.e., 0, five steps can
be repeatedly executed. First, T0 sets the global boolean variable b0 to true (initially
it has the value false), after which it waits for global boolean variable b1 to be true as
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well. Execution can continue as soon as this is the case; before that, execution is blocked
(this has the same semantics as the condition statement in Promela [21], for instance).
Next, b0 is set to false again, and the value of element x in the global integer array v
is decremented (all elements in v are initially set to some positive value). Finally, if
v[x] is still bigger than 0, the process is repeated. Thread T1 works similarly to T0,
except that b0 and b1 are swapped. Note that the use of b0 and b1 effectively works as a
synchronisation mechanism; for each thread, execution can only proceed from state 1 to
state 2 if the other thread has also proceeded to state 1. It is not guaranteed that when
this has happened, both threads will proceed to state 2, as one thread may set one of the
boolean variables back to false before the other thread has moved to state 2. However,
this issue is not important for the example.

We define a state space as a tuple GM “ pS,A, T , ŝq, with ŝ the initial state, in which
all thread specifications are in their initial state and all variables are set to their initial
value, S the set of states reachable from ŝ (ŝ P S), A a set of labels, and T : S ˆAˆ S
the transition relation. With s a

ÝÑs1, we express that from state s, a transition labelled a
exists to a state s1. The set outpsq is defined as outpsq “ ta | Ds1 P S.s a

ÝÑs1u.4

0

⟪T0,1⟫: {Rb1} 1 2

3

7

[T1,0] [T0,0]

⟪T1,1⟫: {Rb0}

[T0,0]: {Wb0} [T1,0]: {Wb1}

4 5

[T0,1]: {Rb1} [T1,1]: {Rb0}

[T1,1] [T0,1]

10 11

[T0,2]: {Wb0} [T1,2]: {Wb1}

15

6 8[T0,2] [T1,2]
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{Rv[0]}
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{Rv[1]}[T0,3]

18 19 20

[T0,4]

[T1,2]

16

21

[T1,4]

[T0,3] [T0,2]

[T1,3]

Fig. 6. A state space fragment

We construct the state space of a speci-
fication at the level of instructions, i.e., with
each transition, exactly one instruction is as-
sociated. If M consists of n threads t1, . . . , tn
in parallel composition, then every state s
in GM encodes, besides values for all vari-
ables in M, the local states s1, . . . , sn of the
threads. For each enabled instruction α from
si (1 ď i ď n) that locally leads to state s1i
in ti, there is a transition s ti,α,rαs

ÝÝÝÑs1, with s1

being the state in which ti is in s1i, all other
threads tk (k , i) are in sk, and the variables
have been updated as defined by α. Since we
use GM to analyse memory access behaviour,
we need to know when read accesses are per-
formed to evaluate a condition, also when it

evaluates to false. For that reason, for each state s in GM and each instruction α of ti
blocked in s, we have a self-loop s ti,α,xxαyy

ÝÝÝÝÑs.
Note that GM allows us to precisely reason about accesses, even if pointers are used

or dynamic accessing of array elements. For instance, in Fig. 5, the accessed location
in v[x]>0 is determined by the value of x. Because, of this, rαs depends on the current
state s. In the example, in any system state in which T0 is in state 2 and x has the value
0, we have rv[x]>0s = tRv[0]u. A model checker will make this explicit.

The state space will contain all possible interleavings of instructions in the specified
order. All traces in GM are therefore SC (Def. 1). Next, we wish to derive an AEG, as is

4Note that we define state spaces by means of Labelled Transition Systems, in which transitions
are labelled with events. However, the technique we propose in this paper can be adapted to Kripke
structures, by encoding via state predicates the events that are performed.
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done, for instance, in [4, 11, 12, 26], but we derive it from the state space, as opposed
to the specification (or the source code) of a program. Before we explain how to derive
pr and cmp, consider the example state space fragment in Fig. 6, which is part of the
state space of T0 and T1 (from Example 1) in parallel composition, when f pq “ 0 and
gpq “ 1. The transition labels provide the sets of accesses, with instructions named
by pairs ‘thread, instruction identifier’. To make the figure more clear, only the sets
of accesses are indicated, for instance rT0,0s, and their definition is given only once,
for instance tWb0u for rT0,0s. For this example, this suffices, as x is never updated,
and hence there is no instruction α for which rαs changes over time. The two outgoing
transitions from initial state 0 are associated with instruction 0 of T0 and T1. If we
traverse the transition for T0,0, we enter state 1. State 1 has a self-loop for xxT0, 1yy,
representing the read access of b1 to discover that b1 evaluates to false. Beyond state 2,
selfloops are not displayed, to simplify the figure.

For each thread t, instruction α of t and access a P rαs, we construct exactly one
vertex xt, α, ay in the AEG. The edges are derived from GM . As each access (of some
instruction and thread) has one AEG vertex, the program order relation may appear
cyclic if the thread specification contains cycles (as in Fig. 5). We model this with a
program relation pr. It offers the benefit of being able to represent infinite behaviour, as
long as the number of instructions is finite. Unsafety of pr-paths is similar to unsafety of
po-paths. To define pr, we first consider pairs of accesses from the same instruction α of
thread t. We have to define how these are ordered. We want to be as non-restrictive as
possible, so we restrict pr only by addr and dp (see Section 3): for every instruction α
and accesses a, b P rαs, we have a pr b iff b addr a or b dp a, i.e., a only must precede
b if b depends on a. In the AEG, if a pr b, we add a pr-edge from xt, α, ay to xt, α, by.

Next, using this definition of pr, we define KpAq, with A Ď rαs of an instruction α,
as ta P A |  Db P A.b pr au, i.e., the accesses in A that are first in the pr-order. With
JpAq, we refer to the accesses last in the pr-order: JpAq “ ta P A |  Db P A.a pr bu.

Finally, we extend pr by relating accesses from different instructions executed by
the same thread. If we can establish that the execution of an instruction α enables the
execution of at least some accesses of instruction β, then we pr-relate the accesses of α
executed last with the accesses of β executed first. In the example of Fig. 6, since the
execution of access rT0, 0s “ tWb0u from state 0 leads to a state in which xxT0, 1yy is
executable, i.e., Rb1, both accesses are performed by T0, and xxT0, 1yy was not enabled
in state 0, the execution of rT0, 0s enables xxT0, 1yy. Since Wb0 P JprT0, 0sq and
Rb1 P KpxxT0, 1yyq, we conclude that Wb0 pr Rb1 and xT0, 0,Wb0y pr xT0, 1, Rb1y.
Similarly, when traversing the transition for T0,1 from state 3, we can conclude xT0, 1,
Rb1y pr xT0, 2, Wb0y. In general, for any two instructions α, β of a thread t, we have:

xt, α, ay pr xt, β, by ðñ Ds, s1 P S.DA P trαs, xxαyyu, B P trβs, xxβyyu.s t,α,A
ÝÝÑs1

^pt, β, Bq P outps1qzoutpsq ^ a P JpAq ^ b P KpBq

Note that the pr relation is non-transitive, corresponding closely with po´.
Next, we need to derive cmp. A straightforward way is to relate every pair of accesses

pa, bq performed by different threads that access the same location, if at least one access
is a write, and that is essentially the approach taken by static analysis techniques. With
state space exploration, we can define cmp more precisely. Note that the above condition
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is the same as the one for data races, except that there is a data race only if accesses
execute at the same time. In terms of traces, this means that it must be possible to execute
b immediately after a, and vice versa, i.e., we can have both a ă b and b ă a. We
observe that for AEG construction, this aspect is also relevant. Consider the situation
that accesses a, b cannot be executed at the same time, i.e., no traces are possible in
which either a ă b or b ă a. In that case, if there would be a cmp-edge between a and
b, it might be possible to construct cycles in which a cmp b or b cmp a is an edge, but
that would represent an execution in which a is directly followed by b or b followed by
a, respectively (recall the example in Fig. 3 of Section 2), behaviour that is not possible.

The following theorem addresses how to determine, by analysing the state space,
whether two accesses of different threads can directly follow each other in an SC trace.

Theorem 1. Given a state space GM “ pS,A, T , ŝq, two accesses a, b and instructions
α, β with a P rαs, b P rβs, to be executed by threads t1, t2 of M, respectively (t1 , t2).
There exists a trace π with a ă b or b ă a iff there exists a state s P S with pt1, α, Aq P
outpsq and pt2, β, Bq P outpsq, where A P trαs, xxαyyu, B P trβs, xxβyyu and a P A, b P B.5

It follows that cmp-edges can be added to the AEG by checking for each pair of
outgoing transitions of every reachable state whether they are executed by different
threads and have conflicting accesses. In Fig 6, state 1 shows that xxT0, 1yy and rT1, 0s
conflict. Therefore, we add xT0, 1, Rb1y cmp xT1, 0, Wb1y to the AEG. In contrast,
state 15 demonstrates that rT0, 3s “ tRv[0], Wv[0]u and rT1, 3s “ tRv[1], Wv[1]u
can happen simultaneously, but they have no conflicting accesses.

The above procedure works for SC, but not yet for weaker memory models. For
instance, if we have three instructions α, β, γ, two threads t, t1, and states s0, . . . , s3 P S ,
with s0

t,α,rαs
ÝÝÝÑs1

t,β,rβs
ÝÝÝÑs2, s0

t1,γ,rγs
ÝÝÝÑs3 and s1

t1,γ,xxγyy
ÝÝÝÝÑs1, then there is no SC trace in which

for any accesses b P rβs, c P rγszxxγyy we have either b ă c or c ă b, but if b can be
reordered before some accesses of α, b and accesses of γ may suddenly conflict.

To both detect all cmp-edges for weak memory models and identify which pr-paths
are unsafe, we first repeatedly apply access reordering on all accesses in the program, as
explained in Section 3, with ă intially set to pr, and keep track for each instruction α
which accesses of other instructions can be reordered to be executed at the same time α
is executed. This leads to a set of accesses rαs` Ě rαs. The procedure is continued until
a fix-point has been reached, i.e., the rαs` have been identified. While the reordering is
performed, we construct a relation ppr with a ppr` b iff there exists no unsafe pr-path
from a to b: if at any point we have a ă b and b cannot be reordered before a, we know
that a ppr b. When a fix-point has been reached, we know there exists an unsafe pr-path
from access a to access b if  pa ppr` bq. The cmp-relation can be constructed by
comparing the accesses in rαs` and rβs` of each two instructions α, β that are associated
with different threads and are related to transitions with a common source state.

Example 2. Consider again Example 1 with threads T0, T1. Fig. 7 presents AEGs, for
convenience at the instruction level, that can be constructed when using model checking
(on the left) and when only using static analysis (on the right). For the moment, ignore the
fences and the grey colouring. The vertices contain the instructions, solid edges represent

5A proof can be found at http://www.win.tue.nl/˜awijs/seqcon-analyser.

http://www.win.tue.nl/~awijs/seqcon-analyser
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b0 = true

b1 b0

b0 = false b1 = false

v[0] > 0

v[1] = v[1] - 1

v[1] > 0

b1 = true

v[0] = v[0] - 1

Dependency graph derived with model checking Statically derived dependency graph

b0 = true

b1 b0

b0 = false b1 = false

v[x] > 0

v[x] = v[x] - 1

v[x] > 0

b1 = true

v[x] = v[x] - 1

T0 T0T1 T1

Fig. 7. AEGs (at instruction level) for T0 and T1 (Fig. 1), with f pq“0, gpq“1, obtained
with (left) and without (right) model checking, including locks and fences for TSO.

pr-edges between accesses performed by those instructions, and dashed edges represent
cmp-edges between some of those accesses. In the AEG on the left, the accesses to
v[0] and v[1] have been distinguished, and it has been observed that T0 and T1 never
conflict on accessing v. Hence, those accesses are not related by cmp. In the AEG on
the right, the accesses to v of each thread have been symbolically represented by v[x],
and it is concluded that conflicts can happen, hence the extra cmp-edges.

5 Detecting and Ruling Out Non-SC Behaviour

Shasha and Snir provided a definition of critical cycle that allows efficient detection in an
AEG [36]. We generalise this definition to use the non-transitive, cyclic pr, distinguish
safe and unsafe pr-paths, and support unsafe cmp-edges.

Definition 3 (Critical cycle). A cycle σ in a prY cmp AEG is critical iff:
c1. σ contains for each thread t at most one pr-path;
c2. σ contains at consecutive start and end points of pr-paths and/or cmp-edges up to

three accesses to the same location;
c3. For at least one thread t, its pr-path in σ is unsafe, or there is an unsafe cmp-edge;
c4. At least two threads are involved in σ;
c5. For each pr-path α0 : a0

pr ¨ ¨ ¨ pr αn : an in σ, we have for all 0 ď i ă j ď n
that either i “ 0 and j “ n, or αi : ai , α j : a j.

By c1, c3 and c4, a prY cmp cycle consists of at least one pr-path, connected at its
start and end accesses via cmp-edges with at least one access of at least one other thread.
Furthermore, for each pr-path, no proper subpath is a cycle (c5), but it may itself be a
cycle. If some proper subpath is a cycle, it means that a shorter path can be constructed
by removing that subpath. By c1, no chords exist in pr: if a thread t is involved in a cycle
both with a pr-path a pr ¨ ¨ ¨ pr b and a pr-path c pr ¨ ¨ ¨ pr d, then there are
multiple chords, for instance a pr ¨ ¨ ¨ pr d. Finally, c2 ensures that no chords in
cmp exist. If a location is involved more than three times in a cycle, such a chord must
exist [36]. In Fig. 3, σ2 and σ3 violate c2, since x is involved four times, which points to
the existence of the chord α4 : Wx cmp α1 : Rx.

When no atomicity checking is performed, there is actually an additional condition,
namely that the cycle involves at least two locations [4]. The weak memory models
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we consider ensure SC per location, i.e., cycles in which all accesses access the same
location do not represent non-SC behaviour. However, for atomicity checking, such
cycles cannot be ignored, as explained in Section 2 (see Fig. 4).

Theorem 2. A trace π of a program specification M is non-SC iff it traverses a prYcmp
path through the AEG of M that contains a critical cycle.6

Note that enforcing an unsafe pr-path p1 results in enforcing any unsafe pr-path p
containing p1. Any cycle σ satisfying c1 to c4 of Def. 3 contains a cycle σ1 satisfying c1
to c5. If p is part of σ and p1 is part of σ1, then p is enforced due to p1 being enforced.
Therefore, it suffices to enforce unsafe pr-paths in critical cycles as defined by Def. 3.

For the detection of critical cycles, algorithms for finding elementary circuits can be
used. We use Tarjan’s algorithm [40], extended to detect cycles meeting c1-c5 of Def. 3.
To support atomicity checking, all that is needed is to allow cycle detection to move
against the pr-order between at-related accesses, as is explained in Section 2 and [36].
The ppr-relation allows us to identify the existence of unsafe pr-paths in constant time.

With each instruction in the program, we associate a counter. Each time a critical
cycle is detected, we record the involved unsafe pr-paths and cmp-edges as sequences of
the involved instructions, and increment their counters. If we do atomicity checking, we
furthermore mark an instruction for locking if its execution in the unsafe path violates
pr. Once all cycles have been detected, the sequences of instructions that include an
instruction marked for locking are removed, since a lock will make an unsafe path
safe. The counters of all involved instructions are decremented each time a sequence is
removed. For the remaining sequences, we sort the instructions by the counter values,
select the instruction α with the highest value, and place a delay after Kprαsq, to ensure
that any path involved α is enforced. We remove each sequence involving α, decrement
the counters of the other instructions, and repeat until all counters have the value 0.

Although the constructed AEGs are more precise than statically derived ones, we do
not claim that our fencing procedure is optimal. In fact, experiments demonstrate that it
is not (see Section 6). Future work involves optimising this procedure as far as possible.

Example 3. Consider the fences and the grey colouring in Fig. 7, which result from
analysing the system under TSO. In both AEGs, the critical cycle σ1 “ T0 : Wb0 pr

T0 : Rb1 cmp T1 : Wb1 pr T1 : Rb0 cmp T0 : Wb0 requires that the two black
fences are placed. On the right, additional critical cycles are detected, due to the in-
accuracy of the AEG. The grey nodes represent the instructions for which it is de-
tected that locks are needed, when atomicity checking is performed. In other words,
v[x]=v[x]-1 can only be executed if a lock on v[x] has been acquired. The involved
cycles are actually not directly visible, due to the AEG being given at the instruction
level, but the two instructions v[x]=v[x]-1 conflict with each other, forming two
cycles σ2 “ T0 : Wv[x] pr T0 : Rv[x] cmp T1 : Wv[x] cmp T0 : Wv[x] and
σ3 “ T1 : Wv[x] pr T1 : Rv[x] cmp T0 : Wv[x] cmp T1 : Wv[x], both go-
ing against the pr-direction. As locks strictly provide more guarantees than fences [5],
placing locks means that no more unresolved violations exist. Alternatively, if no atom-
icity checking is performed, the cycles σ4 “ T0 : Wb0 pr T0 : Rv[x] cmp T1 :

6A proof sketch can be found at http://www.win.tue.nl/˜awijs/seqcon-analyser.

http://www.win.tue.nl/~awijs/seqcon-analyser
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Wv[x] pr ¨ ¨ ¨ pr T1 : Rb0 cmp T0 : Wb0 and σ5 “ T1 : Wb1 pr T1 : Rv[x]
cmp T0 : Wv[x] pr ¨ ¨ ¨ pr T0 : Rb1 cmp T1 : Wb1 require that the grey fences

are placed. If the instructions v[x]=v[x]-1 are locked, this is not required, as Wb0 in
rb0=falses and Wb1 in rb1=falses are separated from the Rv[x]’s by those locks.

6 Experimental Results

We have implemented our technique using the mCRL2 toolset [15] for state space
exploration. State machine models are first translated to mCRL2 specifications, from
which a state space can be generated and written to disk. In addition, we have developed
a new tool seqcon-analyser in C++, that reads the state space, constructs an AEG, and
suggests where to place fences and locks, based on critical cycle detection.

We conducted experiments to compare seqcon-analyser with existing fence insertion
tools, and to analyse their scalability. We decided to compare seqcon-analyser with the
static analysis tool musketeer [4] and the model checking tool remmex [29]. These tools
offer a good representation of the current state-of-the-art in static-analysis- and model
checking-based approaches to automatic fence insertion, respectively. For instance,
in [4], musketeer clearly outperforms the static analysis tools dfence [30], memorax [1],
offence [6], trencher [14] and pensieve [39], using several instances of four of the models,
Dekker, Peterson, Lamport, and Szymanski, that we also used in our experiments.
Hence, we have not involved the other static analysis tools in our experiments.

Besides the four models already mentioned, we selected six additional models from
the BEEM benchmark set [34], Anderson, Bakery, Elevator2, Leader filters, Mcs, and
Msmie, and manually translated several instances of each of those models, written in the
DVE language [10], to suitable input for seqcon-analyser, musketeer and remmex.7

Table 2 presents the experimental results, comparing our technique without atomicity
checking (s–a) with musketeer (m) and remmex (r), tools that do not support atomicity
checking. In addition, we report the results obtained when performing atomicity checking
with our tool (s+a). We report the number of delay insertions under TSO, PSO and
ARMv7 whenever possible (remmex does not support ARMv7) in the form (‘number
of locks’ / ‘number of non-cumulative fences’ / ‘number of A-cumulative fences’). We
acknowledge that ARMv8 is more recent, but the weaker ARMv7 is very suitable to
demonstrate the efficiency of our technique when applied on very weak memory models.

We conducted our experiments on the DAS-5 cluster [9]. Each node runs CentOs
7.4, and has a 2.4 GHz Intel Haswell E5-2630-v3 CPU and 64 GB of memory. In the
table, we list for each model the number of threads (|T|), the number of instructions (|I|),
and the number of memory locations (|L|). For state space generation, we used version
201908.0 of the mCRL2 toolset, and report the number of states and the runtime. For our
technique, on the one hand, the runtime of state space generation should be added to the
runtime needed for critical cycle detection to obtain the overall time, but on the other
hand, state space generation is only needed once per case, to perform cycle detection for
all memory models, with and without atomicity checking. For the cycle detection phase,
we have excluded the time needed to read the state space, as it obfuscates the time for

7See http://www.win.tue.nl/˜awijs/seqcon-analyser for the models and our tool.

http://www.win.tue.nl/~awijs/seqcon-analyser
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the actual computation. In the future, we plan to avoid storing and reading state spaces
entirely. Translating a state machine model to mCRL2 can be done instantly.

In Table 2, the best results in each category, in terms of number of fences, and
runtime in case of a tie, are written in bold. It should be mentioned that for the Anderson
instances, musketeer had to be run with the –no-loop-duplication option enabled, as the
standard option reported (erroneously) that no fences were required.

Even though the models are relatively small, the positive effect of state space ex-
ploration is apparent. Constructing the state space helps to keep the AEG smaller, and
hence to reduce the number of critical cycles. State spaces grow exponentially, but so
does the number of critical cycles in the AEG. Frequently, state space exploration plus
critical cycle detection with seqcon-analyser has an overall runtime that is not drastically
worse than musketeer, and in case of Dekker.3, the combined time is even shorter. It is
important to note here that various techniques exist to speed up state space exploration
considerably (for instance, by using symbolic [13, 17] or GPU exploration [42, 43]),
whereas much fewer techniques exist to speed up the enumeration of elementary circuits
in a graph. In other words, it is in practice beneficial to involve state space exploration,
as the techniques above can be applied to further reduce the runtime.

The performance of remmex is as expected; since it has to explore all behaviour, SC
and non-SC, it quickly runs out of memory. For the Elevator2 cases, no results could
be obtained. remmex needs to be given an error state representing a violation of a safety
property, after which it checks for the reachability of that state under the given memory
model. However, for those cases, no suitable safety properties could be identified. With
musketeer, we also experienced out-of-memory frequently, which was not expected.
The tool first constructs the entire set of critical cycles before deriving fences. This is not
strictly needed, as alternatively, the output of Tarjan’s algorithm [40], used by musketeer,
could be directly processed to store where fences are needed. If the implementation
of musketeer would be changed in this regard, the runtimes for the ‘o.o.m.’ cases of
musketeer would still be much higher than those of seqcon-analyser, as it always took
several hours to fill the memory, and the number of fences would often be higher.

Finally, regarding the number of locks and fences, seqcon-analyser does not always
identify the smallest number of fences, even though it works with AEGs that are in
general more precise than those of musketeer. This is due to the sub-optimal placement
of fences to resolve all detected non-SC issues. In future work, we will continue on
improving this aspect. The optimisation problem of resolving all non-SC behaviour
with fences also frequently results in each tool suggesting different fence locations. For
instance, the four fences suggested by seqcon-analyser for Anderson.1 are not suggested
by musketeer. Furthermore, it is interesting to note that in multiple cases, the number of
locks is influenced by the memory model. Unfortunately, musketeer does not support
atomicity checking, so we cannot directly assess this, but with a pure static analysis
technique, this effect would not be observed; if each pair of conflicting accesses is related
by cmp, then for each memory model, the same atomicity issues would be detected.

7 Conclusions
We have proposed a technique for automatic delay insertion, combining state space
generation and static analysis. It has the precision of model checking-based techniques,
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yet better scalability, and frequently even outperforms musketeer, a state-of-the-art
static analysis technique. Furthermore, it supports atomicity checking. We addressed
TSO, PSO, and ARMv7, but an arbitrary set of intra-thread order guarantees can be
specified. These may depend on relations such as addr and dp, but also on others. In the
future, it will be interesting to support the cat language [7], to make seqcon-analyser
more configurable in this respect. Furthermore, we will investigate to what extent delay
suggestions can be updated when a model is transformed, along the lines of [41].
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