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Abstract—Most modern and successful SAT solvers are based
on the Conflict-Driven Clause-Learning (CDCL) algorithm. The
CDCL approach is to try to learn from previous assignments, and
based on this, prune the search space to make better decisions
in the future. In the current paper, we propose the introduction
of a multiple decision maker (MDM) into CDCL. Adhering to a
number of rules, MDM constructs sets of decisions to be made
at once. Experiments show MDM has a considerably positive
impact on CDCL, for many different SAT application problems.
Overall, about 50% of the benchmarks we considered were solved
faster when MDM was enabled, and the total processing time of
all benchmarks was reduced by 6%. Moreover, MDM allowed
31 extra problems to be solved. We introduce MDM, analyse its
impact, and try to understand the cause of that impact.

Index Terms—Satisfiability, CDCL, Multiple Decision Making

I. INTRODUCTION

During the past decade, SAT solving has been used exten-

sively for various applications, such as combinational equiv-

alence checking [1], automatic test pattern generation [2],

[3], automatic theorem proving [4], and symbolic model

checking [5], [6]. Most modern and successful SAT solvers

are based on the Conflict-Driven Clause-Learning (CDCL)

algorithm [7]–[12]. The CDCL approach is to try to learn

from previous assignments, and based on this, prune the search

space to make better decisions in the future.

Many solvers have been introduced that employ CDCL,

such as GRASP [7], CHAFF [8], BERKMIN [11], MIN-

ISAT [10], GLUCOSE [13], and LINGELING [12]. GRASP

was the first tool applying CDCL, after which CHAFF in-

troduced the so-called two watched literals optimisation and

the VSIDS decision heuristic (more on these in Section IV).

BERKMIN and MINISAT introduced further implementation

and heuristics optimisations. The authors behind GLUCOSE

presented robust clause deletion and restart heuristics. The

LINGELING solver introduced the effective use of SAT sim-

plifications [14]–[16] as an in-processing technique during the

solving process [17].

One aspect of CDCL that has always remained the same is

that to explore all possible assignments, a single decision is

made at a time. In the current paper, we propose to extend
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CDCL with the ability to make and propagate multiple deci-

sions at once. Our motivation for this is to further improve the

runtime performance of CDCL. To ensure effective selection

of non-singleton sets of decisions, we require that the decisions

in such a set do not lead to implications. In this paper, we

present our generalisation of CDCL, with support for what

we call Multiple Decision Making (MDM). To experimentally

test the extension, we implemented MDM in a new SAT solver

developed by us, and compared runtimes with both MINISAT

and our solver without MDM. In addition, we implemented

MDM in GLUCOSE, and compared it to GLUCOSE without

MDM, both with and without preprocessing. MDM turns out

to be particularly effective for SAT problems stemming from

applications, i.e., that are not random. Overall, about 50% of

the benchmarks we considered were solved faster with MDM.

The paper is organised as follows: Sect. II introduces the

preliminaries. In Sect. III, we present our generalisation of

CDCL. In Sect. IV, it is explained how MDM can be imple-

mented, focusing on heuristics and optimisations. In Sect. V,

we integrate MDM into CDCL and address its correctness.

Finally, benchmark results are given and discussed in Sect. VI,

and conclusions are drawn in Sect. VII.

II. PRELIMINARIES

All SAT formulas in this paper are in conjunctive normal

form (CNF). A CNF ϕ is a conjunction of clauses
∧m

i=1 Ci

where each clause Ci is a disjunction of literals
∨k

j=1 �j and

a literal is a Boolean variable x or its negation ¬x. For a

literal �, v(�) denotes the referenced variable, i.e., v(x) = x
and v(¬x) = x. The domain of all literals is �. We interpret

a clause C as a set of literals {�1, . . . , �k} representing the

clause �1 ∨ . . . ∨ �k, and a SAT formula ϕ as a set of clauses

{C1, . . . , Cm} representing the formula C1 ∧ . . . ∧ Cm. We

denote the set of all clauses of ϕ in which � occurs by C� =
{C ∈ ϕ | � ∈ C}. The domain of the Booleans is �, true
is represented by � and false by ⊥, and we have ¬� = ⊥
and ¬⊥ = �. An assignment � refers to assigning � to literal

�. During SAT solving, we keep track of a set σ consisting

of all literals that have been assigned �. When applying an

assignment �, σ is updated to σ ∪ {�}.
With � |=σ �, we express that literal � evaluates to true,

i.e., it is satisfied, w.r.t. σ. This is defined as � |=σ � � � ∈ σ.
With � |=σ ⊥, we refer to ¬� ∈ σ. The evaluation of � is
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undetermined, denoted by � |=σ↑, in case neither � ∈ σ nor

¬� ∈ σ. For a clause C ∈ ϕ, C |=σ � expresses that C is

satisfiable w.r.t. σ. We have C |=σ � iff ∃� ∈ C.� |=σ �. If for

all � ∈ C, we have � |=σ ⊥, then C |=σ ⊥. If neither C |=σ �
nor C |=σ ⊥, we have C |=σ↑. Formula ϕ is satisfiable w.r.t.

σ, i.e., ϕ |=σ �, iff ∀C ∈ ϕ.C |=σ �. In that case, σ is a

model for ϕ.
With Freeσ(C), we refer to the set of free, unassigned

literals in C, i.e., Freeσ(C) = {� ∈ C | � �∈ σ ∧ ¬� �∈ σ}. A
clause C is called unit iff C |=σ↑ ∧ |Freeσ(C)| = 1, i.e., its
evaluation is undetermined and one literal is unassigned.

III. GENERALISED CDCL-BASED SAT SOLVING

A. The CDCL procedure

Given a CNF formula ϕ, a CDCL-based SAT solver tries

to find a model for ϕ. The search is performed in three main

steps: decision making or branching, propagating the effects

of assignments, and analysing in case so-called conflicts

arise. The CDCL procedure is described by Alg. 1. This

description generalises the one given in [7] to support MDM.

The extension we propose in this paper affects the DECIDE

routine coloured blue at line 9. In the extension, DECIDE may

not just make a single decision when called, as in standard

CDCL, but it may make a set of decisions. How and when

DECIDE makes multiple decisions should be ignored for now.

This is covered in Sections IV, V.

The global variables of the CDCL procedure are ϕ, σ, a set

σ′ of assignments that were previously part of σ, but have

been removed due to backtracking (the purpose of this is to

apply progress saving, as proposed in [18]), and a decision
level function δ, which records at which decision/search level
(d) each literal has been added to σ. In addition, the function

source is used to keep track of which implications are caused

by which clauses. More on this later.

At lines 2-5 of Alg. 1, the CDCL procedure is given, which

first calls the procedure BCP at the initial search level (d = 0).
More on this procedure later. After that, SEARCH is called for

d = 0, with the forward jump level set to 0 (�d = 0). The

forward jump level defines the level that SEARCH needs to

progress towards before making the next decisions.

Procedure SEARCH performs one step in searching for a

σ that models ϕ. If the two given levels d and �d are equal

and we are not at the initial level, DECIDE is called (line 9),

which implements the decision making step; it decides which

decisions to make next, i.e., to which literals � should be as-

signed. The forward jump level �d is subsequently increased by

the number of decisions made (for instance, �d is incremented

if one decision is made). At the initial level 0, we simply

increment �d (line 12), to ensure that the first decision will be

made by SEARCH(1, 1), called at line 15.

If no decisions could be made, then ϕ is satisfied by the

current σ, and SEARCH returns d together with the conclusion

SAT (line 10). Otherwise, at line 11, the new decisions in L
are added to σ, and the while loop at lines 13-21 is entered.

The propagation of a decision and all its resulting implica-
tions is done by the Boolean Constraint Propagation (BCP)

Algorithm 1 CDCL, generalised to support MDM

1: global vars: formula ϕ, assigns. σ, saved-assigns. σ′, level
function δ, implication function source

2: procedure CDCL( )
3: σ ← ∅, σ′ ← ∅, δ ← ∅
4: BCP(0)
5: if SEARCH(0, 0) = (0,UNSAT) then return UNSAT else

return SAT
6: procedure SEARCH(d, �d)
7: if d = �d then
8: if d > 0 then
9: L ← DECIDE(d), �d← �d+ |L|

10: if L = ∅ then return (d, SAT)
11: σ ← σ ∪ L
12: else �d← �d+ 1
13: while true do
14: if d < �d− 1 ∨ BCP(d) then
15: ( �d, sat)← SEARCH(d+ 1, �d)
16: if sat = SAT then return (d, SAT)
17: else if d > �d then BACKJUMP(d), return ( �d,UNSAT)
18: else �d← d+ 1
19: else
20: (Ĉ, �d)← ANALYSE(d), ϕ← ϕ ∪ Ĉ, BACKJUMP(d)
21: return ( �d,UNSAT)

22: procedure BCP(d)
23: source ← ∅
24: while {C ∈ ϕ | |Freeσ(C)| = 1} �= ∅ do
25: pick a clause C ∈ ϕ for which |Freeσ(C)| = 1
26: σ ← σ∪Freeσ(C); source ← source∪{(Freeσ(C), C)}
27: if ϕ |=σ ⊥ then return false
28: return true
29: procedure BACKJUMP(d)
30: σ ← σ \ {� | (�, d) ∈ δ}
31: σ′ ← σ′ ∪ {� | (�, d) ∈ δ} \ {¬� | (�, d) ∈ δ}
32: δ ← δ \ {(�, d) ∈ δ}
33: procedure ANALYSE(d)
34: Ĉ ← LEARNCCLAUSE (d)
35: �d← MAX({0} ∪ ({δ(�̂) | �̂ ∈ Ĉ} \ {d}))
36: return (Ĉ, �d)

37: procedure LEARNCCLAUSE(d)
38: Ĉ ← C with C ∈ ϕ and C |=σ ⊥
39: while |{� ∈ Ĉ | δ(�) = d}| > 1 do
40: pick a literal � ∈ Ĉ for which ∃C.(¬�, C) ∈ source
41: Ĉ ← Ĉ ⊗� source(¬�)
42: return Ĉ

procedure (called at line 14). The description of BCP is given

at lines 22-28. As long as there are unit clauses (line 24), a unit

clause C is picked (line 25), and its unassigned literal is added

to σ (line 26). This assignment is called an implication. If the
update does not make ϕ unsatisfied (line 27), the procedure

is repeated. After every update of σ, the function source is

updated to record the fact that C caused Freeσ(C) to be

added to σ. This is relevant when clause learning needs to be

applied, which is discussed later. The BCP procedure identifies

all implications, unless a conflict is detected.

Definition 1 (Conflict). Given a formula ϕ and a set of
assignments σ, there is a conflict iff there exists a C ∈ ϕ
with C |=σ ⊥.
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Recall that at the start of CDCL, BCP is called (line 4).

The purpose of this call is to propagate implications initially

present in ϕ. Furthermore, note that the BCP procedure does

not need to be called at line 14 when d < �d−1. When DECIDE

makes a single decision, d < �d − 1 does not hold, hence

BCP is called. When n decisions are made (n > 1), SEARCH

progresses n− 1 levels before calling BCP again.

If BCP returns true at line 14 or we are forward jumping

(d < �d − 1), SEARCH is called recursively, moving on to the

next decision level. If this invocation of SEARCH returns that

the formula is satisfied, the result is propagated back (line 16).

Else, if a backtrack level �d is returned that is smaller than d,
backtracking is needed, and the backtrack level is returned

together with the conclusion UNSAT (line 17). A backtrack

step is done in the BACKJUMP procedure, given at lines 29-32.

All assignments made at the current level d are removed from

σ and δ, and added to σ′. Any contradictory information is

removed from σ′. In this way, σ′ can be used to recall the last

value assigned to a variable, if one exists. This is relevant in

DECIDE; in Section IV, we specify how σ′ is used in decision

making. When �d is returned together with UNSAT at line 17,
�d is propagated back to the calling SEARCH procedure (line

15), which will then in turn backtrack if �d is smaller than its

level d (line 17), and so on, until the backtrack level has been

reached, in which case the forward jump level is set to the

next level to move forward again (line 18).

In case BCP returns false at line 14, there is a conflict,

and this must be analysed (line 20). The ANALYSE procedure,

described at lines 33-36, tries to identify all assignments

causing the conflict and backtracks the required number of

levels to undo those assignments. The negations of those

assignments are recorded by the LEARNCCLAUSE procedure

(line 34), in a new clause, called the conflict clause (Ĉ), to

avoid making that combination of assignments in the future.

How such a clause is constructed is not essential here, but for

the sake of completeness, we provide a possible procedure.

The LEARNCCLAUSE procedure is given at lines 37-42. The

conflict clause can be constructed by a sequence of resolution

steps [7], starting with the clause that caused the conflict

(line 38). Each step produces an intermediate new clause

(resolvent). A resolvent is the result of applying the resolution
rule [19] w.r.t. some implication � at level d. For this, we use

the resolving operator ⊗� on clauses C1 and C2 with � ∈ C1,

¬� ∈ C2. It is defined as C1 ⊗� C2 = C1 ∪ C2 \ {�,¬�}.
As long as more than one literal in Ĉ was assigned a value

at d (line 39), i.e., as long as some values are the result of

implications at d, Ĉ is rewritten. This is done by selecting

a literal � that obtained a value due to an implication at d
(source(¬�) is defined) at line 40, and combining the clause

that caused that implication (source(¬�)) with Ĉ using the

resolving operator, resulting in a new clause in which � no

longer appears (line 41). Given Ĉ, the backtrack level �d is

defined as MAX({0} ∪ ({δ(�) | � ∈ Ĉ} \ {d})) (line 35): the

highest level involved in Ĉ that is smaller than d is selected.

In case no such level exists (Ĉ contains a single literal at d),
0 is selected. Both Ĉ and �d are returned at line 36. Next, Ĉ is

Fig. 1: A visualization of CDCL solving on a small example

added to the input formula, the backtracking to �d is initiated,

and �d is returned with UNSAT (lines 20-21).

Example 1. A small example of applying standard (single-
decision) CDCL is illustrated in Fig. 1 by an implication
graph [7]. Consider a formula ϕ containing, among others,
the following clauses:

ϕ = {{¬x8, x2,¬x7}, {¬x8,¬x2, x3}, {¬x3,¬x7},
{x7, x5, x6}, {¬x5, x4}, {¬x6, x4,¬x1},

{x9,¬x10}, {¬x9,¬x10, x11}, . . .}
In addition, consider x8, x1, x9 and ¬x4 as the decisions
made so far. The decisions and their levels are indicated in
Fig. 1 by the green ovals and blue numbers, respectively.
Once these decisions are made, BCP identifies implications.
Each implication (white ovals in Fig. 1) takes the highest level
among its parents. The procedure first sets ¬x5, ¬x6 and x7

to �, before there are a number of possible scenarios that all
lead to a conflict. The order in which unit clauses are analysed
by BCP determines which scenario occurs. In the figure, both
x2 and ¬x3 are set to �, before C2 causes a conflict.

At this point, LEARNCCLAUSE can produce the clause Ĉ =
{¬x7,¬x8}, as the result of (C2⊗x2

C1)⊗x3
C3. Finally, the

backtrack level �d is determined by the highest decision level
other than the conflict level in Ĉ; in this example, �d = 1.

B. Multiple Decision Making

Next, we reason about making multiple decisions simulta-

neously with DECIDE. Making a decision can always lead to

conflicts, and making more than one decision at once increases

the likelihood of a conflict occurring. To avoid repeatedly

selecting sets of decisions that cause conflicts, we wish to

construct multiple decisions sets, i.e., non-singleton sets of

decisions, in such a way that it is guaranteed that no conflicts

will occur. For this, we define multiple decisions set as follows.

Definition 2 (Multiple decisions set). Given a formula ϕ and
a set of assignments σ, we call a set M ⊆ � \ {�,¬� | � ∈
σ} with |M| > 1 a set of multiple decisions iff {C ∈ ϕ |
|Freeσ∪M(C)| = 1} = ∅.

In words, a set of multiple decisions M can be selected,

i.e., is valid, iff M does not result in unit clauses. Note that

M only contains new decisions, and not previously selected

literals or ones that contradict σ. Def. 2 cannot be efficiently

used to construct a set of multiple decisions, since it refers
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to M as a whole. The basic approach to construct M is to

iteratively select a decision � and add it to M iff it does not

lead to a violation of the condition in Def. 2.

Example 2. By Def. 2, the set of literals {x3, x7,¬x9} for the
formula ϕ in Ex. 1 is initially, with σ = ∅, not a valid multiple
decisions set, as it results in C3 being unsatisfied and C7 being
a unit clause. On the other hand, {x1, x8, x9} is valid.

Since a valid multiple decisions set does not produce any

unit clauses, note that DECIDE cannot always select multiple

decisions. The solving of a formula can only terminate if

at some point unit clauses are produced and implications

are processed. Therefore, DECIDE should not always, but

periodically select multiple decisions. In the next section, we

discuss a possible mechanism to achieve this.

IV. IMPLEMENTING MDM

So far, we have presented MDM mathematically. In this

section, we discuss how to make it efficient in practice, and

we address the correctness of CDCL with MDM.

A. Decision heuristics

The DECIDE routine in Alg. 1 determines which literals

should be selected and assigned true for the next decisions.

Actually, in existing solvers, where DECIDE makes a single

decision at a time, a variable is selected and specific heuristics

are used to set it either to true or false, i.e., a literal is selected

in two steps. Regarding variable selection, a robust heuristic

is Variable State Independent Decaying Sum (VSIDS) [8]. In

VSIDS, each variable has a counter (sum), called α, which

initially has the value 0. Once a conflict clause is deduced,

the α-values of all variables it refers to are incremented, and

the α-values of all variables in the formula are divided by

some constant (implementing so-called decay). Each time a

decision must be made, the variable x with the highest α is

selected. VSIDS does not address whether to assign x true or

false. Other heuristics are used for that. The BERKMIN [11]

solver improves VSIDS by incrementing the α-values of those

variables referenced by any clause involved in the conflict

analysis. This has been adopted in many SAT solvers, and

we adopt it as well.

Inspired by the above heuristics, we also apply VSIDS

for the selection of multiple decisions. Initially, after ϕ has

been parsed, a sorted list L of the unassigned variables in ϕ
is created. For each two variables x, y ∈ L, we define the

following order for the sorting.

x ≺ y � α(x) ≤ α(y) =⇒ h(x)× h(¬x) > h(y)× h(¬y)

In the formula, h is a histogram function (h(�) = |C�|). From
L, a set of variables can be obtained for decision making,

starting from the highest ranking variable, and stopping once

a bound B for the ranking has been reached. The sorted list

is updated each time new variables have to be selected.

B. 2-WL optimisation

When constructing a multiple decisions set, checking

whether the condition of Def. 2 still holds every time a literal

� is selected can be optimised by using the so-called two-
watched literals (2-WL) optimisation [8]. When using it, in

each clause C ∈ ϕ, two unassigned literals �1, �2 ∈ C are

marked as watched, and as soon as one is set to ⊥, another

unassigned literal is selected for watching, unless there are

no unassigned, unwatched literals left. This optimisation is

particularly suitable to check for violations of the condition

of Def. 2, as it allows us to only consider the clauses in C¬�

in which ¬� is watched; if it is not in some clause C ∈ C¬�,

then there are at least two other, unassigned literals in C, hence

C cannot become unit when ¬� is assigned a value. If there

are no more than two watched literals in C, then ¬� has to be

watched, since it was unassigned before being selected. We

formalise the predicate that a literal � is watched in a clause

C with WC(�).

C. Decision freezing

During the construction of a multiple decisions set, we

wish to avoid the repeated selection of literals that cause

the condition of Def. 2 to be violated. For this reason, we

introduce the notion of freezing. With it, we over-approximate

the potential to produce unit clauses. If we add a valid literal �
to M, the clauses in C¬� have ⊥ assigned to ¬�, and thereby

have more potential to become unit. Subsequently selecting a

literal �′ that also appears in any of those clauses in C¬� can

possibly produce a unit clause. To avoid this, we freeze all

unassigned literals in C¬� after the selection of �, thereby not

allowing them to be selected for the multiple decisions set.

Checking whether a literal is frozen or not is simpler than

repeatedly checking for a violation of the condition of Def. 2.

A literal �′ is frozen if either �′ or ¬�′ depends on a previously

selected decision:

Definition 3 (Decision dependency relation). We call a
relation D: � × � a decision dependency relation iff for all
�, �′ ∈ �, we have �′ D � iff there exists a C ∈ C¬� such that
�′ ∈ C ∨ ¬�′ ∈ C.

Given a multiple decisions set M, the set of frozen deci-

sions is defined as follows.

Definition 4 (Frozen decisions). Given a formula ϕ, a set
of assignments σ, and a multiple decisions set M, the set of
frozen decisions F is defined as F = {�′ | �′ ∈ � \ {�′′,¬�′′ |
�′′ ∈ σ} ∧ ∃� ∈M.�′ D �}.

In practice, we actually freeze variables, not literals, due

to the two steps variable selection procedure described at the

beginning of this section. For consistency, though, we reason

about literals in the remainder of this section.

D. Integrating heuristics and freezing in MDM

Next, we explain how the MDM procedure can be imple-

mented. As input, Alg. 2 requires the current decision level

d. At line 3, this is stored in d′, which is used to assign
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Algorithm 2 Multiple Decision Maker

1: global vars: formula ϕ, saved-assigns. σ′, dec. level function δ
2: procedure MDM(d)
3: d′ ← d,M← ∅, F ← ∅
4: L← SORT(ASSIGNSCORES(ϕ),≺)
5: for all x ∈ L do
6: if x �∈ F then
7: if x ∈ σ′ ∨ ¬x ∈ σ′ then �← LIT(x, x ∈ σ′)
8: else �← LIT(x, h(¬x) ≥ h(x))

9: if ∀C ∈ C¬�.WC(¬�) =⇒ |Freeσ(C)| > 1 then
10: if DEPFREEZE (�) then
11: M←M∪ {�}
12: δ(x)← d′, δ(¬x)← d′

13: d′ ← d′ + 1
14: return M
15: procedure DEPFREEZE(�)
16: for all C ∈ C¬� do
17: if WC(¬�) then
18: for all �′ ∈ C do
19: if �′ ∈M then return false
20: if v(�′) �= v(�) ∧ v(�′) ∈ L then F ← F ∪ v(�′)
21: return true

consecutive levels to the decisions selected by MDM. Sets M
and F are initially empty. At line 4, we create the list of

variables L using ASSIGNSCORES, and sort it using the ≺-

order. Next, we iterate over L (line 5).

For each unfrozen variable (line 6), a value is picked to

select a literal. The LIT function at lines 7 and 8 takes a

variable x and a predicate p, and produces x if p and ¬x
otherwise. If for x, a literal has been recorded in σ′ (progress
saving [18], see Alg. 1, line 31), then this literal is selected

(line 7), otherwise, the histogram function h determines the

value (line 8). At line 9, it is checked whether the selected

literal � is valid, according to Def. 2, restricting the check

to clauses in C¬� in which ¬� is watched. If � is valid, it is

attempted to freeze dependent variables (line 10). If successful,

� is added to M, the assignments are recorded with δ at level

d′, and d′ is incremented (lines 11-13).

The procedure DEPFREEZE is given at lines 15-21. It tries

to freeze all variables dependent on �, according to Defs. 3

and 4. We apply the 2-WL optimisation to speed up iterating

over clauses in C¬�. This has the drawback that some literals

that have to be frozen may be ignored, if they do not appear

in a clause in which ¬� is watched. To remedy this, we check

whether a literal has already been added toM before freezing

it (line 19). If it was added, then clearly, � should not have

been added, and the latter’s selection is canceled.

Example 3. Consider again Ex. 1. We assume that x8 is
picked first and is being watched. Since ¬x8 appears more
frequently than x8, � is assigned to x8 (line 8, Alg. 2), hence
the DEPFREEZE procedure freezes all unassigned variables in
C¬x8

= {C1, C2}, that is x2, x3, and x7. Similarly, x1 and x9

can be chosen for a decision, causing x4, x6, x10, and x11

from clauses C6, C7, and C8 to be frozen, respectively. Finally,
the set M = {x1, x8, x9} is constructed. As all remaining
variables are frozen, this set is not extended any further.

Algorithm 3 CDCL with integrated MDM

1: global vars: assigns. σ, MDM rounds, conflicts limit maxCon-
flicts

2: procedure CDCL( )
3: R← rounds, status← UNSOLVED, restarts← 0
4: while status = UNSOLVED do
5: maxConflicts ← RESTART(restarts)
6: (0, status)← SEARCH(0, 0), restarts← restarts + 1
7: if restarts mod maxConflicts = 0 then R← rounds
8: return status
9: procedure DECIDE(d)

10: L ← ∅
11: if R �= 0 then L ← MDM(d), R← R− 1
12: if σ = ∅ then PUMPFROZEN(M)

13: if L = ∅ then L ← FOLLOWUPDEC(d)

14: return L

V. INTEGRATING MDM INTO CDCL

As already noted in Section III, DECIDE cannot always

select multiple decisions, as the production of implications

cannot indefinitely be avoided. The main question is therefore

when MDM should be applied. To regulate this, we involve

the restarting mechanism of SAT solvers, in particular the one

used by MINISAT, as we use it in our own SAT solver as well.

In Alg. 3, at lines 2-8, an extended version of the CDCL

procedure is given, with restarts. The RESTART procedure

applies the chosen restart strategy, providing an upper-bound

for the total number of conflicts that is allowed to occur in

the SEARCH procedure before the next restart should happen.

We have implemented both the geometric [20] and Luby [21]

restarts, as used in MINISAT. In Section VI, we discuss their

effect on solving when MDM is applied.

Although not listed here, SEARCH is extended to terminate

once the conflicts limit maxConflicts is reached, and whenever

this is the case, SEARCH returns (0,UNSOLVED). Every time

SEARCH returns a value (line 6), the number of restarts

is incremented. At line 7, we use maxConflicts again to

periodically reset R to the constant rounds.
The DECIDE procedure (lines 9-14) calls MDM up to rounds

times (line 11) after every reset of R (line 7). At line 13, if L is

empty, either due to R = 0 or MDM producing an empty set,

the procedure FOLLOWUPDEC is called, which implements

standard decision making (i.e., single decision selection). If

the overall solving procedure has just started (σ = ∅), the

PUMPFROZEN procedure is called at line 12, to mitigate what

we call the overjump effect. More on this below.

The intuition behind the periodic execution of MDM for

a rounds number of times after a restart, is that there is

maximum potential for selecting a large set of multiple

decisions at the start of solving. After a number of MDM

selections, the solver should start considering decisions that

cause implications. The use of maxConflicts to regulate the

resetting of R (line 7) may be less intuitive. We experience

that not applying MDM after each restart is effective.
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A. The overjump effect

Consider the multiple decisions set {x1, x8, x9} selected

in Ex. 3. Assume that after MDM has selected this set,

FOLLOWUPDEC is called by DECIDE, and that this procedure

selects ¬x4, as Fig. 1 shows. Since this leads to a conflict,

assume that the binary clause {¬x7,¬x8} is learned. It is

concluded that all assignments up to level 1 must be undone

(line 35 of Alg. 1), and therefore also decision x9 at level

3 (see Fig. 1), even though it is not related to the conflict

at all (in other words, x9 is jumped over). Unnecessarily

undoing decisions can in general negatively affect the solving

procedure. Although this can occur in standard CDCL as well,

suitable heuristics, such as VSIDS, mitigate this effect. They

tend to favour sequences of decisions that are closely related,

due to how α evolves over time, making it unlikely that a

sequence such as the one in Ex. 3, with x9 not being related

to the other decisions at all, is made. Moreover, in standard

CDCL, sequences of decisions without implications are not

specifically stimulated, making it more likely that conflicts

occur earlier (see Section VI), which in turn influences α.

On the other hand, when MDM makes a set of decisions, α
can only evolve after the complete set has been selected, hence

α has much less influence on the subsequent selection of the

decisions when that set is constructed. A subsequent call of

FOLLOWUPDEC may then select a decision that is (possibly

transitively) dependent on any of the previously made parallel

decisions, and at the start of the solving procedure, when all

variables have α = 0, the order in which parallel decisions

are made is independent of α, and only depends on h.

To mitigate the overjump effect, we therefore have to

stimulate at the start of solving that after making multiple

decisions, the subsequent standard follow up decisions (FUDs)

are dependent on the most recently made parallel decision, i.e.,

the one with the highest decision level. If no such decisions

can be made, the ones dependent on the decision with the

second highest level must be stimulated, and so on.

The prioritisation algorithm in Alg. 4 plays a vital role in

this. Recall that it is called by DECIDE after the initial selection

of decisions (line 12 in Alg. 3). It gives priority to the FUDs

implied by the most recent parallel decisions. The for loop at

lines 3-7 in Alg. 4 iterates over the decisions in M, ordered

by ≥δ , which is defined as � ≥δ �′ � δ(�) ≥ δ(�′). At line

4, a normalised value 0 < β ≤ 1 is computed for decision �,
based on the decision level of � and the number of decisions

made. We ensure that this value does not exceed 1, to prevent

this prioritisation from interfering with the standard VSIDS

activity. In the for loop at lines 5-7, the α of every variable

referred to by a literal in a clause in which ¬� is watched is

increased (bumped) by β, if no activity has been recorded yet

(line 8). In practice, the use of PUMPFROZEN is very effective:

experiments on a random set of 200 formulas reveal a boost

in performance by speedups of 21× at best, and 1.8× on

average. This is remarkable, considering that PUMPFROZEN

is only called at the start of the solving procedure. After that,

the use of VSIDS is sufficient to mitigate overjumping.

Algorithm 4 Follow-Up Decisions Prioritisation

1: global vars: VSIDS variable activity α, dec. level function δ
2: procedure PUMPFROZEN(M)
3: for � ∈ SORT(M,≥δ) do
4: β ← δ(�)/|M|
5: for all C ∈ C¬� with WC(¬�) do
6: for all �′ ∈ C do
7: if v(�′) �= v(�)∧α(v(�′)) = 0 then α(v(�′))← β

B. Correctness of applying MDM in CDCL

Finally, we can reason about the correctness of applying

MDM in CDCL, i.e., that CDCL as in Alg. 3 returns SAT iff ϕ is

satisfiable, and returns UNSAT iff ϕ is unsatisfiable. We argue

that this is the case, by showing that each execution of CDCL

with MDM, which, for clarity, we refer to as MDCL (Multiple

Decision Clause Learning), can be matched by an execution of

CDCL without MDM, or CDCL for short. MDCL and CDCL only

differ in the fact that MDCL sometimes calls MDM, leading to a

forward jump to a level higher than the current level. Clearly,

every time DECIDE executes FOLLOWUPDEC in MDCL, CDCL

can match the decision made. When DECIDE executes MDM in

MDCL, multiple decisions �1, . . . , �k are made, each decision

not leading to any implications, by Def. 2. Note in Alg. 2 that

each time a decision �i (1 ≤ i ≤ k) is added to M at line 11,

the condition at line 9 is satisfied, which implies that there are

no unit clauses, but also that there is no clause C for which

C |=σ∪{�i} ⊥. Selecting k decisions in Alg. 1 results at line 9

in �d possibly being increased to some value higher than �d+1,
which directly leads, by the conditions of lines 14 and 7, to

k − 1 calls of SEARCH, after which we have d = �d − 1, and
BCP is called to check for conflicts at line 14. In CDCL, this

can be matched by successively making the same decisions

�1, . . . , �k in k calls of DECIDE at line 9 of Alg. 1. After each

of the first k− 1 decisions, BCP is called at line 14. and since

no clause is unsatisfied and no unit clauses exist, the while
loop in BCP is skipped, resulting in BCP returning true, and
SEARCH being called again. After decision �k, BCP detects

conflicts iff MDCL does as well, and if no conflicts occur,

SEARCH is called again, which in turn calls DECIDE.

VI. BENCHMARKS

We implemented CDCL with MDM into a new solver called

PARAFROST. It has data structures designed from scratch and

implemented in C++, with the intention of parallelising SAT

solving in the future. To check the WC predicate, a watch
list is maintained for each literal � that stores pointers to

clauses in which � is watched. Similar to the LINGELING

implementation, binary clauses are only referenced in the

watch lists, and not in the clause database, to save memory.

The VSIDS settings and the clause deletion policy for the

reduction of conflict clauses are the same as in MINISAT.

Additionally, we integrated MDM into GLUCOSE version

3 [13], to demonstrate the effectiveness of MDM in a state-

of-the-art solver with and without preprocessing. The same

GLUCOSE heuristics and settings have been used for all
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(a) PARAFROST (random) (b) MDM vs. the world (random)

(c) PARAFROST (application) (d) MDM vs. the world (application)

Fig. 2: Runtime results for CDCL with and without MDM

experiments, both when using and not using MDM. When

configuring the preprocessing, we noticed that GLUCOSE skips

clause eliminations on problems having more than 4,800,000

clauses. We disabled this limitation to avoid redundant results

w.r.t. non-preprocessing experiments. We refer to GLUCOSE

with preprocessing as GLUCOSE-PRE. Both PARAFROST and

GLUCOSE with MDM, together with all experimental results,

are available online.1

While preparing the GLUCOSE experiments, we observed

that controlling the frequency of calling MDM in DECIDE

as in line 7 of Alg. 3 is not effective, since the restart

strategy of GLUCOSE does not work with a fixed maximum

number of conflicts. Therefore, in GLUCOSE-PRE, we have

configured the periodic calling of MDM differently: whenever

restarts mod (nrConflicts/m) + 1 = 0, R is reset to rounds .
Since the total number of conflicts (nrConflicts) monotonically

increases, we divide it by a monotonically growing divisor

m before comparing restarts with it. After every 100,000

conflicts, m is incremented. Initially, m = 1. Tuning those

parameters to an optimum is left for future work.

All experiments were conducted using the compute nodes of

the DAS-5 cluster [22]. Each problem was analysed in isola-

tion on a separate node. Each node has an Intel Xeon E5-2630

CPU running at 2.4 GHz with 128 GB of system memory,

and runs on the CentOS 7.4 operating system. We performed

the equivalent of 4 years of uninterrupted processing on a

1 https://gears.win.tue.nl/software/mdm.

single node to measure how MDM impacts SAT solving when

applied in state-of-the-art CDCL solvers.

We selected all the application problems from the 2013-

2019 SAT competitions2, excluding redundancies. These prob-

lems encode roughly 60+ different real-world applications,

with various logical properties. The problem size ranges in

this set from 14 KB up to 2 GB. Moreover, we selected 200

random problems ((u)uf-250) from the SATLIB library [23].

In the experiments, we compared MINISAT, version 2.2,

with PARAFROST (with and without MDM), and we analysed

the impact of MDM on GLUCOSE, with and without prepro-

cessing. The time out for solving a formula in PARAFROST

and MINISAT was set to 8 hours, while GLUCOSE was run

with a timeout of 6 hours per formula.

Figure 2 gives runtime results for the various solvers.

Cactus plots (a) and (c) show the impact of different

modes in PARAFROST. Each mode in the legend is named

<restart>-mdm<rounds>, with restart referring to

the restart policy, which is either geometric (pow) or luby,
and rounds defining MDM rounds per search (see Alg. 3).

With mdm3, we refer to MDM with rounds = 3. Note that

mdm0 refers to not applying MDM at all. In practice, we

observed that setting rounds to a value higher than 3 does

not help to improve performance. Other settings, such as the

ones for VSIDS, were kept the same for all experiments.

Plots (b) and (d) compare PARAFROST with(out) MDM3 with

2 http://satcompetition.org.
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TABLE I: SOLVABILITY OF MDM WHEN INTEGRATED TO PARAFROST AND GLUCOSE

Measurement MiniSat ParaFROST(MDM0) ParaFROST(MDM3) Glucose Glucose(MDM3) Glucose-Pre Glucose-Pre(MDM3)
r a r a r a r a r a r a r a

Solved
200 379 200 359 200 395 200 413 200 425 200 414 200 445

(579) 65% (559) 63% (595) 67% (613) 69% (625) 70% (614) 69% (645) 73%

MDM3 faster by
159 115 102 182

—
104 170

—
118 190

—(274) 48% (284) 51% (274) 45% (308) 51%

MDM3 excess by
0 16 0 36

—
0 12

—
0 31

—(16) 3% (36) 7% (12) 2% (31) 5%
Total time (hr) 2846.66 3026.79 2822.07 2532.35 2450.55 2457.21 2306.62

TABLE II: STATISTICAL EVALUATION OF MDM IMPACT ON GLUCOSE-PRE FOR DIFFERENT FORMULAS

CNF Glucose-Pre (MDM0) Glucose-Pre (MDM3)
# FUDs restarts conflicts t(s) # FUDs MDM Calls # MDs restarts conflicts t(s)

blockpuzzle_9x9_s1_free10 3,978,815 5,367 3.5479E+10 94 210,979 3 1,357 269 2.3934E+10 3
toughsat_26bits_2 10,629,037 18,140 9.1326E+11 2,960 1,419,209 3 209 2,704 2.0983E+12 155
q_query_3_L200_coli.sat 13,821,925 33,817 7.3463E+06 1,121 1,021,637 7 913,832 1,948 5.7789E+05 71
sha1r17m75a_p 4,110,551 2,566 3.6750E+13 696 826,056 3 1,309 996 1.7752E+11 54
mp1-klieber2017s-0300-034-t12 13,704,827 7,933 3.4034E+15 3,707 5,131,866 3 17,991 1,184 3.8672E+12 1,056
gss-20-s100 1,927,134 908 1.1796E+13 1,303 251,631 3 22,550 159 2.1659E+12 141
mp1-9_49 9,076,146 17,438 2.3723E+12 1,025 1,799,351 9 187 2,116 7.2529E+11 114
partial-10-19-s 125,449,003 135,634 6.1101E+13 20,300 28,704,006 57 986,934 24,578 2.1182E+12 2,550
mp1-rubikcube912 42,716,017 157,177 3.7654E+07 10,180 30,377,794 19 7,067 52,701 2.7644E+07 5,911
cube-11-h13-unsat 287,186 399 8.3493E+04 146 208,103 3 444,667 257 5.2369E+04 86
size_5_5_5_i223_r12 38,684,114 69,426 2.1244E+13 6,055 15,004,798 52 8,623 27,859 2.5824E+14 977
transport-1city-35n-40 14,777,489 1,483 1.5311E+15 1,240 4,825,914 3 1,309,549 456 1.5641E+15 387
Mickey_out250_known_last146 2,893,224 2,725 1.3714E+10 54 97,517 3 49,320 229 2.3611E+10 11
hwmcc15deep-oski15a14b04s-k16 30,081,389 27,092 7.3587E+06 869 7,873,390 9 525,385 6,065 1.4810E+06 190
UCG-20-5p1 1,810,808 838 6.1661E+14 535 728,566 3 95,894 436 2.7468E+12 126
GracefulGraph-K04-P04_c18 2,554,285 5,449 3.3113E+12 104 930,211 9 5,851 1,869 3.4781E+12 25
reachsafety.newton_2_6 334,056 424 1.4703E+12 19 136,621 3 64,006 142 1.5128E+10 6
mizh-md5-48-2 30,817,468 29,698 1.4822E+12 592 16,993,726 67 241,779 13,964 1.2828E+12 206
reachsafety.triangular 5,650,490 9,018 1.9239E+11 187 3,849,193 5 25,179 3,024 1.9951E+13 99
test_v7_r17_vr5_c1_s25451 39,280,415 140,081 1.8042E+07 19,716 20,668,772 79 6,787,242 76,248 8.2700E+06 10,670
9vliw_m_9stages_iq3_C1_bug9 4,456,766 195 2.8021E+12 72 1,033,139 3 403,335 30 1.7197E+10 40
mp1-klieber2017s-0490-023-t12 389,796 154 4.5573E+12 74 229,568 3 28,870 35 1.9371E+11 41
MASG0_72_keystream76_0 16,316,939 5,551 4.8628E+15 6,193 12,636,873 3 3,181 11,778 2.5498E+15 3,682
sokoban-p20.sas.cr.21 2,206,126 2,142 4.1048E+05 230 1,639,150 8 96,892 1,494 2.9162E+05 146
ibm-2002-23r-k90 3,737,246 4,437 1.3415E+12 130 2,894,517 13 371,158 3,122 3.3715E+12 83
slp-synthesis-aes-top28 61,329,961 154,464 2.4132E+14 9,707 44,840,257 187 1,875,092 110,562 7.7041E+15 6,229
cruxmiter29seed4 21,114,991 19,908 1.9758E+07 3,287 15,143,324 3 387 21,212 1.4036E+07 2,126
transport-1city-35n-50 21,593,311 1,923 1.0441E+15 1,708 12,258,223 3 1,634,247 984 1.0932E+15 1,125
ak128boothbg2asisc 47,192,431 35,696 1.1411E+10 3,083 33,471,429 11 484,943 25,086 4.4297E+10 2,037
ASG_72_keystream76_2 8,038,821 4,527 2.5829E+13 2,247 5,871,604 3 3,439 2,722 1.0757E+14 1,525
ACG-20-5p1 922,937 1,059 7.8870E+10 317 717,435 3 105,373 444 2.2829E+12 223
g2-modgen-n200 31,960,054 40,581 1.3276E+15 12,032 32,133,297 23 5,937 39,840 1.1062E+14 8,539
9dlx_vliw_at_b_iq2 9,899,952 1,843 6.3482E+05 37 8,098,849 9 100,323 1,602 4.3828E+05 27
test_v7_r7_vr5_c1_s14675 1,120,842 851 1.5723E+11 35 887,532 5 248,969 613 8.4923E+11 26
CarSequencing-90-02_c18 10,676,128 3,206 1.4912E+13 59 7,671,459 17 212,123 1,920 8.5121E+12 45
Eternity-10-05_c18 899,714 1,030 2.5314E+09 24 815,214 5 3,737 729 1.4429E+10 18
T50.2.0 18,452,981 2,350 7.0158E+05 2,465 15,674,218 31 31,740,848 1,909 6.1158E+05 1,915
hwmcc15deep-intel065-k11 44,751,749 39,042 2.2911E+07 1,533 39,218,889 14 205,636 30,459 2.0185E+07 1,288

MINISAT, and GLUCOSE with(out) MDM3 with GLUCOSE-

PRE with(out) MDM3. For PARAFROST, we used the best

restart modes as indicated by plots (a) and (c).

In the majority of cases, enabling MDM3 positively affects

the runtime in PARAFROST. When solving random problems,

the geometric restart policy is most effective. These problems

are very small in size, resulting in a small number of conflicts,

which favours long restart intervals. In contrast, the luby
policy works well for the application problems due to frequent

restarting. Using the best restart policy together with MDM3

causes PARAFROST to outperform MINISAT (plots (b), (d)).

When used in GLUCOSE and GLUCOSE-PRE, MDM3 has little

impact on solving random problems (plot (b)). However, for

application problems, it clearly impacts the performance of

both GLUCOSE and GLUCOSE-PRE very positively (plot (d)).

Table I summarises the solvability of all solvers. The letters

r and a refer to random and application, respectively. The

Solved row gives per solver the number of solved problems

per problem type, followed by the total number of solved prob-

lems and their percentage. For example, PARAFROST(MDM3)

solved 395 application problems and a total of 595, which

is 67% of the 895 problems. The MDM3 faster by row

evaluates the number of problems solved faster when MDM3

is used in PARAFROST, compared to not using MDM3 and

MINISAT, and when using MDM3 in GLUCOSE, compared to

not using it in GLUCOSE. The same applies to GLUCOSE-

PRE. For instance, GLUCOSE-PRE(MDM3) solved 308 prob-

lems faster than GLUCOSE-PRE, which is 51% (308/614)
of problems solved by GLUCOSE. Similarly, the third row

indicates how many extra problems were solved when MDM3

was used. The last row accumulates the solving time of all

problems (including timeout cases) in hours for each solver.

For instance, the total time of GLUCOSE-PRE(MDM3) is the

minimum among all solvers, saving roughly 150 hours (6%)

compared to GLUCOSE-PRE. Overall, it is clear that MDM

positively affects solving times and works very well when

preprocessing is enabled.

Table II presents the impact of MDM3 on various aspects
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of CDCL on solving a sample of 38 formulas, with MDs

referring to Multiple Decisions, i.e., decisions that were part

of a multiple decisions set. In general, the number of restarts

and the number of conflicts are drastically reduced by MDM3,

which seems to be the main cause for its effectiveness in

CDCL. The conflict clauses produced seem to be of higher

quality, better helping CDCL to make good FUDs, and reduce

the number of implications and potential conflicts.

VII. CONCLUSION

We have proposed how to generalise CDCL to allow making

multiple decisions at once, and have integrated multiple deci-
sion making (MDM) into the CDCL algorithm. Furthermore,

we have demonstrated the effectiveness of MDM in practice,

in particular when solving structured application problems.

Concerning future work, our results motivate us to study the

impact of different heuristics and restart policies. We believe

there is room for improvement to boost the performance of

CDCL solving, and will continue investigating this.
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