
PARAFROST at the SAT Race 2021?

Muhammad Osama and Anton Wijs
Department of Mathematics and Computer Science

Eindhoven University of Technology, Eindhoven, The Netherlands
{o.m.m.muhammad, a.j.wijs}@tue.nl

I. INTRODUCTION

This paper presents a brief description of our solver
PARAFROST which stands for Parallel Formal Reasoning
On SaTisfiability in 2 different configurations. Compared to
the solver submission in the last year competition [1], it is
completely redesigned from scratch based on our recent work
in [2]. It is a parallel SAT solver with GPU-accelerated inpro-
cessing capable of harnessing NVIDIA CUDA-enabled GPUs
in applying modern simplification techniques in parallel. The
CDCL search is built from scratch with various optimisations
based on CADICAL [3] heuristics. The inprocessing engine
extends our previous work in [4], [5] with space-efficient data
structures, parallel garbage collection and more. However, all
submitted versions of the solver are single-threaded.

PARAFROST provides easy-to-use infrastructure for SAT
solving and/or inprocessing with optimized data structures for
both CPU and GPU architectures. The solver can run under
Linux and Windows operating systems. The PARAllel keyword
in PARAFROST intuitively means that SAT simplifications
can be fully executed on variables in parallel as described
in [2] using the Least Constrained Variable Elections (LCVE)
scheduler [4], [5]. Moreover, via the Multiple Decision Making
(MDM) procedure [6], the solver is capable of making mul-
tiple decisions that can be assigned and propagated at once.
In principle, choosing variables to simplify or decide relies
heavily on freezing variables, hence the name PARAFROST.
The scheduled variables are mutually independent according
to some logical properties.

II. DECISION MAKING

Based on our work in [2], the solver improves the decision
heuristics of the solver submitted last year by adopting another
decision queue called Variable Move To Front (VMTF) [7]
where the score of a variable is defined as the number
of conflicts in which the variable was involved. VMTF is
implemented in CADICAL and our solver with a doubly-
linked list. At the decision making step, we apply both VSIDS
and VMTF for the selection of multiple decisions [8]. One
can alternate between VSIDS and VMTF queues based on
the restart mode [3] in a ping-pong manner. In CADICAL,
different restart sequences are interleaved together to remedy
the shortcomings of each individual one and alleviate the

? This work is part of the GEARS project with project number
TOP2.16.044, which is (partly) financed by the Netherlands Organisation for
Scientific Research (NWO).

strengths of all. The idea is to start with the geometric [9] style
with less frequent restarts (i.e. called in CADICAL the stable
mode) then switch to a more aggressive style using dynamic
restarts [10], [11] after some interval based on the number of
conflicts. The interval is increased using the total number of
propagations. In the KISSAT solver [3], the propagation metric
was replaced by estimating the number of cache lines accessed
by the watches in the unit propagation procedure. Currently,
in PARAFROST, we adopt the same technique assuming a
more realistic line size of 64-bit. Moreover, we observed that
clauses are extensively checked for being deleted or not during
propagation, simplifications, and garbage collection. To avoid
dereferencing a clause only to check its state, a stencil array is
created explicitly as part of the CNF data structure inspired by
our parallel garbage collector proposed for the GPU solver [2].

Making a decision can always lead to conflicts, but making
more of them increases the likelihood of a conflict occurring.
To avoid repeatedly selecting sets of decisions that cause
conflicts, they are constructed in such a way that it is guaran-
teed that no conflicts will occur. However, multiple decisions
cannot be always selected, as the production of implications
cannot indefinitely be avoided. The main question is therefore
when MDM should be applied. Per search, MDM is called a
number of decaying rounds (default is 3) if there are enough
free variables to assign. If no rounds are left, it can be
reset again to the initial value (e.g. 3), periodically based on
conflicts, in an n log(n) increasing step [8].

To further strengthen MDM, we add an implementation
for local search using the WALKSAT strategy [12]. Besides
running the local search frequently to improve the decision
phases [3], we call it in MDM regularly per first round at
the top level to improve the quality of the multiple deci-
sions picked [8]. Our WALKSAT version is powered by a
random number generator based on the Xorshift32 technique
discovered by George Marsaglia. The initial decision phases
are assumed to be negative which goes back to MINISAT.
Regarding clause minimization, we still keep the strengthening
method with binaries from the previous submission which is
crucial when MDM is turned on.

III. INPROCESSING

Recently, we applied GPUs in SAT solving to accelerate
preprocessing [4], [5] and inprocessing [2]. In these opera-
tions, a given SAT formula is simplified, i.e., it is rewrit-
ten to a formula with fewer variables and/or clauses, while
preserving satisfiability, using various simplification rules. In

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

32

preprocessing, this is only done once before the solving starts,
while in inprocessing, this is done periodically during the
solving. PARAFROST supports bounded variable elimination
(BVE) [13], backward subsumption elimination (SUB) [14],
Blocked Clause elimination (BCE) [15], and a new simplifica-
tion technique called eager redundancy elimination (ERE) [2].
BVE eliminates variables by either applying the resolution
rule or substitution (also known as gate equivalence reason-
ing) [14], [16]. Substitution detects patterns encoding logical
gates, and substitutes the involved variables with their gate-
equivalent counterparts. Previously [1], we only considered
AND gates. In the current inprocessor, we add support for
Inverter, If-Then-Else and XOR gate extractions. For all logical
gates, substitution can be performed by resolving non-gate
clauses (i.e., clauses not contributing to the gate itself) with
gate clauses [16]. However, for the inverter gates we do sub-
stitution in-place without adding new clauses to the formula
which saves time and memory.

ERE is a new elimination technique that we propose, which
repeats the following until a fixpoint has been reached: for a
given formula S and clauses C1 2 S, C2 2 S with x 2 C1 and
x̄ 2 C2 for some variable x, if there exists a clause C 2 S
for which C ⌘ C1 ⌦x C2, then let S := S \ {C}. In this
work, we restrict removing C to the condition (C1 is learnt _
C2 is learnt) =) C is learnt. If the condition holds, C is
called a redundancy and can be removed without altering the
original satisfiability.

In this submission, a sequential implementation of all
simplifications described above is provided as part of
PARAFROST. Moreover, the inprocessing engine uses a 20-
byte data structure to store a clause (with at least one literal)
different from the solver side which requires 24 bytes. By
default, all simplifications are enabled except for BCE which
was not effective in practice. The ve+ option is always
enabled with number of phases set to 5. The phases=<n>
option applies ve+ for a configured number of iterations, with
increasingly large values of the threshold µ (maximum number
of occurrences of a variable). If there are any unit clauses
produced along the simplification process, their propagation
is delayed and run in the next phase. Finally, at the last
phase, the ERE method is executed once. Inprocessing is
scheduled periodically based on the function n log2(n) when
at least 4,000 of the fixed (root) variables are removed.
Forward subsumption is scheduled on all clauses with the same
scaling function but applied within the learnt-clauses reduction
procedure.

The solver version evaluated in [2] was missing important
inprocessing techniques (thanks to Armin Biere for pointing
this out) such as probing [17], autarky reasoning [3], and
vivification [18]. In the latter, binary clauses are considered
for the histogram but ignored in the actual vivification. This
gives proper indication of which literals are more important
to vivify. Regarding autarky, we remove autarkic variables in
our implementation as in KISSAT but treat them as fixed roots
(i.e. make the solver think they are deduced in the search) in
both solution reconstruction and variable mapping. This saves

memory and time spent in storing these variables and their
satisfied clauses as witnesses. Autarky is applied only once
after local search. With this submission we add them all to
PARAFROST and are enabled by default.

IV. THREATS TO VALIDITY

Incorrect values of literals and variables due to ill
logic or type casting breaks the solver fidelity. Therefore,
PARAFROST always checks the invariants (0 < x m) and
(1 < ` 2 ⇥ m) as preconditions, where m is the number of
variables in the formula and ` encodes the variable x by a logi-
cal shift to the left. The least significant bit represents the sign.
The generated model for satisfiable formulas can be verified
against the original formula by enabling the modelverify
option. The generation of DRAT proofs is also supported for
the sequential solver.

V. SUBMISSIONS

The solver instance PARAFROST comprises all configu-
rations described in the previous sections, in which MDM
with local search, and all simplifications are enabled. The sec-
ond configuration submitted is called PARAFROST-NOMDM
which disables MDM using the command mdmrounds=0.
The initial settings of the PARAFROST instance have been
tuned on the DAS-5 cluster [19] and the Dutch national
supercomputer CARTESIUS.

REFERENCES

[1] M. Osama and A. Wijs, “ParaFROST, ParaFROST CBT, ParaFROST
HRE, ParaFROST ALL at the SAT Race 2020,” SAT Competition 2020,
pp. 42–43, 2020.

[2] M. Osama, A. Wijs, and A. Biere, “SAT Solving with GPU Accelerated
Inprocessing,” in TACAS 2021, Luxembourg, 2021, Proceedings, Part I,
ser. Lecture Notes in Computer Science, vol. 12651. Springer, 2021,
pp. 133–151.

[3] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in SAT Competition 2020, 2020, pp. 51–53.

[4] M. Osama and A. Wijs, “Parallel SAT Simplification on GPU Architec-
tures,” in TACAS, ser. LNCS, vol. 11427. Cham: Springer International
Publishing, 2019, pp. 21–40.

[5] ——, “SIGmA: GPU Accelerated Simplification of SAT Formulas,” in
iFM, ser. LNCS, vol. 11918. Springer, 2019, pp. 514–522.

[6] M. Osama and A. Wijs, “Multiple Decision Making in Conflict-Driven
Clause Learning,” in 2020 IEEE 32nd International Conference on Tools
with Artificial Intelligence (ICTAI), 2020, pp. 161–169.

[7] A. Biere and A. Fröhlich, “Evaluating CDCL Variable Scoring
Schemes,” in SAT, ser. LNCS, vol. 9340. Springer, 2015, pp. 405–
422.

[8] M. Osama and A. Wijs, “Improving Decision Making in CDCL SAT
Solvers,” in Journal of Automated Reasoning, 2021, to be submitted.

[9] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT, ser.
LNCS, vol. 2919. Springer, 2004, pp. 502–518.

[10] G. Audemard and L. Simon, “Refining Restarts Strategies for SAT
and UNSAT,” in Principles and Practice of Constraint Programming,
M. Milano, Ed. Springer, 2012, pp. 118–126.

[11] A. Biere and A. Fröhlich, “Evaluating CDCL Restart Schemes,” in
Proceedings of Pragmatics of SAT 2015 and 2018, ser. EPiC Series
in Computing, D. L. Berre and M. Järvisalo, Eds., vol. 59. EasyChair,
2019, pp. 1–17.

[12] B. Selman and H. A. Kautz, “An Empirical Study of Greedy Local
Search for Satisfiability Testing,” in Proceedings of the 11th National
Conference on Artificial Intelligence. Washington, USA, 1993. AAAI
Press / The MIT Press, 1993, pp. 46–51.

33

[13] S. Subbarayan and D. K. Pradhan, “NiVER: Non-increasing variable
elimination resolution for preprocessing SAT instances,” in SAT, ser.
LNCS, vol. 3542. Springer, 2004, pp. 276–291.

[14] N. Eén and A. Biere, “Effective Preprocessing in SAT Through Variable
and Clause Elimination,” in SAT, ser. LNCS, vol. 3569. Springer, 2005,
pp. 61–75.

[15] T. Balyo, A. Fröhlich, M. J. H. Heule, and A. Biere, “Everything You
Always Wanted to Know about Blocked Sets (But Were Afraid to Ask),”
in SAT, C. Sinz and U. Egly, Eds. Cham: Springer International
Publishing, 2014, pp. 317–332.

[16] M. Järvisalo, M. J. Heule, and A. Biere, “Inprocessing Rules,” in IJCAR,
ser. LNCS, vol. 7364. Springer, 2012, pp. 355–370.

[17] I. Lynce and J. Marques-Silva, “Probing-based preprocessing techniques
for propositional satisfiability,” in ICTAI. IEEE, 2003, pp. 105–110.

[18] C. Piette, Y. Hamadi, and L. Saı̈s, “Vivifying Propositional Clausal
Formulae,” in ECAI. NLD: IOS Press, 2008, pp. 525–529.

[19] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff, “A Medium-Scale Distributed System for
Computer Science Research: Infrastructure for the Long Term,” IEEE
Computer, vol. 49, no. 5, pp. 54–63, 2016.

34

