
ParaFROST, ParaFROST CBT, ParaFROST HRE,
ParaFROST ALL at the SAT Race 2020

Muhammad Osama and Anton Wijs
Department of Mathematics and Computer Science

Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
{o.m.m.muhammad, a.j.wijs}@tue.nl

I. INTRODUCTION

This paper presents a brief description to our solver
ParaFROST which stands for Parallel Formal Reasoning Of
SaTisfiability in 4 different configurations. Our solver is based
on state-of-the-art CDCL search [1]–[3], integrated with pre-
processing as presented in our tool called SIGmA (SAT sImpli-
fication on GPU Architectures) [4], [5], and a new technique
called Multiple Decision Making (MDM) [6]. Nevertheless,
all submitted versions only permits a single-threaded CPU
execution.

ParaFROST provides easy-to-use infrastructure for SAT
solving and/or preprocessing with optimized data structures
for both CPU/GPU architectures, and fine-tuned heuristic
parameters. The Parallel keyword in ParaFROST intuitively
means that SAT simplifications can be fully executed on
variables in parallel as described in [4] using the Least
Constrained Variable Elections (LCVE) algorithm. Moreover,
via the MDM procedure [6], the solver is capable of making
multiple decisions that can be assigned and propagated at once.
In principle, choosing variables to preprocess or decisions
relies heavily on freezing (that is where FROST is surfaced)
mutually independent variables according to some logical
properties.

II. PREPROCESSING

In previous work, we have shown how Bounded Vari-
able Elimination (BVE) [7], [8] and Hybrid Subsumption
Elimination (HSE) can be performed in parallel on Graphics
Processing Units (GPU). The acceleration is proven to be
effective in increasing the amount of reductions within a
fraction of second, e.g. 66⇥ speedup compared to SatElite [8]
when combined together in ve+ mode [4]. This mode iterates
over BVE and HSE in several rounds until no literals can be re-
moved. Furthermore, we have added new implementations for
Blocked Clause Elimination (BCE) and a new simplification
technique, we call Hidden Redundancy Elimination (HRE) [5].
HRE repeats the following until a fixpoint has been reached:
for a given formula S and clauses C1 2 S, C2 2 S with
x 2 C1 and x̄ 2 C2 for some variable x, if there exists a
clause C 2 S for which C ⌘ C1 ⌦x C2 and C is not a

This work is part of the GEARS project with project number TOP2.16.044,
which is (partly) financed by the Netherlands Organisation for Scientific
Research (NWO).

tautology, then let S := S \ {C}. The clause C is called
a hidden redundancy and can be removed without altering
the original satisfiability. For example, consider the formula
S = {{a, c̄}, {c, b}, {d̄, c̄}, {b, a}, {a, d}}. Resolving the first
two clauses gives the resolvent {a, b} which is equivalent to
the fourth clause in S . Also, resolving the third clause with
the last clause yields {a, c̄} which is equivalent to the first
clause in S . HRE can remove either {a, c̄} or {a, b} but not
both.

In this submission, a sequential implementation of all sim-
plifications described above is provided as part of ParaFROST.
By default, in ParaFROST, all simplifications are disabled.
In ParaFROST HRE, the ve+ is enabled with number of
phases set to 2. The phases=<n> option applies ve+ for a
configured number of iterations, with increasingly large values
of the threshold µ (maximum occurrences of a variable) [4],
[5]. After all phases are done, the hre method is executed
once. On the other hand, the ParaFROST ALL submission
enables all simplifications along with bce.

both ParaFROST HRE and ParaFROST ALL delay pre-
processing by a user-defined number of restarts. This gives
the solver enough time to solve trivial problems (solved in
few seconds) before simplifications are executed. The number
of restarts needed to activate preprocessing is set to 50
through the option pre-delay=<n>. The solver supports
geometric [9], Luby [2], and dynamic restarts [10]. However,
in all submissions, we only enable dynamic restarts.

III. MULTIPLE DECISION MAKING

We proposed a new approach [6] to make multiple decisions
in such a way, they can be assigned and propagated simul-
taneously or sequentially without causing any implications
or conflicts. Originally, we did so to introduce a possible
parallelisation strategy. This strategy is yet to pay off, but
surprisingly, the MDM turned out to have a positive impact
on standard, sequential CDCL, for many different formulas. In
all configurations, the solver periodically calls MDM with a
maximum of 3 rounds per search. Otherwise, a single decision
is made as the standard CDCL procedure does. The number
of MDM rounds is controlled via the option PDM=<n>.

IV. CHRONOLOGICAL BACKTRACKING

We adopted the chronological backtracking (CBT) intro-
duced by the authors in [11], to help CDCL solvers avoid

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2020.

42



jumping too far in certain situations. However, the procedure
is computationally expensive in calculating the correct chrono-
logical level during a conflict. Therefore, we enabled this fea-
ture in a separate solver instance called ParaFROST CBT (all
simplifications are disabled). The CBT is triggered when the
number of conflicts are multiple of 5000 (cbt-conf=<n>)
and the jumping distance is 500 (cbt-dist=<n>). In
ParaFROST HRE, this option is disabled.

V. AUTOMATED TUNING

The GPU code tuner made by Ben van Werkhoven [12], [13]
is used to optimize the parameter settings of all heuristics in
ParaFROST ALL. The tool is capable of tuning both CPU
and GPU codes with support for many search optimization
algorithms. In our case, we collected a sample of 48 different
formulas, stemmed from different CNF families. The solving
time per problem is expected to take 1000 seconds according
to a solver experiment without tuning. Then, we ran a Python
script to optimize the solver based on the accumulated running
time of the selected benchmark suite. The tuned parameters
are passed to the solver as command-line options. The basin
hopping strategy is used to accelerate the tuning process.

Finally, the solver instance ParaFROST ALL comprises all
configurations described in the previous sections, in which
HRE, CBT, and all simplifications are enabled.

REFERENCES

[1] J. P. Marques-Silva and K. A. Sakallah, “Grasp: A search algorithm for
propositional satisfiability,” IEEE Transactions on Computers, vol. 48,
no. 5, pp. 506–521, 1999.

[2] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT, ser.
LNCS, vol. 2919. Springer, 2004, pp. 502–518.

[3] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proceedings of the 21st International Jont Conference on
Artifical Intelligence, ser. IJCAI’09. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2009, p. 399–404.

[4] M. Osama and A. Wijs, “Parallel sat simplification on gpu architectures,”
in Tools and Algorithms for the Construction and Analysis of Systems,
T. Vojnar and L. Zhang, Eds. Cham: Springer International Publishing,
2019, pp. 21–40.

[5] ——, “Sigma: Gpu accelerated simplification of sat formulas,” in
Integrated Formal Methods, W. Ahrendt and S. L. Tapia Tarifa, Eds.
Cham: Springer International Publishing, 2019, pp. 514–522.

[6] ——, “Multiple decision making in conflict-driven clause learning,”
Submitted.

[7] S. Subbarayan and D. K. Pradhan, “NiVER: Non-increasing variable
elimination resolution for preprocessing SAT instances,” in SAT, ser.
LNCS, vol. 3542. Springer, 2004, pp. 276–291.

[8] N. Eén and A. Biere, “Effective Preprocessing in SAT Through Variable
and Clause Elimination,” in SAT, ser. LNCS, vol. 3569. Springer, 2005,
pp. 61–75.

[9] T. Walsh et al., “Search in a small world,” in Ijcai, vol. 99, 1999, pp.
1172–1177.

[10] G. Audemard and L. Simon, “Refining restarts strategies for sat and
unsat,” in Principles and Practice of Constraint Programming, M. Mi-
lano, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
118–126.

[11] A. Nadel and V. Ryvchin, “Chronological backtracking,” in Theory and
Applications of Satisfiability Testing – SAT 2018, O. Beyersdorff and
C. M. Wintersteiger, Eds. Cham: Springer International Publishing,
2018, pp. 111–121.

[12] B. van Werkhoven, “Kernel tuner: A search-optimizing gpu code auto-
tuner,” Future Generation Computer Systems, vol. 90, pp. 347 – 358,
2019.

[13] ——, “Kernel tuner,” 2020. [Online]. Available: https://github.com/
benvanwerkhoven/kernel tuner

43


