
Verifying Linked List Safety Properties in AWS
C99 Package with CBMC

Muhammad Osama and Anton Wijs
Department of Mathematics and Computer Science

Eindhoven University of Technology, Eindhoven, The Netherlands
{o.m.m.muhammad, a.j.wijs}@tue.nl

Abstract—In this paper, state-of-the-art proofs are generated
with harness using the CBMC bounded model checker for the
Amazon Web Services C99 core package. In this submission,
we check the safety properties of the Linked List swap-contents
routine with various loop unwinding settings as opposed to
the String compare submitted last year. The generated proof
has proven to be reasonably hard to solve using modern SAT
solvers. It has many variable-clause redundancies which are not
only challenging for a SAT solver but also useful to assess the
performance of different simplification techniques.

I. INTRODUCTION

Bounded Model Checking (BMC) [1]–[3] determines
whether a model M satisfies a certain property ' expressed in
temporal logic, by translating the model checking problem to
a propositional satisfiability (SAT) problem or a Satisfiability
Modulo Theories (SMT) problem. The term bounded refers to
the fact that the BMC procedure searches for a counterexample
to the property, i.e., an execution trace, which is bounded in
length by an integer k. If no counterexample up to this length
exists, k can be increased and BMC can be applied again.
This process can continue until a counterexample has been
found, a user-defined threshold has been reached, or it can be
concluded (via k-induction [2]) that increasing k further will
not result in finding a counterexample. CBMC [4], [5] is an
example of a successful BMC model checker that uses SAT
solving. CBMC can check ANSI-C programs. The verification
is performed by unwinding the loops in the program under
verification a finite number of times, and checking whether the
bounded executions of the program satisfy a particular safety
property [6]. These properties may address common program
errors, such as null-pointer exceptions and array out-of-bound
accesses, and user-provided assertions.

II. BENCHMARKS

In this paper, we are interested in verifying the safety
properties of the swap-contents routine implemented in the
Linked List data structure of the Amazon Web Services (AWS)
C99 core package. The proof covers the following:

• Memory allocation failure and access violations
• Pointer/floating-point overflow
• Data types conversion

We generated 30 different formulas using a loop unwinding
upper-bound in the range [40, 80], with an iincremental step.
These bounds produce SAT formulas with 100% coverage of

all functionalities. All problems are written in this format:
linked_list_swap_contents_safety_unwind<x>
where x denotes the unwinding value. The first and the last
formulas are solved via MiniSat [7] within 90 and 540 seconds
respectively on a machine with AMD EPYC 7H12 64-Core
processor operating at base clock of 2.6 GHz. The solving time
of the rest of the benchmarks are expected to be monotonically
increasing.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Proc. of TACAS (Mar. 1999), Amsterdam,
The Netherlands, ser. LNCS, vol. 1579. Springer, 1999, pp. 193–207.

[2] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[3] M. Osama and A. Wijs, “GPU Acceleration of Bounded Model Checking
with ParaFROST,” in Proc. of CAV (Jul. 2021), USA, ser. LNCS, vol.
12760. Springer, 2021, pp. 447–460.

[4] E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in Proc. of TACAS (Mar. 2004), Barcelona, Spain, ser. LNCS,
vol. 2988. Springer, 2004, pp. 168–176.

[5] D. Kroening and M. Tautschnig, “CBMC - C Bounded Model Checker
- (Competition Contribution),” in Proc. of TACAS (Apr. 2014), Grenoble,
France, ser. LNCS, vol. 8413. Springer, 2014, pp. 389–391.

[6] D. Kroening and O. Strichman, Decision Procedures - An Algorithmic
Point of View, Second Edition, ser. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2016.

[7] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Proc. of
SAT (May 2003) Santa Margherita Ligure, Italy, ser. LNCS, vol. 2919.
Springer, 2003, pp. 502–518.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, volume B-2022-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2022.

72


