
SEQFROST at the SAT Race 2022
Muhammad Osama and Anton Wijs

Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The Netherlands

{o.m.m.muhammad, a.j.wijs}@tue.nl

I. INTRODUCTION

This paper presents a brief description of our solver SE-
QFROST which stands for Sequential Formal ReasOning
about SaTisfiability in 3 different configurations. SEQFROST
is a new solver mostly rewritten from scratch based on our
last year submission [1] with efficient data structures and
many code optimizations. This year, we observed a large
amount of time is spent on function calls in Boolean Constraint
Propagation (BCP) and data sorting especially in Multiple-
Decision Making (MDM) and inprocessing. Thus, we resorted
to inlined code and pointer prefetching in BCP and replaced
the standard sort procedure with faster modern alternatives,
e.g., pdqsort. Further, we augment the Multi-Arm Bandit
(MAB) rewarding scheme as implemented in the last year
winner KISSAT-MAB to MDM strategy [2], and implement
functional dependency extraction to enhance the effectiveness
of variable elimination. Finally, we extend our elimination
method eager redundancy elimination (ERE) [1], [3] with
clause strengthening to remove redundant literals.

II. DECISION MAKING

The decision-making step in SEQFROST switches periodi-
cally from the standard single-decision procedure as originally
introduced in CDCL search to our MDM procedure previously
presented in [2]. Both single and multiple decisions are
chosen according to VSIDS, VMTF, and CHB [4] branching
heuristics. This year, we add the latter to our solver decision
heuristics to alleviate the quality of the picked decisions in
MDM. SEQFROST decides whether to use VSIDS or CHB
based on MAB restarts [5]. The decision phases of multiple
decisions are still improved via local search but only once at
the initial MDM call.

III. VARIABLE ELIMINATION

In gate-equivalence reasoning, we substitute eliminated vari-
ables with deduced logical equivalent expressions. Combining
gate equivalence reasoning with the resolution rule tends to
result in smaller formulas compared to only applying the res-
olution rule [1], [3], [6]–[9]. Let G` be the gate clauses having
` as the gate output and H` the non-gate clauses, i.e., clauses
not contributing to the gate itself. For regular gates (e.g. AND),
substitution can be performed by resolving non-gate with gate
clauses as follows: Rx = {{Gx ⌦ H¬x}, {G¬x ⌦ Hx}},
omitting the tautological and the redundant parts {Gx ⌦G¬x}
and {Hx ⌦ H¬x}, respectively [6].

In this submission, we focus on finding definitions for
irregular gates by checking the unsatisfiability of the co-factors
formula {Sx|¬x [S¬x|x}, that is, the formula obtained by
removing all occurrences of x from Sx and ¬x from S¬x.
In [10], a BDD-based approach is used to solve the co-
factors. In this work, we replace the BDD structure with a
function table (bit-vector) encoding the clausal core of the co-
factors. The clausal core is mapped back to the original gate
clauses Gx and G¬x by adding back x and ¬x, respectively.
Then, the set of resolvents Rx = Sx ⌦ S¬x is reduced to
{{Gx ⌦ G¬x}, {Gx ⌦ H¬x}, {G¬x ⌦ Hx}}, dropping the
redundant part {Hx ⌦ H¬x}. In contrast to gate substitution,
the resolvents {Gx ⌦ G¬x} are not necessarily tautological.

IV. EAGER REDUNDANCY ELIMINATION

ERE was designed originally to target and remove redundant
equivalences after a resolution step. It repeats the following
until a fixpoint has been reached: for a given formula S and
clauses C1 2 S, C2 2 S with x 2 C1 and x̄ 2 C2 for
some variable x, if there exists a clause C 2 S for which
C ⌘ C1 ⌦x C2, then let S := S \ {C} iff (C is learnt _
(C1 is original^C2 is original)). The clause C in this case
is called a redundancy and can be removed without altering the
original satisfiability. In addition to the redundancies removal,
we observed that if the resolvent C1⌦x C2 is not equivalent to
any clause, it can still subsume many others in S . However, to
preserve correctness, subsumed clauses are only strengthened
via the generated resolvents. Suppose that C = (C 0 [C 00).
Extended-ERE (i.e. as we call it in this submission) may
strengthen C by removing the redundant literals C 0 (resp. C 00)
if C 00 = C1 ⌦x C2 (resp. C 0 = C1 ⌦x C2).

V. CODE OPTIMIZATIONS

As mention earlier in the introduction section, all pointers
of vector-type variables are prefetched to save the time spent
in calling the overloaded indexing operator []. Additionally,
all functions repeatedly called in unit propagation and conflict
analysis are replaced with macros as inlining is not always
guaranteed by the compiler. Lastly, the bytes generated by
DRAT proof are now stored in a 1-MB buffer. Once, the
buffer is full, the data is written to the output file via a single
call to fwrite (i.e. writes data in burst mode). Compared to
previous submissions and other solvers, putc_unlock was
being called to write on disk byte by byte which, of course,
adds unnessary overhead to the proof generation.

Proceedings of SAT Competition 2022: Solver and Benchmark Descriptions, volume B-2022-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2022.

30

VI. SUBMISSIONS

The solver instance SEQFROST comprises all configu-
rations described in the previous sections, in which MDM
with local search, CHB decision heuristic, and all simplifi-
cations are enabled with Extended ERE to strengthen orig-
inal clauses only (e.g. the option redundancyextend=1
is set). The second configuration SEQFROST-ERE-ALL ex-
tends ERE with both original and learnt clause strength-
ening (e.g. redundancyextend=2). The third configura-
tion SEQFROST-NO-EXTEND disables Extended ERE (e.g.
redundancyextend=0). The initial settings of the SE-
QFROST have been tuned and tested on the DAS-5 clus-
ter [11] and the Dutch national supercomputer SNELLIUS1.

REFERENCES

[1] M. Osama and A. Wijs, “ParaFROST at the SAT Race 2021,”
in Proc. of SC (2021), ser. Report Series B, vol. B-2021-
1. University of Helsinki, 2021, pp. 32–34. [Online]. Available:
http://hdl.handle.net/10138/333647

[2] ——, “Multiple Decision Making in Conflict-Driven Clause Learning,”
in Proc. of ICTAI (Nov. 2020), Baltimore, USA. IEEE, 2020, pp. 161–
169.

[3] M. Osama, A. Wijs, and A. Biere, “SAT Solving with GPU Accelerated
Inprocessing,” in Proc. of TACAS (Mar. 2021), Luxembourg, ser. LNCS,
vol. 12651. Springer, 2021, pp. 133–151.

[4] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Exponential
recency weighted average branching heuristic for sat solvers,” in Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, ser.
AAAI’16. AAAI Press, 2016, p. 3434–3440.

[5] M. S. Cherif, D. Habet, and C. Terrioux, “Combining VSIDS and
CHB Using Restarts in SAT,” in 27th International Conference on
Principles and Practice of Constraint Programming (CP 2021), ser.
Leibniz International Proceedings in Informatics (LIPIcs), L. D. Michel,
Ed., vol. 210. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021, pp. 20:1–20:19.

[6] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing Rules,” in Proc. of
IJCAR (Jun. 2012), Manchester, UK, ser. LNCS, vol. 7364. Springer,
2012, pp. 355–370.

[7] M. Osama and A. Wijs, “GPU Acceleration of Bounded Model Checking
with ParaFROST,” in Proc. of CAV (Jul. 2021), USA, ser. LNCS, vol.
12760. Springer, 2021, pp. 447–460.

[8] ——, “Parallel SAT Simplification on GPU Architectures,” in Proc. of
TACAS (Apr. 2019), Prague, Czech Republic, ser. LNCS, vol. 11427.
Springer, 2019, pp. 21–40.

[9] ——, “SIGmA: GPU Accelerated Simplification of SAT Formulas,” in
Proc. of IFM (Dec. 2019), Bergen, Norway, ser. LNCS, vol. 11918.
Springer, 2019, pp. 514–522.

[10] A. Biere, “Lingeling, Plingeling and Treengeling Entering the Sat
Competition 2013,” in Proc. of SC (2013), ser. Report Series B,
vol. B-2013-1. University of Helsinki, 2013, pp. 51–52. [Online].
Available: http://hdl.handle.net/10138/40026

[11] H. E. Bal, D. H. J. Epema, C. de Laat, R. van Nieuwpoort, J. W. Romein,
F. J. Seinstra, C. Snoek, and H. A. G. Wijshoff, “A Medium-Scale
Distributed System for Computer Science Research: Infrastructure for
the Long Term,” Computer, vol. 49, no. 5, pp. 54–63, 2016.

1This work was carried out on the Dutch national e-infrastructure with the
support of SURF cooperative.

31

