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Abstract. In 2009, the Simple Language of Communicating Objects
(Slco) Domain-Specific Language was designed. Since then, a range of
tools have been developed around this language to conduct research
on a wide range of topics, all related to the construction of com-
plex, component-based software, with formal verification being applied
in every development step. In this paper, we present this range, and
draw connections between the various, at first glance disparate, research
results. We discuss the current status of the Slco framework, i.e., the
language in combination with the tools, and plans for future work.
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1 Introduction

The development of complex software, such as component-based software, is
time-consuming and error-prone. One methodology aimed at making software
development more transparent and efficient is Model-Driven Software Engineer-
ing (MDSE) [38]. In a typical MDSE workflow, software is (mostly automati-
cally) constructed by first creating a high-level description of the system under
development, by means of a model. Such a model is often expressed in a Domain-
Specific Language (DSL). This initial model is subsequently gradually refined via
model transformations, to add information to the model in a structured way, and
finally, once the model is detailed enough, derive source code that implements
the low-level description of the final model (see Fig. 1). Such a workflow is also
used in some low-code application development platforms [22].

Model transformations can be viewed as artefacts that accept a model as
input, and either produce a new model (model-to-model) or code (model-to-code)
as output.1 Once defined, they can be applied automatically on models. Ideally,
once the initial model has been created, and the necessary model transformations
identified or designed, the MDSE procedure is fully automatic, resulting in source
code that exactly implements the intended functionality, or at least requires only
minor manual alteration.
1 Model-to-code transformations are also known as code generators.
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Fig. 1. Verification in a Model-Driven Software Engineering workflow.

Automatically developing software via MDSE goes a long way in reducing
the introduction of errors and making software development more efficient. How-
ever, functional correctness of the developed software is not guaranteed. About
15 years ago, researchers in the Software Engineering & Technology group at
the Eindhoven University of Technology, started to investigate in which ways
software verification techniques could be embedded in MDSE in a seamless
way [7,25]. After a collaboration with industry, it soon became clear that in
order to structurally perform this research, the starting point needed to be a
DSL that is relatively simple, yet expressive enough to model the basic function-
ality of software consisting of multiple interacting components. This lead to the
creation of the Simple Language of Communicating Objects (Slco) [5].

The development of Slco and its model transformations was originally moti-
vated by research questions addressing the internal and external quality of model
transformations. The internal quality refers to the definition of a model trans-
formation, while the external quality considers the process of applying a trans-
formation on a model [4]. By analysing the impact of a model transformation on
a given Slco model, or the potential impact of a transformation on an arbitrary
Slco model, the external quality is assessed. Soon, however, Slco was used
for research on embedding formal verification techniques throughout the entire
MDSE workflow, so that not only the initial model, but all produced artefacts
can be formally verified (see the green ticks in Fig. 1).

In this paper, we present an overview of the research conducted in the last 15
years with Slco on formal verification techniques to verify the various MDSE
artefacts. While the individual results have already been published, such an
overview allows viewing the bigger picture, and the directions in which the
research as a whole is going in the future.

2 A DSL for Component-Based Software

In 2009, Slco version 1.0 was developed to address a particular case study,
namely the generation of Not Quite C (NQC) code for a controller of a con-
veyor belt built in Lego Mindstorms [6,7]. The key part of this platform is a
programmable controller called RCX. It has an infrared port for communica-
tion and is connected by wires to sensors and motors for environment interac-
tion. This imposes particular restrictions, such as the fact that communication
is asynchronous and unreliable, i.e., messages may get lost. These restrictions
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Fig. 2. The general structure of an Slco model.

influenced the design of Slco 1.0. For instance, besides reliable synchronous and
asynchronous channels, Slco also has an unreliable asynchronous channel as a
building block. In addition, as NQC does not support arrays, these were also
not added to Slco 1.0. Finally, as NQC allows working with timers, Slco was
equipped with a delay statement, to allow expressing that a component should
wait a specified number of milliseconds.

The general structure of an Slco model is presented in Fig. 2. In a model, one
or more classes are defined, which can be instantiated as objects. In a class, local
variables are defined, which can be of one of the primitive types: Boolean, Integer
or String. In addition, a class has a finite number of state machines. Each state
machine contains a finite number of states, one of which being the initial state,
and transitions, and optionally local variables of the primitive types. Finally, a
class possibly has one or more ports, to which channels can be connected.

Within an object, i.e., a class instance, the state machines can interact via
the variables defined at the object level. State machines in different objects
can communicate via channels. In this way, Slco can be used both for the
specification of shared-memory, parallel systems and distributed systems.

Channels are connected between the ports of their respective objects. Mes-
sages sent over these channels contain a signal, i.e., a header, and a fixed number
of values, each of a primitive type. When a channel instance is created, the type
of the messages for this channel is defined, and it is specified whether the channel
is synchronous or asynchronous, and in the latter case, what the size of its FIFO
buffer is, and whether it is lossless or lossy.

State machines can exhibit behaviour. At any time, one of the states of a state
machine is its current state, which initially is the initial state. If an outgoing
transition of this current state is enabled, the state machine can fire the transition
and move to the target state of that transition. With each transition, a list of
zero or more statements are associated. If a transition has no statements, it is
always enabled. If it has at least one statement, it is enabled iff its first statement
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is enabled. Firing a transition means considering each associated statement, in
the order defined by the list, for execution. In Slco 1.0, the following statement
types are available:

– Assignment (x := E): assign to variable x the value defined by the expression
E. Variable x can be any variable in the scope of the state machine, i.e.,
it can be either state machine local or local to the object containing the
state machine. In expression E, references to variables in the scope of the
state machine and constants can be combined with the usual operators. The
expression must evaluate to a value of the same type as x. Assignments are
always enabled.

– (Boolean) Expression: If an expression E evaluates to a Boolean value, it can
be used as a stand-alone statement, and act as a guard. Such a statement is
enabled iff it evaluates to true.

– Send (send <message> to <port>): send the given message via the channel
connected to <port>. In case the channel is synchronous, this statement is
enabled iff at least one other state machine can receive the message via the
other port of the channel. If the channel is asynchronous, the statement is
enabled iff the buffer of the channel is not yet full. When fired, the message is
either sent to a receiving state machine (synchronous) or added to the FIFO
buffer of the associated channel (asynchronous).

– Receive (receive <message>|<guard> from <port>): if there is a message avail-
able to be received, its signal matches the one specified, and the (Boolean
expression) guard, which may refer to the message to be received via the
variable(s) in which the message value(s) is/are to be stored, evaluates to
true, then the receive statement is enabled, and when executed, results in
the message of the sender being received (synchronous) or the first message
in the FIFO buffer of the channel being received and removed from the buffer
(asynchronous).

– Delay (after <time> ms): wait for time milliseconds. This statement is always
enabled.

Each statement is atomic, i.e., its execution cannot be interrupted. Regarding
concurrency, Slco has an interleaving semantics.

The fact that a transition can have a list with more than one statement may
lead to situations in which a transition is fired, but its execution cannot termi-
nate, due to the execution reaching a statement that is not enabled. For instance,
the sequence x := 0; y := 1; x = y cannot terminate, unless another state
machine interferes with x and y to make the expression x = y evaluate to true.
If the execution of a transition cannot terminate, the state machine is stuck in
an intermediate state, in-between the source and target states of the fired tran-
sition. To make it simpler to reason about this, a fragment of Slco is referred
to as ‘simple Slco’, which only differs from Slco in the fact that at most
one statement can be associated with each transition. A model-to-model trans-
formation has been defined, that can transform Slco models to semantically
equivalent simple Slco models, by introducing additional states and transitions
where needed.
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1 model ex_chan {
2 classes
3 P {
4 variables
5 Integer x
6 ports Out
7 state machines
8 SM1 {
9 initial R0 states R1

10 transitions
11 R0 -> R1 { x = 0; x := 1 }
12 R1 -> R0 { send M(x) to Out }
13 }
14 }
15
16 Q {
17 variables
18 Integer result
19 ports In
20 state machines
21 SM2 {
22 initial S0
23 transitions
24 S0 -> S0 { receive M(result | result % 2 = 1) from In }
25 }
26 }
27 objects p: P(), q: Q()
28 channels c (Integer) sync between p.Out and q.In
29 }

Fig. 3. An Slco model of a distributed system.

Finally, before we discuss the research conducted with Slco, we present
an example Slco model in Fig. 3. The name of the model is defined at line 1.
Furthermore, classes P and Q are defined at lines 3–26, and instantiated to objects
p and q at line 27. In each class, variables and ports are defined (lines 4–5 and 17–
18, and lines 6 and 19, respectively). Each class contains one state machine. The
states of these state machines are defined at lines 9 and 22, and their transitions
are listed at lines 10–12 and 23–24. Finally, a synchronous channel between the
ports of objects p and q is defined at line 28. Note that q can successfully receive
one message from p, as the sent message has a matching signal M and contains the
value 1, which meets the requirement of q that the value must be odd. Also, only
a single message can be sent, since after sending, state machine SM1 returns to
state R0, at which point execution is permanently blocked, since the expression
x = 0 evaluates to false, and once set to 1, x is never set to 0 again.

3 Verifying Model-to-Model Transformations

3.1 Reverification of Models

To investigate the ability to reason about the external quality of model-to-
model transformations, a number of model-to-model transformations were devel-
oped for Slco, using the Xtend and Atl model transformation languages and
the Xpand tool [10,35], to be applied in the Lego Mindstorms conveyor belt
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case study. Some of these addressed refactoring aspects, such as the automatic
removal of unused variables, channels and classes, changing object-local vari-
ables to state machine local ones in case they are only accessed by a single state
machine, and merging objects together into a single object. The latter also affects
interaction between state machines: as state machines from different objects are
moved to the same object, any interaction via channels between them is trans-
formed to interaction via shared variables. For Lego Mindstorms, this model
transformation allowed to meet the criterion that the number of objects in the
final model has to match the number of RCXs in the system setup.

In addition, model-to-model transformations affecting the semantics were
defined, such as a transformation that introduces delays in a given set of
transitions, a transformation that achieves synchronous communication with
asynchronous channels, a transformation that achieves broadcasting messages
between more than two state machines via a number of channels, a transforma-
tion that introduces the Alternating Bit Protocol (ABP) [26] to deal with lossy
channels, and a transformation that makes the sender of a message explicit in
each message.

Finally, a number of model transformations were defined to transform Slco
models to artefacts written in other languages, such as a transformation to
Promela to allow the model checking of Slco models with the Spin model
checker [32], a transformation to dot to allow the visualisation of state machines,
and, of course, a code generator for NQC to produce source code.

The model-to-model transformation from Slco to Promela was used in a
first attempt to verify model-to-model transformations [6]. Since verifying the
model-to-model transformations themselves would require new verification tech-
niques, the approach was to verify a given Slco model, and reverify it each
time a model-to-model transformation that produced a refined Slco model had
been applied to it. This approach does not verify that a given model-to-model
transformation is guaranteed to produce correct models in general, but at least it
allows to verify that it works correctly on a case-by-case basis. After every trans-
formation application, the resulting Slco model was transformed to a Promela
model, to be verified with Spin.

However, a major drawback of this method is its limited scalability. Table 1
shows the impact of model-to-model transformations on the size of the state
space of a simple Slco model with a producer and a consumer object, i.e.,
a model very similar to the one of Fig. 3, in which one state machine sends
messages and another one receives those messages [6,25]. Changing the initially
synchronous channels to asynchronous ones doubles the size of the state space,
but making this channel lossy, and introducing the ABP protocol has a significant
impact on the state space size. Finally, adding delays to the transitions further
increases the state space by a factor 10. Considering that this is only a model
with a single channel, one can imagine the impact on models with many more
channels. Because of this state space explosion, and the fact that model-to-model
transformations by themselves are actually relatively small and typically only
impact a particular part of a model, the ambition was soon formulated to conduct
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Table 1. State space sizes of models specifying a producer and a consumer.

Model # States # Transitions

Synchronous 4 6
Asynchronous 8 11
Lossy + ABP 114,388 596,367
Delays 1,009,856 5,902,673

research on verifying model-to-model transformation definitions themselves, and
reason about their impact on models in general.

3.2 Direct Verification of Model-to-Model Transformations

In 2011, research was started on directly verifying the impact of model-to-model
transformations on models in general [60,61,64]. Contrary to the majority of the
work on model transformation verification at that moment [3,55], which focussed
on wellformedness of transformations, i.e., that model transformations produce
syntactically correct output, and questions such as whether a model transforma-
tion is terminating and/or confluent, we decided to focus on the semantical guar-
antees that model-to-model transformations can provide.2 In particular, since in
model checking, models are checked w.r.t. given functional properties formalised
in temporal logic, we were interested in verifying whether model-to-model trans-
formations preserve those properties. Being able to conclude this would mean
that reverification of models would no longer be needed.

Inspired by action-based model checking, we decided to reason about the
semantics of Slco models by means of Labelled Transition Systems (LTSs), as
defined in Definition 1.

Definition 1 (Labelled Transition System). A Labelled Transition System
L is a tuple 〈S,A, T, ŝ〉, with

– S a finite set of states;
– A a set of actions;
– T ⊆ S × A × S a transition relation;
– ŝ ∈ S the initial state.

Slco has a formal semantics, and it was straightforward to map that seman-
tics to LTSs. Actually, since model-to-model transformations for component-
based systems tend to transform individual components, we reasoned about the
semantics of component-based systems by means of LTS networks [41]. In such
a network, the potential behaviour of each individual component is represented
by an LTS, and the potential interaction between these components is defined

2 Other works addressing the semantical impact of transformations include [28,33,46].
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Fig. 4. An example LTS network and its corresponding system LTS.

by a set of synchronisation laws V that expresses which actions of the individual
LTSs need to synchronise with each other, and which do not. An LTS network
semantically corresponds with an individual system LTS, in which the potential
behaviour of the components is interleaved, and synchronisations are applied
where needed. Figure 4 presents an example LTS network (Fig. 4a) and its corre-
sponding system LTS (Fig. 4b): How LTSs Π1 and Π2 should (not) synchronise
is given by the three laws in V: action a needs to be performed by both LTSs
together, leading to an a-transition in the system LTS, b and d of Π1 and Π2,
respectively, need to synchronise to an e-transition in the system LTS, and c can
be performed by Π1 independently.

In this setting, model-to-model transformations can be formalised by means
of LTS transformation rule systems, inspired by double pushout graph rewrit-
ing [24]. Here, we explain the basics by means of an example. A formal treatment
can be found in [51,60]. Figure 5 shows an example LTS G on the left (Fig. 5a),
with state 1 the initial state. A transformation rule is a pair of LTSs 〈L,R〉, with
L and R having some states in common, called the glue in-states and glue exit-
states. In the example, the round grey states are glue in-states and the square
grey states are glue exit-states. The example rule (Fig. 5b) expresses the follow-
ing: a sequence of two a-transitions should be replaced by a τ -transition, followed
in sequence by two a′-transitions. Moreover, the rule can only be matched on a
sequence of two a-transitions in G if that sequence satisfies the following criteria:

1. The first state does not have any additional outgoing transitions (expressed
by the glue in-state of L);

2. The last state does not have any additional incoming transitions (expressed
by the glue exit-state of L);

3. The intermediate state has no additional in- or outgoing transitions
(expressed by the fact that state 2̃ of L is not present in R, meaning that
a state matched on 2̃ is supposed to be removed and replaced by two new
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Fig. 5. An example of applying an LTS transformation rule on an LTS. Round grey
state: glue in-state, square grey state: glue exit-state.

states 6̃ and 7̃, plus the fact that the removal of states in an LTS may not
affect its transitions in ways not addressed by the transformation rule).

The rule 〈L,R〉 is applicable on G, and applying it results in the LTS T (G)
given in Fig. 5c.

Model-to-model transformations formalised by means of LTS transformation
rule systems can be reasoned about without considering a particular LTS on
which they are applied. We only assume that such an LTS satisfies particular
functional properties of interest. For instance, if an LTS satisfies the property
“Always eventually c occurs”, expressed in an action-based temporal logic, then
it is clear that the transformation rule given in Fig. 5 preserves this property
when applied on that LTS, regardless of the latter’s structure. The property
is preserved as the rule does not transform c-transitions, nor does it affect the
reachability of states in the LTS.

The model-to-model transformation verification technique developed in [50,
51,62] considers functional properties expressed in the modal μ-calculus [39].
Given a μ-calculus formula ϕ, actions in L and R of a transformation rule are
automatically abstracted away, i.e., replaced by the silent action τ , if they are
considered irrelevant for ϕ [45]. After this, if L and R, extended to make explicit
that they represent embeddings in a larger LTS on which they are applied, are
divergent-preserving branching bisimilar [29], which is an equivalence for LTSs
sensitive to τ -transitions while still considering the branching structure and τ -
loops of the LTSs, then it can be concluded that ϕ will be satisfied by the
LTS produced by the transformation. Although highly non-trivial, this can be
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extended to LTS transformation rule systems that transform the synchronising
behaviour between LTSs. In [51], a formalisation of this technique is presented
in detail that has been proven correct with the Coq Proof Assistant [9].

Performance-wise, model-to-model transformation verification is a great
improvement over reverifying models. All the considered example transforma-
tions could be verified w.r.t. property-preservation practically instantly [51]. The
approach has one main drawback, though: sometimes, functional properties can
only be expressed, and only become relevant, once the model has obtained a cer-
tain amount of detail. If a property must be expressed about the behaviour intro-
duced by one or more model-to-model transformations, property-preservation is
not relevant, and verification of the current model seems inevitable.

To possibly even avoid reverification in such cases, more recently, we con-
ducted research on reasoning about the effect of an individual LTS transfor-
mation rule r on a system property ψ [21], expressed in Action-based Linear
Temporal Logic (ALTL) [27,49], when applied on a component satisfying that
property. First, a representative LTS Lψ for components satisfying an ALTL for-
mula ψ is constructed, by creating the cross-product of a representative LTS L
for all LTSs on which r is applicable with an action-based Büchi automaton Bψ

encoding ψ [18]. On Lψ, r is applied, resulting in action-based Büchi automa-
ton T (Lψ). After detecting and removing non-accepting cycles of T (Lψ), and
minimising the resulting Büchi automaton using standard minimisation tech-
niques [23], a characteristic formula for the action-based Büchi automaton is
created in the form of a system of μ-calculus equations. Similar to property-
preservation checking, this approach works practically instantly. To generalise
it to the setting of [51], in future work, rule systems consisting of multiple LTS
transformation rules should be considered, and functional properties written in
the modal μ-calculus, more expressive than ALTL, should be supported. This
approach is promising, but still restricted to updating temporal logic formulae
expressed originally for the initial model. If entirely new properties become rel-
evant for a model at a later stage in the MDSE workflow, verification of that
model is unavoidable.

Challenges and Directions for Future Work. The developed technique to
formally verify model-to-model transformations reasons about the semantics of
component-based systems by focussing on LTSs and their transformation, but
a suitable formalism to express Slco-to-Slco transformations in a way com-
patible with this is yet to be identified. One direction for future work is to find
such a model transformation language. Existing general-purpose transformation
languages, such as Atl and Xtend, may be suitable, or a Domain-Specific
Transformation Language could be developed that directly involves the Slco
constructs. Extending the technique to reason about the effect of a transforma-
tion on a system property will be further investigated as addressed above.
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Fig. 6. Verified generation of multi-threaded Java code.

4 Verifying Code Generators

When applied on an Slco model, a code generator should produce code that
is (as much as possible) semantically equivalent to the model. In 2014, a new
project started, focussed on the model-driven development of multi-threaded
software. It was decided to develop a code generator for multi-threaded Java
code. Java being more elaborate than NQC, it was soon clear that Slco needed
to be extended. Version 2.0 of the language [53] introduced the following features:

– Support for the Byte primitive type, and arrays of the primitive types;
– Transition priorities. These allow expressing that the outgoing transitions of

a state must be considered for firing in a fixed order;
– An Action statement (do <action>): this allows assigning arbitrary action

labels to transitions, which can represent particular events, such as calling
external functions. Action statements are always enabled.

– A Composite statement ([<expr>;<assgn_1>;...;<assgn_n>]): this allows
combining certain statements into a single, atomically executed, statement.
It starts with an expression, which may be true, and a sequence of one or
more assignments. The statement is enabled iff the expression is enabled.

The general workflow of producing multi-threaded Java code in a verified
way is presented in Fig. 6, while an example Slco model and part of its Java
implementation is given in Fig. 7. The Slco-to-Java code generator creates one
thread for each state machine in the objects of the given Slco model. In Fig. 7,
some of the code for a thread executing the transitions of state machine SM1 of
object p is given. Each thread has access to a lock keeper (lines 6–7 of the Java
code), which manages the locks used to avoid data races when accessing object-
local variables. This lock keeper uses an ordered locking scheme that prevents
circular lock dependencies between threads.

A thread executes according to the associated state machine as follows: the
initial state is defined by the constructor method at line 10. In the exec method
(line 26), the current state of the state machine is repeatedly checked (lines
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1 model ex_shr {
2 actions a
3 classes
4 P {
5 variables
6 Integer x
7 state machines
8 SM1 {
9 initial R0 states R1

10 transitions
11 R0 -> R1 { [x = 0; x := 1] }
12 R1 -> R0 { do a }
13 }
14 SM2 {
15 initial S0
16 transitions
17 S0 -> S0 { x % 2 = 1 }
18 }
19 }
20 objects p: P()
21 }

1 ...
2 class java_SM1Thread extends Thread {
3 private Thread java_t;
4
5 private ex_shr.java_State java_cState;
6
7 private ex_shr.java_Keeper java_kp;
8
9

10 java_SM1Thread (ex_shr.java_Keeper java_k) {
11 java_cState = ex_shr.java_State.R0;
12 java_kp = java_k;
13 }
14
15
16 boolean execute_R0_0() {
17
18 if (!(x == 0)) { java_kp.unlock(1); return false; }
19 x = 1;
20 java_kp.unlock(1);
21 return true;
22 }
23 boolean execute_R1_0() { a(); return true; }
24
25
26 public void exec() {
27 while(true) {
28 switch(java_cState) {
29 case ex_shr.java_State.R0:
30 if (execute_R0_0()) { java_cState = ex_shr.java_State.R1; }
31 break;
32 case ex_shr.java_State.R1:
33 if (execute_R1_0()) { java_cState = ex_shr.java_State.R0; }
34 break;
35 default: return;
36 }}}
37 ...

Fig. 7. An Slco shared memory system (top) and derived Java code (bottom).
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27–28), and depending on its value, one or more functions are executed that
correspond one-to-one with a transition in the Slco model. At lines 16–22,
the function execute_R0_0 is given, which corresponds with the transition at
line 11 of the Slco model. First, it is attempted to acquire a lock for variable
x. Once this is achieved, it is checked whether the expression of the composite
statement evaluates to true (line 18). If it does not, the lock is released and false
is returned. If it does, x is updated, the lock released, and true is returned. If
a transition function returns true, the thread updates its state and continues
checking the current state. Note at line 23 that the action a is mapped to some
external function with the same name.

Complete formal verification of a code generator is very challenging [72].
First, we focussed on proving correctness of the model-independent parts of the
code: we proved that the lock keeper does not introduce deadlocks due to threads
waiting for each other [73], that the Java channels work as specified by the Slco
channels [16], and that a safety construct called Failbox works as intended [15].
For this, the VeriFast code verifier was used, which allows verifying that Java
code adheres to pre- and post-conditions specified in separation logic [34]. These
verified constructs can be safely used in generated code (see Fig. 6).

The next step was to verify model-specific code. Verifying that a code gener-
ator always produces correct model-specific code would require reasoning about
all possible inputs, i.e., Slco models. As this is very complex, we focussed on try-
ing to verify automatically that for a given Slco model, the produced Java code
correctly implements it, i.e., adheres to the semantics of the model. We achieved
this in a two-step approach [67]: first, the control flows of both a thread and its
corresponding state machine are extracted. After some straightforward trans-
formations that bring the two control flow graphs conceptually closer together,
they are stored in a common graph structure. It is then checked whether those
graphs are bisimilar. If they are, then we have established that the thread and
the state machine perform their steps in equivalent ways. What remains is to
establish that the individual steps of the thread indeed correspond with the indi-
vidual steps of the state machine. For this, code verification is used again. The
individual Java transition functions are automatically annotated with pre- and
post-conditions in separation logic, expressing the semantics of the correspond-
ing Slco statements. This time, we used the VerCors verifier to perform the
verification [12]. As the pre- and post-conditions are generated automatically,
performing the verification only requires pushing a button.

Finally, we investigated techniques to check whether an implementation
would still adhere to Slco’s semantics if a platform with a weak memory model
was targeted [52]. Such a model allows out-of-order execution of instructions,
which may violate the intended functionality. In related work, this problem has
been addressed in two different ways: in one, a dependency graph is constructed
by statically analysing the code [2,57]. This graph encodes which instructions
depend on each other due to them accessing the same variables. Next, cycles in
this graph that meet certain criteria, depending on the targeted memory model,
represent violations of that model. The other way is to apply model checking,
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considering both the usual possible executions, with instructions occurring in the
specified order, and executions in which the instructions have been reordered,
insofar allowed by the memory model [1,44]. The drawback of the first approach
is its imprecision, while the drawback of the second approach is a state space
explosion that is typically even much worse than in standard model checking.

Our contribution was to combine the two approaches: first, explore the state
space of the Slco model, but only considering the executions with instructions
in the specified order, and derive from this a dependency graph. Second, apply
cycle detection analysis on this dependency graph. For the state space explo-
ration step, a model-to-model transformation from Slco to mCRL2 [19] was
devised. As the produced graphs tend to be more precise than when using static
analysis, the results in our experiments were of higher quality, and the overall
runtime was often even faster. As the number of elementary cycles in a graph can
grow exponentially, constructing a more accurate dependency graph can avoid
introducing many cycles that an over-approximation of the potential behaviour
would introduce. This reduced number of cycles greatly impacts the processing
time, often compensating for the time it takes to explore the state space.

Challenges and Directions for Future Work. The main challenge in this
research line is to achieve full verification of code generators. In related work on
compiler and code generator verification, full verification has been achieved with
theorem proving [11,14,40,43,58], but this is a labour-intensive approach that
is not very flexible w.r.t. updates of the compiler or generator. We plan to work
on techniques that allow flexible maintenance of correctness proofs.

Another direction currently investigated involves the generation of code for
graphics processing units (GPUs) [30]. For many-core programs, however, Slco
is not directly suitable. Array languages, on the other hand, have been designed
with parallel array processing in mind, which aligns very well with typical GPU
functions. We are currently investigating how to embed program verification
into the Halide language, a language to express image and tensor computa-
tions [54]. This language separates what a program should do, i.e., its function-
ality, from how it should do it, i.e., the scheduling that involves performance
optimisations. Besides making development more insightful, this separation also
positively affects verifiability. Verification of the functional correctness of a pro-
gram can be separated from verifying that optimisations applied to it preserve
that correctness. In other work, we focus on updating pre- and post-conditions
when code is automatically optimised, to allow for push-button reverification of
the code [56].

5 GPU-Accelerated Model Checking

We addressed the verification of model-to-model transformations and code gener-
ators, but proving their correctness ultimately depends on the input models being
correct. Hence, verifying the correctness of Slco models cannot be avoided, and
sometimes needs to be performed multiple times in an MDSE workflow, as dis-
cussed in Sect. 3.2. Initially, we developed an Slco-to-mCRL2 transformation
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Fig. 8. The workflow from Slco model to GPUexplore model checking.

for this, to apply the mCRL2 toolset [19] for the model checking of (untimed)
Slco models. Recently, we integrated Slco in another line of research that
started in 2013, focussed on accelerating model checking with GPUs [20,47,69–
71].

The research on GPU-acceleration of model checking is motivated first of all
by the fact that for a seamless integration of formal verification in MDSE, it is
crucial that models can be verified efficiently. If verification takes a long time,
this hinders development. Second of all, as hardware developments are increas-
ingly focussed on dedicated devices such as GPUs and adding cores to processors,
as opposed to making individual cores faster, computationally intensive compu-
tations, such as model checking, require massively parallel algorithms [42].

Figure 8 presents the workflow of formally verifying the correctness of Slco
models with the model checker GPUexplore version 3.0 [65,66]. First, an Slco
model is analysed by a CUDA code generator. CUDA, the Compute Unified
Device Architecture, is a parallel computing platform and application program-
ming interface developed by NVIDIA, that can be used to develop programs
for their GPUs. The generator produces CUDA C++ code that implements an
explicit-state model checker for that specific Slco model: it includes generated
functions that allow the evaluation and firing of Slco transitions by directly
executing instructions corresponding with the associated Slco statements.

The generated code can be compiled with NVIDIA’s NVCC compiler. Note in
Fig. 8 that the compiler combines generic, model-independent code, with model-
specific code, similar to the Slco-to-Java transformation (Sect. 4).

On the right of Fig. 8, the main concepts of a GPUexplore program are
mapped to a GPU architecture: A GPU consists of many streaming multipro-
cessors (SM) that each have a limited amount of fast, on-chip shared memory,
and one shared pool of global memory. Typically, a GPU program consists of a
program, executed by one or more CPU threads, in which GPU functions, called
kernels, are launched. These kernels are typically executed by many thousands of
threads simultaneously. Threads are grouped into blocks. A block is executed by
an SM, and the threads in a block share a specified amount of shared memory.
It is not possible for the threads in one block to access the shared memory of
another block. Finally, all blocks share the global memory. In GPUexplore,
this memory is used to maintain a large hash table, in which the Slco model
states are stored as they are reached, starting with the initial state.
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Table 2. State space exploration speed of Spin, LTSmin and GPUexplore, in mil-
lions of states per second. -o.m.-: out of memory (32 GB).

Model Nr. states Spin 4-core LTSmin 4-core GPUexplore

adding.50+ 529,767,730 -o.m.- 5.36 148.28
anderson.6 18,206,917 1.36 1.31 31.57
at.6 160,589,600 0.87 2.39 40.56
frogs.5 182,772,126 1.05 2.63 10.31
lamport.8 62,669,317 1.78 2.19 34.92
peterson.6 174,495,861 0.76 2.45 33.58
szymanski.5 79,518,740 1.57 1.82 18.34

An Slco model state is a vector defining a state of the model, i.e., it defines
for each state machine its current state, and for each variable its current value.
Each block repeatedly fetches unexplored states, i.e., states for which the out-
going transitions of the corresponding current states of the state machines have
not yet been considered for firing. Exploring these states leads to the creation of
successors, i.e., states reachable by firing a transition. This is conducted in par-
allel by the threads in a block; GPUexplore runs blocks of 512 threads each.
Successors are temporarily stored in shared memory, in which a block-local hash
table is maintained. This prevents blocks from frequently accessing slow global
memory (which is typically a major performance bottleneck). Once a batch of
new successors has been generated, their presence in the global memory hash
table is checked. States not yet present are added, ready to be explored in the
next round. This procedure is repeated until no more states are generated.

Currently, GPUexplore supports deadlock checking, with support for the
verification of Linear Temporal Logic (LTL) [49] formulae being planned for the
near future. Table 2 presents some results obtained when comparing the state
space exploration speed of GPUexplore with Spin and the model checker
LTSmin [36]. Both Spin and LTSmin support CPU multi-core explicit-state
model checking. The models listed here are all Slco models obtained by trans-
lating the model in the Beem benchmark suite [48] of the same name from the
DVE language to Slco, except for adding.50+, which was obtained by scaling
up the adding models present in that benchmark suite. We used a machine with
a four-core CPU i7-7700 (3.6GHz), 32 GB RAM, and an NVIDIA Titan RTX
GPU with 24 GB global memory, running Linux Mint 20 and CUDA 11.4.

As LTSmin achieves near-linear speedups as the number of used cores is
increased [59], these numbers indicate how many cores would be needed to match
the speed of GPUexplore. GPUexplore can reach impressive speeds up to
148 million states per second. However, what stands out is that the achieved
speed differs greatly between models, more than with Spin and LTSmin. In the
near future, we will inspect the models and their state spaces, to identify the
cause for these differences, and improve the reliability of GPUexplore.
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Challenges and Directions for Future Work. The first aspect to address
is the verification of temporal logic formulae. First, we will focus on LTL. How-
ever, state-of-the-art sequential LTL verification algorithms rely on Depth-First
Search (DFS) of the state spaces, as they involve cycle detection. Since DFS is
not suitable for GPUs, GPUexplore applies a greedy, Breadth-First Search
based exploration algorithm, in which cycle detection cannot be integrated as
straightforwardly. In the past, we have investigated algorithms for this that are
incomplete [68]. Designing an alternative that is complete remains a challenge.

Another line of research is to achieve GPU acceleration of probabilis-
tic model checking [8]. In the past, this has been partially accelerated with
GPUs [13,17,37,63]: once the state space has been generated, verification of a
probabilistic property, formalised in Probabilistic Computation Tree Logic [31],
involves repeated matrix-vector multiplications, which GPUs can perform very
rapidly. Also accelerating the state space generation will likely be a major step
forward, not only because the generation itself will become faster, but also
because it will remove the need to transfer a matrix, representing the state
space, from the main memory to the GPU memory.

6 Conclusions

We presented an overview of the research conducted in the last decade on inte-
grating formal verification into an MDSE workflow centered around the Slco
DSL. For an effective integration, efficient verification of models, model-to-
model transformations and code generators is crucial. In the three research lines
focussing on each of these three types of MDSE artefacts, important steps have
been made, and open challenges remain for the (near) future.

One particular challenge bridging the first two lines concerns identifying ways
to combine model verification and model-to-model transformation verification,
ideally to achieve an automatic verification technique that, depending on the
property, the model, and the transformation to be applied, can derive how the
transformed model relates to that property. We envision that in order to derive
this, a number of verification results need to be established, of which some could
possibly be determined via model verification, while for others, model-to-model
transformation verification could be more efficient.
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