

Verification of Concurrent Systems in a Model-Driven
Engineering Workflow

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 28 januari 2019 om 16:00 uur

door

Sander Michaël Jozef de Putter

geboren te Oostburg

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotie-
commissie is als volgt:

voorzitter: prof.dr. J.J. Lukkien
promotor: prof.dr. M.G.J. van den Brand
copromotor: dr.ing. A.J. Wijs
leden: prof.dr. J.H. Geuvers

dr.ir. T.A.C. Willemse
prof.dr. T. Margaria (University of Limerick)
prof.dr.ir. A. Rensink (University of Twente)
dr. F. Lang (INRIA)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Verification of Concurrent Systems in a Model-Driven
Engineering Workflow

Sander M. J. de Putter

Promotor: prof.dr. M.G.J. van den Brand
(Eindhoven University of Technology)

Copromotor: dr.ing. A.J. Wijs
(Eindhoven University of Technology)

Additional members of the reading committee:

prof.dr. J.H. Geuvers (Eindhoven University of Technology)
dr.ir. T.A.C. Willemse (Eindhoven University of Technology)
prof.dr. T. Margaria (University of Limerick)
prof.dr.ir. A. Rensink (University of Twente)
dr. F. Lang (INRIA)

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).
IPA dissertation series 2018-21.

The work in this thesis has been carried out as part of the Embedded Multi-Core systems
for Mixed Criticality applications in dynamic and changeable real-time environments
(EMC2) project. The EMC2 project has been funded by the AIPP5 programme under
grant agreement no 621429.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-4678-7

Printed by: ProefschriftMaken

Cover design: Sander de Putter

Copyright c© 2019 by Sander M. J. de Putter. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronically, mechanically, photocopying, recording or otherwise, without
prior permission of the author.

Acknowledgements

The seed of this thesis was planted about five years ago when I had my first discussion
with my supervisor, dr. Anton Wijs, about verification of model transformations. I
ended up doing my Master’s graduation project with him on that topic. Thanks to his
knowledge, support, and positive attitude, I decided back then that I wanted to learn more
from him. Hence, when prof. dr. Mark van den Brand took me on as his PhD student
and offered me the opportunity to continue working with Anton as a PhD candidate I
accepted immediately. Anton, I enjoyed our many discussions in and outside the office.
We sure laughed a lot at those social events. It has been a pleasure working with you.

I want to express my deepest gratitude to my promotor, prof. dr. Mark van den
Brand. Mark, you have been a great mentor to me. Your guidance and support have
helped me through the ups and downs of PhD-life. Thank you for allowing me to pursue
the research interests that have resulted in this thesis.

In the first year of my PhD I took over the organisation of the colloquia of the Software
Engineering Technology group from dr. Yanja Dajsuren. Thank you for teaching me
about organisation of events and attracting speakers. Furthermore, I would like to thank
our secretary, Margje Mommers - Lenders, for her assistance in the organisation of the
colloquia. Margje, your skills have been invaluable to the continued success of the colloquia.
I also want to express my gratitude to all of the participants of the SET colloquia for
their enthusiasm, interests, and talks. In particular, dr. Alexander Serebrenik and dr.
Tom Verhoeff have gone above and beyond to offer concrete feedback and introduce more
people to the colloquia.

I would like to offer my special thanks to the additional members of the reading
committee: prof. dr. Herman Geuvers, prof. dr. Arend Rensink, prof. dr. Tiziana
Margaria, dr. Tim Willemse, and dr. Frédéric Lang. I appreciate your kind words and
am very grateful for your helpful comments.

I also appreciate the interaction with the members of the EMC2 project. In particular,
I would like to thank: Bastijn Vissers, Tjerk Bijlsma, Reinder Bril, Per Lindgren, and
Frank Oppenheimer. Here, I would also like to mention Per’s PhD student, Marcus
Lindner, who showed me around in Luleå University of Technology.

I also learned a great deal during my time at the PhD-PDEng council of the department
of Mathematics and Computer Science. Sarah Gaaf, you were an inspiring chair. Christine
van Vredendaal, you were able to keep meetings concise. Jorn van der Pol, you were

ii

always well dressed and to the point. Britt Mathijsen, you were a great treasurer and a
good negotiator. I want to thank you and the other members of the PhD-PDEng Council
for a great time and the opportunity to grow.

My PhD experience has been all the more enjoyable by my good friends and colleagues
at the Software Engineering Technology and Formal System Analysis groups. I have
had many memorable moments with my current and past office mates: Yuexu (Celine)
Chen, Josh Mengerink, Raquel Álvárez Ramirez, Arash Khabbaz Saberi, Jouke Stoel,
and Valcho Dimitrov. Thank you, Mahmoud Telebi, I have learned a great deal by going
to the gym together, and moreover, I enjoyed many good conversations and dinners
with you. Dan (Dana) Zhang, your cheerfulness was able to brighten everyone’s day.
Thank you, Ulyana Thikonova, you were always helpful and offered many good tips.
Yaping (Luna) Luo, I am grateful for the many trips we made and the board game
nights we have had! I also appreciate all the effort Weslley Silva Torres and Thomas
Neele put in organising activities together. My thanks also go out to (in no particular
order) Önder Babur, Sarmen Keshishzadeh, Priyanka Karkhanis, Felipe Ebert, Ruurd
Kuiper, Ramon Schiffelers, Kousar Aslam, Sangeeth Kochanthara, Maricio Verano Merino,
Rodin Aarssen, Miguel Botto Tobar, Rob Faessen, Omar Alduhaiby, Bogdan Vasilescu,
Alexander Fedotov, Loek Cleophas, Jurgen Vinju, Erik de Vink, Hans Zantema, Julien
Schmaltz, Jan Friso Groote, Lou Somers, Ion Barosan, Bas Luttik, Wieger Wesselink,
Gerard Zwaan, Maurice Laveaux, Muhammad Osama, Mauricio Verano Merino, Rick
Erkens, Serguei Roubtsov, Reinier Post, Erik Scheffers, and other colleagues. Thanks to
you all, I have had a wonderful time at the university!

I also would like to thank Vrije Universiteit Amsterdam for their generosity in supplying
the computing resources for the experiments performed in this thesis.

I am especially grateful to my family for their unwavering support and love. My
thanks go out to my brothers, Robin de Putter, John Ammann de Putter, and Steve
Ammann, my sister, Laura de Putter, my parents, Brigitte Buyle and Levien de Putter, my
grandparents, Alberic Buyle and Jeanine Schoutteten, and their partners. Additionally, I
want to express my gratitude to my girlfriend, Dan Thao Vy , for sharing this journey
with me, and her parents. Finally, to all those that I have not mentioned here: thank you!

Sander M. J. de Putter
Eindhoven, December 2018

Table of Contents

Acknowledgements i

Table of Contents iii

List of Acronyms vii

1 Introduction 1
1.1 Problem statement . 4
1.2 Research Questions . 6
1.3 Outline and Origin of Chapters . 7
1.4 Suggested Method of Reading . 9

2 Preliminaries 11
2.1 Vectors . 12
2.2 LTS and LTS equivalences . 12
2.3 Concurrent LTSs . 13

3 Transformation Verification 17
3.1 Introduction . 18
3.2 Related Work . 20
3.3 Verifying Single LTS Transformations . 21
3.4 Verifying Sets of Dependent LTS Transformations 31
3.5 Experiments . 57
3.6 Conclusions . 66

4 Compositional Model Checking is Lively 69
4.1 Introduction . 70
4.2 Related Work . 72
4.3 Composition of LTS Networks . 73
4.4 Decomposition of LTS Networks . 78
4.5 Associative and Commutative LTS Network Composition 82
4.6 Congruence for LTS networks . 87

iv Table of Contents

4.7 Application . 89
4.8 Conclusions . 93

5 To Compose, Or Not to Compose: An Analysis of Compositional Mi-
nimisation 95
5.1 Introduction . 96
5.2 Related Work . 98
5.3 Background . 100
5.4 Methodology . 105
5.5 Results – RQ 5.1, RQ 5.2, and RQ 5.3 . 109
5.6 Results – RQ 5.4 . 119
5.7 Threats to validity . 136
5.8 Conclusions . 137

6 Avoidance of Sequential Consistency Violations under Relaxed-Memory
Models 139
6.1 Introduction . 140
6.2 Related Work . 142
6.3 Guaranteeing Sequential Consistency . 142
6.4 Monitoring Conflict Serialisability Violations 147
6.5 Deriving Locks and Delays with Model Checking 154
6.6 Implementation . 160
6.7 Experimental Results . 160
6.8 Conclusions . 162

7 A Framework for Verified, Model-Driven Construction of Component
Software 163
7.1 Introduction . 164
7.2 Related Work . 165
7.3 An introduction to Slco 2.0 Language . 165
7.4 Features of the Framework . 168
7.5 Roadmap . 174

8 Conclusions 175
8.1 Contributions . 175
8.2 Future Work . 178

Bibliography 181

Summary 197

Curriculum Vitae 199

List of Acronyms

ACC Adaptive Cruise Control
CART Classification and Regression Trees
DPBB Divergence Preserving Branching Bisimulation
DSL Domain Specific Language
FIFO First In First Out
GLMER Generalized Linear Model with Elasticnet Regularization
HTM Hardware Transactional Memory
KNN K-Nearest Neighbours
LDA Linear Discriminant Analysis
LOWESS LOcally WEighted Scatterplot Smoothing
LR Linear Regression
LTS Labelled Transition System
LVQ Learning Vector Quantization
MAE Mean Absolute Error
MDE Model-Driven Engineering
POR Partial Order Reduction
QRNN Quantile Regression Neural Network
RF Random Forests
SC Sequentially Consistent
SLCO Simple Language of Communicating Objects
SOS Structural Operational Semantics
SVMwLK Support Vector Machines with Linear Kernel
SVMwRK Support Vector Machines with Radial Kernel

Chapter 1

Introduction

Concurrent systems form an integral part of today’s society. From smartphones, desktops
and web systems to the car you drive, and even your coffee machine, concurrent systems
can be found everywhere. For instance, a modern car has an Adaptive Cruise Control
(ACC) with lane assist controlled by a number of electronic control units that read sensors,
process video image, and control the engine, brakes, and steering wheel.

Concurrency in systems has many benefits; e.g., better performance and better
distribution of services. However, due to their non-deterministic nature concurrent systems
are also more complex, harder to understand, and harder to develop than sequential
programs. It is only natural that it is extremely hard to guarantee the correctness of
concurrent systems.

Researchers and practitioners have sought to alleviate complexity, increase understan-
dability, and facilitate the early and automated detection of faults. To this end, formal
methods and Model-Driven Engineering [185] (MDE) are widely applied [16, 150,210]. In
particular, automated formal methods that integrate well with modern MDE work-flows.

In this thesis we investigate automated formal methods to determine and guarantee
correctness of concurrent systems and the integration of formal methods with MDE.

Model-Driven Engineering (MDE) In MDE, models and model transformations
are the primary artefacts in the development of a system.

Models are abstract descriptions of real-world systems; they serve as a specification for
desired structural and functional constraints of the system. Often models are developed
by a domain expert and described in domain specific terms familiar to the expert [210]. A
model, as a description of a system, may be used to perform analysis and generate code,
tests, and documentation.

Model transformations describe how to obtain one or more output-models from one
or more input-models. Amongst other, model transformations are used to: address
consistency between models (model synchronisation [88,223]), refine models (e.g., from
platform independent models to platform dependent models [156]), and obtain derived
models amenable to analysis [77, 118].

2 Introduction

MDE facilitates detection of defects early in the development cycle [104]. Formal
semantics of the models allow application of various formal techniques (e.g., verification)
or semi-formal inspection by domain experts (e.g., simulation) to find defects. Hence,
defects may be repaired early on, thus, preventing costly repairs in later development
phases [28].

In this thesis we study the formal analysis of models and model transformations for
concurrent systems.

Formal Analysis of Models Over the years, various formal methods have been
proposed and further developed to determine the functional correctness of concurrent
systems.

In formal analysis a model, serving as a formal representation of the concurrent
system, is verified against a number of requirements. Requirements are expressed in
the form of some formal logic; e.g., in Hoare logic [102] pre- and post-conditions are
expressed in predicate logic, and in model checking [16] requirements are expressed in a
propositional and temporal modal logic. The formal analysis then determines whether
the formal behaviour described by the model satisfies these formal requirements. Thus,
formal analysis gives guarantees that a model meets the specified requirements.

With the model serving as a formal specification of the concurrent system, the
expectation is that the implementations of the concurrent system will also meet the
requirements. This is even more so the case when the implementation is generated
from the verified model as is advocated by MDE. Confidence in the satisfaction of the
requirements can be strengthened further by generating the implementation using a
verified generator as in the work of Zhang et al. [225,226].

Recall the earlier example of an ACC. When the ACC is active the car should remain
at a safe distance from vehicles in front of the car. At the same time the ACC should
attempt to drive the car at a desired speed. These requirements may conflict, but the
former requirement is safety critical, while the latter is mission critical. Hence, the mission
critical requirement must be constrained by the safety critical requirement. Given a
(formal) model of the ACC, formal analysis can verify whether the model indeed respects
these requirements and their constraints.

Models of Concurrency A field of formal methods specifically focused on concurrent
systems is concurrency theory. In the early sixties Carl Adam Petri proposed Petri
nets [168]; one of the first formalisms for describing concurrent systems. Since then
numerous formalisms have been proposed for modelling and reasoning about concurrent
systems [79,190].

To target concurrent systems process calculi and process algebras [54,103,149] were
designed with parallel composition and synchronisation operators. Formalisation of the
semantics of these process calculi and algebras is achieved (amongst others) through
structural operational semantics (SOS) [98, 170] which specify how the behaviour of
the individual processes is interleaved and synchronised. Through the SOS all possible
behaviour specified in a concurrent model is described in the form of a Labelled Transition
System (LTS) [116].1 Through such formalisations specification of formal requirements
over (formal) models is supported.

Moreover, formalisations facilitate the comparison of concurrent systems. This allows
one to check whether two models are indeed describing the same concurrent system or to

1originally called named transition system by Keller [116]

3

translate a model into a minimal equivalent one. The latter is a frequently used technique
to reduce the running-time of analysis algorithms. To compare models with respect to
different classes of formal requirements a plethora of pre-orders and equivalence relations
have been proposed. An overview of these relations is given by van Glabbeek [205]. In
this thesis, we consider branching bisimulation and Divergence-Preserving Branching
Bisimulation (DPBB) [204].

The automatic formal verification of LTSs and specifications written in process calculi
and process algebras against formal properties (such as formal requirements) by means of
exhaustive exploration is referred to as model checking [16].

Model Checking for Models of Concurrent Systems Much like in MDE, in model
checking models are the primary artefact. Model checking has been successfully employed
to verify both hardware and software [109,198].

In model checking a model, as a formal representation of the concurrent system, is
verified against a number of requirements. The requirements are expressed as formal
properties of the model expressed in some formal logic (e.g., CTL* [70] and modal
μ-calculus [123]).

Given a model and a set of properties a model-checker determines whether the formal
behaviour described by the model satisfies these formal properties. The behavioural
semantics of the model define how the system may move from one logical state to the
next. The model-checker exhaustively traverses the reachable logical states described by
the behavioural semantics of the model, also called the state-space. A state s is reachable
iff there is a path from an initial state (e.g., the configuration at start-up) of the system
to state s. A property is refuted by finding counter-example. A counter-example is a
structure that can be simulated by the system under scrutiny showing that the property
is violated. Usually, such a structure takes the form of a reachable fragment of the state
space of the system under scrutiny. When no counter-example is found the property must
hold in all states of the model, and thus, the model is guaranteed to satisfy the property.

Although model checking is very promising for the analysis of systems it has one
significant problem that impedes its successful application for large concurrent systems:
the state-space explosion problem [46]. The size of the state-space of a concurrent system
is exponential in the number of parallel components. As the run-time complexity of
model checking is heavily dependent on size of the state space [35], the model checking of
concurrent systems can quickly become infeasible.

Research in model checking has seen a high focus on tackling the state space explosion
in the past couple of decades [46]. The results range from modelling guide lines [92] to
new model checking algorithms [46]. Techniques such as symmetry reduction [44] and
compositional reasoning [47, 55, 160] approaches take advantage of the symmetric and
hierarchical structure of hardware and software systems. Commutativity of concurrently
executed transitions is exploited by partial order reduction [166]; here one interleaving
order is selected as a representation of all possible interleavings of the corresponding
concurrent transitions. Abstract interpretation [52,139] allows one to approximate infinite
or very large finite transition systems by (smaller) finite ones. To the same end, the
state space is represented implicitly in symbolic model checking [146] techniques by
employing data structures that classify sets of states. Both methods abstract valuations
into categorical values avoiding blow-up caused by the numerous values that, for instance,
variables may take. The difference between abstract interpretation and symbolic model
checking is that abstract interpretation may lose information (i.e., it is an approximative
technique) [53]. As abstractly interpreted models are abstract and approximate, the

4 Introduction

properties verified on these models are abstract and approximate as well. Bounded model
checking [22] bounds the search to counter-examples of a given size foregoing completeness.
One can attempt to regain completeness by applying k-induction [57] or interpolation [147],
though these approaches may still suffer from infeasibly large search spaces. Yet other
works aim to avoid state space explosion by forming contracts of interaction between
concurrent components such that they can be verified in (relative) isolation [24,37,95].

All these approaches have been applied with some measure of success. None of the
approaches is a definitive ‘holy grail’ of model checking, i.e., none of the approaches
works well for all kinds of systems. Furthermore, as the size of concurrent systems is ever
increasing, further advancements will remain a popular and necessary topic of research.

Although the state space explosion problem and the verification of models has enjoyed
much attention, the verification of other areas of the MDE work flow have not. For the
successful application of model checking concurrent models throughout the MDE work
flow a number of challenges must be addressed. We will discuss these challenges in the
next section.

1.1 Problem statement
The design of a concurrent system starts with the development of models. To verify these
models a model checker (e.g., mCRL2 [54] or Cadp [81]) and model checking techniques
are chosen and applied. Careful consideration must be given to the properties, the model,
and the model checking technique in order to avoid the state space explosion problem.

Once the model has been verified, the model may be implemented by programmers or
the implementation may be generated from the model. However, as verification experts
often work on a high-level of abstraction to keep the state space small, it may not
always be possible to implement the system directly from the model. In this case, the
model is refined manually by the designers or automatically via model transformations.
These model transformation are specified with mature technologies such as QVT [94],
Epsilon [121], ATL [21], and triple graph grammars [186]. When the model has been
sufficiently refined the implementation is constructed (automatically or manually).

Despite the increasing maturity of the technologies involved in this work flow, the
development of reliable concurrent systems is still met with a number of challenges.

1. Semantics correctness of model transformations Despite the maturity of
model transformation technologies the verification of model transformations with
respect to dynamic semantics has received little attention [173]. All kinds of
transformations are in desperate need of thorough verification techniques, especially
when they are used in safety critical systems. Transformations such as migration,
refactoring, and refinement all end up in the final implementation. If generated
implementations and transformed models do not formally adhere to the specification
all guarantees are void.
The closer the model serving as specification is to the actual implementation, the
more confidence one has in the correctness of the implementation. If the state space
does not increase dramatically due to the transformation the derived models can
be re-verified. However, verification of derived models is costly. In particular, for
transformations that are reused often, or when the size of the state space does
increase too much, re-verification is infeasible [11]. Therefore, it is vital to develop
techniques that can verify whether a transformation preserves certain guarantees
for all possible input-models.

1.1. Problem statement 5

2. Congruences for parallel composition Concurrent systems are specified in a
natural way using parallel composition and synchronisation operators. There are
many model checking techniques making use of the fact that certain equivalence
relations are congruences for parallel composition with synchronisation. The state
space explosion can be dampened by minimising the behaviour of the individual
parallel processes modulo an appropriate equivalence relation, and possibly its
context, before composition of the system.

Although it is generally assumed that DPBB is a congruence for parallel composition
with synchronisation, no proof has been published (e.g., Cadp supports composi-
tional reduction of concurrent models modulo DPBB). Since DPBB is the finest
in the linear time – branching time spectrum of van Glabbeek [205] that support
abstraction, it preserves more properties as other equivalence relations that support
abstraction. Hence, it is desirable to apply DPBB as a first state space minimisation
step.

3. Selection of verification approach There are numerous model checking tools
and techniques. To select one for a verification task is a daunting task; especially,
since it is often not obvious what technique offers the best (or even reasonable)
performance for a given verification task. In short, it is unclear when one technique
can be expected to perform better than others.

Regardless, the literature gives little statistical consideration to how the performance
of their model checking techniques may be related to their input. Especially, in
the field of explicit-state model checking, many scientists put little effort in the
investigation of their model checking techniques beyond a benchmark considering
a few models. Although heuristics are developed for model checking techniques,
the evaluation of these heuristics often lacks statistical rigour. Furthermore, cha-
racteristics of models can be exploited for a number of applications within model
checking [163]. Identification of such characteristics must be supported through
statistical rigorous findings.

4. Sequential consistency of concurrent models A memory model specifies
the order in which a thread’s memory accesses become visible to other threads
in a program. A memory model affects both programmability and performance
restricting reordering of memory accesses. Strong restrictions reduce the difference
between program order and execution order; and therefore increase understandability.
Weak restrictions offer more optimisation freedom.

Programmers expect their code to be executed in the order specified in their program.
This model for concurrent programs, called sequential consistency, was formalized
by Lamport [131]. Sequential consistency states that all operations of a program are
executed in a total order, i.e., atomically and in the order specified by the program.
That is, a program is executed in program order and memory accesses are serviced
from a single First In First Out (FIFO) queue. A program that follows this model
is said to be Sequentially Consistent (SC).

Sequential consistency is arguably the most natural and easy to understand memory
model for concurrent systems, but is very restrictive. It is sufficient, however, that a
program execution is indistinguishable from an SC execution. We call such programs
observably SC.

However, most modern compilers and hardware do not guarantee preservation of SC

6 Introduction

semantics [29,142]. Hence, sequential consistency may no longer be guaranteed once
an implementation is executed on modern hardware. In fact, interleaving orders
that break intended behaviour are a major source of concurrency bugs [140]. To
guarantee that the results of model checkers are still applicable in the obtained im-
plementation the SC semantics of concurrent models must be preserved in generated
(or implemented) program code.

1.2 Research Questions
For each of the problems stated in Section 1.1 we formulate a corresponding research
question. Additionally, we dedicate a research question on the application of our results
in MDE.

Current model transformation verification techniques are mainly focused on verifying
preservation of well-formedness or static semantics [210]. Techniques that do support
verification of dynamic semantics do not have intrinsic support for concurrency. To gain
support for verification of transformations of concurrent models we formulate the following
research question:

RQ 1: How can we verify preservation of dynamic semantics of model trans-
formations of concurrent models?

One of the greatest facilitators for the verification of concurrent systems are congruences
for parallel composition operators that also perform synchronisations. Although it has
been shown for many equivalence relations that they are congruences for such parallel
composition operator, no such results exist for DPBB. To eliminate any doubt we
investigate the following research question:

RQ 2: Is DPBB a congruence for parallel composition with synchronisations?

The selection of verification techniques amongst the numerous alternatives is often a
daunting task. As a first step towards a heuristic for assisting in choosing a verification
technique, we investigate the memory performance of compositional aggregation and
compare it with a monolithic minimisation as base line. Compositional aggregation has
shown to perform better (in the size of the largest state space in memory at one time)
than classical monolithic composition in a number of cases. However, there are also cases
in which compositional aggregation performs much worse. It is unclear when one should
apply compositional aggregation in favour of other techniques and how it is affected by
aggregation order, action hiding and the scale of the model. With this goal in mind we
get the following research question:

RQ 3: When can compositional aggregation be expected to be more (memory)
efficient than monolithic minimisation?

Due to modern compiler and hardware optimisations non-SC behaviour may be obser-
ved during execution of a program. By appropriately using synchronisation mechanisms
such as semaphores and atomic instructions one can ensure that a program is observably
SC [188]. However, automatic algorithms for restoring observable sequential consistency
are often quite pessimistic since not all dependencies can be determined a priori through
static dependency analysis [13,181].

1.3. Outline and Origin of Chapters 7

In this thesis, we investigate how sequential consistency can be guarantee during the
execution of code generated from concurrent models:

RQ 4: How can sequential consistency be preserved (up to observation) from
model to execution of generated code?

The results obtained from the previous research questions are likely to apply to some
underlying mathematical model. Our last research question investigates how to integrate
these results in an MDE work flow such that they become accessible for developers.

RQ 5: How can our results be applied in an MDE context?

1.3 Outline and Origin of Chapters
In this section, we present a brief overview of each chapter, we indicate the research
questions addressed and point out the chapter’s origin.

Chapter 2 This chapter briefly discusses the formal notions used throughout this
thesis. The behaviour of a processes of a concurrent system is described by a Labelled
Transition System (LTS). This thesis focusses on branching bisimulation and DPPB as
equivalences for LTSs. To specify a concurrent system, an LTS network is used. An
LTS network contains a vector of LTSs and a set of synchronisation laws. The (global)
semantics of an LTS network are described by its system LTS. A system LTS is constructed
through the parallel composition of the LTSs in the network’s vector of LTSs subject
to the set of synchronisation laws. Furthermore, the notion of a congruence for LTS
networks is introduced. Finally, admissibility of an LTS network is presented as branching
bisimulation and DPBB are only congruences for LTS networks that are admissible.

Chapter 3 This chapter addresses research question RQ 1.
We propose a formal verification technique to determine that formalisations of trans-

formations in the form of rule systems are guaranteed to preserve functional properties,
regardless of the models they are applied on. Rule systems consist of a set of transforma-
tion rules over LTSs, a set of synchronisation laws that are expected in the input system,
and a set of synchronisation laws that will be introduced. A transformation rule specifies
an LTS pattern to match and its replacement.

When an abstracted state space is constructed from the matching and replacing LTS
patterns, preservation of a given functional property is verified by comparing the two
state spaces modulo branching bisimulation.

This chapter is taken from

[60] de Putter, S., and Wijs, A. A formal verification technique for
behavioural model-to-model transformations. Formal Aspects of Computing
(Oct 2017)

a special issue extension of

[59] de Putter, S., and Wijs, A. Verifying a Verifier: On the Formal
Correctness of an LTS Transformation Verification Technique. In FASE 2016
(2016), vol. 9633 of LNCS, Springer, pp. 383–400

8 Introduction

Chapter 4 In this chapter, research question RQ 2 is addressed.
DPBB is the finest equivalence relation in the linear time - branching time spectrum

of van Glabbeek. Therefore, it is desirable to use in a first state space minimisation step.
This chapter finally proves that DPBB is indeed a congruence for parallel composition
with synchronisation between components.

We discuss commutativity and associativity of parallel composition with synchro-
nisation in the context of DPBB. Moreover, we show how to decompose an existing
specification of a concurrent system into sub-components that is consistent with the
original specification.

This chapter is taken from

[58] de Putter, S., Lang, F., and Wijs, A. Compositional Model Checking
is Lively - Extended Version. Science of Computer Programming (2019).
Special Issue on FACS. Manuscript under review

a special issue extension of

[64] de Putter, S., and Wijs, A. J. Compositional Model Checking Is
Lively. In FACS (2017), vol. 10487 of LNCS, Springer, pp. 117–136

which received the FACS 2017 Best Student Paper Award.

Chapter 5 In this chapter, we address research question RQ 3.
This chapter takes a first step towards statistically supported selection of model

checking approaches based on model characteristics. Following the quantitative experi-
mental approach, this chapters presents a descriptive analysis that compares compositional
aggregation with monolithic minimisation. Furthermore, we apply machine learning to
create predictors for the efficiency of two heuristics compared to monolithic minimisation.

This chapter is an extension of

[61] de Putter, S., and Wijs, A. To Compose, or Not to Compose, That
Is the Question: An Analysis of Compositional State Space Generation. In
FM (2018), Springer International Publishing, pp. 485–504

Chapter 6 In this chapter, we address research question RQ 4.
Due to modern compiler and hardware optimisations non-SC behaviour may be

observed during execution of a program. Shasha and Snir [188] proposed an algorithm
that applies a minimal number of locks and inserts a minimal number of delays. In this
chapter, we encode part of this algorithm as a model checking technique , and we use the
concurrent model as specification for program order and atomicity.

The output of the algorithm is used to add annotations to the concurrent model. These
annotations are then used by the code generator of Zhang et al. [225, 226] to generate
efficient code that employs a minimal set of blocking statements.

This chapter has been submitted to ESOP 2019

[62] de Putter, S., and Wijs, A. Model Driven Avoidance of Atomicity
Violations under Relaxed-Memory Models. In ESOP (2019). Submitted

1.4. Suggested Method of Reading 9

Chapter 7 In this chapter, we address research question RQ 5. The chapter presents
the Simple Language of Communicating Objects (Slco) [71, 224], a Domain Specific
Language (DSL) for modelling concurrent state machines, and the Slco framework built
around Slco. The framework supports verification of Slco models via mCRL2 [54].
Furthermore, the framework offers a verified Java code generator [224,225]. Within the
work of this thesis the Slco framework was extended with a prototype transformation
verification method powered by the theory of Chapter 3. In Addition, the code generator
was extended to support minimal insertion of synchronisation mechanisms that preserves
sequential consistency with respect to the source Slco model by employing the algorithm
proposed in Chapter 6. Finally, verification of Slco models may proceed compositionally
as discussed in Chapter 4.

This chapter is an extension of

[63] de Putter, S., Wijs, A., and Zhang, D. The SLCO Framework
for Verified, Model-Driven Construction of Component Software. In FACS
(2018), LNCS, Springer, pp. 288–296

Chapter 8 This chapter concludes the thesis. It revisits the research questions and
contributions. Finally, directions for future research are proposed.

1.4 Suggested Method of Reading
Before reading Chapters 3 to 5 one should familiarise oneself with the notions introduced
in Chapter 2. Apart from those notions, these chapters are self-contained and can be read
independently. Chapters 6 and 7 are fully self-contained and do not require any prior
knowledge contained in other chapters.

Chapter 3 discusses the verification of transformations. Chapter 4 presents a proof
showing that DPBB is a congruence for parallel composition with synchronisations.
Chapter 5 deals with compositional aggregation and when it is expected to out-perform
monolithic minimisation. Chapter 6 presents an algorithm which can be exploited to
generate guaranteed observably SC implementations of concurrent models. Chapter 7
explains how the material presented in the previous chapters is applied in an MDE
framework. Finally, Chapter 8 presents the conclusions of this thesis and elaborates on
further directions of future work.

Chapter 2

Preliminaries

In this chapter we briefly introduce the notions that are used throughout this thesis. These
notations concern the semantics of systems.

A Labelled Transitions System (LTS) describes the behaviour of a process or system.
The behaviour of a concurrent system is described by a network of LTSs, or LTS network
for short. From an LTS network, a system LTS can be derived describing the global
behaviour of the network. An LTS or system LTS may be minimised modulo an appropriate
equivalence relation.

To compare or minimise the behaviour of these LTSs and system LTSs an equivalence
relation is used. An equivalence relation between two LTSs relates states that have
equivalent behaviour. The minimisation of an LTS computes, for a given LTS, a minimum
equivalent LTS. In this chapter we introduce the equivalence relations named branching
bisimulation and divergence preserving branching bisimulation.

12 Preliminaries

2.1 Vectors
A vector v̄ of size n contains n elements indexed from 1 to n. We write 1..n for the set
of integers ranging from 1 to n. For all i ∈ 1..n, v̄i represents the ith element of v̄. The
concatenation of two vectors v̄1 and v̄2 is denoted by v̄1 ‖ v̄2. Moreover, xn is the vector
consisting of n elements x.

Consider a set of indices I ⊆ 1..n. The indices with the ith rank (i ∈ 1..|I|) among
the indices in I is denoted Ii. The projection of a vector v̄ on to I is defined as the vector
v̄I = 〈v̄I1 , . . . , v̄I|I|〉 of length |I|. Furthermore, given a vector v, and some element x, the
vector with all elements at indices in I substituted by x is defined as v[I �→ x] = 〈e1, . . . , en〉
with ∀i ∈ I. ei = x and ∀i ∈ 1..n \ I. ei = vi.

2.2 LTS and LTS equivalences
Labelled Transition System. The semantics of a process, or a composition of several
processes, can be formally expressed by an LTS as presented in Definition 2.2.1.

Definition 2.2.1 (Labelled Transition System). An LTS G is a tuple (SG ,AG , TG , IG),
with

• SG a finite set of states;

• AG a set of action labels;

• TG ⊆ SG ×AG × SG a transition relation;

• IG ⊆ SG a (non-empty) set of initial states.

Action labels in AG are denoted by a, b, c, etc. Additionally, there is a special action
label τ that represents internal, or hidden, system steps. A transition (s, a, s′) ∈ TG , or
s

a−→G s′ for short, denotes that LTS G can move from state s to state s′ by performing
the a-action. The transitive reflexive closure of a−→G is denoted as a−→∗

G , and the transitive
closure is denoted as a−→+

G .

Equivalence of LTSs LTSs equivalence relations allow the comparison and minimisa-
tion of LTSs. Two prominent equivalence relations are branching bisimulation [207] and
Divergence Preserving Branching Bisimulation (DPBB) (also known as branching bisimu-
lation with explicit divergence [204,207]). Both equivalence relations support abstraction
from actions and are sensitive to internal actions and the branching structure of an LTS.
In addition, DPBB is sensitive to cycles of τ -transitions, i.e., infinite internal behaviour.
We require abstraction from actions for the verification of abstraction and refinement
transformations (Chapter 3) such that input and output models can be compared on the
same abstraction level.

A branching bisimulation relation is defined as follows.

Definition 2.2.2 (Branching bisimulation). A binary relation B between two LTSs G1
and G2 is a branching bisimulation iff s B t implies

(B1) if s a−→G1
s′ then

(a) either a = τ with s′ B t;

2.3. Concurrent LTSs 13

(b) or t
τ−→∗

G2
t̂

a−→G2 t′ with s B t̂ and s′ B t′.

(B2) the symmetric case: if t a−→G2
t′ then

(a) either a = τ with s B t′;

(b) or s
τ−→∗

G1
ŝ

a−→G1
s′ with ŝ B t and s′ B t′.

Two states s ∈ SG1 and t ∈ SG2 are branching bisimilar, denoted s ↔b t, iff there
is a branching bisimulation relation B such that s B t. Two sets of states S1 ⊆ SG1

and S2 ⊆ SG2
are called branching bisimilar, denoted S1 ↔b S2, iff there is a branching

bisimulation relation B such that ∀s1 ∈ S1.∃s2 ∈ S2.s1 B s2 and vice versa. We say that
two LTSs G1 and G2 are branching bisimilar, denoted G1 ↔b G2, iff there is a branching
bisimulation relation B such that IG1 B IG2 . Moreover, two LTSs may share states, i.e.,
it is possible that s ∈ SG1 ∩ SG2 .

A DPBB relation is a branching bisimulation relation with two extra conditions as
presented in Definition 2.2.3. To simplify proofs define DPBB with the weakest divergence
condition (D4) presented in [204]. This definition is equivalent to the standard definition
of DPBB [204]. The smallest infinite ordinal is denoted by ω.

Definition 2.2.3 (Divergence-Preserving Branching Bisimulation). A binary relation B
between two LTSs G1 and G2 is a divergence-preserving branching bisimulation iff B is a
branching bisimulation and for all s ∈ SG1 and t ∈ SG2 , s B t implies:

(D1) if there is an infinite sequence of states (sk)k∈ω such that s = s0, sk τ−→G1
sk+1 and

sk B t for all k ∈ ω, then there exists a state t′ such that t τ−→+
G2
t′ and sk B t′ for

some k ∈ ω.

(D2) the symmetric case: if there is an infinite sequence of states (tk)k∈ω such that t = t0,
tk

τ−→G1 tk+1 and s B tk for all k ∈ ω, then there exists a state s′ such that s τ−→+
G1
s′

and s′ Bk for some k ∈ ω.

Two states s ∈ SG1 and t ∈ SG2 are divergence-preserving branching bisimilar, denoted
by s↔Δ

b t, iff there is a DPBB relation B such that s B t. Two sets of states S1 ⊆ SG1

and S2 ⊆ SG2
are divergence-preserving branching bisimilar, denoted S1 ↔Δ

b S2, iff there
is a DPBB relation B such that ∀s1 ∈ S1.∃s2 ∈ S2.s1 B s2 and vice versa. We say that
two LTSs G1 and G2 are divergence-preserving branching bisimilar, denoted by G1 ↔Δ

b G2,
iff there is a DPBB relation B such that ∀s1 ∈ IG1

.∃s2 ∈ IG2
. s1 B s2 and vice versa.

2.3 Concurrent LTSs
LTS Network An LTS network [133] (Definition 2.3.1) describes a system consisting
of a finite number of concurrent process LTSs and a set of synchronisation laws which
define the possible interaction between the processes. The explicit behaviour of an LTS
network is defined by its system LTS (Definition 2.3.3).

Definition 2.3.1 (LTS network). An LTS network N of size n is a pair (Π,V), where

• Π is a vector of n concurrent LTSs. For each i ∈ 1..n, we write Πi = (Si,Ai, Ti, Ii)
and s

a−→i s
′ as shorthand for s

a−→Πi
s′.

14 Preliminaries

• V is a finite set of synchronisation laws. A synchronisation law is a tuple (v̄, a),
where v̄ is a vector of size n, called the synchronisation vector, describing synchro-
nising action labels, and a is an action label representing the result of successful
synchronisation. We have ∀i ∈ 1..n. v̄i ∈ Ai ∪ {•}, where • is a special symbol
denoting that Πi performs no action.

Given a set of synchronisation laws V , the set of result actions is defined as AV = {a |
(v̄, a) ∈ V}. Furthermore, the set of indices of processes participating in a synchronisation
law (v̄, a) is defined as Ac(v̄) = {i | i ∈ 1..n ∧ v̄i �= •}; e.g., Ac(〈c, b, •〉) = {1, 2}. Finally,
the set of all sets of active indices is defined by Ac(V) = {Ac(v̄) | v̄ ∈ V}.

The LTS network model subsumes most hiding, renaming, cutting, and parallel
composition operators present in process algebras, but also more expressive operators such
as synchronisations of m among n processes [136]. For instance, hiding can be applied
by replacing the a component in a law by τ . A transition of a process LTS is cut if it is
blocked with respect to the behaviour of the whole system (system LTS), i.e., there is no
synchronisation law involving the transition’s action label at the position of the process
LTS.

An LTS network is called admissible if the synchronisation laws of the network do
not synchronise, rename, or cut τ -transitions [133] as defined in Definition 2.3.2. The
intuition behind this is that internal, i.e., hidden, behaviour should not be restricted by
any operation. Techniques such as partial model checking and compositional construction
rely on LTS networks being admissible [81].

Definition 2.3.2 (LTS network Admissibility). An LTS network N = (Π,V) of length n
is called admissible iff the following properties hold:

1. ∀(v̄, a) ∈ V, i ∈ 1..n. v̄i = τ =⇒ ¬∃j �= i. v̄j �= •; (no synchronisation of τ ’s)

2. ∀(v̄, a) ∈ V, i ∈ 1..n. v̄i = τ =⇒ a = τ ; (no renaming of τ ’s)

3. ∀i ∈ 1..n. τ ∈ Ai =⇒ ∃(v̄, a) ∈ V. v̄i = τ . (no cutting of τ ’s)

The System LTS of an LTS network The explicit behaviour of an LTS network N is
defined by its system LTS GN which is obtained by combining the processes in Π according
to the synchronisation laws in V as specified by Definition 2.3.3. The LTS network model
subsumes most hiding, renaming, cutting, and parallel composition operators present in
process algebras. For instance, hiding can be applied by replacing the a component in a
law by τ .

Definition 2.3.3 (System LTS). Given an LTS network N = (Π,V), its system LTS is
defined by GN = (SN ,AN , TN , IN), with

• SN = S1 × · · · × Sn;

• IN = {〈s1, . . . , sn〉 | si ∈ Ii};

• TN and SN are the smallest relation and set, respectively, satisfying IN ⊆ SN and
for all s̄ ∈ SN , a ∈ AV , we have s̄

a−→N s̄′ and s̄′ ∈ SN iff there exists (v̄, a) ∈ V
such that for all i ∈ 1..n: {

s̄i = s̄′i if v̄i = •
s̄i

v̄i−→Πi
s̄′i otherwise

2.3. Concurrent LTSs 15

• AN = {a | ∃s̄, s̄′ ∈ SN .s̄
a−→N s̄′}.

Whenever we want to make explicit that a transition s̄
a−→N s̄′ is enabled by a

synchronisation law (v̄, a), we write s̄
v̄,a−−→N s̄′. We refer to s̄

a−→N s̄′ and s̄
v̄,a−−→N s̄′

transitions as global transitions and we refer to transitions s̄
v̄i−→i s̄

′ (i ∈ Ac(v̄)) as the
(process-)local transitions. If it is clear from the context whether a transition is global or
local, then “global” or “local” is omitted.

In Figure 2.1, an example of an LTS network N = (〈Π1,Π2〉,V) with four synchro-
nisation laws is shown on the left, and the corresponding system LTS GN is shown on
the right. Initial states are indicated with an incoming arrow. The states of the system
LTS GN are constructed by combining the states of Π1 and Π2. In this example, we have

1

Π1

3

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(〈c, c〉, c),
(〈d, d〉, d),
(〈a, •〉, a),
(〈•, b〉, b),
(〈a, e〉, f)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

a

1 3

1 4

GM

42 e

c d d b

Π2

2 3

c

d

b

c a

Figure 2.1: An LTS network N = (Π,V)
(left) and its system LTS GN (right)

〈1, 3〉, 〈1, 4〉, 〈2, 3〉 ∈ SN , of which 〈1, 3〉 is the
single initial state of GN .

The transitions of the system LTS in Fi-
gure 2.1 are constructed by combining the tran-
sitions of Π1 and Π2 according to the set of
synchronisation laws V. Law (〈c, c〉, c) speci-
fies that the process LTSs can synchronise on
their c-transitions, resulting in c-transitions in
the system LTS. Similarly, the process LTSs
can synchronise on their d-transitions, resulting
in a d-transition in GN . Furthermore, law
(〈a, •〉, a) specifies that process Π1 can perform
an a-transition independently resulting in an
a-transition in GN . Likewise, law (〈•, b〉, b) spe-
cifies that the b-transition can be fired indepen-
dently by process Π2. When the network is in
state 〈1, 4〉 and Π2 performs the b-action, Π1

remains in state 〈1〉 because Π1 does not participate in law (〈•, b〉, b). The last law states
that a- and e-transitions can synchronise, resulting in f -transitions, however, in this
example the a- and e-transitions in Π1 and Π2 are never able to synchronise since state
〈2, 4〉 is unreachable.

Congruence for LTS networks Replacement and minimisation of processes in an
LTS network (such as in compositional aggregation) relies on the applied equivalence
relation being a congruence for LTS networks. Intuitively, if an equivalence relation R is a
congruence for LTS networks, any process Πi (i ∈ 1..n) in some network N = (Π,V) may
be replaced by an equivalent (modulo R) process, e.g., R) process, e.g., a minimisation of
Πi.

Definition 2.3.4 (Congruence for LTS networks). An LTS equivalence R is a congruence
for LTS networks iff for all LTS networks (Π,V) of some size n, and all vectors of LTSs
Ψ (also of size n) it holds that

(∀i ∈ 1..n. Πi R Ψi) =⇒ G(Π,V) R G(Ψ,V)

Branching bisimulation, DPBB, observational equivalence, safety equivalence and
weak trace equivalence, are congruences for admissible LTS networks [58, 81] (see also
Chapter 4).

Chapter 3

Transformation Verification

In Model Driven Engineering, models and model transformations are the primary artefacts
when developing a software system. In such a workflow, model transformations are used
to incrementally transform initial abstract models into concrete models containing all
relevant system details. Over the years, various formal methods have been proposed and
further developed to determine the functional correctness of models of concurrent systems.
However, the formal verification of model transformations has so far not received as much
attention.

In this chapter, we propose a formal verification technique to determine that formali-
sations of such transformations in the form of rule systems are guaranteed to preserve
functional properties, regardless of the models they are applied to. Given n transformation
rules in the rule system, we show that only up to n individual checks are required to
determine preservation of a property, whereas previously, up to 2n−1 checks were required.
Furthermore, a full correctness proof for the technique is presented, based on a formal
proof conducted with the Coq proof assistant.

The technique was implemented in Refiner version 2. We report on two sets of
conducted experiments. In the first set, we compared traditional model checking with
transformation verification, and in the second set, we compared Refiner version2 with
the previous version of Refiner.

This chapter is taken from

[60] de Putter, S., and Wijs, A. A formal verification technique for behavioural
model-to-model transformations. Formal Aspects of Computing (Oct 2017)

a special issue extension of

[59] de Putter, S., and Wijs, A. Verifying a Verifier: On the Formal
Correctness of an LTS Transformation Verification Technique. In FASE 2016

(2016), vol. 9633 of LNCS, Springer, pp. 383–400

18 Transformation Verification

3.1 Introduction
It is a well-known fact that concurrent systems are very hard to develop correctly. In order
to support the development process, over the years, a whole range of formal methods have
been constructed to determine the functional correctness of system models [34]. Over
time, these techniques have greatly improved, but the analysis of complex models is still
time-consuming, and often beyond what is currently possible.

To get a stronger grip on the development process, Model-Driven Engineering has been
proposed [119]. In this approach, models are constructed iteratively, by defining model
transformations that can be viewed as functions applicable to models: they are applied to
models, producing new models. Using such transformations, an abstract initial model can
be gradually transformed into a very detailed model describing all aspects of the system.
If one can determine that the transformations are correct, then it is guaranteed that a
correct initial model will be transformed into a correct final model.

Most model transformation verification techniques are focussed on determining that
a given transformation applied to a given model produces a correct new model, but in
order to show that a transformation is correct in general, one would have to determine
this for all possible input models. Two survey papers [7,173] identify some techniques that
can do this, but these techniques are often informal or require high effort (e.g., by using a
theorem prover).

This work is an extension of [59], where we formally proved the correctness of such a
formal transformation verification technique proposed in [214,217] and implemented in
the tool Refiner [218]. It is applicable to models with a semantics that can be captured
by Labelled Transition Systems (LTSs). Transformations are formally defined as LTS
transformation rules. Correctness of transformations is interpreted as the preservation of
properties. Given a property ϕ written in a fragment of the μ-calculus [144], and a system of
transformation rules Σ, Refiner checks whether Σ preserves ϕ for all possible inputs. This
is done by first hiding all behaviour irrelevant for ϕ [114, 144] and then checking whether

L1

property based
hiding

L R

check BB

φ

R 1 Ln R n

L1 Ln R 1 R n

L R

property based
hiding

Figure 3.1: LTS transformation
verification with Refiner

the rules replace parts of the input LTSs by new parts
that are branching bisimilar to the old ones. Branching
bisimilarity preserves safety properties and a subset
of liveness properties [207]. Furthermore, for systems
in which Kooman’s fair abstraction rule [122] holds,
branching bisimulation also preserves liveness property
involving inevitable reachability [207].

Figure 3.1 provides an overview of the transforma-
tion verification workflow in Refiner. Given as input is
a rule system consisting of n LTS transformation rules,
where each rule ri consists of a left pattern Li, describing
which component behaviour is subject to transformation,
and a right pattern Ri, defining the behaviour produced
by a transformation of the corresponding left pattern
behaviour. If such a rule system were to be applied to
an input model, Refiner would identify the possible
matches of the left patterns of the rules on the behavi-
our of the components in the model, and subsequently,
apply the transformation rules to those matches, the-
reby replacing the existing behaviour with copies of the
corresponding right patterns.

3.1. Introduction 19

In order to verify that a rule system will preserve a property ϕ for any model it is
applied to, Refiner combines the left patterns on the one hand, and the right patterns
on the other hand. Then Refiner produces the state spaces of both these combinations,
as these can be interpreted as models themselves. In practice, Refiner actually checks
whether patterns are dependent on each other, in the sense that their behaviour needs to
synchronise at some point, and groups the rules together into sets of dependent rules. In
this example, there is only one such group.

Next, property-based hiding [144] is performed, given a property ϕ to check. Finally,
the resulting abstract state spaces are compared using a branching bisimulation checking
algorithm. Only if the combinations of both the left and the right patterns are branching
bisimilar will the outcome of this check be positive: indicating that the property ϕ is
preserved in any application of the rule system. If the patterns are not branching bisimilar
the ϕ is not preserved for all applications of the rule system, however, ϕ may still be
preserved for some applications. When no property is considered, the technique checks for
full semantics preservation, i.e., it does not apply property-based hiding. This is useful,
for instance, when refactoring models.

The technique has been successfully applied to reason very efficiently about model
transformations; speed-ups of five orders of magnitude have been measured with respect to
traditional model checking of the models produced by a transformation [214]. However, as
the technique is theoretically very involved, its absolute correctness, i.e., whether it returns
true iff a given rule system is property preserving for all possible input models, has been
an open question since it was constructed. In [59] we first addressed the correctness of the
transformation verification technique. After finding and fixing two issues the verification
technique was proven correct.

Contributions This chapter addresses the formal correctness of the transformation
verification technique from [214].

First, we have verified transformation rules that distinguish between glue-states
that allow incoming and/or outgoing transitions entering or leaving the LTS patterns,
respectively. By doing so, the verification technique is able to handle more cases.

Moreover, we present a proof that shows that the required number of bisimulation
checks when verifying an LTS transformation rule system can be reduced from 2n − 1
per set of dependent transformation rules (where n is the upper bound of the number
of rules in such a set) to only one per set of dependent rules. This proof is presented in
greater detail than the one given previously [59] and is based on a formal proof conducted
with the Coq proof assistant 1 version 8.6 (December 2016). The Coq formalisation is
available online. 2

Structure of the chapter Related work is discussed in Section 3.2. Section 3.3
presents the notions for and analysis of the application of a rule system consisting of only
a single transformation rule. A correctness proof is presented. This section can be viewed
as a first step towards discussing the complete technique, applicable to rule systems
consisting of multiple rules. Next, in Section 3.4, the complete technique is presented; the
discussion is continued by considering networks of concurrent process LTSs, and systems
of transformation rules. Again, we give a proof of correctness.

1http://coq.inria.fr
2http://www.win.tue.nl/mdse/property_preservation/FAC2017_LTS_Network_

transformation_verification.zip

20 Transformation Verification

After that, we present experimental results in Section 3.5, by which we demonstrate the
effectiveness of the analysis technique, compared to, more traditional, model checking the
models again once they have been altered by a model transformation. Finally, section 3.6
contains our conclusions and pointers to future work.

3.2 Related Work
Papers on incremental model checking (IMC) propose how to reuse model checking
results of safety properties for a given input model after it has been altered [191, 195].
We also consider verifying models that are subject to changes. However, we focus
on analysing transformation specifications, i.e., the changes themselves, allowing us to
determine whether a change always preserves correctness, independent of the input model.
Furthermore, our technique can also check the preservation of (a subset of) liveness
properties.

In the context of Dynamic graph algorithms [72], reachability is an unbounded pro-
blem [174,191], i.e., it cannot be determined solely based on the changes. Thanks to our
criteria, this is not an issue in our context.

In [184], an incremental algorithm is presented for updating bisimulation relations
based on changes applied to a graph. Their goal is to efficiently maintain a bisimulation,
whereas our goal is to assess whether bisimulations are guaranteed to remain after a
transformation has been applied without considering the whole relation. As is the case
for the IMC techniques, this algorithm works only for a given input graph, while we aim
to prove correctness of the transformation specification itself regardless of the input.

In refinement checking [1, 127], supported by tools such as Rodin [4], Fdr3
3 and

Csp-Casl-Prover [112], it is usually checked that one model refines another. This is
very similar to our approach, but refinements are defined in terms of what the new model
will be, as opposed to how the new model can be obtained from the old one, i.e., model
transformations are not represented as artefacts independent of the models they can be
applied to. This makes the technique not directly suitable to investigate the feasibility to
verify definitions of model transformations, as opposed to the models they produce.

The Bart tool4 allows automatically refining B components to B0 implementations.
Similar to our setting, it treats refinement rules as user-definable artefacts and performs
pattern matching to do the refining. Constraints are checked to ensure that the resulting
system will be correct. Other work related to B, e.g., [137], is on strictly refining existing
functionalities. Approaches described in, e.g., [23, 51,87,105] prove that a transformation
preserves the semantics of any input model, by showing that the transformed model will
be strong or weak bisimilar to the original. Contrary to our work, in all these approaches,
no cases can be handled where transformations alter the semantics in a way that does not
invalidate the functional property of interest. Furthermore, by using branching bisimilarity
our technique also supports abstraction (as opposed to strong) and a subset of liveness
properties (as opposed to weak bisimilarity).

Similarly, Combemale et al. [51], Hülsbusch et al. [105], and Karsai and Narayanan [113,
152] check semantics preservation of model transformations using either strong or weak
bisimilarity.

Several techniques perform individual checks for each concrete model [113,152,208].
As such, the transformation itself is not verified, but verification is done each time the

3http://www.fsel.com/fdr3.html.
4http://www.tools.clearsy.com/tools/bart.

3.3. Verifying Single LTS Transformations 21

transformation is applied in a concrete situation. Our technique verifies the transformation
definition once, after which the verification result is relevant for each application of that
transformation.

Monotonically adding functionality, as opposed to refining, is addressed by, e.g.,
Braunstein and Encrenaz [36]. The focus is on updating property formulae. It would be
interesting to investigate whether such an approach can be applied within our technique
in order to transform properties along with the system.

In some works, theorem proving is used to verify the preservation of behavioural
semantics [86, 194]. The use of theorem provers requires expert knowledge and high
effort [194]. In contrast, our equivalence checking approach is more lightweight, automated,
and allows the retrieval of counter-examples (as a set of traces) that indicate what
behaviour of the right pattern is not branching bisimilar to that of the left pattern. This
information helps developers identify issues with the transformations.

Transformation rules for Open Nets are verified on the preservation of dynamic
semantics by Baldan et al. [18]. Open Nets are a reactive extension of Petri Nets. The
technique is comparable to our technique with two main exceptions. First, they consider
weak bisimilarity for the comparison of rule patterns, which preserves a strictly smaller
fragment of the μ-calculus than branching bisimilarity [144]. Second, their technique does
not allow transforming the communication interfaces between components. Our approach
allows this, and checks whether the components remain ‘compatible’.

Finally, Selim et al. [187] check correspondence between source and target models
for transformations expressed in the DSLTrans. DSLTrans uses a symbolic model
checker to verify properties that can be derived from the meta-models. The state space
captures the evolution of the input model. In contrast, our approach considers the state
spaces of combinations of transformation rules, which represent the potential behaviour
described by those rules. The verification of language structural properties offered by
DSLTrans and the verification of dynamic semantic properties offered by Refiner

address orthogonal aspects of correctness of model transformations. Hence, an interesting
pointer for future work is whether those two approaches can be combined.

3.3 Verifying Single LTS Transformations
This section introduces the main concepts related to the transformation of LTSs (Defini-
tion 2.2.1), and explains how a single transformation rule can be analysed to guarantee
that it preserves the branching structure of all LTSs it can be applied to.

3.3.1 Transformation of LTSs
We allow LTSs to be transformed by means of formally defined transformation rules.
Transformation rules are defined as follows.

Definition 3.3.1 (Transformation Rule). A transformation rule r = (L,R) consists of
a left pattern LTS L = (SL,AL, TL, IL) and a right pattern LTS R = (SR,AR, TR, IR),
with IL = IR. The initial states of the pattern LTSs IL and IR are called the in-states.
Furthermore, the two pattern LTSs are annotated with a (possibly empty) set of exit-
states EL ⊆ SL and ER ⊆ SR, respectively, with EL = ER. Finally, we must have that
SL ∩ SR = IL ∪ EL = IR ∪ ER.

The states in SL ∩ SR are called the glue-states. The in-states (IL and IR) are
glue-states that represent the states at which the pattern may be entered. The exit-states

22 Transformation Verification

(EL and ER) are glue-states that represent the states from which the pattern may be left.
It is possible for a glue-state to be both an in-state and an exit-state.

1̃

2̃

a

a

1̃

7̃

a′

a′

R

3̃

3̃

L

6̃

τ

Figure 3.2: A transforma-
tion rule

Figure 3.2 shows an example of a transformation rule
r = (L,R) transforming a sequence of two a-transitions to
a τ -transition followed by two a′-transitions. The initial
states, i.e., the in-states of L and R, are indicated by an
incoming arrow. The exit-states are represented by a square.
Furthermore, all glue-states (i.e., the in- and exit-states) are
coloured grey.

Say the pattern LTS is embedded into a larger LTS. The
context of the LTS pattern is the behaviour of the larger
LTS that is not described in the pattern LTS. The patterns
LTS expect only ingoing transitions from the context at state
〈1̃〉 as this is an in-state. Similarly, at exit-state 〈3̃〉, only
outgoing transitions to the context are expected. Our pre-
vious formalisation [59] cannot express these subtleties as
it does not distinguish between in-states and out-states. In
Section 3.3.2, we show that, due to the in-states and out-
states, the formalisation presented in this chapter is able to
identify that, when the a-transitions are relabelled to a′-transitions, this transformation
rule is correct while the previous formalisation cannot.

When applying a transformation rule to an LTS, the changes are applied relative to
the glue-states, i.e., the patterns LTS are embeddings in larger LTSs. To reason about
the embedding of a transformation rule, we first define the notion of an LTS morphism.

Definition 3.3.2 (LTS morphism). An LTS morphism f : G0 → G1 between two LTSs
G0 = (SG0

,AG0
, TG0

, IG0
) and G1 = (SG1

,AG1
, TG1

, IG1
) is a pair of functions f = (fS :

SG0
→ SG1

, fT : TG0
→ TG1

) which preserve source states, target states, and transition
labels, i.e., for all s a−→G0 s′, it holds that fT(s

a−→G0 s′) = fS(s)
a−→G1 fS(s′).

An embedding of one LTS into another is described by an injective LTS morphism. It
should be noted that for such embeddings, there is never a need to explicitly indicate
how transitions are mapped by an LTS morphism f as the transition relation uniquely
describes tuples consisting of source state, label, and target state. This ensures that given
a function fS : SG0 → SG1 , an injective LTS morphism f is implied by it, since no two
transitions in G0 can be mapped to the same transition in G1, i.e., an injective function
fT : TG0

→ TG1
is implied. Because of that, with slight abuse of notation, we directly

reason about LTS morphisms f as mappings between LTS states, in the remainder of
this chapter.

A transformation rule r = (L,R) is applicable to an LTS G iff a match m : L → G
exists according to Definition 3.3.3. Given a state s ∈ SG of an input LTS G and a state
p ∈ SP of a pattern LTS P, we write m(p) = s to indicate that state s is matched on by
state p via match a m : P → G. The set m(S) = {m(s) ∈ SG | s ∈ S} is the image of a
set of states S ⊆ SP through match m on an LTS G.

Definition 3.3.3 (Match). A pattern LTS P = (SP ,AP , TP , IP) with a set of exit-states
EP has a match m : P → G on an LTS G = (SG ,AG , TG , IG) iff m is an injective LTS
morphism and for all p ∈ SP , s ∈ SG:

• m(p) = s ∧ s ∈ IG =⇒ p ∈ EP ;

3.3. Verifying Single LTS Transformations 23

• s
a−→G m(p) ∧ (¬∃p′ ∈ SP . p′

a−→P p ∧m(p′) = s) =⇒ p ∈ IP ;

• m(p)
a−→G s ∧ (¬∃p′ ∈ SP . p

a−→P p′ ∧m(p′) = s) =⇒ p ∈ EP .

A match is a behaviour preserving morphism of a pattern LTS P in an LTS G defined
via a category of LTSs [222]. The first match condition expresses that an initial state
may only be matched on by exit-states. This is a reasonable assumption as all reachable
behaviour starts at initial states. A consequence of the condition is that initial states may
not be removed by a transformation. If the condition is violated, then both the initial
state and its transitions are removed, thus the initial state of the resulting transformed
LTS has no transitions either.

The remaining two conditions make sure that a match may not cause removal of
transitions that are not explicitly present in P (an example will be discussed after we
introduce the notion of LTS transformation). The first condition ensures that the match of
a pattern LTS may only be entered through in-states, i.e., a transition from an unmatched
state to a matched state implies that the matched state is matched on by an in-state.
Similarly, the second condition states that the match of the pattern LTS may only be
left through an exit-state, i.e., a transitions from a matched state to an unmatched state
implies that the matched state is matched on by an exit-state.

Figure 3.4 show
An LTS G is transformed to an LTS T (G) according to Definition 3.3.4. For clarity,

we refer with p, p′, . . . to states in a left pattern LTS, with q, q′, . . . to states in a right
pattern LTS, with s, s′, . . . to states in an input LTS, and with t, t′, . . . to states in an
output LTS.

Definition 3.3.4 (LTS Transformation). Let G = (SG ,AG , TG , IG) be an LTS and let
r = (L,R) be a transformation rule with match m : L → G. Moreover, let m̂ be the state
generating function that will define the match of R on to the transformed LTS T (G) such
that ∀q ∈ SL ∩ SR. m̂(q) = m(q) and ∀q ∈ SR \ SL. m̂(q) /∈ SG. The transformation
of LTS G, via rule r with matches m, m̂, is defined as T (G) = (ST (G),AT (G), TT (G), IG)
where

• ST (G) = SG \m(SL) ∪ m̂(SR);

• TT (G) = (TG \ {m(p)
a−→ m(p′) | p a−→L p′}) ∪ {m̂(q)

a−→ m̂(q′) | q a−→R q′};

• AT (G) = {a | ∃t a−→ t′ ∈ TT (G)}.

Given a match, an LTS transformation replaces states and transitions matched by L
by a copy of R yielding LTS T (G). An application of a transformation rule is shown in
Figure 3.3. Again, the initial states are indicated by an incoming arrow. In the middle of
Figure 3.3, the transformation rule r = (L,R) is shown (presented earlier in Figure 3.2)
which is applied to LTS G resulting in LTS T (G). The states are numbered such that
matches can be identified by the state label, i.e., a state ĩ is matched onto state i. Note
that such a match satisfies the conditions of Definition 3.3.3: State 〈1̃〉 is not an exit-state,
but state 〈1〉 does not have unmatched outgoing transitions, state 〈3̃〉 is not an in-state,
but there are no unmatched incoming transitions to state 〈3〉, and finally, state 〈3〉 has
unmatched outgoing transitions, but this is allowed, since 〈3̃〉 is an exit-state.

On the other hand, states 〈1̃〉, 〈2̃〉 and 〈3̃〉 of L do not match on states 〈2〉, 〈3〉,
and 〈4〉, respectively, as this violates condition 2 of Definition 3.3.3. Namely, transition

24 Transformation Verification

1̃

2̃

a

a

1̃

7̃

a′

a′

R

1

2

a

3

a

4 5

a b

G

1

7

a′

3

a′

4 5

a b

T (G)

3̃

3̃

L

6̃

τ τ

6

Figure 3.3: Application of a transformation rule

1

2

a

3

a

4 5

a b

G

1

6

τ

7

a′

4 5

a′

T (G)

a

2

Figure 3.4: Violation of the con-
ditions of a match results in the
deletion of the b-transition

〈3〉 b−→G 〈5〉 is unmatched, since state 〈5〉 is unmatched, but state 〈2〉 is not an exit-state.
Figure 3.4 shows what happens if the transformation is applied using this morphism
despite it satisfying the match conditions. When 〈2〉 is deleted by the transformation its
b-transition to state 〈4〉 no longer has a source state, and hence, is deleted as well. The
conditions of a match prevent the occurrence of such undesirable situations.

In general, L may have several matches on G. Therefore, we assume that transfor-
mations are confluent, i.e., that they are guaranteed to terminate and lead to a unique
T (G). Confluence of LTS transformations can be checked efficiently [215]. By assuming
confluence, we can focus on having a single match when verifying transformation rules,
since the transformations of individual matches do not influence each other.

The transformation shown in Figure 3.3 is confluent. The transformation rule can
be made non-confluent by changing state 〈2̃〉 to an exit-state. Then, the transformation
rule is also applicable to 〈2〉 a−→ 〈3〉 a−→ 〈4〉. Hence, such a transformation can lead to two
different transformed LTSs that cannot be transformed further. Not only is easier to
understand confluent transformations leading to a single unique transformed LTS, we
also exploit this property in Section 3.4.3 to weaken some of the preconditions that the
technique relies upon for verification of sets of dependent transformation rules.

3.3.2 Analysing a Transformation Rule
The basis of the transformation verification procedure is to check whether the two patterns
making up a transformation rule are equivalent, while respecting that these patterns
represent embeddings in larger systems. We want to be able to verify the transformation’s
side effects on both the matched states and the states connected to these matched states.
To make this explicit, we extend the left- and right-patterns of a transformation rule
r = (L,R) according to Definition 3.3.5. The resulting so-called κ-extended transformation
rule is defined as rκ = (Lκ,Rκ), and is specifically used for the purpose of analysing r, it
does not replace r.

In the κ-extended version of a pattern LTS P, a new state named κ is introduced,

3.3. Verifying Single LTS Transformations 25

↔b/

b a

Lκ Rκ

κ ε3

ε1

ε2

σ1
κ ε3

ε1

ε2

σ1
3̃2̃

1̃ 1̃

2̃ 3̃

γ1,1 γ1,1
γ3,1γ2,1

a b

γ3,1γ2,1

Figure 3.5: The ε3-transition ensures 〈3〉 ↔b/ 〈2〉

which is connected to the original states by new transitions labelled σp for p′ ∈ IP , and
εp′ for p ∈ EP . Furthermore, for all p ∈ EP and p′ ∈ IP a γp,p′-transition is introduced.
The set of initial states of the κ-extended LTS consists of the states in EP extended with
a single and unique κ-state. The in-states p ∈ IP do not need to be added to the set of
initial states as they are always reachable via a σ-transition.

Definition 3.3.5 (κ-extension of a pattern LTS). The pattern LTS P extended with a
κ-state, and σ-, ε- and γ-transitions is defined as Pκ = (SPκ ,APκ , TPκ , IPκ) where

• SPκ = SP ∪ {κ};

• APκ = AP ∪ {σp | p ∈ IP} ∪ {εp | p ∈ EP} ∪ {γp,p′ | p ∈ EP ∧ p′ ∈ IP};

• TPκ = TP ∪{κ
σp−→ p | p ∈ IP}∪{p

εp−→ κ | p ∈ EP}∪{p
γp,p′−−−→ p′ | p ∈ EP ∧p′ ∈ IP};

• IPκ = {κ} ∪ EP
with EPκ = EP and where σp, εp and γp,p′ are unique labels that are not the silent τ -label.

The κ-extension of an LTS pattern P can be seen as an abstraction of LTSs it is
matched on, in which we indicate how the behaviour described by P can be embedded in
a larger LTS G. The introduced κ-state represents the unmatched (and thus unaffected)
states in G. The σ-transitions go from the κ-state to the in-states and represent transitions
that enter the part of G matched on by P. The ε-transitions go from exit-states to the
κ-state. They represent transitions in G that leave the part matched on by P. The
γ-transitions go from exit-states to in-states representing transitions connected to states
that are matched on P, while the transition itself is not matched on. The σ-, ε-, and
γ-transitions are uniquely identified by their corresponding glue-states. This ensures that
side effects on unmatched states become visible.

If the original L and R are branching bisimilar (Definition 2.2.2), then one cannot in
general conclude that input and output LTSs to which the rule r = (L,R) is applicable are
branching bisimilar as well. For instance, consider the transformation rule in Figure 3.5
which swaps a and b transitions. Without the κ-extensions, the LTS patterns are
branching bisimilar. However, this would not capture the fact that patterns should
be interpreted as possible embeddings in larger LTSs. These larger LTSs may not be
branching bisimilar, because glue-states 〈2̃〉 and 〈3̃〉 could be mapped to states with
different outgoing transitions, apart from the behaviour described in the LTS patterns
(states 〈2̃〉 and 〈3̃〉 are exit-states). However, due to the introduced κ-state and in

26 Transformation Verification

1̃

2̃

a

a

1̃

7̃

a

a

Rκ

3̃

3̃

Lκ

6̃

τ

κ

κ

σ1 σ1

ε1

ε1

↔b

↔b

↔b

↔b

↔b

γ3,1
γ3,1

(a) The κ-extension of the transformation
rule shown in Figure 3.2, relabelled with
a′ := a, using the formalisation in this chap-
ter; the left and right κ-extended pattern
LTSs are branching bisimilar.

1̃

2̃

a

a

1̃

7̃

a

a

Rκ

3̃

3̃

Lκ

6̃

τ

κ

κ

σ1 σ1

ε3

ε3

ε1

σ3

ε1

σ3

↔b/

γ3,3

γ1,1 γ1,1

γ3,3

γ1,3γ3,1

γ3,1γ1,3

(b) The κ-extension of the transformation
rule shown in Figure 3.2, relabelled with
a′ := a, where in-states and exit-states are
not distinguished from each other; the left
and right κ-extended pattern LTSs are not
branching bisimilar since in Rκ, the possi-
bility of performing a ε1-transition is lost
once the τ -transition from state 〈1̃〉 to state
〈6̃〉 is taken.

Figure 3.6: The approach presented in this chapter (Figure 3.6a) is able to determine that
the transformation rule shown in Figure 3.2 (where a′ has been relabelled to a) guarantees
that the input and output LTSs are branching bisimilar; this is an improvement over our
previous formalisation [59] (Figure 3.6b) which reports a counter-example as it does not
distinguish between in- and exit-states.

particular the ε-transitions, a comparison of the κ-extended networks is able to determine
that the rule does not guarantee branching bisimilarity between input and output LTSs.

Figure 3.6 shows that the verification approach discussed in this chapter is able to
perform a more fine grained analysis compared to the approach in previous work [59].
The κ-extension of the transformation rule in Figure 3.2, but now with a′ replaced by a,
is shown in Figure 3.6a and Figure 3.6b using the approach presented in this chapter and
the approach in previous work, respectively. In the latter case, the notions of in-state
and exit-state are not used, instead both types of states are treated in the same way, as
glue-states.

The approach discussed in this chapter determines that the left and right κ-extended
pattern LTSs are branching bisimilar as shown in Figure 3.6a. The branching bisimulation
relation between the left and right κ-extended pattern LTSs is indicated with dashed
lines. The introduction of the τ -transition does not break branching bisimilarity since no
behaviour is lost.

However, the approach in [59] reports a counter-example as shown in Figure 3.6b. Since
the approach in [59] does not distinguish between in-states and exit-states, the semantics
of the transformation rule is slightly different; each glue-state is allowed to be matched on
states with ingoing transitions, outgoing transitions, and both in- and outgoing transitions.
Therefore, any correct verification technique would have to consider the possibility that the
glue-states are matched on states that have additional in- and/or outgoing transitions, and

3.3. Verifying Single LTS Transformations 27

therefore, the extra τ -transition in Rκ could mean that unmatched outgoing transitions
are disabled when the τ -transition is followed. By adding the notions of in-state and
exit-state, we can restrict the applicability of transformation rules and thereby provide
more information to the verification technique.

The analysis In the verification of a transformation rule r = (L,R) the aim is to
determine whether r is sound for any LTS G to which r is applicable. The verification
proceeds as follows:

1. Construct the κ-extended pattern LTSs Lκ and Rκ according to Definition 3.3.5.

2. Determine whether Lκ and Rκ are branching bisimilar.

If Lκ and Rκ are branching bisimilar, then r is branching-structure preserving for all
inputs it is applicable on. Otherwise, r may preserve the branching-structure of some
LTSs, but it is definitely not branching-structure preserving for all possible inputs it is
applicable to.

Time complexity of the analysis Consider a transformation rule r. Let g be the
number of glue-states defined in the pattern LTSs of r. Furthermore, let s, t and a be
the largest number of states, transitions and action labels, respectively in the pattern
LTSs of r.

In the first step of the verification of a rule r, a κ-state is added, i.e., the number of
states added is constant. In the worst case, all glue-states are both in and exit-states. For
each glue state one σ- and ε-transition is added, i.e., O(g) σ- and ε-transitions are added.
Furthermore, there are as many γ-transitions as combinations of σ- and ε-transitions,
i.e., O(g2) γ-transitions are added. Finally, the number of action labels added is O(g2)
because of the quadratic amount of added γ-labels. Hence, the running time of step 1 is
O(g2).

In the second step, it is checked whether Lκ and Rκ are branching bisimilar. Branching
bisimilarity checking can be performed in O(t · log(s + a)) [91]. Therefore, the time
complexity of the final step of the analysis is O((t+ g2) · log((s+ 1) + (a+ g2))).

3.3.3 Correctness of the verification
In this section we prove the correctness of the analysis algorithm presented in the previous
section. First, we introduce two lemmas that express properties of left and right κ-
extended pattern LTSs that are branching bisimilar. Next, we prove the soundness of
the approach in Proposition 3.3.9. Finally, the completeness of the approach is proven in
Proposition 3.3.10.

Recall that glue-states are not removed by transformation and that the κ-state
represents unmatched states, and as κ-states remain unchanged, they also represent
states that are not removed. When comparing LTS patterns by checking for branching
bisimilarity, it is desirable that these states are related to themselves, as illustrated in the
previous example. Lemma 3.3.6 shows that it is indeed the case that κ-extension achieves
this: if two κ-extended pattern LTSs Lκ, Rκ are branching bisimilar, then the κ-state,
the in-states, and the exit-states, i.e., the initial states of the κ-extended LTS patterns,
are related to themselves.

28 Transformation Verification

Lemma 3.3.6. Consider a transformation rule r = (L,R) and a branching bisimulation
relation B between Lκ and Rκ. Then, ∀p ∈ {κ} ∪ IL ∪ EL, p B p.

Proof. The proof follows from the fact that the σ- and ε-transitions are uniquely con-
structed for a specific glue-state. Consider a state p ∈ {κ} ∪ IL ∪ EL. By Definition 3.3.5,
we have p ∈ ILκ . Since Lκ and Rκ are branching bisimilar, there is a state q ∈ SRκ

such that p B q. We perform a case distinction on p ∈ {κ} ∪ IL ∪ EL. In each case we
show that there is a transition labelled with a σ or ε between p and p′ ∈ SLκ such that
the action label uniquely identifies the states p and p′. For convenience, let us refer to
this unique label as α and say we have a transition p

α−→κ

L p′. As p B q we can apply
Definition 2.2.2 to show that q simulates p. As the unique labels are not allowed to be
the silent action τ , the only remaining case indicates that there are states q̂ ∈ SRκ and
q′ ∈ SRκ such that q

τ−→∗
Rκ q̂

α−→Rκ q′ with p B q̂ and p′ B q′. There is only one transition
labelled α in both Lκ and Rκ and it occurs as p

α−→ p′. It follows that q̂ = p and q′ = p′.
Consequently, we have p B p and p′ B p′.

We now discuss the case distinction in full detail:

• p = κ. By Definition 2.2.1, IL �= ∅, so there is a state p′ ∈ IL. This means that
there is a transition κ

σp′−−→Lκ p′ where σp′ �= τ and σp′ uniquely occurs on κ
σp′−−→ p′

in both Lκ and Rκ (Definition 3.3.5). Hence, since σp′ �= τ , by Definition 2.2.2,
there are states q̂ ∈ SRκ and q′ ∈ SRκ such that q

τ−→∗
Rq̂

σq′−−→R q′ with κ B q̂.The
σp′-transition in both Lκ and Rκ is strictly present as κ

σp′−−→ p′. It follows that
p̂ = κ, therefore we have p B p.

• p ∈ IL. Then there is a transition κ
σp−→Lκ p where σp �= τ and σp uniquely occurs

from κ to p in both Lκ and Rκ (Definition 3.3.5). In the previous case we established
that κ B κ. Because σp �= τ , by Definition 2.2.2, we have states q̂ ∈ SRκ and
q′ ∈ SRκ such that κ

τ−→∗
Rκ q̂

σp−→Rκ q′ with p B q′. The σp-transition in Lκ and Rκ

only goes from κ to p. It follows that q′ = p and thus p B p.

• p ∈ EL. By Definition 3.3.5, there is a state p ∈ ELκ with an observable action εp
that uniquely occurs on a transition from p to κ in both Lκ and Rκ. Moreover,
since B relates Lκ and Rκ, there is a state q ∈ IRκ such that p B q. Therefore,
by εp �= τ and Definition 2.2.2, there are states q̂ ∈ SRκ and q′ ∈ SRκ such that
q

τ−→∗
Rκ q̂

εp−→R q′ with p B q̂ and κ B q′. By Definition 3.3.5, there is only one
transition labelled εp in Lκ and Rκ, which goes from p to κ. It follows that q̂ = p
and hence p B p.

Exit-states are the states where the embedding of an LTS pattern may be left. A
transition leaving the embedding is represented in the κ-extended pattern by an ε-
transition. Should an arbitrary state q ∈ SR be related to an exit-state p ∈ EL, then
there must exist a τ -path from q to p, otherwise state q cannot simulate the ε-transitions
from p. Lemma 3.3.7 shows that, indeed, such a τ -path from q to p exists.

Lemma 3.3.7. Consider a transformation rule (L,R) and a branching bisimulation
relation B between Lκ and Rκ, then

∀p ∈ ELκ , q ∈ SRκ : p B q =⇒ (q
τ−→∗

Rp)

3.3. Verifying Single LTS Transformations 29

Proof. Intuitively, the proof follows from the fact that action εp uniquely occurs on a
transition from p to κ. Since in Lκ, any state q branching bisimilar to p must be able
to perform this transition directly or be able to reach such a transition via a τ -path, we
must either have that q = p or that from q, p can be reached via a τ -path. Next, we
discuss the proof in full detail.

Let state p ∈ EL and state q ∈ SRκ such that q B p. By Definition 3.3.5 we
have p

εp−→L κ with εp �= τ . Since p B q and εp �= τ there are q̂, q′ ∈ SRκ such that
q

τ−→∗
Rκ q̂

εp−→Rκ q′ with p B q̂ and κ B q′. The εp action only occurs on p
εp−→ κ in both

Lκ and Rκ, therefore, we must have q̂ = p and q′ = κ. It follows that q
τ−→∗

Rκp and by
structural induction q

τ−→∗
Rp.

Definition 3.3.8 introduces a mapping that formally defines how a κ-extended LTS
pattern is related to the LTS that is matched on. The fact that κ-states represent all
states that are not matched on is made explicit by this mapping.

Definition 3.3.8 (Mapping of κ-extended LTS). Consider an LTS G and a pattern LTS
P with corresponding match m : P → G. We say that a p ∈ SPκ is mapped to a state
s ∈ SG, denoted by mκ(p) = s, iff either p �= κ and m(p) = s or p = κ and there is no
state in SL matching on s (i.e., ¬∃x ∈ SP ,m(x) = s).

Soundness of the analysis A transformation rule r preserves the branching structure
of all LTSs it is applicable to if the κ-extended patterns of r are branching bisimilar. This
is expressed in Proposition 3.3.9.

Proposition 3.3.9 is a special case of Proposition 3.4.16, discussed in the next section
where transformations of concurrent systems are considered. This proof is derived from
the Coq proof of Proposition 3.4.16 to explain the transformation verification technique
in a simpler and more intuitive setting.

Proposition 3.3.9. Let G be an LTS, let r be a transformation rule with matches
m : L → G and m̂ : R → T (G) such that Definition 3.3.4 is satisfied. Then,

Lκ ↔b Rκ =⇒ G ↔b T (G)

Intuition. A match of pattern L is replaced with an instance of pattern R. If
Lκ ↔b Rκ, then these two patterns exhibit branching bisimilar behaviour, even when they
are embedded into a larger LTS. Therefore, the behaviour of the original and transformed
system (G and T (G), respectively) are branching bisimilar.

Proof. By definition, we have G ↔b T (G) iff IG ↔b IT (G), which means that there must
exist a branching bisimulation relation C relating the states in IG and IT (G). Let B be a
branching bisimulation relation demonstrating that Lκ ↔b Rκ. Relation C is constructed
as follows:

C = {(s, t) |∃p ∈ SLκ , q ∈ SRκ . p B q ∧mκ(p) = s ∧ m̂κ(q) = t

∧ ((p = κ ∨ q = κ) =⇒ s = t)}

States that are touched by the transformation are related via the corresponding
matches m and m̂, and branching bisimulation relation B. States that are left untouched
by the transformation are represented by the κ-state for which it holds that κ B κ

30 Transformation Verification

(Lemma 3.4.9). The mappings mκ and m̂κ map the κ-state on all states that are not
matched on. To ensure that untouched states are related to themselves we require s = t
whenever either s or t is mapped on by a κ-state.

We now prove that C is a branching bisimulation relation by showing that the initial
states of G and T (G) are related, and that Definition 2.2.2 holds for C. For the latter we
only discuss one of the two symmetric cases.

• C relates the initial states of G and T (G). Since we have IG = IT (G) we only have
to show ∀s ∈ IG . ∃t ∈ IG . s C t. Take s again for t, we have to show that s C s.
State s is either matched on or not matched on:

– s is matched on by m, i.e., ∃p ∈ SL. m(p) = s. We have p ∈ EL since initial
states may only be matched on by exit-states (first condition of Definition 3.3.3).
By Lemma 3.3.6 it follows that p B p. Hence, we have s C s.

– s is not matched on by m, ¬∃p ∈ SL. m(p) = s. By definition we have
mκ(κ) = s. By Lemma 3.3.6 it follows that κ B κ. Therefore, we have s C s.

In both cases it holds that s C s.

• If s C t and s
a−→G s′ then either a = τ∧s′ C t, or t τ−→∗

T (G)t̂
a−→T (G) t

′ ∧s C t̂∧s′ C t′.
By definition of s C t, there are states p ∈ SLκ and q ∈ SRκ such that p B q,
mκ(p) = s, m̂κ(q) = t, and (p = κ ∨ q = κ) ⇒ s = t (3.1) . Furthermore, by
definition of mκ, there is a state p′ ∈ SLκ such that mκ(p′) = s′. The transition
s

a−→G s′ is either matched on by a transition p
a−→L p′ or not match on:

1. There exists a transition p
a−→L p′ matching on s

a−→G s′ in L. Since p B q, by
Definition 2.2.2, we have the following two cases:

– a = τ with p′ B q. Since mκ(p′) = s′ and m̂κ(q) = t, we have s′ C t.
– q

τ−→∗
Rq̂

a−→R q′ with p B q̂ and p′ B q′. Transitions from and to κ-states
are not matched on by m and m̂, i.e., only transitions in TL (TR) match
on transitions in TG (TT (G)). Hence, states p, p′, q, q̂ and q′ cannot be
κ-states. It follows that s C m̂κ(q̂) and s′ C m̂κ(q′), since the matching
states are not κ, mκ(p) = s, and mκ(p′) = s′. Finally, as m̂κ(q) = t, we
have t

τ−→∗
T (G)m̂

κ(q̂)
a−→T (G) m̂

κ(q′).
2. There is no transition matching s

a−→G s′ in L, i.e., ¬p a−→L p′. Thus, both s
and s′ are not removed by the transformation. We distinguish two cases:

– State s is not matched on by m. Therefore, we must have mκ(p) = s with
p = κ. It now follows from (3.1) that s = t. Hence, t a−→T (G) s

′, and by
reflexivity of τ−→∗, t τ−→∗

T (G)t
a−→T (G) s

′.
We have s C t, thus, what remains to be shown is s′ C s′. Since s is
not matched on, it follows from Definition 3.3.3 that state s′ is either not
matched on or matched on by an in-state. In the former case we have
p′ = κ, and in the latter case we have p′ ∈ IL. In both cases we can apply
Lemma 3.3.6 to obtain p′ B p′. It follows that s′ C s′.

– State s is matched on by a state p, i.e., m(p) = s. We must have p �= κ.
Since there is no transition matching s

a−→TG s′, it follows from the second
matching condition (Definition 3.3.3) that p ∈ EL. Now it follows from
p B q and Lemma 3.3.7 that q

τ−→∗
Rp. Moreover, since m̂ is an embedding

the transition is preserved in T (G) and we have t
τ−→∗

T (G)s
a−→T (G) s

′.

3.4. Verifying Sets of Dependent LTS Transformations 31

What is left to show is that s C s and s′ C s′. As p ∈ EL and there is no
transition in L matching s

a−→G s′ the state q′ must be either a κ-state or
an in-state, i.e., p′ ∈ IL ∪ {κ}. For p ∈ EL and p′ ∈ IL ∪ {κ} it follows
from Lemma 3.3.6 that p B p and p′ B p′, respectively. Hence, we have
s C t and s′ C s′.

• If s C t and t
a−→T (G) t

′ then either a = τ ∧ s C t′, or s
τ−→∗

G ŝ
a−→G s′ ∧ŝ C t ∧ s′ C t′.

This case is symmetric to the previous case.

Completeness of the analysis Completeness is an important factor in verification. A
complete analysis technique will not report false negatives. The next proposition expresses
that our analysis technique is complete. In the context of this work, completeness means
that the analysis will always report that the left and right κ-extended pattern LTSs of a
transformation rule r are branching bisimilar if the input LTS G and output LTS T (G)
produced by applying r to G are branching bisimilar for any given input LTS G and
any given matching. The proof for Proposition 3.3.10 is derived from the Coq proof of
Proposition 3.4.17 to explain the transformation verification technique in a simpler and
more intuitive setting.

We want to stress that the analysis considers all possible input LTSs. Because of
this, it may be that the analysis reports that a transformation rule does not preserve a
given property in general, while the property may still hold after transformation of some
specific input LTS. Consider, for instance, a transformation rule r that is not property
preserving according to the analysis. There may still be an input LTS G1 with a match
m1 such that G1 ↔b T (G1). However, it is guaranteed that there also exists an LTS G2
for r with a corresponding match m2 for which G2 ↔b/ T (G2).

Proposition 3.3.10. Consider a transformation rule r = (L,R). Let G be the set of
all LTSs. Let rG be the set of all possible match pairs corresponding to a transformation
of an LTS G where rG consists of tuples of the form (m : L → G, m̂ : R → T (G)). The
following holds

(∀G ∈ G, (m, m̂) ∈ rG . G ↔b T (G)) =⇒ Lκ ↔b Rκ

Proof. Assume that for all G ∈ G and (m, m̂) ∈ rG it holds that G ↔b T (G). Trivially,
we have Lκ ∈ G and trivial matches m : L → Lκ, m̂ : R → T (Lκ). It follows from the
assumption that Lκ ↔b T (Lκ). Moreover, by Definition 3.3.4, T (Lκ) = Rκ. It follows
that Lκ ↔b Rκ.

3.4 Verifying Sets of Dependent LTS Transformations
In this section, we extend the setting by considering sets of interacting process LTSs in
so-called networks of LTSs [133], or LTS networks for short (Definition 2.3.1). Transforma-
tions can now affect multiple LTSs in an input network, and the analysis of transformations
is more involved, since changes to process-local behaviour may affect system-global pro-
perties. Finally, we prove the correctness of the technique based on the complete Coq

proof. From the proof it follows that per set of related transformation rules, only a single
bisimulation check is required in order to verify a system of transformation rules.

32 Transformation Verification

3.4.1 Transformation of LTS Networks
A system of transformation rules, or a rule system for short, allows the transformation
of LTS networks. A rule system transforms multiple processes and may introduce new
synchronisation laws. In this chapter, we only consider transformation of admissible LTS
networks (Definition 2.3.2). The rule system is defined as follows.

Definition 3.4.1 (Rule system). A rule system Σ = (R,V ′, V̂) consists of a vector of
transformation rules R, a set of synchronisation laws V ′ that must be present in the
networks that Σ is applied to, and a set of synchronisation laws V̂ introduced in the
network resulting from a transformation. The ith left and right pattern LTSs of R are
denoted by Li and Ri, respectively.

Intuitively, a rule system describes how a concurrent system is modified to create a
transformed concurrent system. A rule system is designed with a specific result in mind.
Therefore, it is desirable that a rule system is confluent such that transformation rules
can be applied in any order eventually leading to the same result. Checking confluence
can be done efficiently [215]. In the remainder of this chapter, we only consider confluent
rule systems.

The transformation of an LTS network N = (Π,V) of size n given a rule system
Σ = (R,V ′, V̂) is achieved via a set m of pairs of matches. Each element (m, m̂) ∈ m
corresponds to the application of some rule in R to a process in Π. The match m : Lj → Πi

matches the left pattern LTS (Lj) of the jth transformation rule in R on to the ith process
LTS (Πi) of LTS network N . Similarly, match m̂ : Rj → T (Πi) matches the right process
LTS (Rj) of rule Rj in R on to the transformed process LTS (T (Πi)) of the transformation
of network N .

One transformation rule can match on many processes and one process can be matched
on by many transformation rules. However, for the sake of simplicity, the transformation
of N is split in several transformation steps. Since we assume that rule systems are
confluent the order of transformation steps is irrelevant for the final result.

A transformation step transforms a network N of size n given a vector M̄ consisting
of n match pairs taken from m ∪ {δ} where δ is a dummy match pair corresponding to a
dummy transformation rule Δ that leaves the target process unchanged (i.e., T (Πi) = Πi

for some process LTS Πi). The dummy transformation rule consists of a single state and
no transitions in both its left and right patterns. The left and right matches of the ith

match pair M̄i are referred to as mi and m̂i, respectively. For each index i ∈ 1..n the
matches of a match pair M̄i match on process LTS Πi, i.e., we have mi : Li → Πi and
m̂i : Ri → T (Πi).

Each match pair in (mi, m̂i) ∈ M̄ corresponds to a rule r ∈ R∪{Δ}. Hence, the match
pair vector M̄ defines a partial mapping between processes in Π and rules in R. With
abuse of notation, we shall use M̄ as a partial mapping to project the synchronisation laws
of Σ on Π according to the matches in M̄ . We write M̄(i) = j to indicate that mi and m̂i

are matches for the jth transformation rule of R. If M̄i = δ, then we write M̄(i) = ∗ to
indicate that i is not mapped to a rule in R. This mapping describes a projection from
synchronisation vectors of rule system Σ on to synchronisation vectors of network N on
which the transformation step is applied. This projection of synchronisation vectors is
formally defined as follows.

Definition 3.4.2 (Projection of synchronisation vectors). Let f : 1..n � 1..m with
n,m ∈ N be a partial mapping. For i ∈ 1..n we write f(i) = ∗ to indicate that i is not
mapped by f . A synchronisation vector v̄ of size m can be projected iff for all j ∈ Ac(v̄)

3.4. Verifying Sets of Dependent LTS Transformations 33

there exists an i ∈ 1..n such that f(i) = j. This condition ensures that all active indices of
v̄ are represented in the projected vector. The projected synchronisation vector, denoted
v̄f , is a vector of size n with elements i ∈ 1..n defined as:

v̄fi =

{
• if f(i) = ∗
v̄f(i) otherwise

Let f be a partial mapping. Given a synchronisation law (v̄, a) the projected synchro-
nisation law is written as (v̄f , a). The projection of a set of synchronisation laws V is
defined as Vf = {(v̄f , a) | (v̄, a) ∈ V}.

For a vector of matches M̄ consisting of matches of Σ = (R,V ′, V̂) on an LTS network
N = (Π,V), the transformation step is formalised in Definition 3.4.3. The transformed
LTS network TM̄ (N) consists of the transformed process LTSs and the original set of
synchronisation laws V updated with the projection of V̂.

Before the transformation step defined by M̄ can be applied it must be ensured
that the input network N = (Π,V) contains the corresponding projection of the set of
synchronisation laws V ′ of the applied rule system Σ, i.e., we must check V ′M̄ ⊆ V . If this
is the case, then Σ is applicable, and the transformed network TM̄ (N) receives the set of
synchronisation laws V ∪ V̂M̄ . That is, the projected laws of the set of synchronisation
laws V̂ are introduced to the network in the transformation step.

Each process LTS Πi (i ∈ 1..n) is transformed to an LTS T (Πi) by applying the
matches mi : SLi

→ SΠi
and m̂i : SRi

→ ST (Πi). Note that every process LTS is matched
on, since Δ matches on every state.

Definition 3.4.3 (LTS network transformation step). Let N = (Π,V) be an LTS network
of size n and let Σ = (R,V ′, V̂) be a rule system. Let M̄ be a vector of size n of match
pairs (mi, m̂i) such that V ′M̄ ⊆ V. For all i ∈ 1..n let Tmi

denote the LTS transformation
of Πi using the application of matches mi and m̂i according to Definition 3.3.4.

The application of a transformation step defined by M̄ to LTS network N is defined
as follows:

TM̄ (N) = (〈Tm1(Π1), . . . , Tmn(Πn)〉,V ∪ V̂M̄)

The exhaustive application of a rule system Σ to a network N via a finite number
of transformation steps is denoted by TΣ(N). The transformation proceeds via a series
of match vectors M̄1, . . . , M̄n, where n is the number transformation steps applied to
obtain TΣ(N).

In most of our examples M̄ is trivial and there is only a single transformation step.
In these examples the definition of M̄ is omitted and the transformed network is referred
to as TΣ(N).

Figure 3.7 presents a transformation sequence that is the result of the application of
a rule system Σ (see Figure 3.7b) to a network N . The system LTSs of the input and
output networks are exactly the same, this LTS is shown in Figure 3.7c. The a- and
c-transitions and the b- and d-transitions can never synchronise. Furthermore, the d-
and c- transitions in Π1 are cut. The synchronisation of the e-transitions, resulting in
h-transitions, are the only reachable behaviour in the system LTS.

Rule system Σ removes the a-, b-transition sequence, and the d-, c-transition sequence.
The system LTS GN of the network N that Σ is applied to remains unchanged, because in
the described situation synchronisation of both the a- and d-transitions is impossible and

34 Transformation Verification

1

V =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(〈a, c〉, f),
(〈b, d〉, g),
(〈e, e〉, h)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

e

Π1

7

Π2

e

2
e

a d

3 5

4 6

b c

8

9

c

10

c

d

d

1 e

TM̄1(Π1)

7

TM̄1(Π2)

e

2
e

d

5

4 6

c

8

9

c

d

1 e

TM̄2(TM̄1(Π1))

7

TM̄2(TM̄1(Π2))

e

2
e

4 6

9

V ∪V′M̄1 ∪ V̂M̄1

=⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(〈a, c〉, f),
(〈b, d〉, g),
(〈e, e〉, h)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

V ∪V′M̄1 ∪ V̂M̄1 ∪
V′M̄2 ∪ V̂M̄2

=⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(〈a, c〉, f),
(〈b, d〉, g),
(〈e, e〉, h)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(a) A transformation sequence resulting
from the application of Σ to N = (Π,V)
with match pair vectors M̄1 and M̄2.

1̃

V̂ = ∅

V′ =
⎧⎨
⎩ (〈a, c〉, f),
(〈b, d〉, g)

⎫⎬
⎭

R1L1 R2L2

a

3̃

2̃
b

1̃

3̃

4̃
d

6̃

5̃
c

4̃

6̃

(b) Rule system Σ = (R,V ′, V̂) removes
the a-, b-transition sequence, and the d-,
c-transition sequence; the system LTS of
networks Σ is applied to remain unchanged
as the a- and d-transitions can both never
synchronise and the b- and c-transitions are
therefore unreachable.

1 7

h

2 7

GN = GTM̄1(N) = GTM̄2(TM̄1(N))

h

(c) The system LTSs of the networks in the
transformation sequence; since the a- and
c-transitions and the b- and d-transitions
can never synchronise and the d- and c-
transitions in Π1 are cut the h-transitions
are the only reachable behaviour.

Figure 3.7: Exhaustive application of Σ to a network N = (Π,V) where M̄1 contains
the left matches m1

1 : L1 → Π1 and m1
2 : L2 → Π2 with m1

1 = {1̃ �→ 2, 2̃ �→ 3, 3̃ �→ 4}
and m1

2 = {4̃ �→ 9, 5̃ �→ 10, 6̃ �→ 7}, and M̄2 contains the left matches m2
1 : L2 → Π1 and

m2
2 : L2 → Π2 with m2

1 = {4̃ �→ 2, 5̃ �→ 5, 6̃ �→ 6} and m2
2 = {4̃ �→ 7, 5̃ �→ 8, 6̃ �→ 9}

3.4. Verifying Sets of Dependent LTS Transformations 35

the b- and c-transitions are otherwise unreachable. Transformations like this are useful to
gain insights in the reachable behaviour of local process LTSs.

Figure 3.7a shows the exhaustive application of Σ to a network N = (Π,V). The first
transformation step applies the match pair vector M̄1 which contains the left matches
m1

1 : L1 → Π1 and m1
2 : L2 → Π2 with m1

1 = {1̃ �→ 2, 2̃ �→ 3, 3̃ �→ 4} and m1
2 = {4̃ �→

9, 5̃ �→ 10, 6̃ �→ 7}. The projected set of synchronisation laws V ′M̄1

is equivalent to V ′, i.e.,
V ′M̄1

= V ′. The resulting network is TM̄1(N) = (〈Tm1
1
(Π1), Tm1

2
(Π2)〉,V ∪ V ′M̄1 ∪ V̂M̄1

).
The second transformation step applies the match pair vector M̄2 which contains the
left matches m2

1 : L2 → Π1 and m2
2 : L2 → Π2 with m2

1 = {4̃ �→ 2, 5̃ �→ 5, 6̃ �→ 6} and
m2

2 = {4̃ �→ 7, 5̃ �→ 8, 6̃ �→ 9}. The projected set of synchronisation laws V ′M̄2

is empty
as for each (v̄, a) ∈ V ′ we have 1 ∈ Ac(v̄) and there is no i ∈ {1, 2} such that M̄(i) = 1.
This final transformed network is TΣ(N) = (〈Tm2

1
(Tm1

1
(Π1)), Tm2

2
(Tm1

2
(Π2))〉,V ∪ V ′M̄1 ∪

V̂M̄1 ∪ V ′M̄2 ∪ V̂M̄2

).

3.4.2 Analysing Transformations of an LTS Network
In a rule system, transformation rules can be dependent on each other regarding the
behaviour they affect. In particular, the rules may refer to actions that require synchroni-
sation according to some law, either in the network being transformed, or the network
resulting from the transformation. Since in general, it is not known a priori whether or
not those synchronisations can actually happen (see Figure 2.1, synchronisation of the
c-transitions versus the synchronisation of the a- and e-transitions), full analysis of such
rules must consider both successful and unsuccessful synchronisations.

To achieve this, dependent rules must be analysed together as combinations of LTS
patterns, as shown in Figure 3.1. To this end, LTS patterns are combined into an LTS net-
work, called a pattern network P = (Φ̄,W), with Φ̄ a vector of pattern LTSs, and W a set
of synchronisation laws. In particular, the left and right pattern networks of a rule system
Σ = (R,V ′, V̂) are defined as L̄ = (〈L1, . . . ,L|R|〉,V ′) and R̄ = (〈R1, . . . ,R|R|〉,V ′ ∪ V̂).
For the analysis of these pattern networks, we define in Definition 3.4.4 the κ-extended
pattern network consisting of the combination of the κ-extended LTS patterns and an
extension of the synchronisation laws with κ-synchronisation laws Vκ. The left and right
κ-extended pattern networks are denoted L̄κ and R̄κ and, for the purpose of equivalence
checking, must use the same set of κ-synchronisation laws Vκ.

Definition 3.4.4 (κ-Extended Pattern Network). Given a pattern network P = (Φ̄,W)
of size n, its κ-extended pattern network is defined as Pκ, where

Pκ = (〈Φ̄κ
1 , . . . , Φ̄

κ
n〉,W ∪Wκ), and

Wκ = {(v̄, μ) | Ac(v̄) �= ∅ ∧ ∀i ∈ Ac(v̄).

((∃p ∈ IΦ̄i
. v̄i = σp) ∨ (∃p ∈ EΦ̄i

. v̄i = εp) ∨ (∃p ∈ EΦ̄i
, p′ ∈ IΦ̄i

. v̄i = γp,p′))}

with μ an action that is unique with respect to rule system Σ = (R,V ′, V̂), i.e., μ �=
τ ∧ ∀(v̄′, a) ∈ V ′ ∪ V̂. μ �= a).

Verifying a rule system must account for all possible ways of entering or leaving the
pattern networks. Therefore, the set of κ-synchronisation laws Wκ describes all possible
combinations of synchronisations between σ-, ε-, and γ-actions.

Figure 3.8 shows a rule system Σ, in which the two rules are dependent. Again, the
states are numbered such that matches can be identified by the state label, i.e., a state ĩ is

36 Transformation Verification

L1 L2R1 R2

V̂ =
{
(〈t, t〉, τ)

}1̃ 1̃ 2̃ 2̃

4̃

V′ =
⎧⎨
⎩ (〈a, •〉, a),
(〈a, b〉, c)

⎫⎬
⎭

a a

t t

b tb

(a) A rule system Σ = (R,V ′, V̂)

Lκ
1 Lκ

2 Rκ
1 Rκ

2

1̃ 1̃2̃ 2̃

4̃

a a

t t

b

κ κκ κ

σ1 σ1ε2

V′ ∪ V̂ ∪ Vκ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(〈a, •〉, a),
(〈a, b〉, c),
(〈t, t〉, τ),
(〈σ1, •〉, σ1),
(〈•, σ2〉, σ2),
(〈•, ε2〉, ε2),
(〈•, γ2,2〉, γ2,2),
(〈σ1, σ2〉, σσ),
(〈σ1, ε2〉, σε)
(〈σ1, γ2,2〉, σγ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

V′ ∪ Vκ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(〈a, •〉, a),
(〈a, b〉, c),
(〈σ1, •〉, σ1),
(〈•, σ2〉, σ2),
(〈•, ε2〉, ε2),
(〈•, γ2,2〉, γ2,2),
(〈σ1, σ2〉, σσ),
(〈σ1, ε2〉, σε)
(〈σ1, γ2,2〉, σγ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

σ2 ε2σ2
γ2,2 b, t

γ2,2

(b) The corresponding κ-extended pattern networks

GL̄κ GR̄κ

1̃ 2̃4̃ 2̃1̃ 2̃

a, c

↔b/
κ κ

κ 2̃

1̃ κ

a, c

τ

τ

4̃ κ 1̃ κ κ κ

κ 2̃

σ1

ε2

σ1,

a
a

ε2

σ1

ε2 ε2ε2σε σε

σσ σσ

γ2 σγ
σ1,σγ γ2

(c) Bisimulation check; the ε2-transition ensures that L̄κ ↔b/ R̄κ

Figure 3.8: A rule system and its κ-extended pattern networks and bisimulation checks

matched onto state i. The two transformation rules depicted in Figure 3.8a introduce a new
dependency between two (possibly) independent systems. The corresponding κ-extended
pattern networks are given in Figure 3.8b. The κ-synchronisation laws allow σ-, ε-, and
γ-actions to be performed both independently and synchronised. The synchronisations of
σ1- and σ2-transitions, σ1- and ε2-transitions, and σ1- and γ2,2-transitions are displayed
as the σσ-transition, the σε-transition, and the σγ-transition, respectively. Figure 3.8c
presents the branching bisimulation check performed on the two κ-extended pattern
networks. The check concludes that the two networks are not branching bisimilar. In
particular, when the second process (Rκ

2) leaves the pattern LTS at state 〈4̃, 2̃〉 via the
ε2-transition, the a-transition can no longer be mimicked. The same would occur in any
application of Σ at any state matched by 〈4̃, 2̃〉 that has a transition to an unmatched
state. 5

5In our previous work [59], this type of rule system was called a non-cascading rule system. In this
work, we no longer need to verify whether a rule system is cascading since the κ-state makes the effect of
the transformation on the unmatched states explicit. Furthermore, the correctness proof of the technique
presented in this chapter does not distinguish between cascading and non-cascading rule systems. Hence,
the verification technique as described here will correctly reject non-cascading rule systems.

3.4. Verifying Sets of Dependent LTS Transformations 37

A rule system may consist of multiple classes of dependent rules where synchronisation
is contained within a class. There is no synchronisation defined between the classes, i.e.,
the classes are independent of each other in terms of synchronising behaviour. These
independent classes can be analysed separately.

Given a rule system Σ = (R,V ′, V̂), the potential synchronisation between the be-
haviour in transformation rules in R is characterised by the direct dependency relation
D:

D = {(i, j) | ∃(v̄, a) ∈ V ′ ∪ V̂. {i, j} ⊆ Ac(v̄)}
Transformation rule Ri is related via D to the rule Rj iff both rules participate in

a synchronisation law (v̄, a) ∈ V ′ ∪ V̂. The relation considering directly and indirectly
dependent rules, called the dependency relation, is defined by the transitive closure of D,
i.e., D+. The D+ relation can be used to construct a partition D of transformation rule
indices into classes of indices referring to dependent rules. Each class can be analysed
independently. We call these classes dependency sets.

To define the projection of a rule system Σ = (R,V ′, V̂) along a dependency set P ∈ D

we use (P,<) to obtain a vector mapping the domain 1..|P | to the rules in R; we write
P (i) = j iff the ith element of P (with i ∈ 1..|P |) refers to the transformation rule Rj

(with j ∈ 1..|R|). The projection of a rule system along dependency set P is defined as
follows.

Definition 3.4.5 (Projection of a rule system). Let Σ = (R,V ′, V̂) be a rule system with
a partition D of dependency sets. The projection of Σ along a dependency set P ∈ D is a
rule system ΣP = (RP ,V ′P , V̂P) with RP a vector of size |P | such that for all i ∈ |P | we
have RP

i = RP (i).

The left and right pattern networks of a projected rule system are denoted as L̄P and
R̄P .

An analysis of the pattern networks is only sufficient if all relevant behaviour is
described in those networks. Furthermore, the effect of the matches (i.e., the application
of the rule system) must be taken into consideration with respect to both the projection
of the sets of synchronisation laws V ′ and V̂, and completeness of transformation of
synchronising transitions. To ensure the soundness of the transformation verification
approach one analysis condition and four application conditions must be satisfied.

In Sections 3.4.2.1 and 3.4.2.2 the analysis of a rule system and application of a
rule system, respectively, is discussed further. The analysis of a rule system consists
of the verification of the pattern networks and the analysis condition. The analysis of
the application of a rule system constitutes the verification of the application conditions.
Both sections present an analysis algorithm and a time complexity analysis.

3.4.2.1 Analysis of a Rule System

In the analysis of a rule system the left and right pattern networks are checked for
branching bisimilarity. To guarantee the soundness of this check, an analysis condition
must apply. We first describe the analysis condition. Then, the algorithm for the analysis
of a rule system is presented. Finally, this section is concluded with a run time analysis.

Consider a rule system Σ = (R,V ′, V̂). The analysis condition requires that Σ is
complete with respect to the synchronisation laws in V ′, That is, all the action labels
described by the laws in V ′ must be transformed by the associated transformation rule.
This ensures that any behaviour described in V ′, and affected by the rule system, is

38 Transformation Verification

1̃ 3̃1̃ 3̃
aa

V̂ = ∅

V′ =
⎧⎨
⎩ (〈a, a〉, a)
(〈•, b〉, b)

⎫⎬
⎭

R1L1 R2L2

a

2̃ 2̃

b b

(a) A rule system Σ = (R,V ′, V̂) that does not
satisfy ANC1

GL̄κ = GR̄κ

1̃ 3̃

κ κ 1̃ κ

κ 3̃

σ3

σ1

σ1

σ3

2̃ 3̃

2̃ κ

σ3

σ2

σ2

σ2σ3 σ1σ3

b b b

(b) L̄κ and R̄κ are equivalent
since a-transitions are not con-
sidered by rule 2

1

V =

⎧⎨
⎩ (〈a, a〉, a)
(〈•, b〉, b)

⎫⎬
⎭

b

Π1

3

Π2

a

2

a

(c) An input network N = (Π,V)

1 3

a

2 3

GN

1 3

2 3

GTΣ(N)

b

↔b/b

aa

b

b

(d) The system LTSs before (N)
and after (TΣ(N)) transformation
are not branching bisimilar

Figure 3.9: Rule system Σ does not satisfy ANC1; although L̄κ ↔b R̄κ, a network N
exists such that GN ↔b/ GTΣ(N)

explicitly visible in the pattern networks. The symmetric condition involving the Ri and
V̂ applies as well.

∀i ∈ 1..|R|. (∀(v̄, a) ∈ V ′. v̄i ∈ ALi
∪ {•}) ∧ (∀(v̄, a) ∈ V̂. v̄i ∈ ARi

∪ {•}) (ANC1)

Figure 3.9 shows how the application of a rule system that does not satisfy ANC1
affects the transformation verification. The rule system Σ, shown in Figure 3.9a, has a
synchronisation law (〈a, a〉, a) ∈ V ′. However, transformation rule R2 does not contain
any a-transitions, i.e., ANC1 is not satisfied. As a result the effects of the transformation
of the a-transition by rule R1 is not visible in the κ-extended pattern networks presented
in Figure 3.9b. Figure 3.9d shows that an input network N exists (Figure 3.9c) such
that the input network N and output network TΣ(N) are not branching bisimilar. If
rule R2 would contain the a-loop, then the a-transition would not have been cut and L̄κ

and R̄κ would not be bisimilar any longer. Hence, it is vital that labels considered by
synchronisation laws in V ′ are also present in the transformation rules, i.e., rule systems
must adhere to ANC1.

The analysis In the verification of a rule system Σ the aim is to determine whether Σ
is sound for any network N on which Σ is applicable. Before analysing the transformation
rules with branching bisimulation checks, it is checked whether Σ is confluent and satisfies
ANC1. Verification of a rule system Σ = (R,V ′, V̂) proceeds as follows:

3.4. Verifying Sets of Dependent LTS Transformations 39

1. Check whether in Σ, no τ -transitions can be synchronised, renamed, or cut, and
whether ANC1 is satisfied. If not, report which check failed and stop.

2. Check whether the rules in Σ are confluent. If not, report that Σ is not confluent
and stop.

3. For each rule in R the κ-extended pattern LTSs are constructed according to
Definition 3.3.5.

4. Construct the set of dependency sets D.

5. For each class (dependency set) P ∈ D determine whether L̄κ,P ↔b R̄κ,P holds, i.e.,
whether the κ-extended pattern networks projected along P are branching bisimilar.

If all steps produce positive results, then Σ is branching-structure preserving for all inputs
it is applicable to. Otherwise, Σ may preserve the branching-structure of some LTS
networks, but it certainly is not branching-structure preserving for all possible inputs it is
applicable to.

Time complexity of the analysis In the first step of the verification of a rule system
Σ, each check requires the verification of a condition on each synchronisation law in V ′,
V̂, or both. Each condition can be checked in linear time. Hence, the running time of
step 1 is O(|V ′ ∪ V̂|).

In the second step, it is checked whether Σ is confluent. Confluence checking of
transformations of LTSs has O(

(|R|
2

)
· s2 · t · log(s)) time complexity [215], with s and t

the largest number of states and transitions in an LTS pattern of a rule in Σ, respectively.
In the third step, for each transformation rule Ri, the left and right κ-extended pattern

LTSs are built, resulting in Lκ
i and Rκ

i , respectively. The pattern LTSs must only be
extended once. Therefore, the running time of step 3 has time complexity O(|R| · g), with
g the largest number of glue-states appearing in an LTS pattern of a rule in Σ.

The fourth step constructs the dependency sets by analysing the synchronisation laws
in V ′ ∪ V̂. This can be done in O(|V ′ ∪ V̂|) time.

In the fifth and last step, for each dependency set P ∈ D the pattern networks L̄κ,P

and R̄κ,P are constructed and it is verified whether L̄κ,P and R̄κ,P are branching bisimilar.
Hence, |D| bisimulation checks are performed. Let s, t and a be the largest number of
states, transitions and action labels, respectively, appearing in the κ-extended pattern
networks of Σ. Branching bisimilarity checking can be performed in O(t · log(s+ a)) [91].
Therefore, the time complexity of the final step of the analysis is O(|D| · (t · log(s+ a))).

The running time of steps 3-5 together therefore amounts to O(|D| · (t · log(s+ a)) +
|V ′ ∪ V̂| + |R| · g). In contrast with previous work, the analysis presented here only
requires a single bisimulation check per dependency set P ∈ D (versus 2|P |− 1 in previous
work [217]). This improvement is made possible by the new correctness proof presented
in Section 3.4.3.

3.4.2.2 Analysis of the Application of a Rule System

The analysis presented in the previous section is not enough to guarantee the soundness
of the transformation verification technique. There are four more conditions that need to
be taken into account when the rule system is applied to an input LTS network. We first
describe these four application conditions. Then, the algorithm for the analysis of the

40 Transformation Verification

application of a rule system is presented. Finally, this section is concluded with a run
time analysis.

Consider a rule system Σ = (R,V ′, V̂) and an LTS network N = (Π,V) of size n on
which Σ is applied subject to a set of match pairs m.

The first condition concerns the completeness of transformation of synchronising
transitions when applying rule system Σ to network N . To prevent breaking branching
bisimilarity due to a mixture of old and new synchronising behaviour, we require that old
synchronising behaviour is completely transformed. A rule transforming synchronising
transitions (with a minimum of two synchronising parties) must be applicable to all
equivalent synchronising transitions. More precisely, for each active action label v̄j
(j ∈ |R|) of a law (v̄, a) ∈ V ′ that synchronises with another action label (i.e., {j} ⊂ Ac(v̄)),
we must have that if a process Πi (i ∈ 1..n) is matched on by Lj , all v̄j-transitions in Πi

are transformed, i.e., for all v̄j-transitions in Πi, there exists a match pair (m, m̂) such
that m:Lj → Πi matches a v̄j-transition in Lj on that v̄j-transition in Πi.

∀j ∈ 1..|R|, (v̄, a) ∈ V ′. {j} ⊂ Ac(v̄) ∧ v̄j ∈ ALj
=⇒

∀i ∈ 1..n, (s, v̄j , s
′)∈Ti. ∃(m:Lj → Πi,_) ∈ m, (p, v̄j , p

′)∈TLj .

m(p) = s ∧m(p′)=s′
(APC1)

We write “_” to indicate that the second element of the match pair is not relevant. The
symmetric condition involving the Rj and V ′ ∪ V̂ applies as well. Together with ANC1,
APC1 ensures that synchronising transitions with a particular label in the input network
are either all transformed, or none are transformed. This is shown in Section 3.4.3 in
Lemma 3.4.15.

Figure 3.10 shows a transformation that satisfies ANC1, but does not adhere to APC1.
The rule system Σ, presented in Figure 3.10a, transforms a-transitions to c-transitions.
The first transformation rule transforms an a-transition to a c-transition iff there is a
b-loop at the state from which the a-transition is performed. The second transformation
rule transforms a-loops to c-loops. If Σ is applied to network N , presented in Figure 3.10c,
then the transition 〈1〉 a−→Π1

〈2〉 is not transformed. Therefore, the transformation does
not satisfy APC1.

The laws of the rule system describe that the synchronisation of two a-transitions results
in an a-transition (i.e., (〈a, a〉, a) ∈ V ′), and that the b-loop is performed independently
of other processes (i.e., (〈b, •〉, b) ∈ V ′). A new synchronisation law (〈c, c〉, a) is added
such that the synchronisation of two c-transitions results in an a-transition again. This
makes old and new synchronising behaviour comparable. As shown in Figure 3.10b, the
branching bisimulation check cannot distinguish between the left and right κ-extended
pattern networks.

However, if Σ is applied to the LTS network N given in Figure 3.10c, then it turns
out that GN and GTΣ(N) are not branching bisimilar (see Figure 3.10d). The transformed
network can no longer perform the 〈2, 3〉 a−→ 〈1, 3〉 transition. Transition 〈2〉 a−→ 〈1〉 in
process Π1 has not been transformed while the a-loop in Π2 has been transformed to
a c-loop in T (Π2). Hence, there is no a-transition available anymore with which the
〈2〉 a−→T (Π2) 〈1〉 transition can synchronise.

The second condition prevents that projections of new synchronisation laws in V̂ are
defined over actions already present in the processes of an input network. Otherwise,
an LTS network could be altered without actually defining any transformation rules.
Formally, if the left LTS pattern Lj (j ∈ |R|) of the jth rule in R is matched on the ith

3.4. Verifying Sets of Dependent LTS Transformations 41

1̃ 3̃1̃ 3̃

V̂ = {(〈c, c〉, a)}

V′ =
⎧⎨
⎩ (〈a, a〉, a)
(〈b, •〉, b)

⎫⎬
⎭

R1L1 R2L2

a

2̃ 2̃

a cc

b b

(a) Rule system Σ = (R,V ′, V̂) transforms a-
transitions to c-transitions, synchronisation of c-
transitions results in an a-transition

GL̄κ = GR̄κ

1̃ 3̃

κ κ 1̃ κ

κ 3̃

σ3

σ1

σ1

σ3

2̃ 3̃

2̃ κ

σ3

σ2

σ2

σ2σ3 σ1σ3

a

b

b

(b) L̄κ and R̄κ are equivalent since the
synchronisation of two c-transitions re-
sult in an a-transition again

1

V =

⎧⎨
⎩ (〈a, a〉, a)
(〈b, •〉, b)

⎫⎬
⎭

Π1

3

Π2

2

aaa

b

(c) An input network N = (Π,V)

1 3

2 3

GN

1 3

2 3

GTΣ(N)

b

↔b/

aa a

b

(d) The system LTSs before (GN) and after (GTΣ(N))
transformation are not branching bisimilar; the trans-
formed model is no longer able to synchronise the
a-transition performed at state 〈2〉 that was not trans-
formed, since the loop at state 〈3〉 has been transfor-
med to a c-loop

Figure 3.10: Rule system Σ and input network N with matches m(̃i) = i and m̂(i) = i
that do not satisfy APC1; although L̄κ ↔b R̄κ, the system LTS of the input network GN
is not bisimilar to the system LTS of the output network GTΣ(N)

process (i ∈ 1..n) in Π, then the v̄j may not be defined over actions in Ai.

∀i ∈ 1..n, j ∈ 1..|R|, (m:Lj → Πi,_) ∈ m, (v̄, a) ∈ V̂, . v̄j /∈ Ai (APC2)

As an example, consider a rule system Σ = (R,V ′, V̂) with V ′ = ∅, and V̂ = {〈a〉, b}. Say R
contains a single transformation rule that transforms an a-loop with L1 = R1. Note that
rule R1 does not change the LTSs it is applied to, and thus L̄κ = R̄κ. Furthermore, APC1
and ANC1 are satisfied for both V ′ and V̂ . If Σ is applied to a network N = (Π, {(〈a〉, a)})
with Π = 〈L1〉, then we obtain the network TΣ(N) = (Π, {(〈a〉, a), (〈a〉, b)). Clearly, the
system LTSs of N and TΣ(N) are not branching bisimilar; TΣ(N) can perform both an
a-loop and a b-loop whereas N can only perform the a-loop. Condition APC2 does not
allow the application of Σ to N as (〈a〉, b) ∈ V̂ involves label a which is present in A1.

The third and fourth conditions concern how the set of laws V (of the network N
to which Σ is applied) is related to the set of laws V ′ (that Σ expects). Consider a set
of match pairs m describing the transformation of N as defined by Σ. The application
of the matches in m is distributed over a sequence of transformation steps. Let M̄ be
a vector of match pairs defining a single transformation step in the sequence. For each

42 Transformation Verification

1̃ 1̃
V̂ = {(〈d〉, c)}

V′ = {(〈a〉, c)}
R1L1

a

2̃ 2̃

d

(a) Rule system Σ = (R,V ′, V̂) transforms
a-transitions to d-transitions; the synchro-
nisation laws specify that both the local
a- and the d-transitions result in a global
c-transition.

GL̄κ = GR̄κ

1̃
c

2̃

κ

σ1

σ2

(b) L̄κ and R̄κ are equivalent since for
both the left and right patterns the
process-local transitions result in a c-
transition.

1

V = {(〈b〉, b)}

Π1

2

ba

(c) Input network N = (Π,V).

b

GN GTΣ(N)

↔b/

bc

22

1 1

(d) The system LTSs before (GN) and after
(GTΣ(N)) transformation are not branching
bisimilar; since (〈a〉, c) ∈ V ′ \ V (i.e., APC3
is violated) the a-transition is cut in Π1

while the d-transition is not cut in T (Π1)
due to introduction of (〈d〉, c).

Figure 3.11: Rule system Σ and input network N with matches m(̃i) = i and m̂(i) = i
that do not satisfy APC3; although L̄κ ↔b R̄κ, the system LTS of the input network GN
is not bisimilar to the system LTS of the output network GTΣ(N).

transformation step M̄ it is required that APC3 and APC4 hold.
The third condition expresses that the set of synchronisation laws V of network N

must contain all the synchronisation laws in V ′ that Σ expects.

V ′M̄ ⊆ V (APC3)

An application of a rule system Σ to an LTS network N for which APC3 does not hold
is given in Figure 3.11. The corresponding match pair vector is M̄ = (m : L1 → Π1, m̂ :
R1 → T (Π1)). Condition APC3 does not hold since the law (〈a〉, c) ∈ V ′ of rule system
Σ, presented in Figure 3.11a is not included in the set of laws of the input network N ,
shown in Figure 3.11c. The analysis condition ANC1 and application conditions APC1
and APC2 hold.

The rule system transforms a-transitions to d-transitions. The local a-transitions
result in global c-transitions due to law (〈a〉, c) ∈ V ′. To ensure that the behaviour
remains equivalent a new synchronisation law (〈d〉, c) ∈ V̂ is introduced such that, like the
a-transitions, the d-transitions result in global c-transitions. As shown in Figure 3.11b
the left and right κ-extended pattern networks are branching bisimilar, as expected.

However, when Σ is applied to input network N the transformation of the a-transition
in process Π1 (now a d-transition) is not cut due to introduction of the law (〈d〉, c) ∈ V̂.

3.4. Verifying Sets of Dependent LTS Transformations 43

1̃ 2̃1̃ 2̃

V̂ = {(〈f, g〉, d)}V′ = {(〈a, b〉, d)}

R1L1 R2L2

b ga f

(a) Rule system Σ = (R,V ′, V̂) transforms a-loops to
f -loops and b-loops to g-loops; like synchronisation of
a and b labels, the synchronisation of f and g labels
results in a d-transition.

GL̄κ = GR̄κ

1̃ 2̃

κ κ 1̃ κ

κ 2̃

σ2

σ1

σ1

σ2 σ1σ2

d

ε2ε2

(b) L̄κ and R̄κ are equivalent since
the transformed loops synchronise
to a d-loop again.

1

V =

⎧⎨
⎩ (〈a, b〉, d)
(〈a, c〉, e)

⎫⎬
⎭
c

Π1

2

Π2

ba

(c) Input network N = (Π,V).

1 3

GN

1 3

GTΣ(N)

d

↔b/

e d
(d) The system LTSs before (GN) and after
(GTΣ(N)) transformation are not branching
bisimilar; the transformed model is unable
to synchronise the b-transition of Π2 that
was not transformed because the a-loop in
Π1 has been transformed to an f -loop.

Figure 3.12: Rule system Σ and input network N with matches m(̃i) = i and m̂(i) = i
that do not satisfy APC4; although L̄κ ↔b R̄κ, the system LTS of the input network GN
is not bisimilar to the system LTS of the output network GTΣ(N)

The system LTSs before (GN) and after (GTΣ(N)) transformation are given in Figure 3.11d.
Since V ′M̄ �⊆ V , an analysis of Σ does not take into account that in Π1 the a-transition is
cut. Therefore, the analysis cannot give any guarantees for the input network N .

If application condition APC3 is satisfied by a network, then either network N must
include the law (〈a〉, c) ∈ V or the law must be removed from V ′ in rule system Σ. In the
former case, the a-transition in Π1 is not cut and the system LTS GN and GTΣ(N) are
branching bisimilar. In the latter case, the a-transition in L1 is cut as well and it follows
that L̄κ and R̄κ are not branching bisimilar. Condition APC3 ensures that, with respect
to the transitions described in the transformation rules, both the rules system and the
input network cut the same transitions.

The fourth condition ensures that Σ is aware of all the synchronisation laws in V that
affect the rules in R. That is, besides the projection of synchronisation laws in V ′, no
other synchronisation laws in V may involve behaviour described by the rules in R.

∀(v̄, a) ∈ V \ V ′M̄ , i ∈ Ac(v̄). v̄i /∈ ALM̄(i)
(APC4)

The symmetric condition involving the V \ V̂ and ARM̄(i)
applies as well.

A transformation that does not satisfy APC4 is presented in Figure 3.12. Condition
APC4 is not satisfied because the law (〈a, c〉, e) ∈ V \ V ′ of input network N , shown in

44 Transformation Verification

Figure 3.12c, contains behaviour that influences the transformation rules of rule system
Σ, shown in Figure 3.12a. The transformation satisfies conditions ANC1, APC1, APC2,
and APC3.

Rule system Σ transforms a-loops to f -loops and b-loops to g-loops. In an attempt
to preserve the semantics the f - and g-actions, like the a- and b-actions, are forced to
synchronise, resulting in d-actions. As a result the left and right κ-extended pattern
networks, presented in Figure 3.12b, are branching bisimilar.

However, if Σ is applied to network N , then the possibility of synchronising the a-
and c-loops is lost. It follows that GN can perform an e-loop while GTΣ(N) cannot (see
Figure 3.12d). Hence, the two system LTSs are not branching bisimilar.

If APC4 is satisfied, then rule system Σ must contain the synchronisation law
(〈a, c〉, e) ∈ V ′. Additionally, due to ANC1, the b-transition must then be present
in L2. It then becomes visible when comparing the κ-extended pattern networks L̄κ and
R̄κ that the possibility of performing an e-loop is lost in R̄κ.

Note that for a confluent rule system all transformation sequences have the same end
result. Therefore, it is sufficient that these conditions hold for a single transformation
sequence from the input network to the final output network.

The analysis For the application of a rule system Σ the aim is to determine whether a
verified Σ is sound for a network N to which Σ is applied. Before transformation of a
network N , it is checked whether the application conditions APC1, APC2, APC3, APC4
are satisfied. Checking applicability of a rule system Σ = (R,V ′, V̂) to an input network
N = (Π,V) is performed as follows:

1. Calculate the maximum set of match pairs m.

2. Check whether APC1 and APC2 hold for all (m, m̂) ∈ m.

3. Distribute the match pairs in m over a sequence of transformation steps defined by
M̄1, . . . , M̄k with k ∈ N.

4. Check whether APC3 and APC4 are satisfied with respect to each M̄ i (i ∈ 1..k).

If the steps return positive results, then Σ is applicable to N .

Time complexity of the analysis To check for the applicability of a rule system Σ,
a set of matches is required. Say that n is the size of the input network N , m is the size
of the set of matches, and t is the largest number of transitions in an LTS pattern of a
rule in Σ.

In the first step, the maximum set of matches is calculated. In general, the graph
matching problem [68] is NP-complete. However, Dodds and Plum [68] have shown that
if target graph G has a root (the initial state), the left pattern L has a set of unique
labelled root states (the glue-states), all states are reachable from these roots, and each
state has a bounded number b of outgoing transitions, then the complexity is independent
of the size of the input graph, instead only depending on b and the number of transitions
n in L. The complexity is then O(Σn

i=0bi). The reachability assumption is easily satisfied
for finite systems as unreachable states can be removed from process LTSs and LTS
patterns. Moreover, for systems with a finite number of action labels the boundedness of
the out-degree of states is also satisfied.

3.4. Verifying Sets of Dependent LTS Transformations 45

In the second analysis step, application conditions APC1 and APC2 are verified.
When APC1 is checked, for each law (v̄, a) ∈ V ′ with |v̄| > 1, it is checked whether
all v̄i-transitions (i ∈ 1..n) are matched. At worst this takes O(n ·m · t · |V ′|). When
APC2 is checked, for each match and each law (v̄, a) ∈ V̂ it is checked whether for all
i ∈ 1..n it holds that v̄i is not an action of the corresponding matched process. This takes
O(n ·m · |V̂|) time. Hence, the running time of the second step is O(n ·m · (|V̂|+ t · |V ′|)).

The third step distributes the matches in m over a sequence of match pairs. The set
is traversed as a vector of match pairs of size n that contains as many pairs from m as
possible. The time complexity is O(m2).

The fourth and final step verifies whether APC3 and APC4 hold. The check for both
APC3 and APC4 needs to iterate over vectors of match pairs N i (i ∈ 1..k) and indices
of all synchronisation laws in V and V ′. The number of matches in the match vector is
limited to the number of matches in the set m. Therefore, this step has a running time of
O(n ·m · |V| · |V ′|).

The running time of steps 2-4 together therefore amounts to O(n ·m · (|V| · |V ′|+ |V̂|+
t · |V ′|)). If we assume that |V̂| ≤ |V| and |V ′| ≤ |V|, then the running time simplifies to
O(n ·m · |V| · (|V|+ t+ 1)).

3.4.3 Correctness of the verification
In this section, we prove the correctness of the rule system verification as described in
the previous section. We prove the soundness of the rule system verification in Proposi-
tion 3.4.16. The completeness of the verification approach is shown in Proposition 3.4.17.

To simplify the proofs, we strengthen condition APC1 such that the correctness proof
can be formulated on a single transformation step instead of a sequence. Application
condition APC1 is formulated over a set of matches. However, since rule systems are
confluent there is always a single result LTS after a series of applications of a rule system.
Therefore, we may consider a ‘merged’ match without influencing the correctness of the
verification technique over confluent sequences.

In line with this simplification, we assume that Σ has n rules, and that a rule
Ri (i ∈ 1..n) matches on Πi in the LTS network that Σ is applied to. For a single
transformation step, the rules in R can be reordered according to this assumption with
an appropriate projection of the rule system. For confluent rule systems, the result can
be lifted to confluent sequences of transformations steps and the strengthened APC1 can
be weakened again to APC1.

In this case, where Ri matches on Πi, we do not have to consider the projection of
synchronisation laws since V = VM̄ for a set of synchronisation laws V and vector of
match pairs M̄ . Hence, we simply write V instead of VM̄ .

To prove soundness of the technique, we show that from a bisimulation relation B
between L̄κ and R̄κ, a bisimulation relation C can be constructed between an arbitrary
N and corresponding TΣ(N). For this purpose, we first need to prove some lemmas. For
clarity, we refer with q̄, ˆ̄q, q̄′, . . . to states in a left pattern network, with p̄, ˆ̄p, p̄′, . . . to
states in a right pattern network, with s̄, ˆ̄s, s̄′, . . . to states in an input network, and with
t̄, ˆ̄t, t̄′, . . . to states in an output network.

The κ-extended pattern networks can be seen as an abstraction from the input networks.
In a κ-extended pattern network, individual processes can only leave the κ-state via
σ-transitions and only enter the κ-state via ε-transitions. Hence, for all transitions enabled
by laws in the original (non-κ-extended) pattern network, the processes that are in the

46 Transformation Verification

κ-state before such a transition is executed are still in the κ-state after the transition has
been followed. This property is formalised in Lemmas 3.4.6 and 3.4.7.

Lemma 3.4.6. Consider a pattern network P = (Φ̄,W) of size n. Then,

∀v̄′ ∈ W, p̄, p̄′ ∈ SPκ . p̄
v̄,a−−→Pκ p̄′ =⇒ ∀i ∈ 1..n. p̄i = κ ⇐⇒ p̄′i = κ

Proof. Let (v̄, a) ∈ W and p̄, p̄′ ∈ SPκ such that p̄ v̄,a−−→Pκ p̄′. Let i ∈ 1..n. We distinguish
two cases: p̄i = κ or p̄′i = κ. We only discuss the first case, the proof for the other case is
symmetric.

Say p̄i = κ. By Definition 3.3.5, σ-transitions can only be performed from a κ-state.
Similarly, a process can only enter a κ-state by performing an ε-transition. Hence, since
(v̄, a) ∈ W and p̄i = κ, we must have v̄i = •. It follows from Definition 2.3.3 that p̄i = p̄′i.
Hence, we have p̄′i = κ.

Since the proof for case p̄′i = κ is symmetric, it follows that p̄i = κ ⇐⇒ p̄′i = κ.

Lemma 3.4.6 can be applied inductively to obtain a similar result for τ -paths. Synchro-
nisation laws with τ as a result action are, by Definition 3.4.4, never κ-synchronisation
laws. Therefore, every process that is in a κ-state before a sequence of τ -transitions is
still in the κ-state after the sequence of τ -transitions as shown by Lemma 3.4.7.

Lemma 3.4.7. Consider a pattern network P = (Φ̄,W) of size n. Then,

∀p̄, p̄′ ∈ SPκ . p̄
τ−→∗

Pκ p̄′ =⇒ ∀i ∈ 1..n. p̄i = κ ⇐⇒ p̄′i = κ

Proof. Consider states p̄, p̄′ ∈ SPκ such that p̄ τ−→∗
Pκ p̄′. The use of τ -actions is not allowed

in laws in Wκ, hence it follows that (v̄, a) ∈ W. Therefore, we have p̄
τ−→∗

P p̄
′. The

remainder of the proof follows directly from Lemma 3.4.6 and structural induction on
p̄

τ−→∗
P p̄

′.

Due to the κ-laws, branching bisimulation relations between L̄κ and R̄κ preserve
κ-states, i.e., when two state vectors are related, any κ-states present in one vector are
also present in the other vector at the same positions, and vice versa. This is expressed
in Lemma 3.4.8.

Lemma 3.4.8. Consider two pattern networks L̄ and R̄ of size n. Then,

∀p̄ ∈ SL̄κ , q̄ ∈ SR̄κ . p̄↔b q̄ =⇒ ∀i ∈ 1..n. p̄i = κ ⇐⇒ q̄i = κ

Proof. Consider states p̄ ∈ SL̄κ and q̄ ∈ SR̄κ . For each i ∈ 1..n, we can distinguish two
symmetric cases: p̄i = κ or q̄i = κ. We only discuss the first case, the proof for the other
case is symmetric.

Say p̄i = κ. By Definition 2.2.1, there is at least one state p̂ ∈ ILi , and furthermore,
according to Definition 3.3.5, there is a transition κ

σp̂−→Li
p̂. Hence, there is a law

(v̄, μ) ∈ Vκ, with v̄i = σp̂ and ∀j ∈ 1..n. j �= i⇒ v̄j = •, enabling transition p̄
μ−→L̄κ p̄′ for

some p̄′ with p̄′i = p̂ (by Definition 3.4.4). Since p̄↔b q̄ and μ �= τ , we have q̄
τ−→∗ ˆ̄q

μ−→ q̄′.
It follows that ˆ̄qi

σp̂−→ q̄′i. Since σ-transitions can only be performed from κ-states, we have
ˆ̄qi = κ. Finally, from Lemma 3.4.7 it follows that q̄i = κ.

Since the proof for case q̄i = κ is symmetric, we have ∀i ∈ 1..n. p̄i = κ ⇐⇒ q̄i = κ.

3.4. Verifying Sets of Dependent LTS Transformations 47

As κ-extended pattern networks form an abstraction from the matched input network,
it is desirable that those states representing states not removed by the transformation are
related to themselves. In the κ-extended left and right pattern networks the glue-states
and the κ-states represent the states that are kept. As shown in Lemma 3.4.9, this can
be directly lifted to the network-global level when state vectors only contain exit- and
κ-states. However, this cannot be guaranteed for state vectors that also contain in-states
due to the lack of a unique transition (such as the σ-, ε, and γ-transitions) leaving those
in-states. If a state vector p̄ consists of in-, out- and κ-states, then p̄ may be related to a
different state vector q̄ via a τ -path originating from an in-state p̄i contained in p̄. When
matches on initial states are restricted to exit-states, Lemma 3.4.9 is sufficient to show
that initial states of the input and output networks of a transformation are related.

Lemma 3.4.9. Consider a rule system Σ = (R,V ′, V̂) and a branching bisimulation
relation B such that L̄κ B R̄κ. Then, ∀p̄ ∈ IL̄κ . p̄ B p̄.

Proof. Consider a state p̄ ∈ IL̄κ . We will construct a state p̄′ and synchronisation law
(v̄κ, μ) ∈ Vκ such that p̄

v̄κ,μ−−−→ p̄′. We construct v̄κ and p̄′ with for all i ∈ 1..|R|:

(v̄κi , p̄
′
i) =

{
(εp̄i , κ) if p̄i ∈ EΦ̄i

(σx, x) if p̄i = κ. By Definition 2.2.1, there exists an x ∈ IL̄i

Let μ be the unique result action corresponding to v̄κ. Since for all i ∈ 1..|R| either p̄i = κ

or p̄i ∈ EL̄i
, there is a transition p̄i

v̄κ
i−→ p̄′i. It follows that there is a transition p̄

v̄κ,μ−−−→ p̄′.
By Definition 2.2.2, there is a state q̄ ∈ SR̄κ such that p̄ B q̄. Furthermore, since

(v̄κ, μ) ∈ Vκ, we have μ �= τ . Hence, there is a q̄
τ−→ ∗ ˆ̄q

μ−→ q̄′ such that p̄ B ˆ̄q and
p̄′ B q̄′. We show that p̄ = ˆ̄q from which it follows that p̄ B p̄. Consider an i ∈ 1..n.
The σ-transitions only leave from κ-states (in which case p̄i = κ) and the εp̄i -transitions

only leave from the state p̄i, i.e., each of the p̄i
v̄κ
i−→ p̄′i transitions carries a unique label

identifying the states connected by the transition. Both p̄i and ˆ̄qi can perform the
v̄κ
i−→

directly. It follows that p̄i = ˆ̄qi. Therefore, p̄ = ˆ̄q and p̄ B ˆ̄q can be rewritten to p̄ B p̄.

To formally define how a κ-extended network relates to an input network, we introduce
a mapping of state vectors as presented in Definition 3.4.10. Similar to matches for a
single rule, the mapping of a state vector of a κ-extended pattern network defines how a
state vector of the pattern is mapped to a state vector of an LTS network.

Definition 3.4.10 (State vector mapping). Consider an LTS network N = (Π,V) and
a pattern network P = (Φ̄,W) of size n with corresponding matches mi : Φ̄i → Πi for all
i ∈ 1..n. We say a state vector p̄ ∈ SPκ is mapped to a state vector s̄ ∈ SN , denoted by
p̄ � s̄, iff

∀i ∈ 1..n.

(
(p̄i �= κ =⇒ mi(p̄i) = s̄i)

∧ (p̄i = κ =⇒ ¬∃x ∈ SΦ̄i
,mi(x) = s̄i)

)

By referring to matches of the individual vector elements, a state vector is mapped
on to another state vector. Since the κ-state represents unmatched states, the mapping
relates the κ-state to all unmatched states. Hence, for every state s̄ ∈ SN there is a state
p̄ ∈ Pκ that maps on state s̄ (Lemma 3.4.11).

48 Transformation Verification

Since κ-states represent all unmatched states, we need to construct states that specify
explicitly which unmatched state is represented at the moment. The state s̄′ := s̄[p̄i | P (i)]
denotes the state s̄′ constructed from states s̄ and p̄ such that for all i ∈ 1..n, if predicate
P (i) holds, we have s̄′i = p̄i, and if not, we have s̄′i = s̄i. For example, the state
s̄′ := s̄[mi(p̄i) | p̄i �= κ] is produced from matches of p̄, where for all i ∈ 1..n, s̄′i = mi(p̄i)
if p̄i �= κ, and s̄′i = s̄i if p̄i = κ.

With the exception of transitions enabled by Wκ, the input network is able to simulate
the behaviour of the κ-extended network. The transitions enabled by κ-laws form an
abstraction from all transitions that may possibly enter or leave states of the input
network matched by the glue-states of the pattern network. That is, for laws (v̄, a) ∈ W ,
the mapping preserves the branching structure of the pattern network. Following, we
formalise this in a number of lemmas.

The state vector mapping preserves the branching structure of the pattern
network Similar to a match, the state vector mapping (Definition 3.4.10) preserves the
branching structure of the pattern network for the set of matching laws. Before proving
this claim, we first show that the state vector mapping is complete, i.e., the mapping
relation maps to all states of any input network. More precisely, for each (vector) state s̄
in the input network there is a (vector) state in the κ-extended pattern network that is
mapped on s̄. This is formally proven in Lemma 3.4.11.

Lemma 3.4.11. Consider an LTS network N = (Π,V) and a pattern network P = (Φ̄,W)
of size n with W ⊆ V and corresponding matches mi : Φ̄i → Πi for all i ∈ 1..n. Then,
∀s̄ ∈ SN . ∃p̄ ∈ SPκ . p̄ � s̄.

Proof. Let s̄ be a state in SN . From the definition of state vector mapping (Defini-
tion 3.4.10) it follows that there is a p̄ ∈ SPκ with p̄ � s̄. We shall construct p̄ such that
p̄ � s̄. Consider an i ∈ 1..n. If ∃x ∈ SΦ̄i

. mi(x) = s̄i, then we take p̄i = x. Otherwise, we
take p̄i = κ. By construction, it holds that p̄ � s̄. Finally, by Definition 3.3.5, x, κ ∈ SΦ̄κ

i
,

and thus, p̄ ∈ SPκ .

Lemmas 3.4.12 and 3.4.13 express that the state vector mapping preserves the branching
structure of the pattern network. Lemma 3.4.12 states that for each transition in the
pattern network there is a corresponding transition in the mapped network. Lemma 3.4.13
extends this to sequences of τ -transitions. In Lemma 3.4.12 and Lemma 3.4.13, the end
state of the transition and the sequence of transitions in the input network, respectively,
is identified. In short, for vector states p̄ and s̄, if p̄ � s̄, then for each index i, firstly,
transitions taken in pattern Φ̄i can be mimicked by transitions in process Πi from the
mapped state leading to a state mapped by the target state in Φ̄i, and secondly, if the
state p̄i is a κ-state, then no transitions from the corresponding state s̄i are taken.

Lemma 3.4.12. Consider an LTS network N = (Π,V) and a pattern network P = (Φ̄,W)
of size n with W ⊆ V (APC3) and corresponding matches mi : Φ̄i → Πi for all i ∈ 1..n.
Then,

∀(v̄, a) ∈ W, p̄, p̄′ ∈ SPκ . p̄
v̄,a−−→Pκ p̄′ =⇒

∀s̄ ∈ SN . p̄ � s̄ =⇒ ∃s̄′ ∈ SN . p̄′ � s̄′ ∧ s̄
v̄,a−−→N s̄′ ∧ ∀i ∈ 1..n. p̄′i = κ =⇒ s̄′i = s̄i

3.4. Verifying Sets of Dependent LTS Transformations 49

Proof. Consider synchronisation law (v̄, a) ∈ W and states p̄, p̄′ ∈ SPκ such that p̄ v̄,a−−→Pκ

p̄′, and s̄ ∈ SN with p̄ � s̄. Take s̄′ := s̄[mi(p̄
′
i) | p̄′i �= κ]. By construction, we

have s̄′ ∈ SN and ∀i ∈ 1..n. p̄′i = κ ⇒ s̄′i = s̄i. Furthermore, Lemma 3.4.6 ensures
that p̄i = κ ⇐⇒ p̄′i = κ for all i ∈ 1..n. Therefore, for all i ∈ 1..n, it holds that
(¬∃x.mi(x) = s̄i) ⇐⇒ (¬∃x.mi(x) = s̄′i). It follows that p̄′ � s̄′.

What is left to show is (v̄, a) ∈ V and ∀i ∈ 1..n. (v̄i = • =⇒ s̄i = s̄′i ∧ s̄i ∈ Si)∧ (v̄i �=
• =⇒ s̄i

v̄i−→i s̄
′
i) (by Definition 2.3.3). Since W ⊆ V (by APC3) and (v̄, a) ∈ W, we

must have (v̄, a) ∈ V. Consider an i ∈ 1..n. We distinguish two cases:

• v̄i = •. As s̄ ∈ SN , it holds that s̄i ∈ Si. Moreover, by Definition 2.3.3, we have
p̄i = p̄′i and p̄i ∈ SΦ̄κ

i
. If p̄i = κ, then by construction of s̄′ we have s̄i = s̄′i. If

p̄i �= κ, then mi(p̄i) = s̄i and mi(p̄
′
i) = s̄′i. Finally, since p̄i = p̄′i and mi is injective

(Definition 3.3.3), mi(p̄i) = mi(p̄
′
i) = s̄i = s̄′i.

• v̄i �= •. By Definition 2.3.3 and (v̄, a) ∈ W, we have p̄i
v̄i−→Φ̄i

p̄′i. Hence, it follows
that mi(p̄i) = s̄i and mi(p̄

′
i) = s̄′i. Finally, since a match (Definition 3.3.3) is an

embedding, we conclude that s̄i
v̄i−→i s̄

′
i.

In conclusion, we have (v̄, a) ∈ V and ∀i ∈ 1..n. (v̄i = • =⇒ s̄i = s̄′i ∧ s̄i ∈ Si) ∧ (v̄i �=
• =⇒ s̄i

v̄i−→i s̄
′
i). Therefore, it holds that s̄

v̄,a−−→N s̄′.

Lemma 3.4.13. Consider an LTS network N = (Π,V) and a pattern network P = (Φ̄,W)
of size n with W ⊆ V (APC3) and corresponding matches mi : Φ̄i → Πi for all i ∈ 1..n.
Then,

∀p̄, p̄′ ∈ SPκ . p̄
τ−→∗

Pκ p̄′ =⇒
∀s̄ ∈ SN . p̄ � s̄ =⇒ (∃s̄′ ∈ SN . p̄′ � s̄′ ∧ s̄

τ−→∗
N s̄′ ∧ ∀i ∈ 1..n. p̄′i = κ =⇒ s̄′i = s̄i)

Proof. Let p̄, p̄′ ∈ SPκ and s̄, s̄′ ∈ SN such that p̄ τ−→∗
Pκ p̄′, p̄ � s̄, and p̄′ � s̄′. Since τ result

actions are not allowed in Wκ, any law (v̄, τ) in the sequence of τ ’s must be a member
of W. The proof now follows directly from Lemma 3.4.12 and structural induction on
p̄

τ−→∗
Pκ p̄′.

When two states s̄ and t̄ from the input and transformed network, respectively, are
related by a branching bisimulation relation, and from s̄ a certain transition is enabled,
then from t̄ it must be possible to simulate this behaviour (and vice versa). Even when
this transition is not matched by the transformation rule system, it may still be the case
that t̄ is matched by a state that is not a glue-state. In this case, t̄ cannot simulate s̄
directly, thus, there must be a τ -path to some other state that is able to directly simulate
s̄. The existence of such a state is proven in Lemma 3.4.14.

In Lemma 3.4.14, we show that in the presence of a state vector mapping and a
witness showing that there is a transition leaving the pattern, all active glue-states (all
glue-states involved in that transition) or κ-states are reachable by related states. More
precisely, when a state p̄ – mapped to a state from which the pattern is left – is related
to a state q̄, then there is a τ -path from q̄ to ˆ̄q such that p̄↔b

ˆ̄q and there is a state q̄′

which is the corresponding entry-point of a given unmatched transition that leaves q̄. This
follows from two facts. First, the κ-synchronisation laws have synchronisation vectors
uniquely identifying the active states within q̄. Second, due to the matching conditions
(Definition 3.3.3), a matched state must be a glue-state when there is a transition leaving
or entering the corresponding matched state.

50 Transformation Verification

Lemma 3.4.14. Let N = (Π,V) be an LTS network of size n, let Σ = (R,V ′, V̂) be a rule
system applicable to N , and let B be a branching bisimulation relation such that L̄κ B R̄κ.
Let M̄ be a vector of match pairs of size n such that mi : Li → Πi and m̂i : Ri → T (Πi)
for all i ∈ 1..n. Then,

∀(v̄, a) ∈ V, s̄, s̄′ ∈ SN . s̄
v̄,a−−→N s̄′ =⇒

∀p̄, p̄′ ∈ SL̄κ , q̄ ∈ SR̄κ . p̄ B q̄ ∧ p̄ � s̄ ∧ p̄′ � s̄′ ∧ (∀i ∈ Ac(v̄). ¬p̄i v̄i−→Li
p̄′i) =⇒

∃ ˆ̄q, q̄′ ∈ SR̄κ . q̄
τ−→∗

R̄κ
ˆ̄q ∧ p̄ B ˆ̄q ∧ p̄′ B q̄′∧

(∀i ∈ Ac(v̄). ˆ̄qi = p̄i ∧ q̄′i = p̄′i) ∧ (∀i ∈ 1..n \Ac(v̄). ˆ̄qi = q̄′i)

Proof. Consider a synchronisation law (v̄, a) ∈ V and states s̄, s̄′ ∈ SN such that s̄ v̄,a−−→ s̄′.
Let p̄ ∈ SL̄κ and q̄ ∈ SR̄κ be states such that p̄ B q̄, p̄ � s̄, and ∀i ∈ Ac(v̄). ¬p̄i v̄i−→Li

p̄′i
(there is no transition in TL̄ matching s̄

v̄,a−−→N s̄′).
A κ-extended pattern network explicitly models transitions that enter and leave the

embedding of the pattern network. However, it does not model the situation where the
matched network moves between two unmatched states. Therefore, we have to perform a
case distinction: either the transition of the input-network N is represented by one of the
κ-synchronisations, or the transition of the input network has no representation in L̄κ. In
the former case, we build the corresponding κ-synchronisation law (v̄κ, μ) and obtain the

required states by applying the branching bisimulation definition to p̄ B q̄ and p̄
v̄κ,μ−−−→ p̄′.

In the latter case, we show that p̄ = p̄′ and take q̄ for both ˆ̄q and q̄′ from which the proof
will follow.

We distinguish the two aforementioned cases:

C1 There exists an i ∈ Ac(v̄) such that (p̄i ∈ EL̄i
∧ p̄′i ∈ IL̄i

), (p̄i ∈ EL̄i
∧ p̄′i = κ), or

(p̄i = κ ∧ p̄′i ∈ IL̄i
). The three cases correspond to the situations where the γ-, ε-,

and σ-transitions, respectively, are introduced in κ-extended pattern networks. We
will construct a synchronisation law (v̄κ, μ) ∈ Vκ enabling a transition p̄

μ−→L̄κ p̄′

that represents the LTS pattern network abstraction for s̄
v̄,a−−→N s̄′. We construct

v̄κ with for all i ∈ 1..n:

v̄κi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
γp̄i,p̄′

i
if i ∈ Ac(v̄) ∧ p̄i ∈ EL̄i

∧ p̄′i ∈ IL̄i

εp̄i if i ∈ Ac(v̄) ∧ p̄i ∈ EL̄i
∧ p̄′i = κ

σp̄′
i

if i ∈ Ac(v̄) ∧ p̄i = κ ∧ p̄′i ∈ IL̄i

• otherwise

Let μ be the unique result action corresponding to v̄κ. Since there are no matching
transitions (∀i ∈ Ac(v̄). ¬p̄i v̄i−→Li p̄

′
i), by Definition 3.3.3, for all i ∈ Ac(v̄) we must

have p̄i ∈ EL̄i
∨ p̄i = κ and p̄′i ∈ IL̄i

∨ p̄′i = κ. It follows that (v̄κ, μ) indeed enables
the transition p̄

μ−→L̄κ p̄′. Furthermore, by Definition 3.4.4, we have μ �= τ . Since
p̄ B q̄ and μ �= τ , by Definition 2.2.2, we have q̄

τ−→∗
R̄κ

ˆ̄q
μ−→R̄κ q̄′ with p̄ B ˆ̄q and

p̄′ B q̄′. What remains to be shown is 1) ∀i ∈ Ac(v̄). ˆ̄qi = p̄i ∧ q̄′i = p̄′i and 2)
∀i ∈ 1..n \Ac(v̄). ˆ̄qi = q̄′i:

1) Consider an i ∈ Ac(v̄). We distinguish two cases:

3.4. Verifying Sets of Dependent LTS Transformations 51

◦ i ∈ Ac(v̄κ). Because μ is unique in Vκ and does not occur in V ′ ∪ V̂, the
transition ˆ̄q

μ−→R̄κ q̄′ is enabled by (v̄κ, μ) ∈ Vκ. Recall that p̄i ∈ EL̄i
∨ p̄i =

κ and p̄′i ∈ IL̄i
∨ p̄′i = κ (since i ∈ Ac(v̄)). The v̄κi -transition is only present

between p̄i and p̄′i in both L̄κ and R̄κ, and (by Definition 3.3.5). Therefore,
we must have ˆ̄qi = p̄i and q̄′i = p̄′i.

◦ i /∈ Ac(v̄κ). It follows that p̄i = p̄′i and ˆ̄qi = q̄′i (Definition 2.3.3). Recall
that p̄i ∈ EL̄i

∨ p̄i = κ and p̄′i ∈ IL̄i
∨ p̄′i = κ (since i ∈ Ac(v̄)). However,

since i /∈ Ac(v̄κ) only the case where both p̄i and p̄′i are κ-states remains.
By applying Lemma 3.4.8 to p̄ B ˆ̄q and p̄′ B q̄′, it follows that ˆ̄qi = κ and
q̄′i = κ. Hence, p̄i = p̄′i and ˆ̄qi = q̄′i.

2) Consider an i ∈ 1..n \ Ac(v̄). Since i /∈ Ac(v̄), we must have i /∈ Ac(v̄κ) (by
construction of v̄κ). It follows from Definition 2.3.3 that ˆ̄qi = q̄′i.

C2 For all i ∈ Ac(v̄) it holds that ¬(p̄i ∈ EL̄i
∧ p̄′i ∈ IL̄i

), ¬(p̄i ∈ EL̄i
∧ p̄′i = κ), and

¬(p̄i = κ ∧ p̄′i ∈ IL̄i
).

We take q̄ for both ˆ̄q and q̄′ which leads to p̄ B ˆ̄q. We first show that p̄ = p̄′

from which it follows that p̄′ B q̄′. The proof is then completed by showing
∀i ∈ Ac(v̄). q̄i = p̄i, the remainder follows from ˆ̄q = q̄′ = q̄.

We show that p̄ = p̄′. Consider an i ∈ 1..n. If both p̄i = κ and p̄′i = κ, we trivially
have p̄i = p̄′i. Now consider the opposite case: p̄i �= κ or p̄′i �= κ. Assume for a
contradiction that i ∈ Ac(v̄). Then by Definition 3.3.3, we must have p̄i ∈ EL̄i

∨ p̄i =
κ and p̄′i ∈ IL̄i

∨ p̄′i = κ. Since p̄i �= κ or p̄′i �= κ, only the following three cases
remain: (p̄i ∈ EL̄i

∧ p̄′i ∈ IL̄i
), (p̄i ∈ EL̄i

∧ p̄′i = κ), and (p̄i = κ ∧ p̄′i ∈ IL̄i
). These

three cases contradict the assumptions of case C2. Hence, we must have i /∈ Ac(v̄).
It now follows that s̄i = s̄′i. Finally, we have p̄i = p̄′i because m is an injection. In
conclusion, we have p̄ = p̄′.

What remains to be shown is ∀i ∈ Ac(v̄). q̄i = p̄i. Consider an i ∈ Ac(v̄). Again, by
Definition 3.3.3, we must have p̄i ∈ EL̄i

∨ p̄i = κ and p̄′i ∈ IL̄i
∨ p̄′i = κ. Based on

this we distinguish three cases: p̄i = κ, p̄i ∈ EL̄i
∧ p̄′i = κ, and p̄i ∈ EL̄i

∧ p̄′i ∈ IL̄i
.

In the first case it follows from p̄ B q̄ and Lemma 3.4.8 that p̄i = κ = q̄i. The latter
two cases contradict one of the three assumptions of case C2 and the proof follows
by contradiction.

In both C1 and C2 there exist ˆ̄q, q̄′ ∈ SR̄κ such that q̄
τ−→∗

R̄κ
ˆ̄q with p̄ B ˆ̄q, p̄′ B q̄′,

∀i ∈ Ac(v̄). ˆ̄qi = p̄i ∧ q̄′i = p̄′i, and ∀i ∈ 1..n \Ac(v̄). ˆ̄qi = q̄′i.

Completeness of transition transformation Due to the application conditions
either all process-local transitions participating in a synchronising global transition are
transformed or no process-local transitions are transformed at all. For confluent rule
systems, the order of applying rules is irrelevant and application of the transformation rules
can lead to only one output network. This fact allows us to simplify the correctness proof
of the verification technique by strengthening condition APC1 such that the correctness
proof (Proposition 3.3.9) can be formulated on a single transformation step instead of a
sequence.

Recall that APC1 requires that a rule transforming synchronising transitions labelled
with some action a must be applicable to all a-transitions within the corresponding LTS.
Since confluent rule systems have only a single possible output network, we may consider
a ‘merged’ match consisting of all the matches in the sequence that produces the output

52 Transformation Verification

network in a single transformation step. A transformation sequence resulting in the
final output network cannot be distinguished from the application of the ‘merged’ match.
Therefore, for proving the correctness of the technique, APC1 may be strengthened as
follows:

∀Πi ∈ Π, rj ∈ R, (v̄, a) ∈ V ′. {j} ⊂ Ac(v̄) ∧ v̄j ∈ ALj =⇒
∀m:Lj → Πi, (s, v̄j , s

′)∈Ti. ∃(p, v̄j , p′)∈TLj . m(p) = s ∧m(p′)=s′
(APC1’)

In contrast to APC1, requiring existence of a match that transforms synchronising
transitions for all equivalent transitions, the strengthened condition APC1’ requires that
a single match transforms all equivalent synchronising transitions. Indeed, this means
that APC1’ requires a ‘merged’ match transforming all synchronising transitions in one
step.

Conditions APC1’ and ANC1 ensure that global transitions in the input network are
always fully transformed or not transformed at all. This leads to Lemma 3.4.15 that
states the following: if a transition in a network enabled by (v̄, a) ∈ V has a match on a
local transition (say v̄i for some i ∈ 1..n), then for all j ∈ 1..n, the participating local v̄j-
transitions must be matched, i.e., all local transitions participating in the global transition
must be matched. From this it follows that a global transition is either transformed fully
or not transformed at all.

Lemma 3.4.15. Consider an LTS network N = (Π,V) of size n and a rule system
Σ = (R,V ′, V̂) such that APC1’ and ANC1 are satisfied. Consider the pattern network
P = (Φ̄,W) as representative for the left and right pattern network. Let the mi : Φ̄i → Πi

(i ∈ 1..n) be the matches specifying the embedding of P in N . Then,

∀(v̄, a) ∈ W, s̄, s̄′ ∈ SN , p̄, p̄′ ∈ SPκ . s̄
v̄,a−−→N s̄′ ∧ p̄ � s̄ ∧ p̄′ � s̄′∧

(∃j ∈ Ac(v̄). mj(p̄j) = s̄j ∧mj(p̄
′
j) = s̄′j ∧ p̄j

v̄j−→Φ̄j
p̄′j) =⇒ p̄

v̄,a−−→Pκ p̄′

Proof. Consider a synchronisation law (v̄, a) ∈ W and states s̄, s̄′ ∈ SN such that
s̄

v̄,a−−→N s̄′. Let p̄, p̄′ ∈ SPκ with p̄ � s̄ and p̄′ � s̄′. Finally, let there be an j ∈ Ac(v̄) such
that mj(p̄j) = s̄j , mj(p̄

′
j) = s̄′j , and p̄j

v̄j−→Φ̄j
p̄′j matches transition s̄j

v̄j−→j s̄
′
j . We shall

show that p̄
v̄,a−−→Pκ p̄′ by showing that for all i ∈ 1..n there is a transition p̄i

v̄i−→Φ̄κ
i
p̄′i if

v̄i �= •, and p̄i = p̄′i with p̄i ∈ SΦ̄κ
i

if v̄i = • (Definition 2.3.3). Consider an i ∈ 1..n. We
distinguish three cases:

• v̄i �= • ∧Ac(v̄) = {i}. Law (v̄, a) constitutes independent behaviour and the proof
follows from the premises.

• v̄i �= •∧{i} ⊂ Ac(v̄). Law (v̄, a) constitutes synchronising behaviour. Next we show
that v̄i ∈ AΦ̄i

, after which we can apply APC1’ and show that p̄i
v̄i−→Φ̄κ

i
p̄′i. Since

ANC1 is not symmetrical with respect L̄ and R̄ we need to distinguish these two
cases showing v̄i ∈ ALi

and v̄i ∈ ARi
respectively.

– P = L̄. The left pattern network has the laws W = V ′. Because (v̄, a) ∈ V ′ ,
by ANC1, we have v̄i ∈ ALi .

– P = R̄. The right pattern network has the laws W = V ′ ∪ V̂, hence, (v̄, a) ∈
V ′ ∪ V̂. In the trivial case, where v̄ ∈ V̂, it directly follows from ANC1 that

3.4. Verifying Sets of Dependent LTS Transformations 53

v̄i ∈ ARi . In the other case, where v̄ ∈ V ′, Since i ∈ Ac(v̄), there is a transition
s̄i

v̄i−→i s̄
′
i in the transformed network. This transition either originates from

the network Σ is applied to, or is introduced by the transformation as specified
in Definition 3.3.4. In the former case, we arrive at a contradiction: by the left
variant of APC1’ and ANC1, it follows that the original transition is matched
on, while the transition is not matched on according to Definition 3.3.4. In
the latter case, there exists x, x′ ∈ SRi

with x
v̄i−→Ri

x′. Therefore, we have
v̄i ∈ ARi

.

In all cases we have v̄i ∈ AΦ̄i
. We can now apply APC1’ to obtain states p, p′ ∈ SΦ̄i

such that p v̄i−→Φ̄i
p′. Since mi is injective, we have p̄i = p and p̄′i = p′. Hence, there

is a transition p̄i
v̄i−→Φ̄κ

i
p̄′i.

• v̄i = •. By Definition 2.3.3, s̄i = s̄′i. Hence, since matches are injective it follows
from p̄ � s̄ and p̄′ � s̄′ that p̄i = p̄′i. Furthermore, since p̄ ∈ SPκ , we have p̄i ∈ SΦ̄κ

i
.

In conclusion, we have ∀i ∈ 1..n. (v̄i = • ⇒ p̄i = p̄′i ∧ p̄i ∈ SΦ̄κ
i
) ∧ (v̄i �= • ⇒ p̄i

v̄i−→Φ̄κ
i
p̄′i).

Hence, it holds that p̄
v̄,a−−→Pκ p̄′.

Soundness of the analysis Proposition 3.4.16 formally describes the analysis techni-
que. To show the soundness of Proposition 3.4.16, we have to prove that a branching
bisimulation relation B between the κ-extended pattern networks of a transformation rule
system implies, via state vector mappings, a branching bisimulation relation C between
arbitrary original and transformed LTS networks.

As the κ-extended pattern networks represent abstractions from the networks they
are mapped on, the relation B can be seen as an abstract relation between states of N
and TΣ(N). For the matched local states, i.e., the matched states in the local process
LTSs of the network, the relation is explicitly defined. In addition to this, the κ-state
represents all unmatched local states.

A consequence of Lemma 3.4.15 is that two cases can be distinguished. If all process-
local transitions are transformed, it follows that the state vector mapping preserves the
branching structure of transitions enabled by non-κ-synchronisation laws. If no process-
local transitions are transformed, it is still possible that a state s̄ is related via C to a state
t̄ that is matched by at least one non-glue state; e.g., ∃i ∈ 1..n, q̄i ∈ SR \ SL.m̂i(q̄i) = t̄i.
If s̄ is able to perform an a-transition enabled by a (v̄, a) ∈ V, then t̄ must be able to
simulate this transition. Some local states t̄i (i ∈ Ac(v̄)) of t̄ may be matched on by
non-glue states. In this case, t̄ is not able to perform the a-transition itself. Therefore,
there must be a τ -path from t̄ to a state ˆ̄t such that ˆ̄t can perform this a-transition as is
shown in Lemma 3.4.14.

Recall that we assume that Σ has n rules, and that a rule Ri (i ∈ 1..n) matches on Πi

in the LTS network that Σ is applied to. For a single transformation step, the rules in
R can be reordered according to this assumption with an appropriate projection of the
rule system. For confluent rule systems, the result can be lifted to confluent sequences of
transformations steps and APC1’ can be weakened again to APC1.

Proposition 3.4.16. Let N = (Π,V) be an LTS network of size n and let Σ = (R,V ′, V̂)
be a rule system satisfying ANC1, APC1’, APC2, APC3, and APC4. Let M̄ be a vector
of match pairs of size n such that mi : Li → Πi and m̂i : Ri → T (Πi) for all i ∈ 1..n.

54 Transformation Verification

Then,
(∀P ∈ D. L̄κ,P ↔b R̄κ,P) =⇒ N ↔b TM̄ (N)

Proof. By definition, we have N ↔b TM̄ (N) iff there exists a branching bisimulation
relation C with IN C ITM̄ (N). Branching bisimilarity is a congruence for the construction
of system LTSs from LTS networks. Therefore, since ∀P ∈ D. L̄κ,P ↔b R̄κ,P , by
congruence, there is a relation B such that L̄κ B R̄κ. We define C as follows:

C = {(s̄, t̄) |∃p̄ ∈ SL̄κ , q̄ ∈ SR̄κ . p̄ B q̄ ∧ p̄ � s̄ ∧ q̄ � t̄

∧ ∀i ∈ 1..n. (p̄i = κ ∨ q̄i = κ)⇒ s̄i = t̄i}

To prove the proposition we have to show that C is a bisimulation relation. This
requires proving that C relates the initial states of N and TM̄ (N) and that C satisfies
Definition 2.2.2.

• C relates the initial states of N and TM̄ (N). We have IN = ITM̄ (N). Hence,
it suffices to show ∀s̄ ∈ IN . s̄ C s̄. Take an arbitrary state s̄ ∈ IN , then by
Lemma 3.4.11, there is a state p̄ ∈ SL̄κ with p̄ � s̄. Since s̄ ∈ IN , it follows from
Definition 3.3.3 that ∀i ∈ 1..n. p̄i ∈ ELi

∨ p̄i = κ, i.e., p̄ ∈ IL̄κ . By Lemma 3.4.9, we
have p̄ B p̄. It follows that s̄ C s̄.

• If s̄ C t̄ and s̄
a−→N s̄′ then either a = τ ∧ s̄′ C t̄, or t̄

τ−→∗
TM̄ (N)

ˆ̄t
a−→TM̄ (N) t̄

′ ∧ s̄ C

ˆ̄t∧ s̄′ C t̄′. Consider synchronisation law (v̄, a) ∈ V enabling the transition s̄
a−→N s̄′.

Since s̄ C t̄, there exist p̄ ∈ SL̄κ and q̄ ∈ SR̄κ such that p̄ B q̄, p̄ � s̄, and q̄ � t̄, and
∀i ∈ 1..n. (p̄i = κ ∨ q̄i = κ)⇒ s̄i = t̄i (3.2) . Furthermore, by Lemma 3.4.11, there
is a state p̄′ ∈ SL̄κ with p̄′ � s̄′. We distinguish two cases:

1. ∃i ∈ Ac(v̄). mi(p̄i) = s̄i ∧mi(p̄
′
i) = s̄′i ∧ p̄i

v̄i−→Lκ
i
p̄′i. We shall first establish

that (v̄, a) ∈ V ′, after which we can apply Lemma 3.4.15 to obtain a the
corresponding a-transition in TL̄κ . Assume for a contradiction that (v̄, a) /∈ V ′.
Since there is an i ∈ Ac(v̄) with p̄i

v̄i−→Lκ
i
p̄′i, the v̄i action must be a member of

the actions of Li, i.e., v̄i ∈ ALi . However, since i ∈ Ac(v̄) and (v̄, a) ∈ V\V ′, by
APC4, it must hold that v̄i /∈ ALi

Hence, by contradiction, we have (v̄, a) ∈ V ′.
Now, by Lemma 3.4.15, there is a transition p̄

a−→L̄κ p̄′ enabled by (v̄, a). Since
p̄ B q̄, by Definition 2.2.2, we have the following two cases:
◦ a = τ and p̄′ B q̄. To show s̄ C t̄, all ingredients but one are there. In

particular, we still need to show that ∀i ∈ 1..n. p̄′i = κ ∨ q̄i = κ⇒ s̄′i = t̄i.
Consider an i ∈ 1..n with p̄′i = κ ∨ q̄i = κ. Since Vκ and V ′ are disjoint,
we must have (v̄, a) /∈ Vκ. If q̄i = κ, then by Lemma 3.4.8, p̄i = κ. Since
p̄i = κ or p̄′i = κ and (v̄, a) /∈ Vκ, it follows that i /∈ Ac(v̄). Hence, by
Definition 2.3.3, s̄′i = s̄i. Finally by (3.2), s̄i = t̄i.

◦ q̄
τ−→∗

R̄κ
ˆ̄q

a−→R̄κ q̄′ with p̄ B ˆ̄q and p̄′ B q̄′. From Lemma 3.4.13, it follows
that there is a state ˆ̄t ∈ STM̄ (N) with ˆ̄q � ˆ̄t, a τ -path t̄

τ−→∗
TM̄ (N)

ˆ̄t, and

∀i ∈ 1..n. ˆ̄qi = κ ⇒ ˆ̄ti = t̄i (3.3) . Furthermore, by Lemma 3.4.12, we
have a state t̄′ ∈ STM̄ (N) with q̄′ � t̄′, a transition ˆ̄t

a−→TM̄ (N) t̄′, and
∀i ∈ 1..n. q̄′i = κ⇒ t̄′i =

ˆ̄ti (3.4) . What remains to be shown is that s̄ C ˆ̄t
and s̄′ C t̄′.

3.4. Verifying Sets of Dependent LTS Transformations 55

∗ For s̄ C ˆ̄t, all that is left to show is ∀i ∈ 1..n. p̄i = κ∨ ˆ̄qi = κ⇒ s̄i = ˆ̄ti.
Consider an i ∈ 1..n with p̄i = κ ∨ ˆ̄qi = κ. By Lemma 3.4.7, ˆ̄qi = κ
iff q̄i = κ. Hence, p̄i = κ ∨ q̄i = κ. From (3.2), it follows that s̄i = t̄i.
Finally, by Lemma 3.4.8, p̄i = κ iff ˆ̄qi = κ and it follows from (3.3)
that ˆ̄ti = t̄i. Therefore, s̄i = t̄i = ˆ̄ti. In conclusion, s̄ C ˆ̄t.

∗ Similarly, for s̄′ C t̄′, all that is left to show is ∀i ∈ 1..n. p̄′i = κ ∨ q̄′i =
κ ⇒ s̄′i = t̄′i. Consider an i ∈ 1..n with p̄′i = κ ∨ q̄′i = κ. By
Lemma 3.4.6, ˆ̄qi = κ iff q̄′i = κ. Hence, p̄′i = κ ∨ ˆ̄qi = κ. From s̄ C ˆ̄t, it
follows that s̄i = ˆ̄ti. Finally, by Lemma 3.4.8, p̄′i = κ iff q̄′i = κ and it
follows from (3.4) that t̄′i =

ˆ̄ti. Therefore, s̄′i = ˆ̄ti = t̄′i. In conclusion,
s̄′ C t̄′.

2. ¬1. Because ¬1, we have ¬∃i ∈ Ac(v̄). mi(p̄i) = s̄i ∧mi(p̄
′
i) = s̄′i ∧ p̄i

v̄i−→Lκ
i
p̄′i.

That is, for all i ∈ Ac(v̄) there is no transition in TLi
matching on s̄i

v̄i−→i s̄
′
i,

or more formally, ¬(mi(p̄i) = s̄i ∧mi(p̄
′
i) = s̄′i ∧ p̄i

v̄i−→Lκ
i
p̄′i). Therefore, for

all states p̄, p̄′ ∈ SL̄κ with p̄ � s̄ and p̄′ � s̄′, there is no transition p̄
a−→L̄κ p̄′.

Moreover, by Definitions 3.3.5 and 3.3.3, for each i ∈ 1..n state p̄i is either a
κ-state or an exit-state (in ELi

), and state p̄′i is either a κ-state or an in-state
(in ILi), i.e., ∀i ∈ Ac(v̄). (p̄i ∈ ILi ∨ p̄i ∈ ELi) ∧ (p̄′i ∈ ILi ∨ p̄′i = κ) (3.5)
. By applying Lemma 3.4.14, we get states ˆ̄q, q̄′ ∈ SR̄κ such that there is
a τ -path q̄

τ−→ ∗
R̄κ

ˆ̄q with related states p̄ B ˆ̄q and p̄′ B q̄′, and the states
have the following two properties: ∀i ∈ Ac(v̄). ˆ̄qi = p̄i ∧ q̄′i = p̄′i (3.6) , and
∀i ∈ 1..n \Ac(v̄). ˆ̄qi = q̄′i (3.7) .
From Lemma 3.4.13 it follows that there is a state ˆ̄t ∈ STM̄ (N) with ˆ̄q � ˆ̄t, a
τ -path t̄

τ−→∗
TM̄ (N)

ˆ̄t, and ∀i ∈ 1..n. ˆ̄qi = κ ⇒ ˆ̄ti = t̄i (3.8) . We construct a

state t̄′ := ˆ̄t[s̄′i | i ∈ Ac(v̄)]. By construction of t̄′ we have ∀i ∈ Ac(v̄). t̄′i = s̄′i
and ∀i ∈ 1..n \Ac(v̄). t̄′i = ˆ̄ti. To prove that ˆ̄t

a−→TM̄ (N) t̄
′, what remains to be

shown is ∀i ∈ Ac(v̄). ˆ̄ti = s̄i: consider an i ∈ Ac(v̄). By (3.6), ˆ̄qi = p̄i. If ˆ̄qi = κ,
then also p̄i = κ (Lemma 3.4.8). Therefore, by (3.8) and (3.2), ˆ̄ti = t̄i = s̄i.
If ˆ̄qi �= κ, then also p̄i �= κ (Lemma 3.4.8). It follows that mi(p̄i) = s̄i and
m̂i(ˆ̄qi) = ˆ̄ti. By (3.5) and p̄i �= κ, it holds that p̄i ∈ ELi

. Thus, m̂i(p̄i) = s̄i
(by Definition 3.3.4). Finally, by injectivity of m̂ we have ˆ̄ti = s̄i.
Hence, t̄ τ−→∗

TM̄ (N)
ˆ̄t

a−→TM̄ (N) t̄
′. What is left to show is q̄′ � t̄′, s̄ C ˆ̄t and s̄′ C t̄′.

◦ For q̄′ � t̄′, we have to show that ∀i ∈ 1..n. t̄′i ∈ ST (Πi) (i.e., t̄′ ∈ STM̄ (N))
and ∀i ∈ 1..n. (q̄′i �= κ =⇒ m̂i(q̄

′
i) = t̄′i) ∧ (q̄′i = κ =⇒ ¬∃x ∈

SRi
. m̂i(x) = t̄′i). Consider an i ∈ 1..n. Based on the construction of t̄′

we distinguish the following cases:
∗ i ∈ Ac(v̄). We have t̄′i = s̄′i (by construction of t̄′) and q̄′i = p̄′i (by

(3.6)). By (3.5) and q̄′i = p̄′i, either q̄′i ∈ ILi or q̄′i = κ.
If q̄′i ∈ ILi

, then also p̄′i ∈ ILi
and we have mi(p̄

′
i) = s̄′i which we may

rewrite to m̂i(p̄
′
i) = s̄′i (by Definition 3.3.4). Finally, by q̄′i = p̄′i and

t̄′i = s̄′i, we have m̂i(q̄
′
i) = s̄′i = t̄′i. Furthermore, since m̂i(q̄

′
i) = t̄′i, it

follows that t̄′i ∈ ST (Πi).
If q̄′i = κ, then we have to show ¬∃x ∈ SRi . m̂i(x) = t̄′i. Assume for
a contradiction that there is a state x ∈ SRi such that m̂i(x) = t̄′i.
Since s̄i

v̄i−→i s̄
′
i is not matched on, by Definition 3.3.3, we must have

56 Transformation Verification

x ∈ ILi . By x ∈ ILi and t̄′i = s̄′i (by construction of t̄′), we have
mi(x) = ˆ̄ti. However, since q̄′i = p̄′i (by (3.6)), we have p̄′i = κ. Thus,
by Definition 3.4.10, there is no such x with mi(x) = ˆ̄ti. Furthermore,
since s̄′ is not matched on by mi, the state remains present in T (Πi).
Hence, since t̄′i = s̄′i, it holds that t̄′i ∈ ST (Πi).

∗ i /∈ Ac(v̄). We have t̄′i =
ˆ̄ti (by construction of t̄′) and ˆ̄qi = q̄′i (by

(3.7)). The proof now follows directly by substituting t̄′i for ˆ̄ti and
substituting ˆ̄qi for q̄′i in ˆ̄q � ˆ̄t.

◦ For s̄ C ˆ̄t, we still have to show that ∀i ∈ 1..n. p̄i = κ ∨ ˆ̄qi = κ⇒ s̄i = ˆ̄ti.
Consider an i ∈ 1..n with p̄i = κ ∨ ˆ̄qi = κ. By Lemma 3.4.8, ˆ̄qi = κ iff
p̄i = κ. Hence, by (3.8), we have ˆ̄ti = t̄i. Finally, by (3.2) s̄i = t̄i, thus we
have ˆ̄ti = t̄i = s̄i. In conclusion, s̄ C ˆ̄t.

◦ Similarly, for s̄′ C t̄′, all that is left to show is that ∀i ∈ 1..n. p̄′i = κ∨ q̄′i =
κ ⇒ s̄′i = t̄′i. Consider an i ∈ 1..n with p̄′i = κ ∨ q̄′i = κ. If i ∈ Ac(v̄),
then by construction of t̄′, we have s̄′i = t̄′i. Conversely, if i /∈ Ac(v̄), then
t̄′i =

ˆ̄ti and s̄′i = s̄i. Hence, also q̄′i = ˆ̄qi and p̄′i = p̄i. Since p̄′i = κ ∨ q̄′i = κ,
it now follows that p̄i = κ ∨ ˆ̄qi = κ. By s̄ C ˆ̄t, we have s̄i = ˆ̄ti, thus
s̄′i = s̄i = ˆ̄ti = t̄′i. In conclusion, s̄′ C t̄′.

• The symmetric case: if s̄ C t̄ and t̄
a−→TM̄ (N) t̄′ then either a = τ ∧ s̄ C t̄′, or

s̄
τ−→∗

N ˆ̄s
a−→N s̄′ ∧ ˆ̄s C t̄ ∧ s̄′ C t̄′. This case is symmetric to the previous case,

with the exception that t̄
a−→TM̄ (N)

ˆ̄t is enabled by some (v̄, a) ∈ V ∪ V̂. Therefore,
when transition t̄

a−→TM̄ (N) t̄
′ is not matched on, we have to show that (v̄, a) ∈ V.

Let t̄, t̄′ ∈ STM̄ (N) such that t̄
a−→TM̄ (N) t̄

′ is enabled by some (v̄, a) ∈ V ∪ V̂. Furt-
hermore, transition t̄

a−→TM̄ (N) t̄
′ is not matched on. Assume for a contradiction

that (v̄, a) ∈ V̂. Since (v̄, a) ∈ V̂ is introduced by the transformation, by APC2,
for all i ∈ Ac(v̄) the action v̄i does not occur in the original process Πi, i.e., for
all i ∈ 1..n, we have v̄i /∈ Ai. Hence, these actions v̄i must be introduced by Ri,
i.e., v̄i ∈ ARi \ ALi . It follows that there is a transition matching t̄

a−→TM̄ (N) t̄
′,

contradicting our earlier assumption. Hence, we must have (v̄, a) ∈ V.

Completeness of the analysis In the next proposition, it is expressed that our
analysis technique is complete. This means that the analysis will always report that the
left and right κ-extended pattern networks of a rule system Σ are branching bisimilar if
for any input network N on which Σ is applicable and any given matching it holds that
N ↔b TM̄ (N).

Similarly to the analysis of a single transformation rule this analysis considers all
input LTS networks that satisfy the analysis and application conditions. Hence, even
when a rule system does not preserve a given property it may still be the case that the
property is preserved for some instances of the transformation. For instance, given a rule
system Σ that is not property preserving there may be an input network N ′ with a vector
of matches M̄ ′ such that N ′ ↔b TΣ(N ′). However, it is guaranteed for Σ that there also
exists an LTS network N ′′ and vector of matches M̄ ′′ such that N ′′ ↔b/ TΣ(N ′′).

Proposition 3.4.17. Consider a rule system Σ = (R,V). Let M be the set of all
LTS networks and ΣN be the set of all possible vectors M̄ of n match pairs defining a
transformation step using Σ for an LTS network N = (Π,V) ∈M of size n. Such a vector

3.5. Experiments 57

M̄ consists of tuples (mi, m̂i), with mi : Li → Πi and m̂i : Ri → T (Πi), respectively. The
following holds:

(∀N ∈M, M̄ ∈ ΣN . N ↔b TM̄ (N)) =⇒ L̄κ ↔b R̄κ

Proof. Assume that for all N ∈ M and M̄ ∈ ΣN it holds that N ↔b TM̄ (N). Trivially,
we have L̄κ ∈M and trivial matches (mi : L̄i → L̄κ

i , m̂i : R̄i → T (L̄κ
i)) (for each i ∈ 1..n)

constituting a vector of matches M̄ . It follows from the assumption that L̄κ ↔b TΣ(L̄κ).
By Definition 3.4.4, L̄κ = (〈Lκ

1 , . . . ,Lκ
n〉,V ′∪V ′κ) and R̄κ = (〈Rκ

1 , . . . ,Rκ
n〉,V ′∪V̂ ∪V ′κ∪

V̂κ). By Definition 3.4.3, we have TΣ(L̄κ) = (〈Rκ
1 . . .Rκ

n〉,V ′ ∪ V ′κ ∪ V̂ ∪ V̂κ) = R̄κ. It
follows that L̄κ ↔b R̄κ.

3.5 Experiments
The verification technique presented in this chapter is implemented in a tool called
Refiner [218]. Refiner is implemented in Python 3 and can be run from the command-
line. It is platform-independent, and allows performing transformations of LTS networks,
and checking semantics and property preservation. It integrates with the action-based,
explicit-state model checking toolsets Cadp [82] and mCRL2 [54]. These tools can be
used to specify and verify concurrent systems.

Given an LTS network N in Cadp’s Exp format and a rule system Σ specified in
Refiner’s Rs format, Refiner first checks whether Σ is applicable to the LTS network
as discussed in Section 3.4.2.2. If Σ is applicable to N , then Refiner transforms the
given LTS network into a new LTS network TΣ(N) (also in Exp format) by exhaustively
applying transformation steps as presented in Definition 3.4.3. If the rule system is not
applicable to the LTS network, then Refiner reports an error indicating which of the
application conditions (APC1’, APC2, APC3, or APC4) is violated. Depending on the
condition the problematic match, transformation rule, process LTS, action label, and/or
transition is reported.

The verification of a rule system Σ given in Refiner’s rs format is performed as
described in Section 3.4.2.1. First, Refiner checks whether Σ is confluent (ANC1).
Then, the κ-extended rule system is constructed. Finally, Refiner uses the mCRL2 tool
LtsCompare to perform bisimilarity comparisons with an implementation of the GJKW
algorithm [91].

For the experiments in this section both the old version (v1) of Refiner, using the
theory of previous works [59,214,217,218], and the new version (v2) of Refiner, using
the theory presented in this chapter, were used. The new theory shows that the number
of checks Refiner performs can be reduced from 2n − 1 checks per set of dependent
transformation rules to one check per set of dependent rules.

For the experiments presented in this section Refiner was compiled using Nuitka

to C++ to reduce performance overhead caused by the Python virtual machine.6 We
ran Refiner on the standard machines of the DAS-5 cluster [17], which have an Intel

Haswell E5-2630-v3 2.4 GHz processor, 64 GB memory, running CentOS Linux 7.2.
Each experiment was conducted no longer than 80 hours and aborted in case the machine
ran out of memory.

6http://nuitka.net

58 Transformation Verification

We have performed two types of experiments. The first setup compares traditional
model checking with the transformation verification approach presented in this work. The
results are reported in Section 3.5.1. The second setup aims to compare the previous
transformation verification algorithm (Refiner v1) with the algorithm presented in this
chapter (Refiner v2). Those results are discussed in Section 3.5.2. 7

3.5.1 Comparing Traditional Model Checking and Transforma-
tion Verification

The goal of this experimental setup is to compare the running time of transformation
verification with traditional model checking. For model checking we have selected the
explicit-state model checker Cadp. For the transformation verification we use Refiner

with the algorithms presented in this chapter.
We have selected a set of base models for verification and transformation. Each base

model, say N 1, was transformed using Refiner resulting in a new model N 2. For two
cases we have applied two different rule systems to the base model, the models are then
called N 2A and N 2B. Another two cases were transformed even further resulting in a
model N 3.

Each of the models is verified for the absence of deadlocks. Likewise, the rule systems
are verified for the preservation of absence of deadlocks, i.e., the rule systems may not
introduce new deadlocks.

Each base model was verified using Cadp and the verification time was measured.
The rule systems were applied and verified by Refiner and both the transformation
and verification time were measured. After each transformation the resulting model was
verified again using Cadp.

For both tools we have measured the wall clock time (i.e., the real elapsed time) using
the Unix time command:

/usr/bin/time -f "%e" <tool>

The argument -f "%e" specifies that the time written as output should follow format
"%e" where %e indicates the wall clock time. The time is measured for <tool>, the
command used to invoke the given tool.

Invocation of the tools For traditional model checking, the Cadp 2016-k tool Eva-

luator was used. All models (before and after transformation) were verified using the
Cadp toolkit. The rule system application and verification was performed using Refiner.
To enable replication of the experiment, we record and explain the commands performed
to conduct the experiments.

The command used to verify a network using Cadp is:

exp.open <network>.exp evaluator <property>.mcl

The exp.open tool reads the input model and the evaluator tool subsequently
checks on-the-fly whether the given μ-calculus formula described in <property>.mcl
is satisfied.

7All models used in the experiments are available at http://www.win.tue.nl/mdse/property_
preservation/FAC2017_experiments.zip.

3.5. Experiments 59

We have verified a rule system <rule_system> with respect to a given property
<property> with Refiner using the following command:

refiner -q -c2 -c <rule_system> -p <property> -f

The argument -q indicates that Refiner should run in quiet mode, i.e., no messages are
sent to the standard output. The -c2 argument tells Refiner to use the verification
algorithm presented in this chapter. Next, -c <rule_system> indicates that Refiner

will verify the rule system <rule_system>. Finally, -p <property> specifies the
property that Refiner verifies to be preserved, and -f indicates that Kooman’s fair
abstraction rule [122] holds for the considered system. Without the -f argument, Refiner

checks for divergence preserving branching bisimilarity [207, 217] of the rule networks
to determine whether liveness properties are preserved. Conversely, if -f is enabled,
branching bisimulation checking is used instead for safety properties and inevitable
reachability properties.

A network <network> was transformed using a rule system <rule_system> with
Refiner as follows:

refiner -n <network> -r <rule_system>

The argument -n <network> specifies the network <network> used as input for the
transformation. To apply the rule system <rule_system> to the network the argument
-r <rule_system> is used.

The set of test cases As test input, we selected nine case studies, two newly created
ones, three from the set of mCRL2 models distributed with its toolset, and four from the
set of Cadp models.

The newly created ones are the following:

1. ABP is a model consisting of six independent subsystems, each involving two
processes communicating using the Alternating Bit Protocol.

2. Broadcast consists of ten independent subsystems, each containing three processes
that together synchronise in a three-party synchronisation.

The models stemming from the mCRL2 toolset distribution are the following:

1. The 1394-fin model describes the 1394 or firewire protocol. It has been created by
Luttik [141].

2. The ACS model describes a part of the software of the Alma project of the European
Southern Observatory, which involves controlling a large collection of radio telescopes.
It consists of a manager and some containers and components. The model was
created by Ploeger [169].

3. Wafer stepper is a model of a wafer stepper.

Finally, the Cadp models are the following:

1. ODP is a model of an open distributed processing trader [84].

2. The DES model describes an implementation of the data encryption standard, which
allows to cipher and decipher 64-bit vectors using a 64-bit key vector [153].

60 Transformation Verification

Table 3.1: Experimental results: verification of various models using on-the-fly verification
in Cadp and transformation verification in Refiner with running times in seconds

Name On-the-fly verif. (Cadp) Trans. & verif. (Refiner)
#States Running time ϕ holds Trans. time Verif. time Check

ACS 1 3,484 0.98 � n.a. n.a. �
ACS 2 21,936 4.95 � 0.50 0.18 �

1394-fin 1 198,692 6.93 � n.a. n.a. �
1394-fin 2 6,679,222 152.43 � 3.63 0.18 �

Wafer stepper 1 78,919 7.82 � n.a. n.a. �
Wafer stepper 2 474,457 51.38 � 0.15 0.18 �

ODP 1 91,394 13.85 � n.a. n.a. �
ODP 2 7,699,456 62.16 � 0.31 0.18 �

DES 1 64,498,297 739.54 � n.a. n.a. �
DES 2 64,498,317 795.21 � 1137.21 0.17 �

Broadcast 1 1,024 43.67 � n.a. n.a. �
Broadcast 2A 30,654,053 982.53 � 0.01 0.17 �
Broadcast 2B 60,466,176 2,130.53 � 0.06 0.17 �

ABP 1 759,375 15.90 � n.a. n.a. �
ABP 2A 380,204,032 13,256.61 � 0.09 0.18 �
ABP 2B 656,356,768 28,182.56 � 0.10 0.18 �

HAVi-LE 1 15,688,570 292.50 � n.a. n.a. �
HAVi-LE 2 190,208,728 3,675.75 � 0.71 0.58 �
HAVi-LE 3 3,048,589,069 167,070.35 � 0.67 0.18 �

Erat. Sieve 1 6,539,813 2,003.78 � n.a. n.a. �
Erat. Sieve 2 19,434,968 6,056.11 � 23.76 0.17 �
Erat. Sieve 3 135,159,971 42,449.26 � 23.97 0.17 �

3. HAVi-LE describes the asynchronous Leader Election protocol used in the HAVi
(Home Audio-Video) standard, involving three device control managers. The model
is fully described by Romijn [177].

4. Erat. Sieve is a specification of a distributed Eratothenes sieve. It consists of a
number generator and a chain of 17 units, each unit i filtering out the ith prime
number.

Each model was subjected to one or two transformations, of the following types: (1)
adding internal computations, (2) adding support for lossy channels by introducing the
Alternating Bit Protocol (the ABP case), and (3) breaking down broadcast, i.e., synchro-
nisations involving more than two parties to combinations of two-party synchronisations
(the broadcast and the HAVi leader election case).

Discussion of results Table 3.1 presents the experimental results. The first column
indicates the name of a test model. For each model, the number at the end of each name
reflects the order in which the models were obtained, i.e., original models are indexed by
‘1’. Models resulting from the application of a transformation to the corresponding original
model are indexed by ‘2’, ‘2A, or ‘2B’. The ‘2A’- and ‘2B’-models are independently
obtained via two different transformations from the corresponding ‘1’-model. Models
indexed by ‘3’ are likewise the result of transforming the corresponding ‘2’-model.

In the On-the-fly verif. (Cadp) column metrics obtained from Cadp’s on-the-fly
verification on the test model are displayed. We report the number of states each state

3.5. Experiments 61

space consists of (#States column), and the running time (in seconds) to generate and
verify these using Cadp (Running time column).

The Trans. & verif. (Refiner) column shows the running time (in seconds) of
applying (Trans. time column) and verifying (Verif. time column) the rule system
using Refiner. The running time of the transformation is the required time to obtain
a particular model by applying a rule system. Because the base models are not the
results of the application of a rule system there is no transformation and verification
time. Therefore, the time measurements are not applicable, indicated with “n.a.”, for
base models. Note that Refiner does not actually check the state spaces of the models
indexed by ‘2’ and ‘3’, but instead can reason about their correctness by verifying the
applied transformation rules.

Finally, the ϕ holds and Check columns provides the outcome of the verification for
each case for Cadp and Refiner, respectively. For Cadp � indicates that the LTS
network satisfies the property and � indicates that it does not. For Refiner � indicates
that application of the rule system preserves the property and � indicates that it might
not.

The transformations applied on the Broadcast case attempt to translate a three-party
synchronisation to a protocol where one of the three processes performs a handshaking
protocol with the other two processes before continuing. The transformation of Broadcast
2A omits a time-out transition returning to a previous state which causes the branching
bisimulation comparison to identify a non-inert τ -transition. The transformed model still
satisfies the property, despite that Refiner concludes that it may not be preserved in
general.

The first transformation from to ABP 2A introduces a deadlock. Due to a typo a
transition that should have send an ‘F’ sends a ‘T’ instead causing a deadlock in the
protocol. Thus, ABP 2A does not satisfy deadlock-absence and Refiner also concludes
that the corresponding transformation does not preserved the property in general.

In terms of running times obtaining DES 2 is quite costly. The network of DES 1
contains one particularly large LTS, consisting of more than four million states, making
transformation at least as costly as verifying DES 1. In fact, it is even slower, but this is
due to the fact that Cadp reads compressed LTS files, while Refiner does not, hence
the latter requires more time to read the input network.

The experiments demonstrate that preservation checking with Refiner is many orders
of magnitude faster compared to verifying the property again, if the state space is of
reasonable size. This is not surprising, as the check only focuses on the applied change,
not the resulting state space. In our benchmark set of examples, the changes can be
verified practically instantaneously, resulting in most verification tasks being ready in 0.17
or 0.18 seconds on our test machines. If one would compare Refiner’s running times
with those of other model checkers, the conclusion would be the same.

The usual workflow of verifying a model and verifying and applying the corresponding
transformations is as follows. First, the initial model (version 1 in Table 3.1) is verified,
using a model checker such as Cadp. Then, instead of applying a transformation and
then verifying the resulting model again, one can verify the transformation itself. If the
transformation does not preserve the desired property, then the model resulting from
the application of the transformation (version 2A in Table 3.1) must be verified. In case
verification of the transformation produces a positive result, it can be safely applied
without having to verify the resulting model (versions 2, 2B and 3 in Table 3.1).

62 Transformation Verification

3.5.2 Refiner v1 Versus Refiner v2
The goal of this experiment is to compare the running times of the previous version of
the algorithm (Refiner v1) and the algorithm presented in this chapter (Refiner v2).
For this we have generated a scalable set of rule systems that model the transformation
of a token-ring.

We measured the time both Refiner versions spent building and verifying the state
space. The state space construction and verification algorithms are the only difference
between Refiner v1 and v2. Therefore, the elements that are equivalent for both
versions are eliminated from the measurements. Although the state space generation and
verification dominate the running time, for the small models, incorporating tasks such as
reading the input may introduce unnecessary noise. By removing this noise we are able
to observe the direct impact the new algorithm has on the performance of the tool.

For time measurement we used the Python method time.time(). This is sufficiently
accurate, even for the smaller models, as it can measure differences of even less than a
hundredth of a second between the Refiner versions.

We ran both Refiner v1 and v2 in quiet mode to limit the time spent writing
messages to the standard output. Refiner v1 needs to check all κ-extended pattern
networks of subsets of the set of transformation rules. Refiner v1 can distribute the
checks over several cores to increase the performance. For completeness sake, for Refiner

v1 the experiments were run with both a single thread and multiple threads (eight in
the case of a standard DAS-5 machine). The former allows a better comparison of the
theoretical performance improvements as Refiner v2 only uses a single thread. The
latter allows a more practical comparison showing the typical performance of Refiner

v1 in its common use.
The largest check performed by Refiner v1 considers the entire set of transformation

rules when the left and right κ-extended pattern networks are checked for branching
bisimilarity. This largest check is equivalent to the check proposed in this work and
performed by Refiner v2. This is the result of improved theoretical results, as presented
in the current chapter, that proved that only this largest check is required. Hence, the
expectation is that Refiner v1 will never perform better than Refiner v2.

Invocation of tools All generated rule systems were verified for full semantic preser-
vation using single-threaded Refiner v1, multi-threaded Refiner v1, and Refiner v2.
For reproducibility of the experiment, we explain the commands used for this experiment
below.

For Refiner v1 using a single thread the following command was used:

refiner -q -t 1 -c <rule_system>

The argument -q indicates that Refiner should run in quiet mode, i.e., no messages
are sent to the standard output. The maximum number of threads is set using the
-t argument. Here, -t 1 expresses that only a single thread is used. Argument -c
<rule_system> tells Refiner to verify the rule system <rule_system>. In this
experimental setup, the models are named gen_i with i ∈ 2..n.

For Refiner v1 using multiple threads we used the command:

refiner -q -c <rule_system>

Without the -t argument Refiner creates a thread for each core of the machine and
distributes the checks over these threads. In the case of a standard DAS-5 machine

3.5. Experiments 63

sndi

RiLi

rcvi

2̃

1̃

2̃

1̃

sndi

rcvi
3̃

4̃

ττ

V̂ = ∅

with i ∈ 1..n

V′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(〈snd1, rcv2〉, pass 1 to 2),
...

(〈sndn−1, rcvn〉, pass (n− 1) to n),
(〈sndn, rcv1〉, pass n to 1)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Figure 3.13: Rule system transforming a token ring of size n

eight threads are used. The remaining arguments are the same as the ones for the single
threaded variant.

Refiner v2 is invoked using the following command:

refiner -q -c2 -c <rule_system>

The -c2 argument sets a flag telling Refiner to use the Refiner v2 algorithm. The
remainder of the arguments is the same as for the Refiner v1 experiments.

Generation of rule systems We have generated rule systems consisting of a specified
number of rules n. The smallest rule system generated contains two transformation rules.
The number of rules is incremented by one until a rule system is generated for which the
verification exceeds the maximum time of 80 hours or the machine runs out of memory
(64 GB).

The rule systems considered for this experiment model the transformation of token
rings of size n. The network topology of a token ring ensures that the rule system
consists of one dependency set. A generic representation of these rule systems is shown in
Figure 3.13. For a generated rule system of size n there are n transformation rules and n
synchronisation laws. The action-labels sndi and rcvi indicate that the ith rule or node
performs a send and receive action, respectively.

The transformation rules introduce an extra τ -transition directly after the sndi and
rcvi transitions. These τ -transitions represent internal computation; for instance, when
the token is received a node may need to process the data before sending it to the next
node.

The synchronisation laws describe the passing of the token from the current node (sndi)
to the next node (rcvi+1), represented by a pass_i_to_(i+1)-action (where i ∈ 1..(n−1)).
The last synchronisation law specifies that the last node passes the token (sndn) back to
the first node (rcv1). Hence, the rule system describes the transformation of a token ring
consisting of n nodes.

Discussion of results The results of this experiment are presented in Table 3.2. The
size n of the rule system model is indicated by the first column. Each row shows the
results of the verification for the rule system model of size n. The State space of R̄κ

column describe the size of the right κ-extended pattern network in terms of number of
states (#States column) and transitions (#Transitions column). The right κ-extended
pattern network is the larger of the two networks, therefore, it gives a good indication
of the size of the state space. The Trans. verif. running times (Refiner) column
presents the averaged running time per model in seconds for single-threaded Refiner v1,

64 Transformation Verification

Table 3.2: Experimental results: verification of token ring rule systems of size n using
Refiner v1 and Refiner v2; running times are shown in seconds

n
State space of R̄κ Trans. verif. running times (Refiner)

#States #Transitions v1 1 thread v1 8 threads v2
2 24 67 0.06 0.04 0.03
3 124 486 0.14 0.06 0.06
4 624 3,173 0.35 0.16 0.15
5 3,124 19,608 1.46 0.61 0.54
6 15,624 116,967 6.97 2.69 2.47
7 78,124 680,298 36.77 18.49 14.45
8 390,624 3,881,545 227.83 148.81 85.35
9 1,953,124 21,816,540 1,467.08 1,111.45 517.14
10 9,765,624 121,162,769 10,287.18 8,138.29 3,522.03

multi-threaded Refiner v1, and Refiner v2 in the v1 1 thread, v1 8 threads, and v2
columns, respectively. The running time, shown in seconds, is the average running of ten
runs.

For the rule system with n = 11 the machines ran out of memory (64 GB). The
memory consumption is dominated by the state space of the κ-extended pattern networks.
The number of states of the system LTS of this model is 48,828,124.

The results show that for all Refiner versions the running time increases exponentially,
as does the state space of the considered checks. This is due to the exponential blow up
of the state spaces of L̄κ and R̄κ. Of these two state spaces R̄κ is significantly larger
because of the two τ -transitions.

The results clearly show that the algorithm presented in this chapter (Refiner v2)
outperforms both the single- and multi-threaded variant of the previous version of the
algorithm (Refiner v1). As mentioned before, this is no surprise as the largest check
performed by Refiner v1 is the same as the check performed by Refiner v2. The
extra checks that Refiner v1 performs consider the projected rule systems of all subsets
of dependent transformation rules. These projected rule systems become exponentially
smaller as the size of the subset decreases, thereby also decreasing the size of the state
space analysed in the check that is performed. The decreasing size of these extra checks
explains why the running time of Refiner v1 is only a few factors larger than the running
time of Refiner v2.

A last observation we can make based on Table 3.2 is that the running time ratio
of Refiner v1 to v2 seems to increase. To investigate whether this is a trend we have
plotted the ratios between the different Refiner versions in Figure 3.14. The horizontal
axis depicts the number of rules in the generated rule system, the vertical axis indicates
the ratio. Although the number of data points is limited, the graph gives us some insights
into the practical running time improvements.

The ratio of Refiner v1 with a single thread to Refiner v1 with eight threads is
shown as the continuous line where the diamonds indicate the data points. The ratio
shows a general decline towards 1 as n grows, i.e., for large n the benefit of the extra
threads becomes negligible. This is unexpected as more cores should be able to verify
more checks in the dependency set simultaneously. Upon further inspection we found
that the utilisation of the cores was not efficient. Refiner performs smaller checks before
larger checks. Hence, the largest check is performed last. Thus, in the worst case, the
remaining cores are not utilised when this final check is performed.

For the same reason there is a sudden decline in the ratio from a token ring transfor-

3.5. Experiments 65

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

2 3 4 5 6 7 8 9 10

R
a
ti
o

n

v1 1 thread to v1 8 threads v1 1 thread to v2 v1 8 threads to v2

Figure 3.14: Ratios between the Refiner versions when analysing the transformation of
a token ring of size n

mation with three rules to one with four rules. At three rules, there are exactly eight
checks, thus the eight cores are utilised optimally. Whereas at four rules, sixteen checks
need to be performed, but cores are poorly utilised as the larger checks are performed
last. Finally, at two rules, there are only four checks while there are eight cores available.
As not all the cores can be put to use only a small performance gain is obtained . We
choose not to optimise the distribution of checks over the available cores for Refiner v1
as Refiner v2 is by definition more efficient.

The dashed line shows the ratio of the single threaded Refiner v1 to Refiner v2
where the data points are indicated with squares. The ratio increases as n grows. Due to
the limited number of data points we cannot estimate the trend function. The running
time analysis predicts an exponential trend, however, but this is not visible in the data.

The dotted line shows the ratio of Refiner v1 running 8 threads to Refiner v2
where the data points are indicated with triangles. This ratio shows an increase as n
grows similar to the ratio between the single threaded Refiner v1 and Refiner v2. As
n grows the data points move towards the dashed line (the single threaded Refiner v1
to Refiner v2 ratio). This is expected as the difference between the single threaded
Refiner v1 and multi-threaded Refiner v1 decreases as n grows as indicated by the
continuous line. At three rules, there are exactly as many cores as there are checks for
Refiner v1. Hence, at this point the performance of the multi-threaded Refiner v1
is equivalent to that of Refiner v2. However, at two rules, there are more cores than
checks, but Refiner v2 performs better than Refiner v1. As the checks are extremely
small for rule systems consisting of 2 rules it is likely that the overhead of the threads
have a visible impact on the performance of Refiner v1.

66 Transformation Verification

3.6 Conclusions
We discussed the correctness of an LTS transformation verification technique. The aim
of the technique is to verify whether a given LTS transformation system Σ preserves a
property ϕ, written in a fragment of the μ-calculus, for all possible input models formalised
as LTS networks. It does this by determining whether Σ is guaranteed to transform an
input network into one that is branching bisimilar, ignoring the behaviour not relevant
for ϕ.

We demonstrated the efficiency of the verification technique compared to model
checking the entire model again after it has been transformed. Many orders of magnitude
speed-up can be achieved through model transformation verification.

We improved upon previous results by reducing the number of required bisimulation
checks from 2n − 1 per set of dependent transformation rules to one per set of dependent
rules. Experimentally, we demonstrated that our new verification algorithm outperforms
the previous one, even if the latter uses eight threads and the new one only a single
thread.

Furthermore, the expressiveness of transformation rules was extended by distinguishing
between glue-states that allow incoming and/or outgoing transitions that enter or leave
the LTS pattern, respectively. This work presents a proof for these results. The proof has
been verified in Coq.

The property preservation check is limited to rule systems that adhere to the applicabi-
lity and admissibility conditions. Input networks must be admissible as well. Furthermore,
application of a rule system to an input network must satisfy application conditions APC1
to APC4.

Even when a transformation does not preserve a given property, it may still be possible
that said property holds for the output model of a specific instance of the transformation.
Nevertheless, only transformations that are property-preserving can be reused without
the need for additional verification.

Future work In earlier work, we used branching bisimulation with explicit diver-
gence [207,217], which preserves τ -loops and therefore liveness properties. In future work,
we would like to prove that for this flavour of bisimulation the technique is also correct.
Moreover, we would like to investigate what the practical limitations of the pre-conditions
of the technique are in industrial sized transformation systems.

Although the current implementation of the property-preservation check approach does
allows the retrieval of counter-examples when a transformation is deemed not property-
preserving, it would be beneficial te project these counter examples onto the designed rule
system. Such counter-examples help the developers understand why their transformation
may not preserve a given property. This information guides the developer in fixing the
issue.

Our framework can be extended in a number of ways to reason about additional
aspects of concurrent systems. For instance, in line with the encoding proposed in [213],
timing information could be included in the LTSs to design timed systems and express
transformations of timed behaviour. This would also introduce the possibility to analyse
the impact a transformation will have on the performance of a system under transfor-
mation [219], by means of timed branching bisimulation checking [76]. The capability
to reason about system performance could be further strengthened by also introducing
probabilities on the LTS transitions [16]. Existing tools, such as PRISM [129] and exten-
sions [32], could then be employed to conduct the analysis of the systems. An interesting

3.6. Conclusions 67

challenge is then how to involve these probabilities in the verification of transformations
as well.

Wijs [214] proposed an extension to the transformation verification technique that
explicitly considers the communication interfaces between components, thereby removing
the completeness condition ANC1 regarding synchronising behaviour being transformed
(see Section 3.4.1). The correctness of such an extension follows from the fact that
branching bisimulation and divergence-preserving branching bisimulation are congruences
for LTS networks (see Chapter 4). For this a consistent decomposition, as presented in
Chapter 4, must be implemented

Finally, when refining of an LTS network it may be necessary to refine the property as
well. This could be achieved by verifying whether a transformed network satisfies some
property ψ if the network the transformation is applied to satisfies another property ϕ.
Such a verification method verifies pre- and post-properties on transformations. This
verification method may have other applications as well; e.g., modelling of loop invariants
as transformations. However, before all of its applications can be investigated, we will
have to investigate the working and limitations of the method first. In the next section we
briefly conjecture about the verification of pre- and post-properties on transformations.

Chapter 4

Compositional Model Checking is Lively

Compositional model checking approaches attempt to limit state space explosion by iterati-
vely combining behaviour of some of the components in the system and reducing the result
modulo an appropriate equivalence relation. For an equivalence relation to be applicable,
it should be a congruence for parallel composition where synchronisations between the
components may be introduced.

An equivalence relation preserving both safety and liveness properties is divergence-
preserving branching bisimulation (DPBB). It is generally assumed that DPBB is a
congruence for parallel composition, even in the context of synchronisations between
components. However, so far, no such results have been published. This work finally
proves that this is the case.

We also show that DPBB is a congruence for LTS networks in which many LTSs are
composed in parallel at once with support for multi-party synchronisation. Additionally,
we discuss how to safely decompose an existing LTS network in components such that the
re-composition is equivalent to the original LTS network.

Finally, to demonstrate the effectiveness of compositional model checking with inter-
mediate DPBB reductions, we discuss the results we obtained after having conducted a
number of experiments.

This chapter is taken from

[58] de Putter, S., Lang, F., and Wijs, A. Compositional Model Checking is
Lively - Extended Version. Science of Computer Programming (2019). Special

Issue on FACS. Manuscript under review

a special issue extension of

[64] de Putter, S., and Wijs, A. J. Compositional Model Checking Is Lively.
In FACS (2017), vol. 10487 of LNCS, Springer, pp. 117–136

which received the FACS 2017 Best Student Paper Award

70 Compositional Model Checking is Lively

4.1 Introduction
Model checking [16, 45] is one of the most successful approaches for the analysis and
verification of the behaviour of concurrent systems. However, a major issue is the so-
called state space explosion problem: the state space of a concurrent system tends to
increase exponentially as the number of parallel processes increases linearly. Often, it is
difficult or infeasible to verify realistic large scale concurrent systems. Over time, several
methods have been proposed to tackle the state space explosion problem. Prominent
approaches are the application of some form of on-the-fly reduction, such as Partial Order
Reduction [165] or Symmetry Reduction [43], and compositional verification, for instance
using Compositional Reasoning [47] or Partial Model Checking [8, 9, 135].

The key operations in compositional approaches are the composition and decomposition
of systems. First, a system is decomposed into two or more components. Then, one
or more of these components are manipulated (e.g., reduced). Finally, the components
are re-composed. Comparison modulo an appropriate equivalence relation is applied to
ensure that the manipulations preserve properties of interest (for instance, expressed in
the modal μ-calculus [123]). These manipulations are sound if and only if the equivalence
relation is a congruence for the composition expression.

Two prominent equivalence relations are branching bisimulation and divergence-
preserving branching bisimulation (DPBB) [204,207].1 Branching bisimulation preserves
safety properties, while DPBB preserves both safety and liveness properties.

Van Glabbeek, Luttik, and Trc̆ka [206] show that DPBB is the coarsest equivalence
contained in divergence sensitive branching bisimulation equivalence that is a congruence
for parallel composition. However, compositional reasoning requires equivalences that
are a congruence for parallel composition where new synchronisations between parallel
components may be introduced, which is not considered by Van Glabbeek, Luttik, and
Trc̆ka. It is known that branching bisimulation is a congruence for parallel composition of
synchronising Labelled Transition Systems (LTSs), this follows from the fact that parallel
composition of synchronising LTSs can be expressed as a WB cool language [26]. However,
obtaining such results for DPBB requires more work. To rigorously prove that DPBB
is indeed a congruence for parallel composition of synchronising LTSs, a proof assistant,
such as Coq [20], is required. So far, no results, obtained with or without the use of a
proof assistant, have been reported.

A popular toolbox that offers a selection of compositional approaches is Cadp [81].
Cadp offers both property-independent approaches (e.g., compositional model gene-
ration, smart reduction, and compositional reasoning via behavioural interfaces) and
property-dependent approaches (e.g., property-dependent reductions [144] and partial
model checking [8]). The formal semantics of concurrent systems are described using
networks of LTSs [133], or LTS networks for short. An LTS network consists of n LTSs
representing the parallel processes. A set of synchronisation laws is used to describe the
possible communication, i.e., synchronisation, between the process LTSs.

In this setting, this work considers parallel composition of synchronising LTS networks.
Given two LTS networks N and N ′ of size n related via a DPBB relation B, another
LTS network P of size m, and a parallel composition operator ‖σ with a relation σ that
specifies synchronization between components, we show there is a DPBB relation C such

1It should be noted that a distinction can be made between divergence-sensitive branching bisimu-
lation [155] and branching bisimulation with explicit divergence, also known as divergence-preserving
branching bisimulation [204,207]. Contrary to the former, the latter distinguishes deadlocks and livelocks,
and the latter is the coarsest congruence contained in the former.

4.1. Introduction 71

that
N B N ′ =⇒ (N ‖σ P) C (N ′ ‖σ P) ∧ (P ‖σ N) C (P ‖σ N ′)

This result subsumes the composition of individual synchronising LTSs via composition
of LTS networks of size one. Moreover, generalization to composition of multiple LTS
networks can be obtained via a reordering of the processes within LTS networks.

Contributions In this work, we prove that DPBB is a congruence for parallel com-
position of LTS networks. From this it follows that DPBB is a congruence for parallel
composition of synchronising LTSs. Furthermore, we present a method to safely decom-
pose an LTS network in components such that the composition of the components is
equivalent to the original LTS network. The proofs (with exception Proposition 4.6.1)
have been mechanically verified using the Coq proof assistant and are available online. 2

The mechanical verification of the related proofs in this chapter gives us confidence in the
correctness of Proposition 4.6.1.

Associativity and commutativity are desirable properties as they indicate that compo-
sition of LTS networks may be done in any order. Furthermore, from these properties it
follows that DPBB is also a congruence for LTS networks as defined by Garavel, Lang,
and Mateescu [81]. To this end we define a composition operator ‖ for LTS networks that
is both associative and commutative. The operator ‖ is built from ‖σ with a relation σ
implementing synchronisation on the common alphabet.

Due to the definition of LTS networks ‖ is not strictly commutative, however, we show
that ‖ is commutative with respect to global behaviour. In short, given LTS networks N ,
P, and O, operator ‖ is associative, i.e.,

N ‖ (P ‖ O) = (N ‖ P) ‖ O

and commutative with respect to global behaviour, i.e.,

GN ‖ GP = GP ‖ GN

Moreover, we discuss an adaptation of the definition of LTS networks using indexed
families for which ‖ is truly commutative.

From associativity and commutativity of ‖ it follows that DPBB is a congruence for
LTS networks of which the set of synchronisation laws implements synchronisation on the
common alphabet. However, it is unnecessary to require that the set of synchronisation
laws implements synchronisation on the common alphabet. Furthermore, this requirement
excludes many LTS networks in practice. Therefore, we present a proof that does not
require synchronisation on a common alphabet. Given two networks N and P with vectors
of LTSs Π and Ψ, respectively, of size n such that for each i ∈ 1..n the ith processes of
the vectors are related by a DPBB relation Bi, we show that there is a DPBB relation C
that relates the networks N and P:

(∀i ∈ 1..n. Πi Bi Ψi) =⇒ GN C GP

Finally, we discuss the effectiveness of compositionally constructing state spaces with
intermediate DPBB reductions in comparison with the classical, non-compositional state
space construction. The discussion is based on results we obtained after having conducted

2http://www.win.tue.nl/mdse/composition/DPBB_is_a_congruence_for_
synchronizing_LTSs.zip

72 Compositional Model Checking is Lively

a number of experiments using the Cadp toolbox. Crouzen and Lang [56] report on
experiments comparing the run-time and memory performance of three compositional
verification techniques. As opposed to these experiments, our experiments concern the
comparison of compositional and classical, non-compositional state space construction.

Structure of the chapter Related work is discussed in Section 4.2. Next, the formal
composition of LTS networks is presented in Section 4.3. We prove that DPBB is a
congruence for the composition of LTS networks. Section 4.4 is on the decomposition of
an LTS network. Decomposition allows the redefinition of a system as a set of components.
Section 4.5 introduces an instance of the composition operator that is both associative and
commutative. From this operator it follows that DPBB is a congruence for LTS networks
if the set of synchronisation laws implement synchronisation on the common alphabet.
This restriction is lifted in Section 4.6. In Section 4.7 we apply the theoretical results to a
set of use cases comparing a compositional construction approach with non-compositional
state space construction. In Section 4.8 we present the conclusions and directions for
future work.

4.2 Related Work
Networks of LTSs are introduced by Lang [132]. Lang mentions that strong and branching
bisimulations are congruences for the operations supported by LTS networks. Among
these operations is the parallel composition with synchronisation on equivalent labels. A
proof for branching bisimulation has been verified in PVS by Jaco van de Pol and a textual
proof was written, but both the textual proof and the PVS proof have not been made
public [134]. An axiomatisation for a rooted version of divergence-preserving branching
bisimulation has been performed in a Master graduation project [192]. However, the
considered language does not include parallel composition. In this chapter, we formally
show that DPBB is also a congruence for parallel composition with synchronisations
between components. As DPBB is a branching bisimulation relation with an extra case for
explicit divergence, the proof we present also formally shows that branching bisimulation
is a congruence for parallel composition with synchronisations between components.

Another approach supporting compositional verification is presented by Lang [133].
Given an LTS network and a component selected from the network the approach automa-
tically generates an interface LTS from the remainder of the network. This remainder of
the network is called the environment. The interface LTS represents the synchronisation
possibilities that are offered by the environment. This requires the construction and
reduction of the system LTS of the environment. The advantage of this method is that
transitions and states that do not contribute to the system LTS can be removed. In our
approach only the system LTS of the considered component must be constructed. The
environment is left out of scope until the components are composed.

Many process algebras support parallel composition with synchronisation on labels.
Often a proof is given showing that some bisimulation is a congruence for these ope-
rators [54, 124, 143, 145]. However, to the best of our knowledge no such proofs exist
considering DPBB. Furthermore, if LTSs can be derived from their semantics (such as is
the case with Structural Operational Semantics) then the fact that DPBB is a congruence
for such a parallel composition can be directly derived from our results.

To generalize the congruence proofs a series of meta-theories have been proposed
for algebras with parallel composition [26,201,209]. Verhoef [209] introduces the panth

4.3. Composition of LTS Networks 73

format. Verhoef shows that strong bisimulation is a congruence for algebras that adhere
to the panth format. The focus of the work is on the expressiveness of the format.
Bloom [26] proposes WB cool formats for four bisimulations: weak bisimulation, rooted
weak bisimulation, branching bisimulation, and rooted branching bisimulation. It is shown
that these bisimulations are congruences for the corresponding formats. Ulidowski and
Phillips [201] propose similar formats for eager bisimulation and branching bisimulation.
Eager bisimulation is a kind of weak bisimulation which is sensitive to divergence. The
above mentioned formats do not consider DPBB. In our work we have shown that DPBB
is a congruence for parallel composition of LTS networks and LTSs.

Wijs [214] proposes a decomposition for LTS transformation systems of LTS networks.
The work aims to verify the transformation of a component that may synchronise with
other components. The paper proposes to calculate so called detaching laws which are
similar to our interface laws. The approach can be modelled with our method. In
fact, we show that the derivation of these detaching laws does not amount to a desired
decomposition, i.e., the re-composition of the decomposition is not equivalent to the
original system (see Example 4.4.3 discussed in Section 4.4).

A projection of an LTS network given a set of indices is presented in [81]. Their
projection operator is similar to the consistent decomposition of LTS networks that
we proposed. In fact, with a suitable operator for the reordering of LTS networks our
decomposition operation is equivalent to their projection operator. Furthermore, we show
that admissibility properties of the LTS network are indeed preserved for such consistent
decompositions.

4.3 Composition of LTS Networks
This section introduces the composition of these two LTS networks. The LTS network
is defined in Definition 2.3.1. Composition of process LTSs results in a system LTS
(Definition 2.3.3) that tends to grow exponentially when more processes are considered.

An LTS network can be seen as being composed of several components, each of which
consists of a number of individual processes in parallel composition, with intra-component
synchronisation laws describing how the processes inside a component should synchronise
with each other. Furthermore, inter-component synchronisation laws define how the
components as a whole should synchronise with each other. Compositional construction of
a minimal version of the final system LTS may then be performed by first constructing the
system LTSs of the different components, then minimising these, and finally combining
their behaviour. Example 4.3.1 presents an example of a network with two components
and an inter-component synchronisation law.

Example 4.3.1 (Component). Consider an LTS network N = (Π,V) with processes
Π = 〈Π1,Π2,Π3〉 and synchronisation laws V = {(〈a, •, •〉, a), (〈•, b, b〉, b), (〈c, c, c〉, c)}.
We may split up the network in two components, say N1 = (〈Π1〉,V1) and N{2,3} =
(〈Π2,Π3〉,V{2,3}). Then, (〈c, c, c〉, c) is an inter-component law describing synchronisation
between N1 and N{2,3}. The component N1 consists of process Π1, and the set of intra-
component synchronisation laws V1 = {(〈a, •, •〉, a)} operating solely on Π1. Similarly,
component N{2,3} consists of Π2 and Π3, and the set of intra-component synchronisation
laws V{2,3} = {(〈•, b, b〉, b)} operating solely on Π2 and Π3.

The challenge of compositional construction is to allow manipulation of the components
while guaranteeing that the observable behaviour of the system as a whole remains

74 Compositional Model Checking is Lively

equivalent modulo DPBB (Definition 2.2.3). Even though synchronisation laws of a
component may be changed, we must somehow preserve synchronisations with the other
components. Such a change of synchronisation laws occurs, for instance, when reordering
the processes in a component, or renaming actions that are part of inter-component
synchronisation laws.

In this chapter, we limit ourselves to composition of two components: a left and a
right component. This simplifies notations and proofs. However, the approach can be
generalised to splitting networks given two sets of indices indicating which processes are
part of which component, i.e., a projection operator can be used to project distinct parts
of a network into components.

In the remainder of this section, first, we formalise LTS networks composition. Then,
we show that admissibility is preserved when two admissible networks are composed.
Finally, we prove that DPBB is a congruence for composition of LTS networks.

Composing LTS networks Before defining the composition of two networks, we
introduce a relation indicating how the inter-component laws should be constructed from
the interfaces of the two networks. An inter-component law can then be constructed by
combining the interface vectors of the components and adding a result action. This is
achieved through a given interface relation, presented in Definition 4.3.2, relating interface
actions to result actions.

Definition 4.3.2 (Interface Relation). Consider LTS networks NΠ = (Π,V) and NΨ =
(Ψ,W) of size n and m, respectively. An interface relation over NΠ and NΨ is a relation
σ ⊆ AV \ {τ} × AW \ {τ} × A describing how the interface actions of NΠ should be
combined with interface actions of NΨ, and what the action label should be resulting
from successful synchronisation. The set A is the set of actions resulting from successful
synchronisation between Π and Ψ. The actions mapped by σ are considered the interface
actions.

An interface relation implicitly defines how inter-component synchronisation laws
should be represented in the separate components. These local representatives are
called the interface synchronisation laws. An interface relation for NΠ = (Π,V) and
NΨ = (Ψ,W) implies the following sets of interface synchronisation laws:

Vσ = {(v̄, a) ∈ V | (a, b, c) ∈ σ}

Wσ = {(w̄, b) ∈ W | (a, b, c) ∈ σ}
An interface synchronisation law makes a component’s potential to synchronise with

other components explicit. An interface synchronisation law has a synchronisation vector,
called the interface vector, that may be part of inter-component laws. The result action of
an interface synchronisation law is called an interface action. These notions are clarified
further in Example 4.3.3.

Example 4.3.3 (Interface Vector and Interface Law). Let N = (〈Π1,Π2,Π3〉,V) be a
network with inter-component synchronisation law (〈a, a, b〉, c) ∈ V and a component
M{1,2} = (〈Π1,Π2〉,V{1,2}). Then, 〈a, a〉 is an interface vector of M{1,2}, and given a
corresponding interface action α, the interface law is (〈a, a〉, α).

Together the interface laws and interface relation describe the possible synchronisations
between two components, i.e., the interface laws and interface relation describe inter-
component synchronisation laws. Given two sets of laws V and W and an interface

4.3. Composition of LTS Networks 75

relation σ, the inter-component synchronisation laws are defined as follows:

σ(V,W) = {(v̄ ‖ w̄, a) | (v̄, α) ∈ V ∧ (w̄, β) ∈ W ∧ (α, β, a) ∈ σ}

The interface relation suggests a partitioning of V and W into two sets of synchronisation
laws: the interface and non-interface synchronisation laws. Given LTS networks NΠ =
(Π,V) of size n and NΨ = (Ψ,W) of size m, the non-interface synchronisation laws are
the sets (V \ Vσ)

• and •(W \Wσ) of synchronisation laws V \ Vσ padded with m •’s and
W \Wσ padded with n •’s, respectively, where the padding of some set of synchronisation
laws X is defined as follows

X • = {(v̄ ‖ •m, a) | (v̄, a) ∈ X}
•X = {(•n ‖ w̄, a) || (w̄, a) ∈ X}

For instance, given a law (〈a, •, b〉, c) ∈ X the synchronisation law with 2 •’s padded at
the end is (〈a, •, b, •, •〉, c) ∈ X •.

The application of the interface relation, i.e., formal composition of two LTS networks,
is presented in Definition 4.3.4. We show that a component may be exchanged with
a divergence-preserving branching bisimilar component iff the interface actions are not
hidden. In other words, the interfacing with the remainder of the networks is respected
when the interface actions remain observable.

Definition 4.3.4 (Composition of LTS networks). Consider LTS networks NΠ = (Π,V)
of size n and NΨ = (Ψ,W) of size m. Let σ ⊆ AV \ {τ} × AW \ {τ} × A be an interface
relation describing the synchronisations between NΠ and NΨ. The composition of NΠ

and NΨ, denoted by NΠ ‖σ NΨ, is defined as the LTS network (Π ‖ Ψ,V ‖ W), where
V ‖ W = (V \ Vσ)

• ∪ •(W \Wσ) ∪ σ(V,W).

As presented in Proposition 4.3.5, LTS networks that are composed (according to
Definition 4.3.4) from two admissible networks (Definition 2.3.2) are admissible as well.
Therefore, composition of LTS networks is compatible with the compositional verification
approaches of Cadp [81].

Proposition 4.3.5. Let NΠ = (Π,V) and NΨ = (Ψ,W) be admissible LTS networks of
length n and m, respectively. Furthermore, let σ ⊆ AV \{τ}×AW \{τ}×A be an interface
relation. Then, the network N = NΠ ‖σ NΨ, composed according to Definition 4.3.4, is
also admissible.

Proof. We show that N satisfies Definition 2.3.2:

• No synchronisation and renaming of τ ’s. Let (v̄, a) ∈ (V\Vσ)
•∪•(W \Wσ)∪σ(V,W)

be a synchronisation law with v̄i = τ for some i ∈ 1..(n+m). We distinguish two
cases:

– (v̄, a) ∈ (V \ Vσ)
• ∪ •(W \Wσ). By construction of (V \ Vσ)

• and •(W \Wσ),
and admissibility of NΠ and NΨ, we have ∀j ∈ 1..n. v̄j �= • =⇒ i = j,
∀j ∈ (n + 1)..(n + m). v̄j �= • =⇒ i = j and a = τ . Hence, it holds that
∀j ∈ 1..(n+m). v̄j �= • =⇒ i = j (no synchronisation of τ ’s) and a = τ (no
renaming of τ ’s).

76 Compositional Model Checking is Lively

– (v̄, a) ∈ σ(V,W). By definition of σ(V,W), there are interface laws (v̄′, α′) ∈ V
and (v̄′′, α′′) ∈ W such that (α′, α′′, a) ∈ σ. Hence, either 1 ≤ i ≤ n with
v̄′i = τ or n < i ≤ n+m with v̄′′i−n = τ . Since NΠ and NΨ are admissible, we
must have α′ = τ or α′′ = τ , respectively. However, the interface relation does
not allow τ as interface actions, therefore, the proof follows by contradiction.

It follows that N does not allow synchronisation and renaming of τ ’s.

• No cutting of τ ’s. Let (Π ‖ Ψ)i be a process with τ ∈ A(Π‖Ψ)i for some i ∈ 1..(n+m).
We distinguish the two cases 1 ≤ i ≤ n and n < i ≤ n+m. It follows that τ ∈ AΠi

for the former case and τ ∈ AΨi−n
for the latter case. Since both NΠ and NΨ are

admissible and no actions are removed in (V \ Vσ)
• and •(W \Wσ), in both cases

there exists a (v̄, a) ∈ (V \ Vσ)
• ∪ •(W \Wσ) ∪ σ(V,W) such that v̄i = τ . Hence,

the composite network N does not allow cutting of τ ’s.

Since the three admissibility properties hold, the composed network N satisfies Defini-
tion 2.3.2.

DPBB is a congruence for LTS network composition Proposition 4.3.6 shows
that DPBB is a left-congruence for the composition of LTS networks according to
Definition 4.3.4. The proof that DPBB is a right-congruence for the composition of
LTS networks is symmetric. Hence, DPBB is a congruence for the composition of LTS
networks according to Definition 4.3.4.

It is worth noting that an interface relation does not map τ ’s, i.e., synchronisation
of τ -actions is not allowed. In particular, this means that interface actions must not be
hidden when applying verification techniques to a component. Moreover, Proposition 4.3.6
subsumes the composition of single LTSs, via composition of LTS networks of size one
with trivial sets of intra-component synchronisation laws.

Proposition 4.3.6. Consider LTS networks NΠ = (Π,V), NΠ′ = (Π′,V ′) of size n, and
NΨ = (Ψ,W) of size m. Let σ be an interface relation describing the coupling between
the interface actions in AV and AW . DPBB is a congruence for composition of LTS
networks, i.e., it holds that

NΠ ↔Δ
b NΠ′ =⇒ NΠ ‖σ NΨ ↔Δ

b NΠ′ ‖σ NΨ

Proof. Intuitively, we have NΠ ‖σ NΨ ↔Δ
b NΠ′ ‖σ NΨ because NΠ ↔Δ

b NΠ′ and the
interface with NΨ is respected. Since NΠ ↔Δ

b NΠ′ , whenever a transition labelled with
an interface action α in NΠ is able to perform a transition together with NΨ, then NΠ′

is able to simulate the interface α-transition and synchronise with NΨ. It follows that
the branching structure and divergence is preserved. For the sake of brevity we define
the following shorthand notations: N = NΠ ‖σ NΨ and N ′ = NΠ′ ‖σ NΨ. We show
NΠ ↔Δ

b NΠ′ =⇒ N ↔Δ
b N ′.

Let B be a DPBB relation between NΠ and NΠ′ . By definition, we have N ↔Δ
b N ′

iff there exists a DPBB relation C such that IN C IN ′ . We define C as follows:

C = {(s̄ ‖ r̄, t̄ ‖ r̄) | s̄ B t̄ ∧ r̄ ∈ SNΨ
}

The component that is subject to change is related via the relation B that relates the
states in Π and Π′. The unchanged component of the network is related via the shared
state r̄, i.e., it relates the states of Ψ to themselves.

4.3. Composition of LTS Networks 77

To prove the proposition we have to show that C is a DPBB relation. This requires
proving that C relates the initial states of N and N ′ and that C satisfies Definition 2.2.3.

• C relates the initial states of N and N ′, i.e., IN C IN ′ . We show that ∀s̄ ∈
IN . ∃t̄ ∈ IN ′ . s̄ C t̄, the other case is symmetrical. Take an initial state s̄ ‖ r̄ ∈ IN .
Since INΠ

B INΠ′ and s̄ ∈ INΠ
, there exists a t̄ ∈ INΠ′ such that s̄ B t̄. Therefore,

we have s̄ ‖ r̄ C t̄ ‖ r̄. Since s̄ ‖ r̄ is an arbitrary state in IN the proof holds for
all states in IN . Furthermore, since the other case is symmetrical it follows that
IN C IN ′ .

• If s̄ C t̄ and s̄
a−→N s̄′ then either a = τ ∧ s̄′ C t̄, or t̄

τ−→ ∗
N ′ ˆ̄t

a−→N ′ t̄′ ∧ s̄ C
ˆ̄t ∧ s̄′ C t̄′. To better distinguish between the two parts of the networks, we
unfold C and reformulate the proof obligation, with s̄ = p̄ ‖ r̄ and t̄ = q̄ ‖ r̄,
as follows: If p̄ B q̄ and p̄ ‖ r̄

a−→N p̄′ ‖ r̄′ then either a = τ ∧ p̄′ B q̄ ∧ r̄ = r̄′,
or q̄ ‖ r̄

τ−→∗
N ′ ˆ̄q ‖ r̄

a−→N ′ q̄′ ‖ r̄′ ∧ p̄ B ˆ̄q ∧ p̄′ B q̄′. Consider synchronisation law
(v̄ ‖ w̄, a) ∈ (V\Vσ)

•∪•(W \Wσ)∪σ(V,W) enabling the transition p̄ ‖ r̄ a−→N p̄′ ‖ r̄′.
We distinguish three cases:

1. (v̄ ‖ ū, a) ∈ (V \ Vσ)
•. It follows that w̄ = •m, and thus, subsystem NΨ does

not participate. Hence, we have r̄ = r̄′ and (v̄, a) ∈ V enables a transition
p̄

a−→NΠ p̄′. Since p̄ B q̄, by Definition 2.2.3, we have:

– a = τ with p̄′ B q̄. Because p̄′ B q̄ and r̄ = r̄′, the proof trivially follows.
– q̄

τ−→∗
NΠ′

ˆ̄q
a−→NΠ′ q̄

′ with p̄ B ˆ̄q and p̄′ B q̄′. These transitions are enabled
by laws in V ′ \ V ′

σ. The set of derived laws are of the form (v̄′ ‖ •m, τ) ∈
(V ′ \ V ′

σ)
• enabling a τ -path from q̄ ‖ r̄ to ˆ̄q ‖ r̄, and there is a law

(v̄′ ‖ •m, a) ∈ (V ′ \ V ′
σ)

• enabling ˆ̄q ‖ r̄
a−→N ′ q̄′ ‖ r̄. Take r̄′ := r̄ and the

proof obligation is satisfied.

2. (v̄ ‖ w̄, a) ∈ •(W \Wσ). It follows that v̄ = •n, and thus, subsystems NΠ and
NΠ′ do not participate; we have p̄ = p̄′ and r̄

a−→NΨ
r̄′. We take q̄′ := q̄. Hence,

we can conclude q̄ ‖ r̄ τ−→∗
N ′ q̄ ‖ r̄ a−→N q̄′ ‖ r̄′, p̄ B q̄, and p̄′ B q̄′.

3. (v̄ ‖ w̄, a) ∈ σ(V,W). Both parts of the network participate in the transition
p̄ ‖ r̄ a−→N p̄′ ‖ r̄′. By definition of σ(V,W), there are (v̄, α) ∈ V, (w̄, β) ∈ W
and (α, β, a) ∈ σ such that (v̄, α) enables a transition p̄

α−→NΠ
p̄′ and (ū, β)

enables a transition r̄
β−→ r̄′. Since p̄ B q̄, by Definition 2.2.3, we have:

– α = τ with p̄′ B q̄. Since α ∈ AV \ {τ} we have a contradiction.
– q̄

τ−→∗
N ′

Π′
ˆ̄q

α−→N ′
Π′ q̄

′ with p̄ B ˆ̄q and p̄′ B q̄′. Since τ actions are not mapped
by the interface relation we have a set of synchronisation laws of the form
(v̄′ ‖ •m, τ) ∈ (V ′ \ V ′

σ)
• enabling a τ -path q̄ ‖ r̄ τ−→∗

N ′ ˆ̄q ‖ r̄.
Let (v̄′, α) ∈ V ′ be the synchronisation law enabling the α-transition. Since
(α, β, a) ∈ σ, α is an interface action and does not occur in V ′ \ V ′

σ. It
follows that (v̄′, α) ∈ V ′

σ, and consequently (v̄′ ‖ w̄, a) ∈ σ(V ′,W). Law
(v̄′ ‖ w̄, a) enables the transition ˆ̄q ‖ r̄ a−→N ′ q̄′ ‖ r̄′, and the proof follows.

• If s̄ C t̄ and t̄
a−→N ′ t̄′ then either a = τ ∧ s̄′ C t̄, or s̄

τ−→∗
N ˆ̄s

a−→N s̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′.
This case is symmetric to the previous case.

78 Compositional Model Checking is Lively

• If s̄ C t̄ and there is an infinite sequence of states (s̄k)k∈ω such that s̄ = s̄0,
s̄k

τ−→N s̄k+1 and s̄k C t̄ for all k ∈ ω, then there exists a state t̄′ such that t̄ τ−→+
N ′ t̄′

and s̄k C t̄′ for some k ∈ ω. Again we reformulate the proof obligation, with
s̄ = p̄ ‖ r̄ and t̄ = q̄ ‖ r̄, to better distinguish between the two components : if
p̄ ‖ r̄ C q̄ ‖ r̄ and there is an infinite sequence of states (p̄k ‖ r̄k)k∈ω such that
p̄ ‖ r̄ = p̄0 ‖ r̄0, p̄k ‖ r̄k τ−→N p̄k+1 ‖ r̄k+1 and p̄k B q̄ for all k ∈ ω, then there exists
states q̄′ and r̄′ such that q̄ ‖ r̄ τ−→+

N ′ q̄′ ‖ r̄′ and p̄k B q̄′ for some k ∈ ω.

We distinguish two cases:

1. All steps in the τ -sequence are enabled in NΠ, i.e., ∀k ∈ ω. p̄k
τ−→NΠ

p̄k+1.
Since p̄ B q̄, by condition 2.2.3 of Definition 2.2.3, it follows that there is a state
q̄′ with q̄

τ−→+q̄′ and p̄k B q̄′ for some k ∈ ω. Since τ is not an interface action,
the synchronization laws enabling q̄

τ−→+q̄′ are also present in N ′. Hence, we
have q̄ ‖ r̄ τ−→+q̄′ ‖ r̄ and p̄k B q̄′ for k ∈ ω.

2. There is a k ∈ ω with ¬p̄k τ−→NΠ
p̄k+1. We do have p̄k ‖ r̄k

τ−→N p̄k+1 ‖ r̄k+1

with p̄k B q̄ (see antecedent at the start of the ‘divergence’ case). Since
the τ -transition is not enabled in NΠ the transition must be enabled by a
synchronisation law (v̄ ‖ w̄, τ) ∈ •(W \Wσ) ∪ σ(V,W). We distinguish two
cases:

– (v̄ ‖ w̄, τ) ∈ •(W \Wσ). The transition p̄k ‖ r̄k
τ−→N p̄k+1 ‖ r̄k+1 is

enabled by (v̄ ‖ w̄, τ) ∈ •(W \Wσ). Therefore, there is a transition
r̄k

τ−→NΨ
r̄k+1 enabled by (w̄, τ) ∈ W \Wσ. Since this transition is part

of an infinite τ -sequence, there is a path p̄ ‖ r̄ τ−→∗
N p̄k ‖ r̄k. Furthermore,

condition 2.2.2 of Definition 2.2.3 holds for C, hence, there is a state
q̄′ ∈ SNΠ′ and a transition q̄ ‖ r̄

τ−→∗
NΨ

q̄′ ‖ r̄k with p̄k ‖ r̄k C q̄′ ‖ r̄k.
Therefore, we have q̄ ‖ r̄ τ−→+

N ′ q̄′ ‖ r̄k+1. Finally, since p̄k ‖ r̄k C q̄′ ‖ r̄k, it
follows that p̄k B q̄′.

– (v̄ ‖ w̄, τ) ∈ σ(V,W). By definition of σ(V,W), there are two laws
(v̄, α) ∈ V and (ū, β) ∈ W with (α, β, τ) ∈ σ. The laws enable transitions
p̄k

α−→NΠ
p̄k+1 and r̄k

β−→NΨ
r̄k+1 respectively. Since p̄k B q̄ and α �= τ ,

by Definition 2.2.3, there are states ˆ̄q, q̄′ ∈ SNΠ′ such that there is a
sequence q̄

τ−→∗
NΠ′

ˆ̄q
α−→NΠ′ q̄

′ with p̄ B ˆ̄q and p̄k+1 B q̄′. Let (v̄′, α) ∈ V ′ be
the law enabling the α-transition. Since (α, β, τ) ∈ σ, and consequently
(v̄′ ‖ w̄, τ) ∈ σ(X ′,Y). Furthermore, the τ -path from q̄ to ˆ̄q is enabled by
laws of the form (v̄′′, τ) ∈ V ′ \ V ′

σ. Hence, there is a series of transitions
q̄ ‖ r̄

τ−→∗
N ′ ˆ̄q ‖ r̄k

τ−→N ′ q̄′ ‖ r̄k+1. Finally, recall that p̄k+1 B q̄′. Hence,
also in this case the proof obligation is satisfied.

• If p̄ C t̄ and there is an infinite sequence of states (t̄k)k∈ω such that t̄ = t̄0,
t̄k

τ−→N ′ t̄k+1 and p̄ C t̄k for all k ∈ ω, then there exists a state p̄′ such that p̄ τ−→+
N p̄′

and p̄′ C t̄k for some k ∈ ω. This case is symmetric to the previous case.

4.4 Decomposition of LTS Networks
In Section 4.3, we discuss the composition of LTS networks, in which a system is
constructed by combining components. However, for compositional model checking

4.4. Decomposition of LTS Networks 79

approaches, it should also be possible to correctly decompose LTS networks. In this case
the inter-component laws are already known. Therefore, we can derive a set of interface
laws and an interface relation specifying how the system is decomposed into components.

Consider the decomposition of an LTS network N = (Π ‖ Ψ,Z) into components P
and O according to some interface relation σ. First, the synchronisation laws Z are split
into three disjoint sets: 1) V• the laws only applicable to the processes in Π; 2) •W the
laws only applicable to the processes in Ψ; and 3) X the inter-component laws. Next, given
two functions f, g : X → A\{τ} from inter-component laws to interface actions, the inter-
component laws are decomposed into sets

←−X = {(v, f(x)) | x ∈ X ∧ x = (v ‖ w, a) ∈ X}
and

−→X = {(w, g(x)) | x ∈ X ∧ x = (v ‖ w, a)} of interface laws over Π and Ψ, respectively.
Finally, the components are defined as P = (Π,V• ∪←−X) and O = (Ψ,V• ∪ −→X).

To be able to apply Proposition 4.3.6 for compositional state space construction, the
composition of the decomposed networks must be equivalent to the original system. If
this holds we say a decomposition is consistent with respect to N .

Definition 4.4.1 (Consistent Decomposition). Consider a network N = (Π ‖ Ψ,V• ∪
•W ∪ X) with X the set of inter-component laws. Say network N is decomposed into
components P = (Π,V∪←−X) and O = (Ψ,W∪−→X). Decomposition of N into components P
and O is called consistent with respect to N iff N = P ‖ O, i.e., we must have Σ = Π ‖ Ψ
and Z = ((V ∪←−X) \ (V ∪←−X)σ)

• ∪ •((W ∪−→X) \ (W ∪−→X)σ) ∪ σ(V ∪←−X ,W ∪−→X).

To show that a decomposition is consistent with the original system it is sufficient to
show that the set of inter-component laws of the original system is equivalent to the set
of inter-component laws generated by the interface relation:

Lemma 4.4.2. Consider a network N = (Π ‖ Ψ,V• ∪ •W ∪X). A consistent decompo-
sition of N into components P = (Π,V ∪←−X) and O = (Ψ,W ∪−→X) with interface relation
σ = {(f(v̄, a), g(v̄, a), a) | (v̄, a) ∈ X} is guaranteed if X = σ(

←−X ,
−→X), AV ∩ A←−X = ∅, and

AW ∩ A−→X = ∅.
Proof. The decomposition of N = (Π ‖ Ψ,V• ∪ •W ∪X) is consistent iff Π ‖ Ψ = Π ‖ Ψ
and Z = ((V∪←−X)\(V∪←−X)σ)

•∪ •((W∪−→X)\(W∪−→X)σ)∪σ(V∪
←−X ,W∪−→X). The former is

trivial. Before we continue with the latter let us number the antecedent propositions of the
lemma: X = σ(

←−X ,
−→X) (1), AV ∩ A←−X = ∅ (2), and AW ∩ A−→X = ∅ (3). We will show that

V• = ((V ∪←−X) \ (V ∪←−X)σ)
•, •W = •((W ∪−→X) \ (W ∪−→X)σ), and X = σ(V ∪←−X ,W ∪−→X).

By construction of
←−X and definition of Vσ, we have A←−X = A

(V∪←−X)σ
and A−→X =

A
(W∪−→X)σ

(4). Furthermore, from (2) and (3) it follows that V and W are disjoint from
←−X and

−→X , respectively. Thus, V and W are disjoint from (V ∪ ←−X)σ and (W ∪ −→X)σ

(5), respectively, implying that
←−X = (V ∪ ←−X)σ and

−→X = (W ∪ −→X)σ (6). It follows

that V• (5,6)
= ((V ∪ ←−X) \ ←−X)•

(6)
= ((V ∪ ←−X) \ (V ∪ ←−X)σ)

• and, symmetrically, •W (5,6)
=

•((W ∪−→X) \ (W ∪−→X)σ).
Recall that V and W do not have any result actions in common with

←−X and
−→X ,

respectively (2,3), and interface actions in σ are produced by the same functions f and g

that are used to produce the result actions of sets
←−X and

−→X , respectively. These two facts
and Definition 4.3.4 (synchronisation via σ) imply that σ(V∪←−X ,W∪−→X)

(5,6,σ)
= σ(

←−X ,
−→X)

(1)
=

X . Hence, the decomposition of N is consistent if X = σ(
←−X ,

−→X) (1), AV ∩ A←−X = ∅ (2),
and AW ∩ A−→X = ∅ (3).

80 Compositional Model Checking is Lively

It is possible to derive an inconsistent decomposition as shown in Example 4.4.3.

Example 4.4.3 (Inconsistent Decomposition). Consider a set of inter-component laws
X = {(〈a, b〉, c), (〈b, a〉, c)}. To generate interface result actions, consider the functions
f(v̄, a) = g(v̄, a) = α with unique result actions α based solely on the result action of the
input law, i.e., ∀(v̄′, a′) ∈ X . a′ = a⇒ α = f(v̄′, a′). Partitioning the laws results in the
sets of interface laws

←−X = {(〈a〉, γ), (〈b〉, γ)} and
−→X = {(〈b〉, γ), (〈a〉, γ)}. This system

implies the interface relation σ = {(γ, γ, c)}. The derived set of inter-component laws is
σ(V,W) = {(〈a, a〉, c), (〈a, b〉, c), (〈b, a〉, c), (〈b, b〉, c)} �= X . Hence, this decomposition is
not consistent with the original system.

However, a consistent decomposition can always be derived as shown in Propositi-
ons 4.4.4 and 4.4.6. These propositions give functions f and g that guarantee a consistent
decomposition.

The intuition behind Proposition 4.4.4 is to encode the synchronisation laws
(v̄ ‖ w̄, a) ∈ X directly in the interface relation, i.e., we create unique result actions
αv̄ and αw̄ with (αv̄, αw̄, a) ∈ σ. This way it is explicit which interface law corresponds
to which inter-component law.

Proposition 4.4.4. Consider a network N = (Π ‖ Ψ,V• ∪ •W ∪ X). We define the
functions producing interface result actions as f(v̄ ‖ w̄, a) = αv̄ and g(v̄ ‖ w̄, a) = αw̄,
where αv̄ /∈ AV ∪ {τ} and αw̄ /∈ AW ∪ {τ} are unique interface result actions identified
by the corresponding interface law, that is, ∀(v̄′, a) ∈ V ∪ ←−X . a = αv̄ =⇒ v̄′ = v̄ and
∀(w̄′, a) ∈ W ∪−→X . a = αw̄ =⇒ w̄′ = w̄. The decomposition of N into NΠ = (Π,V ∪←−X)

and NΨ = (Ψ,W ∪−→X) given by f and g is consistent.

Proof. Functions f and g imply interface relation σ = {(αv̄, αw̄, a) | (v̄ ‖ w̄, a) ∈ X}, and
sets of interface laws

←−X = {(v̄, αv̄) | (v̄ ‖ w̄, a) ∈ X} and
−→X = {(w̄, αw̄) | (v̄ ‖ w̄, a) ∈ X}.

By Lemma 4.4.2, we have to show:

• X = σ(
←−X ,

−→X): By (1) definition of σ(Vσ,Wσ), and (2) construction of
←−X ,

−→X , and
σ, it follows that

σ(
←−X ,

−→X)
(1)
= {(v̄ ‖ w̄, a) | (v̄, αv̄) ∈ Vσ ∧ (w̄, αw̄) ∈ Wσ ∧ (αv̄, αw̄, a) ∈ σ}
(2)
= {(v̄ ‖ w̄, a) | (v̄ ‖ w̄, a) ∈ X} = X

• AV ∩ A←−X = ∅: Since αv̄ /∈ AV ∪ {τ} the proof follows.

• AW ∩ A−→X = ∅: Since αw̄ /∈ AW ∪ {τ} the proof follows.

Example 4.4.5. Consider an admissible network with the following set of rules:

{(〈a, •, a〉, a), (〈a, a, •〉, a), (〈b, b, b〉, τ), (〈c, •, c〉, c)}
This set of rules can be decomposed along the lines of Proposition 4.4.4 as follows:

V = {(〈a, a〉, a)}
W = ∅
←−X = {(〈a, •〉, α〈a,•〉), (〈b, b〉, α〈b,b〉), (〈c, •〉, α〈c,•〉)}
−→X = {(〈a〉, α〈a〉), (〈b〉, α〈b〉), (〈c〉, α〈c〉)}
σ = {(α〈a,•〉, α〈a〉, a), (α〈b,b〉, α〈b〉, τ), (α〈c,•〉, α〈c〉, c)}

4.4. Decomposition of LTS Networks 81

Proposition 4.4.6 proposes an alternative decomposition that is implemented in
Cadp’s smart reduction [56]. The idea is 1) to generate only interface relation rules of
the form (a, a, b), such that components always synchronise through a common label a,
while 2) keeping a equal to b and thus avoiding α labels whenever possible. Rules in this
simple form make the decomposition more understandable by users.

Proposition 4.4.6. Consider a network N = (Π ‖ Ψ,V• ∪ •W ∪ X). We define the
functions producing interface result actions as

f(v̄, a) = g(v̄, a) =

{
a if visible_unique(a,V)
α(v̄,a) otherwise

where each α(v̄,a) /∈ AV ∪ AW ∪ {τ} is a unique interface result action identified by the
corresponding inter-component law, that is, ∀(v̄′, a) ∈ ←−X ∪ −→X . a = αv̄ =⇒ v̄′ = v̄, and
where visible_unique(a,V) is defined by the following predicate:

a �= τ ∧ ∀(v̄, a), (v̄′, a) ∈ V. v̄ = v̄′.

The decomposition of N into NΠ = (Π,V ∪←−X) and NΨ = (Ψ,W ∪−→X) given by f and
g is consistent.

The proof of Proposition 4.4.6 is similar to the proof of Proposition 4.4.4. The most
relevant difference is the presence of (a, a, a) ∈ σ if (v̄ ‖ w̄, a) ∈ X and a is unique in
V• ∪ •W ∪X (visible_unique(a,V• ∪ •W ∪X)} holds). In this case we must also have
AV ∩ A←−X = ∅ and AW ∩ A−→X = ∅, otherwise a contradiction with visible_unique(a,V• ∪
•W ∪X) can be derived.

The decomposition of Proposition 4.4.6 implies the interface relation

σ ={(αv̄‖w̄, αv̄‖w̄, a) | (v̄ ‖ w̄, a) ∈ X ∧ ¬visible_unique(a,V• ∪ •W ∪X)}
∪{(a, a, a) | (v̄ ‖ w̄, a) ∈ X ∧ visible_unique(a,V• ∪ •W ∪X)}

and sets of interface laws

Vσ ={(v̄, αv̄‖w̄) | (v̄ ‖ w̄, a) ∈ X ∧ ¬visible_unique(a,V• ∪ •W ∪X)}
∪{(v̄, a) | (v̄ ‖ w̄, a) ∈ X ∧ visible_unique(a,V• ∪ •W ∪X)}

Wσ ={(w̄, αv̄‖w̄) | (v̄ ‖ w̄, a) ∈ X ∧ ¬visible_unique(a,V• ∪ •W ∪X)}
∪{(w̄, a) | (v̄ ‖ w̄, a) ∈ X ∧ visible_unique(a,V• ∪ •W ∪X)}

Example 4.4.7. Consider again the admissible network of Example 4.4.5. Its set of
rules can be decomposed along the lines of Proposition 4.4.6 as follows, using the same
definition of V and W:

←−X = {(〈a, •〉, α〈a,•,a〉), (〈b, b〉, α〈b,b,b〉), (〈c, •〉, c)}
−→X = {(〈a〉, α〈a,•,a〉), (〈b〉, α〈b,b,b〉), (〈c〉, c)}
σ = {(α〈a,•,a〉, α〈a,•,a〉, a), (α〈b,b,b〉, α〈b,b,b〉, τ), (c, c, c)}

82 Compositional Model Checking is Lively

Preservation of Admissibility Proposition 4.4.8 shows that LTS networks resulting
from the consistent decomposition of an admissible LTS network are also admissible. Hence,
consistent decomposition is compatible with the compositional verification approaches
presented in [81].

Proposition 4.4.8. Consider an admissible LTS network N = (Π ‖ Ψ,V• ∪ •W ∪ X)
of length n + m. If the decomposition is consistent, then the decomposed networks
NΠ = (Π,V ∪←−X) and NΨ = (Ψ,W ∪−→X) are also admissible.

Proof. We show that NΠ and NΨ satisfy Definition 2.3.2:

No synchronisation and renaming of τ ’s. Let (v̄, a) ∈ V ∪←−X be a synchronisation law
such that v̄i = τ for some i ∈ 1..n. We distinguish two cases:

• (v̄, a) ∈ ←−X . Since (v̄, a) is an interface law and the decomposition is consistent, its
result action a may not be τ . However, since N is admissible, no renaming of τ ’s is
allowed. By contradiction it follows that (v̄, a) �∈ ←−X completing this case.

• (v̄, a) ∈ V. By construction, there exists a law (v̄ ‖ •m, a) ∈ V•. Since V• ⊆
V• ∪ •W ∪ X , by admissibility of N , we have ∀j ∈ 1..n. v̄j �= • =⇒ i = j (no
synchronisation of τ ’s) and a = τ (no renaming of τ ’s).

Hence, NΠ does not synchronise or rename τ ’s. The proof for NΨ is similar.
No cutting of τ ’s. Let Πi be a process with i ∈ 1..n such that τ ∈ AΠi

. Since N is
admissible there exists a law (v̄ ‖ w̄, a) ∈ V• ∪ •W ∪ X such that (v̄ ‖ ū)i = τ . We
distinguish three cases:

• (v̄ ‖ w̄, a) ∈ V•. Since (v̄ ‖ w̄)i = τ and i ≤ n it follows that v̄i = τ . By construction
of V•, there is a (v̄, a) ∈ V with v̄i = τ .

• (v̄ ‖ w̄, a) ∈ •W . In this case we must have i > n which contradicts our assumption:
i ∈ 1..n. The proof follows by contradiction.

• (v̄ ‖ w̄, a) ∈ X . Then, (v̄ ‖ w̄, a) is an inter-component law with at least one
participating process for each component. Hence, there exists a j ∈ (n+ 1)..m such
that (v̄ ‖ w̄)j �= •. Moreover, since N is admissible, no synchronisation of τ ’s are
allowed. Therefore, since (v̄ ‖ w̄)j �= •, we must have j = i. However, this would
mean j ∈ 1..n, contradicting j ∈ (n+ 1)..m. By contradiction the proof follows.

We conclude that NΠ does not cut τ ’s. The proof for NΨ is symmetrical.
All three admissibility properties hold for NΠ and NΨ. Hence, the networks resulting
from the decomposition satisfy Definition 2.3.2.

4.5 Associative and Commutative LTS Network Com-
position

In this section we create an instance of the composition operator that is commutative
and associative. This operator uses an interface relation that synchronises on a common
alphabet for interface actions. It is desirable for the composition operator to be both
associative and commutative as then the composition order is irrelevant with respect to
the resulting system. This allows users to select any composition order; depending on the
situation a particular order may be better than others [56,61].

4.5. Associative and Commutative LTS Network Composition 83

Definition 4.5.1 (Composition with Synchronisation on a Common Alphabet). Consider
LTS networks NΠ = (Π,V) of size n and NΨ = (Ψ,W) of size m. Take the interface
relation σ = {(a, a, a) | a ∈ (AV ∩ AW) \ {τ}}. The composition on a common alphabet
of NΠ and NΨ is defined as NΠ ‖ NΨ = NΠ ‖σ NΨ.

Associativity The intuition behind the associativity of LTS network composition is
that vector concatenation is associative and synchronisation on the common alphabet is
insensitive to the order of composition. Thus, the concatenation of process vectors and
synchronisation vectors enjoys the associativity property. The challenge, however, is to
show that the padding • and synchronisation σ(. . . , . . .) operations support the mathe-
matical properties needed for associativity of the composition of sets of synchronisation
laws.

Given two networks NΠ = (Π,V) and NΨ = (Ψ,W) the composition of two sets of
synchronisation laws V ‖ W consists of the union of three sets: two describing independent
behaviour (V \ Vσ)

• and •(W \Wσ), and one describing synchronising behaviour σ(V,W)
(Definition 4.3.4). When three networks are composed one (inner) composition is performed
before the other. The outer composition applies the operators • and σ(. . . , . . .) on a
union of sets. We show how these operators distribute over set union.

Lemma 4.5.2. Consider sets of synchronisation laws V and W with synchronisation
vectors of the same size. Padding of n •’s distributes over set union:

•(V ∪W) = •V ∪ •W, and (V ∪W)• = V• ∪W•.

Proof. The proof of (V ∪W)• = V• ∪W• is analog to the proof of •(V ∪W) = •V ∪ •W .
We only prove •(V ∪W) = •V ∪ •W here. The proof follows from (1) application of the
definition of • and (2) splitting of the set on V ∪W:

•(V ∪W)
(1)
= {(•n ‖ v̄, a) | (v̄, a) ∈ V ∪W}
(2)
= {(•n ‖ v̄, a) | (v̄, a) ∈ V} ∪ {(•n ‖ v̄, a) | (v̄, a) ∈ W}
(1)
= •V ∪ •W

Lemma 4.5.3. Consider an interface relation σ and sets of synchronisation laws V, W,
and X . The σ(. . . , . . .) operation distributes over set union as follows:

σ(V,W ∪X) = σ(V,W) ∪ σ(V,X)

Proof. The proof follows from (1) application of the definition of σ(. . . , . . .) and (2)
splitting of the set on W ∪X :

σ(V,W ∪X)
(1)
= {(v̄ ‖ w̄, a) | (v̄, α) ∈ V ∧ (w̄, β) ∈ W ∪ X ∧ (α, β, a) ∈ σ}
(2)
= {(v̄ ‖ w̄, a) | (v̄, α) ∈ V ∧ (w̄, β) ∈ W ∧ (α, β, a) ∈ σ} ∪
{(v̄ ‖ w̄, a) | (v̄, α) ∈ V ∧ (w̄, β) ∈ X ∧ (α, β, a) ∈ σ}

(1)
= σ(V,W) ∪ σ(V,X)

84 Compositional Model Checking is Lively

Now we prove that the composition of LTS networks with synchronisation on the
common alphabet is associative.

Proposition 4.5.4. Consider LTS networks NΠ = (Π,V), NΨ = (Ψ,W), and NΣ =
(Σ,X) of sizes n, m, and o, respectively. The composition of LTS networks following
Definition 4.5.1 is associative, i.e., it holds that (NΠ ‖ NΨ) ‖ NΣ = NΠ ‖ (NΨ ‖ NΣ).

Proof. If the networks (NΠ ‖ NΨ) ‖ NΣ and NΠ ‖ (NΨ ‖ NΣ) are equivalent, then this
means that their process vectors are equivalent and their sets of synchronisation laws are
equivalent.

The process vectors are equivalent due to associativity of the vector concatenation
operator ‖:

Π ‖ (Ψ ‖ Σ) = (Π ‖ Ψ) ‖ Σ
Next, we show V ‖ (W ‖ X) = (V ‖ W) ‖ X . First, given a set of laws Y, we will

introduce an alternative notation for Y \ Yσ in the context of composition Y ‖ Z of Y
with a set of laws Z. We will write Y \ ZA to emphasize the relevance of the alphabet of
Y that is in common with that of Z. We define Y \ ZA = {(ȳ, a) ∈ Y | a /∈ AZ}. The set
Y \ ZA is equivalent to Y \ Yσ:

Y \ ZA = {(ȳ, a) ∈ Y | a /∈ AZ} = Y \ {(ȳ, a) ∈ Y | (a, a, a) ∈ σ} = Y \ Yσ

The set Z \ YA is defined similarly.
The associativity proof proceeds as follows. Following Definition 4.3.4, we break the

set V ‖ (W ‖ X) down to seven partitions, and then show that there is a one-to-one
mapping of these partitions to one of the seven partitions of (V ‖ W) ‖ X . Each of the
rewrite equations consists of four steps:

(1) unfold the outer definition of • or σ(. . . , . . .)

(2) unfold the inner definition of • or σ(. . . , . . .)

(3) apply associativity of vector concatenation and the inner definition of • or σ(. . . , . . .)

(4) apply the outer definition of • or σ(. . . , . . .)

Furthermore, in cases 2a and 3c the following property of composition of sets of laws is
applied in steps (2) and (3) respectively: AW‖X = AW ∪ AX , and hence, a /∈ AW‖X =
a /∈ AW ∧ a /∈ AX .

The partitioning and partition mapping proceed as follows.

1. σ(V,W ‖ X) is partitioned, according to Lemma 4.5.3, into:

(a) σ(V, σ(W,X)), the set of laws specifying synchronisations involving all net-
works.

σ(V, σ(W,X))

(1)
= {v̄ ‖ (w̄ ‖ x̄) | (v̄, a) ∈ V ∧ (w̄ ‖ x̄, a) ∈ σ(W,X)}
(2)
= {v̄ ‖ (w̄ ‖ x̄) | (v̄, a) ∈ V ∧ (w̄, a) ∈ W ∧ (x̄, a) ∈ X}
(3)
= {(v̄ ‖ w̄) ‖ x̄ | (v̄ ‖ w̄, a) ∈ σ(V,W) ∧ (x̄, a) ∈ X}
(4)
= σ(σ(V,W),X))

4.5. Associative and Commutative LTS Network Composition 85

(b) σ(V, (W \ XA)•), the set of laws synchronising only NΠ and NΨ.

σ(V, (W \ XA)•)

(1)
= {v̄ ‖ (w̄ ‖ •o) | (v̄, a) ∈ V ∧ (w̄ ‖ •o, a) ∈ (W \ XA)•}
(2)
= {v̄ ‖ (w̄ ‖ •o) | (v̄, a) ∈ V ∧ (w̄, a) ∈ W ∧ a /∈ AX }
(3)
= {(v̄ ‖ w̄) ‖ •o | (v̄ ‖ w̄, a) ∈ σ(V,W) ∧ a /∈ AX }
(4)
= (σ(V,W) \ XA)•

(c) σ(V, •(X \WA)), the set of laws synchronising only NΠ and NΣ.

σ(V, •(X \WA))

(1)
= {v̄ ‖ (•m ‖ x̄) | (v̄, a) ∈ V ∧ (•m ‖ x̄, a) ∈ X \WA}
(2)
= {v̄ ‖ (•m ‖ x̄) | (v̄, a) ∈ V ∧ (x̄, a) ∈ X ∧ a /∈ AW}
(3)
= {(v̄ ‖ •m) ‖ x̄ | (v̄ ‖ •m) ∈ (V \WA)• ∧ (x̄, a) ∈ X}
(4)
= σ((V \WA)•,X)

2. (V \ (W ‖ X)A)• requires no partitioning:

(a) (V \ (W ‖ X)A)•, the set of laws specifying the independent behaviour of NΠ.

(V \ (W ‖ X)A)•

(1)
= {v̄ ‖ •m+o | (v̄, a) ∈ V ∧ a /∈ AW‖X }
(2)
= {v̄ ‖ (•m ‖ •o) | (v̄, a) ∈ V ∧ a /∈ AW ∧ a /∈ AX }
(3)
= {(v̄ ‖ •m) ‖ •o | (v̄ ‖ •m, a) ∈ (V \WA)• ∧ a /∈ AX }
(4)
= ((V \WA)• \ XA)•

3. •((W ‖ X) \ VA) is partitioned, applying Lemma 4.5.2, into:

(a) •(σ(W,X) \ VA), the set of laws synchronising only NΨ and NΣ.

•(σ(W,X) \ VA)

(1)
= {(•n ‖ (w̄ ‖ x̄), a) | (w̄ ‖ x̄, a) ∈ σ(W,X) ∧ a /∈ AV}
(2)
= {(•n ‖ (w̄ ‖ x̄), a) | (w̄, a) ∈ W ∧ (x̄, a) ∈ X ∧ a /∈ AV}
(3)
= {((•n ‖ w̄) ‖ x̄, a) | (•n ‖ w̄, a) ∈ •(W \ VA) ∧ (x̄, a) ∈ X}
(4)
= σ(•(W \ VA),X)

86 Compositional Model Checking is Lively

(b) •((W \ XA)• \ VA), the set of laws regarding independent behaviour of NΨ.

•((W \ XA)• \ VA)

(1)
= {(•n ‖ (w̄ ‖ •o), a) | (w̄ ‖ •o, a) ∈ (W \ XA)• ∧ a /∈ AV}
(2)
= {(•n ‖ (w̄ ‖ •o), a) | (w̄, a) ∈ W ∧ a /∈ AV ∧ a /∈ AX }
(3)
= {((•n ‖ w̄) ‖ •o, a) | (•n ‖ w̄, a) ∈ •(W \ VA) ∧ a /∈ AX }
(4)
= (•(W \ VA) \ XA)•

(c) •(•(X \WA) \ VA), the set of laws specifying independent behaviour of NΣ.

•(•(X \WA) \ VA)

(1)
= {(•n ‖ (•m ‖ x̄), a) | (•m ‖ x̄, a) ∈ •(X \WA) ∧ a /∈ AV}
(2)
= {(•n ‖ (•m ‖ x̄), a) | (x̄, a) ∈ X ∧ a /∈ AW ∧ a /∈ AV}
(3)
= {(•n+m ‖ x̄, a) | (x̄, a) ∈ X ∧ a /∈ AV‖W}
(4)
= •(X \ (V ‖ W)A)

These equations constitute a one-to-one mapping between the partitioning of V ‖ (W ‖ X)
and that of (V ‖ W) ‖ X . Therefore, we have V ‖ (W ‖ X) = (V ‖ W) ‖ X .

Since both Π ‖ (Ψ ‖ Σ) = (Π ‖ Ψ) ‖ Σ and V ‖ (W ‖ X) = (V ‖ W) ‖ X it follows
that (NΠ ‖ NΨ) ‖ NΣ = NΠ ‖ (NΨ ‖ NΣ).

Commutativity It is clear that composition of LTS Networks is not commutative as
is indicated by Example 4.5.5.

Example 4.5.5. Let NΠ = (Π,V) and NΨ = (Ψ,W) be two LTS networks. Furthermore,
consider compositions N1 = NΠ ‖ NΨ and N2 = NΨ ‖ NΠ. The network N1 has process
vector Π ‖ Ψ while N2 has process vector Ψ ‖ Π. Unless NΠ = NΨ, N1 and N2 are
strictly not equivalent. Similarly, the synchronisation laws of both composite networks are
in a different order.

Network composition as defined in Definition 4.5.1 is, however, commutative with respect to
the system LTS of the composition. That is, for the global behaviour of the composition of
the networks, it does not matter in which order the networks are composed. We first prove
that this network composition is commutative with respect to (strong) bisimulation [16]
in Proposition 4.5.6. Afterwards, we will propose an adaptation of the definition of LTS
network, fixing the ordering issue by replacing vectors with indexed families gaining
a commutative operator for composition of LTS networks with synchronisation on the
common alphabet.

Proposition 4.5.6. Let NΠ = (Π,V) and NΨ = (Ψ,W) be LTS networks of sizes
n and m, respectively. Composition of LTS networks according to Definition 4.5.1 is
commutative with respect to (strong) bisimulation, i.e., it holds that GNΠ‖NΨ

↔ GNΨ‖NΠ
.

Proof. Take the relation C = {(s̄ ‖ t̄, t̄ ‖ s̄) | s̄ ∈ GNΠ
∧ t̄ ∈ GNΨ

}. The relation C is a
(strong) bisimulation relation.

4.6. Congruence for LTS networks 87

• C relates the initial states of NΠ and NΨ. Since every state s̄ ‖ t̄ ∈ INΠ‖NΨ
is

related by C to state t̄ ‖ s̄ ∈ INΨ‖NΠ
and vice versa.

• If s̄ ‖ t̄ C t̄ ‖ s̄ and s̄ ‖ t̄ a−→NΠ‖NΨ
s̄′ ‖ t̄′ then t̄ ‖ s̄ a−→NΨ‖NΠ

t̄′′ ‖ s̄′′ ∧ s̄′ ‖ t̄′ C t̄′′ ‖
s̄′′. Let (v̄ ‖ w̄, a) ∈ V ‖ W be the law enabling the transition s̄ ‖ t̄ a−→NΠ‖NΨ

s̄′ ‖ t̄′.
It follows that there is a law (w̄ ‖ v̄, a) ∈ W ‖ V that enables the transition
t̄ ‖ s̄ a−→NΨ‖NΠ

t̄′ ‖ s̄′. As s̄′ ‖ t̄′ C t̄′ ‖ s̄′, the proof follows by taking t̄′ for t̄′′, and
s̄′ for s̄′′.

• If s̄ ‖ t̄ C t̄ ‖ s̄ and t̄ ‖ s̄ a−→NΨ‖NΠ
t̄′ ‖ s̄′ then s̄ ‖ t̄ a−→NΠ‖NΨ

s̄′′ ‖ t̄′′ ∧ s̄′′ ‖ t̄′′ C t̄′ ‖
s̄′. This case is symmetric to the previous case.

Commutativity of composition of LTS networks To avoid the issues discussed in
Example 4.5.5 an alternative definition of LTS Network can be designed. Both process
vectors and synchronisation vectors may be replaced by indexed families. An indexed
family consists of a set of objects (the process LTSs or synchronisation vectors) and an
index set and a surjective function mapping elements from the index set to elements of
the set of objects. When the index sets of two networks are disjoint, then the union of
sets can be applied, where we previously would use vector concatenation, to compose the
collections of process LTSs and synchronisation laws. The union of two indexed families
is commutative, as such, commutativity of composition of LTS networks with indexed
families is also commutative.

4.6 Congruence for LTS networks
In this section we prove that DPBB is a congruence for LTS Networks as defined in
Definition 2.3.4 [81].

That DPBB is a congruence for LTS networks follows from associativity and commu-
tativity rules presented in Section 4.5 for LTS networks whose set of synchronisation laws
implements synchronisation on the common alphabet. That is, if for an LTS network
N = (Π,V) of some size n and all its laws v̄ ∈ V with some result action a it holds that
each element v̄i (i ∈ 1..n) in the synchronisation vector either synchronises by firing an
a-action (v̄i = a), or the corresponding process has no a-transitions (a /∈ Ai) and does
not participate (v̄i = •) in synchronisation, then DPBB is a congruence for N .

It is unnecessary to require that the set of synchronisation laws implements syn-
chronisation on the common alphabet. In fact, this requirement excludes many LTS
networks in practice. Therefore, we will discuss an alternative proof, presented below for
Proposition 4.6.1, that does not require synchronisation on a common alphabet.

Proposition 4.6.1. Consider two vectors of LTSs Π and Ψ, and a set of synchronisation
laws V. Furthermore, assume that τ -transitions are not renamed, cut, or synchronised in
V. It holds that

(∀i ∈ 1..n. Πi ↔Δ
b Ψi) =⇒ G(Π,V) ↔Δ

b G(Ψ,V)

88 Compositional Model Checking is Lively

Proof. Given two vectors of Labelled Transitions Systems (LTSs) Π and Ψ such that for
all i ∈ 1..n there is a DPBB relation Bi with Πi Bi Ψi, we define the bisimulation relation
C as follows:

C = {(s̄, t̄) | s̄ ∈ S(Π,V) ∧ t̄ ∈ S(Ψ,V) ∧ ∀i ∈ 1..n. s̄i Bi t̄i}

We prove that C is a DPBB relation as defined in Definition 2.2.3. We will use Ac(v̄) =
{i | i ∈ 1..n ∧ v̄i �= •} as a shorthand for the set of indices of processes participating in a
synchronisation law (v̄, a); e.g., Ac(〈c, b, •〉) = {1, 2}.

• C relates the initial states of NΠ and NΨ. Consider states s̄ ∈ I(Π,V). For each
i ∈ 1..n there is a state qi ∈ IΨi such that s̄i Bi ti. Let t̄ be the state built from
these qi such that t̄i = qi for all i ∈ 1..n. Then, t̄ ∈ I(Ψ,V) and s̄ C t̄. The symmetric
case follows similarly.

• If s̄ C t̄ and s̄
a−→(Π,V) s̄

′ then either a = τ ∧ s̄′ C t̄, or t̄
τ−→∗

(Ψ,V)
ˆ̄t

a−→(Ψ,V) t̄
′ ∧ s̄ C

ˆ̄t∧ s̄′ C t̄′. Consider a law (v̄, a) ∈ V enabling transition s̄
a−→(Π,V) s̄

′. We distinguish
two cases:

1. There is a τ -action in synchronisation vector v̄, i.e., ∃i ∈ 1..n. v̄i = τ . Therefore,
there is a transition s̄i

τ−→i s̄
′
i. Since τ -transitions do not synchronise it follows

that it is the only action in the synchronisation vector, i.e., {i} = Ac(v̄).
Furthermore, a = τ as renaming τ -transitions is not allowed. Hence, by
Definition 2.3.3, for all j ∈ 1..n \ {i} it holds that s̄j = s̄′j . Moreover, as we
also have s̄j Bj t̄j , it follows that s̄′j Bj t̄j .

Because s̄i Bi t̄i and s̄i
τ−→i s̄

′
i, by Definition 2.2.3, two cases can occur:

– a = τ with s̄′i Bi t̄i. Hence, for all j ∈ 1..n we have s̄j Bj t̄j . By definition
of C, it follows that s̄′ C t̄.

– t̄i
τ−→∗

i t̂
a−→i t′ with s̄i Bi t̂ and s̄′i Bi t′. Since no τ -transitions are cut,

there also exists a path t̄
τ−→∗

(Ψ,V)
ˆ̄t

a−→(Ψ,V) t̄
′ with ˆ̄ti = t̂, t̄′i = t′, and for all

j ∈ 1..n \ {i} we have t̄′j =
ˆ̄tj = t̄j . Therefore, from s̄i Bi t̂, s̄′i Bi t

′, and
∀j ∈ 1..n \ {i}. s̄j Bj t̄j we deduce that s̄ C ˆ̄t and s̄′ C t̄′.

2. There is no τ -action in synchronisation vector v̄, i.e., ∀i ∈ 1..n. v̄i �= τ .
By Definition 2.3.3, for all j ∈ 1..n \ Ac(v̄) we have s̄′j = s̄j . Thus, since
s̄j Bj t̄j it follows that s̄′j Bj t̄j . Furthermore, we have for all j ∈ Ac(v̄) a

transition s̄i
v̄i−→i s̄

′
i. Hence, as v̄j �= τ for all those j ∈ Ac(v̄), there exists a

path t̄j
τ−→∗

j
ˆ̄tj

v̄j−→ t̄′j with s̄j Bj
ˆ̄tj and s̄′j Bj t̄′j (by Definition 2.2.3). From

Definition 2.3.3 it follows that there also is a path t̄
τ−→∗

(Ψ,V)
ˆ̄t

a−→(Ψ,V) t̄
′ where

for all j ∈ 1..n \ Ac(v̄) ˆ̄tj and t̄′j are defined by t̄′j = ˆ̄tj = t̄j . Hence, from
∀i ∈ 1..n. s̄i Bi t̄i and ∀j ∈ Ac(v̄). s̄j Bj

ˆ̄tj , and ∀k ∈ Ac(v̄). s̄′k Bk t̄′k we
deduce that s̄ C ˆ̄t and s̄′ C ˆ̄t′.

• If s̄ C t̄ and t̄
a−→(Ψ,V) t̄

′ then either a = τ ∧ s̄′ C t̄, or s̄
τ−→∗

(Π,V)
ˆ̄s

a−→(Π,V) s̄
′ ∧ s̄ C

ˆ̄t ∧ s̄′ C t̄′. This case is symmetric to the previous case.

• If s̄ C t̄ and there is an infinite sequence of states (s̄k)k∈ω such that s̄ = s̄0,
s̄k

τ−→(Π,V) s̄k+1 and s̄k C t̄ for all k ∈ ω, then there exists a state t̄′ such that

4.7. Application 89

t̄
τ−→+

(Ψ,V)t̄
′ and s̄k C t̄′ for some k ∈ ω. For all k ∈ ω let v̄k be the synchronisation

law enabling transition sk
τ−→ sk+1.

We distinguish two cases:

– There is a k ∈ ω such that s̄k
τ−→ s̄k+1 is the result of the synchronisation of

multiple processes in Π, i.e., ∃k ∈ ω, i ∈ 1..n. {i} ⊂ Ac(v̄k). In the τ -sequence
s̄
 C t̄ for all ∈ ω, hence, we have s̄k C t̄. Furthermore, since C is a
bisimulation relation it follows that there are states ˆ̄t, t̄′ ∈ S(Ψ,V) with a τ -path

t̄
τ−→∗

(Ψ,V)
ˆ̄t

τ−→(Ψ,V) t̄
′ such that s̄k+1 B t̄′. Thus, t̄ τ−→+

(Ψ,V) t̄
′ and for k + 1 ∈ ω

it holds that s̄k+1 C t̄′ completing the case.

– The τ -sequence only consists of τ -transitions performed independently by the
processes in Π, i.e., ∀k ∈ ω. |Ac(v̄k)| = 1. Since all of the τ -transitions are
performed independently, there has to be at least one process of which its
infinite τ -sequence is embedded in the global infinite τ -sequence, otherwise
the given τ -sequence starting from s would not be infinite. Suppose the ith

process has such a sequence and that the sequence starts from state s̄i. The
independent infinite sequence is embedded in that of the network, hence, for
all k ∈ ω it holds that s̄ki Bi t̄i. Since s̄i Bi t̄i, by Definition 2.2.3, there is a
state t′ ∈ SΨi

with t̄i
τ−→+

Ψi
t′ and some ∈ ω such that s̄
i Bi t

′. We construct
state t̄′ such that for all j ∈ 1..n if j = i, then t̄′j = t′, and otherwise t̄′j = t̄j .

As local τ -transitions are not cut nor renamed, it follows that t̄
τ−→+

(Ψ,V) t̄′.
Moreover, since s̄k C t̄ for all k ∈ ω, by definition of C, we have s̄
j Bj t̄j for
all j ∈ 1..n. Finally, because s̄
i Bi t̄

′
i and for all j ∈ 1..n \ {i} it holds that

s̄
j Bj t̄j , by construction of t̄′ it follows that s̄
 C t̄′.

• If s̄ C t̄ and there is an infinite sequence of states (t̄k)k∈ω such that t̄ = t̄0,
t̄k

τ−→(Ψ,V) t̄k+1 and s̄ C t̄k for all k ∈ ω, then there exists a state s̄′ such that
s̄

τ−→+
(Π,V)s̄

′ and s̄′ C t̄k for some k ∈ ω. This case is symmetric to the previous case.

4.7 Application
In order to compare compositional approaches with the classical, non-compositional
approach, we have employed Cadp to minimise a set of test cases modulo DPBB.

Each test case consists of a model that is minimised with respect to a given liveness
property. To achieve the best minimisation we applied maximal hiding [144] in all
approaches. Intuitively, maximal hiding hides all actions except for the interface actions
and actions relevant for the given liveness property.

As composition strategy we have used the smart reduction approach described in [56].
In Cadp, the classical approach, where the full state space is constructed at once and no
intermediate minimisations are applied, is the root reduction strategy. At the start, the
individual components are minimised before they are combined in parallel composition,
hence the name.

We have measured the running time and the maximum number of states and transitions
generated by the two methods.

90 Compositional Model Checking is Lively

Experimental setup To facilitate replication we briefly discuss the methods used for
our experiments.

For compositional approaches, the running time and largest state space considered
depends heavily on the composition order, i.e., the order in which the components are
combined. The smart reduction approach uses a heuristic to determine the order in which
to compose processes. In [56], it has been experimentally established that this heuristic
frequently works very well. After each composition step the result is minimised.

We use the following expression from the SVL scripting language [80] of Cadp to
invoke the smart reduction modulo DPBB approach:

smart total divbranching reduction of (<m>)

where <m> is the test model.
In the classical approach the state space of the entire system is generated before

minimisation is applied. This approach is invoked as follows

root total divbranching reduction of (<m>)

where <m> is the test model.
The experiments were run on the DAS-5 cluster [17] machines. They have an Intel

Haswell E5-2630-v3 2.4 GHz CPU, 64 GB memory, and run CentOS Linux 7.2. The
running time of the two approaches was measured as the wall clock time (i.e., the real
elapsed time) using the Unix time command:

/usr/bin/time -f "%e" svl <file>

The argument -f "%e" specifies that the time written as output should follow format
"%e" where %e indicates the wall clock time. The svl <script> argument invokes
the Svl-engine with script <script>. The command measures the wall clock time of
the execution of the Svl-script.

The maximum number of states and transitions that were generated were extracted
from the Svl-log files after execution of the script.

The set of test cases As test input we selected 19 case studies: four mCRL2 [54] mo-
dels distributed with its tool set, nine Cadp models, three from the Beem database [162],
and three from Example Repository for Finite State Verification Tools [130].

The models stemming from the mCRL2 tool set distribution are the following:

1. The 1394 model, created by Luttik [141], specifies the 1394 or firewire protocol.
Property : every PAreq with parameter immediate is eventually followed by a
matching PAcon with parameter won.

2. The 1394’ model is the 1394 model scaled up with extra internal transitions. This
model is our own adaptation of the 1394 model and is therefore not distributed
with the tool set. Property : same as the 1394 model.

3. The ACS model describes the ACS Manager that is part ALMA project of the
European Southern Observatory. The ACS Manager is part of a system controlling
a large collection of radio telescopes. The model consists of a manager and some
containers and components and was created by Ploeger [169]. Property : every time
container MT1 is locked, eventually it is freed again.

4.7. Application 91

4. Wafer Stepper models a wafer stepper used in the manufacturing of integrated
circuits. Property : always, eventually, all wafers in the system will be exposed.

The Cadp models consist of:

1. Cache models a directory-based cache coherency protocol for a multi-processor
architecture. The model was developed by Kahlouche et al.[111]. Property : there is
no live-lock.

2. The DES model describes an implementation of the data encryption standard,
which allows to cipher and decipher 64-bit vectors using a 64-bit key vector [153].
Property : the DES can always deliver outputs.

3. HAVi-LE describes the asynchronous Leader Election protocol used in the HAVi
(Home Audio-Video) standard, involving three device control managers. The model
is fully described by Romijn [177]. Property : always eventually a leader is selected.

4. HAVi-LE’ is an adaptation of the HAVi-LE model containing transitions denoting
logging events. Since the model is our own adaptation it is not distributed with
Cadp. Property : same as the HAVi-LE model.

5. Le Lann models a distributed leader election algorithm for unidirectional ring
networks. The CADP model was developed by Garavel and Mounier [83]. Property :
process P0 is infinitely many times in the critical section.

6. ODP is a model of an open distributed processing trader [84]. Property : work is
always executed eventually.

7. The Eratosthenes Sieve model computes prime numbers implementing a distributed
Eratosthenes Sieve; the model describes a pipeline of units, of which each unit
blocks input numbers that are multiples of a given number. The model consists of
four units. Property : if the number two is generated, then it is eventually reported
as a prime number.

8. Eratosthenes Sieve’ is a variant of Eratosthenes Sieve consisting of seven units.
Property : same as the Eratosthenes Sieve model.

9. The Transit model describes a transit-node, it models an abstraction of a routing
component of a communication network. The model was developed by Mounier [151].
Property : every time a message is receive, it is eventually either sent out the node
or buffered as faulty.

The Beem models are:

1. The Peterson model describes Peterson’s mutual exclusion algorithm [167] for seven
processes. Property : every time process P0 waits for access to the critical section,
it will eventually enter it.

2. Anderson models Anderson’s queue lock mutual exclusion algorithm [10] for three
processes. Property : Every time a process waits for access to the critical section, it
will eventually enter it.

3. Anderson’ is a variant of the Anderson model considering four processes competing
for a lock. Property : same as the Anderson model.

92 Compositional Model Checking is Lively

Table 4.1: Experiments: smart reduction vs. root reduction; running times are presented
in seconds

Test case Running time Maximum #states Maximum #transitions
smart root smart root smart root

1394 14.41 8.25 102,983 198,692 187,714 355,338
1394’ 47.51 460.53 2,832,074 36,855,184 5,578,078 96,553,318
ACS 70.87 11.22 1,854 4,764 4,760 14,760
Anderson 26.56 15.42 153,664 384,104 2,118,368 5,892,964
Anderson’ 373.56 1852.42 15,116,544 56,250,000 268,738,560 1,188,000,000
Cache 20,55 7.84 616 616 4,631 4,631
Chiron 22.76 13.66 317,115 481,140 2,563,650 3,456,675
Chiron’ 1,171.06 1,236.06 49,076,280 56,293,380 467,536,860 513,857,520
DES 54.61 948.66 1,404 64,498,297 3,510 518,438,860
Eratosthenes Sieve 63.00 8.43 1,156,781 234 2,891,692 406
Eratosthenes Sieve’ − 10.64 − 865 − 2,012
Gas Station 325.10 362.31 11,042,816 11,436,032 84,254,720 87,105,536
HAVi-LE 114.27 493.01 970,772 15,688,570 5,803,552 80,686,289
HAVi-LE’ 93.08 5,255.56 453,124 190,208,728 2,534,371 876,008,628
Le Lann 96.35 5,599.15 12,083 160,025,986 701,916 944,322,648
ODP 32.90 9.97 10,397 91,394 87,936 641,226
Peterson 63.04 − 9 − 139 −
Transit 25.50 59.69 22,928 3,763,192 132,712 39,925,524
Wafer Stepper 74.18 57.54 962,122 3,772,753 4,537,240 16,977,692

From the Example Repository for Finite State Verification Tools we selected the
following models:

1. The Chiron model describes a user interface development system with two clients.
The system consists of the Chiron server, managing generic aspects of a user interface,
and artists (the clients). This server is responsible for notifying artists when a
user interface event occurs, while the clients listen for notifications from the server.
The formal model was developed by Avrunin et al. [15]. Property : If an artist is
registered for event e1, then it will eventually be notified for this event.

2. Chiron’ is a adapted version of the Chiron model where another client is added.
There are a total of three clients. Property : same as the Chiron model.

3. The Gas Station problem [97] simulates a self-serve gas station. The gas station
consists of two pumps, an operator, and three customers. Property : A charge is
made eventually after a customer has started pumping.

Measurement Results The results of our experiments are shown in Table 4.1. The
Test case column indicates the test case model corresponding to the measurements.

The smart and root sub-columns denote the measurement for the smart reduction
and root reduction approaches, respectively.

In the Running time column the running time until completion of the experiment is
shown in seconds. Indicated in bold are the shortest running times comparing the smart
and root sub-columns. The maximum running time of an experiment was set to 80 hours,
after which the experiment was discontinued (indicated with −).

The columns Maximum #states and Maximum #transitions show the largest number
of states and transitions, respectively, generated during the experiment. Of both methods
the best result is indicated in bold.

4.8. Conclusions 93

Discussion In terms of running time smart reduction performs best for 10 out of 19
models, whereas root reduction performs best in 8 of the models. In terms of both maxi-
mum number of states and maximum number of transitions smart reduction outperforms
root reduction in 16 out of 19 models.

In general, the smart reduction approach performs better for large models where the
state space can be reduced significantly before composition. This is best seen in the
HAVi-LE’, Le Lann, and Peterson test cases, where smart reduction is several hours
faster.

In this set of models, root reduction performs best in relatively small models; 1394,
ACS, Cache, Lamport, and ODP. However, for these cases the difference in running
times is negligible. Smart reduction starts performing better in the moderately sized
models such as Transit and Wafer stepper. For smaller models the overhead of the smart
reduction heuristic is too high to obtain any benefits from the nominated ordering.

Smart reduction performs particularly bad for the Eratosthenes Sieve’ model. The
model consists of a pipeline where data is being pushed from one end to another. While
the data domain considered by the nodes in the pipeline consists of 32 elements, in the
minimised state space only one element remains. As synchronising actions may not be
hidden in the local process LTSs the incremental composition and minimisation leads to
a state space that is several orders of magnitude larger than the final state space.

In summary, compositional reduction is most efficient when it is expected that compo-
nents reduce significantly and highly interleaving components are added last.

4.8 Conclusions
In this chapter, we have shown that DPBB is a congruence for parallel composition of
LTS networks where there is synchronisation on given label combinations. Therefore, the
DPBB equivalence may be used to reduce components in the compositional verification of
LTS networks. As DPBB is the finest equivalence relation in the linear time - branching
time spectrum this allows reduction of the state space while preserving a larger class of
properties than other relations in this spectrum.

Furthermore, we have discussed how to safely decompose an LTS network in the case
where verification has to start from the system as a whole. Both the composition and
consistent decomposition of LTS networks preserve the admissibility property of LTS
networks. Hence, the composition operator remains compatible with the compositional
verification approaches for LTS networks described by [81].

We have shown that parallel composition of LTS networks with synchronisation on
the common result action alphabet is associative and commutative. From this it follows
that DPBB is also a congruence for LTS networks as defined by Garavel, Lang, and
Mateescu [81] if the set of synchronisation laws implements synchronisation on the common
alphabet. We have shown, however, that the requirement to synchronise on the common
alphabet is unnecessarily restrictive. This has been shown in a direct proof of DPBB
being a congruence for LTS networks.

The proofs in this chapter have been mechanically verified (with exception Proposi-
tion 4.6.1) using the Coq proof assistant 3 and are available online. 4 The mechanical

3https://coq.inria.fr.
4http://www.win.tue.nl/mdse/composition/DPBB_is_a_congruence_for_

synchronizing_LTSs.zip

94 Compositional Model Checking is Lively

verification of the related proofs in this chapter gives us confidence in the correctness of
Proposition 4.6.1.

Although our work focuses on the composition of LTS networks, the results are also
applicable to composition of individual LTSs. Our parallel composition operator subsumes
the usual parallel composition operators of standard process algebra languages such as
CCS [148], CSP [179], mCRL2 [54], and LOTOS [106].

Finally, we have run a set of experiments to compare compositional and traditional
DPBB reduction. The compositional approach applies Cadp’s smart reduction employing
a heuristic to determine an efficient compositional reduction order. The traditional
reduction generates the complete state space before applying reduction. The compositional
approach performed better when applied to the medium to large models where the
intermediate state space can be kept small.

Future Work An interesting direction for future work is the integration of the proof in
a meta-theory for process algebra. This integration would give a straightforward extension
of our results to parallel composition for process algebra formalisms.

This work has been inspired by an approach for the compositional verification of
transformations of LTS networks [59, 214, 215, 217, 218]. We would like to apply the
results of this chapter to the improved transformation verification algorithm [59], thus
guaranteeing its correctness for the compositional verification of transformations of LTS
networks.

In future experiments, we would like to involve recent advancements in the computation
of branching bisimulation, and therefore also DPBB, both sequentially [91] and in parallel
on graphics processors [216]. It will be interesting to measure the effect of applying these
new algorithms to compositionally solve a model checking problem.

Finally, by encoding timing in the LTSs, it is possible to reason about timed system
behaviour. Combining approaches such as [213, 219] with our results would allow to
compositionally reason about timed behaviour. We plan to investigate this further.

Chapter 5

To Compose, Or Not to Compose: An Analysis of
Compositional Minimisation

To tackle the state space explosion problem several compositional verification approaches
have been proposed. One of these approaches is compositional aggregation, where a given
system consisting of a number of parallel processes is iteratively composed and minimised.
Compositional aggregation has shown to perform better (in the size of the largest state
space in memory at one time) than classical monolithic composition in a number of cases.
However, there are also cases in which compositional aggregation performs significantly
worse. It is unclear when one should apply compositional aggregation in favour of other
techniques and how it is affected by action hiding and the scale of the model.

This chapter presents a descriptive analysis following the quantitative experimental
approach. The experiments were conducted in a controlled test bed setup in a computer
laboratory environment. A total of eight scalable models with different network topologies
considering a number of varying properties were investigated comprising 119 subjects. This
makes it the most comprehensive study done so far on the topic. We investigate whether
there is any systematic difference in the success of compositional aggregation based on the
model, scaling, and action hiding. Our results indicate that both scaling up the model and
hiding more behaviour has a positive influence on compositional aggregation.

Correlation, regression, and classification analysis was conducted on 1,615 generated
networks of LTSs for a number of potential predictors. Maximum memory cost and maxi-
mum number of generated transitions of heuristics normalised with respect the monolithic
approach was predicted at accuracy of about one order of magnitude. Classifying the best
minimisation approach achieved an accuracy between 55% and 61% for maximum memory
cost, and between 68% and 74% for the maximum number of generated transitions.

This chapter is an extension of

[61] de Putter, S., and Wijs, A. To Compose, or Not to Compose, That Is the
Question: An Analysis of Compositional State Space Generation. In FM (2018),

Springer International Publishing, pp. 485–504

96 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

5.1 Introduction
Although model checking [16] is one of the most successful approaches for the analysis
and verification of the behaviour of concurrent systems, it is plagued with the so-called
state space explosion problem: the state space of a concurrent system tends to increase
exponentially as the number of parallel processes increases linearly.

To tackle the state space explosion several compositional approaches have been
proposed such as assume-guarantee reasoning [110,171] and partial model checking [8].
Cobleigh, Avrunin, and Clarke conducted an evaluation of assume-guarantee reasoning in
2008 [49]. They raises doubt whether it is an effective alternative to classical, monolithic
model checking.

A prominent alternative approach is compositional aggregation [55,74] (also known as
compositional state space generation [203], incremental composition and reduction [183],
incremental reachability analysis [196, 197], and inductive compression [180]). Given
a system consisting of a number of parallel processes the compositional aggregation
approach iteratively composes the processes and minimises the result. Action abstraction
or hiding [144] may be applied to abstract away all actions irrelevant for the property being
verified such that minimisation is more effective. The idea of compositional aggregation
is that incremental minimisation should warrant a lower maximum memory cost than
composing the system monolithically. Compositional aggregation has shown to perform
better (in the size of the largest state space in memory) than monolithic composition in a
number of cases [55,56,64,81,196]. However, sometimes the former is not effective, even
producing a (significantly) larger state space than the monolithic approach [81].

The aggregation order of a composition can be understood as a tree, where leaves are
the parallel processes and the nodes represent an operation that constructs a composite
Labelled Transition System (LTS) from the children nodes and minimises the result. As
such the number of possible aggregation orders is exponential in the number of parallel
processes. The selection of an efficient order, i.e., that results in compositional aggregation
being as memory efficient as possible is still an unsolved issue [55].

To automate the selection of the aggregation order several heuristics have been
proposed [55,56,196]. However, it is unpredictable whether aggregation orders selected by
the heuristics are an improvement over the monolithic approach. Insights in the conditions
in which compositional aggregation is expected to perform well are vital for successful
application of the techniques, but these insights are currently limited. Evaluation of
compositional aggregation and heuristics is, to the best of our knowledge, only limited to
small benchmarks with no control on aggregation order, model scale, and action hiding.
To gain understanding on how these variables influence the effectiveness of compositional
aggregation, this chapter presents a characterisation of the compositional aggregation
method. The objective of this study is as follows:

Analyse compositional aggregation for the purpose of characterisation of the
maximum memory use of the generated state space in the context of aggregation
orderings of concurrent models with different scaling and action hiding.

The goal is to find guidelines that help deciding whether to apply compositional aggregation.
To this end we address the following main research question.

RQ main: When can compositional aggregation be expected to be more
(memory) efficient than monolithic minimisation?

5.1. Introduction 97

To answer this question we first answer a number of smaller questions. First, we inves-
tigate the effect of three specific aspects of the application of compositional aggregation:
the aggregation order, the amount of action hiding, and the number of parallel processes
in the model that compositional aggregation is applied to.

RQ 5.1: How do action hiding, number of parallel processes, and aggregation
order affect the memory consumption of compositional aggregation?

As stated earlier, some aggregation orders are better than others. Heuristics are
employed in an attempt to find the well performing aggregation orders. Therefore, to
determine whether or not it is wise to apply compositional aggregation the performance
of the heuristics must be kept in mind.

RQ 5.2: How effective are the aggregation orders chosen by current heuristics?

Having established what minimisation approach is most efficient on which variants
of the models, we finally investigate the relation between subjects within these two
groups (compositional aggregation and monolithic minimisation). Answering this research
question provides insights into which structural properties of models are indicative for
the success or failure of compositional aggregation.

RQ 5.3: How can the success or failure of compositional aggregation be
explained?

Finally, to answer our main research question we investigate the predictive power
of several properties and learned predictors for the success or failure of compositional
aggregation.

RQ 5.4: How can the success or failure of compositional aggregation be
predicted?

In terms of scaling, due to the exponential growth of aggregation orders, we limit
the number of analysed aggregation orders to 2,500. The action hiding sets are derived
from properties formulated for the corresponding models using the maximal hiding
technique [144]. Finally, for minimisation we use branching bisimulation with explicit
divergence [204] as it supports a broad range of safety and liveness properties.

Contributions We present our findings after having conducted a thorough experiment
to study the effectiveness of compositional aggregation when applied to models with
varying network topologies.

Having analysed a significant number of possible aggregation orders, we were able to
compare several heuristics proposed in the literature with (near-)optimal composition
results. In total, we have selected 119 subjects for the analysis, making this the most
comprehensive study performed on the topic so far. Our main conclusion is that the
amount of internal behaviour of individual processes in the model, and the amount of
synchronisation between those processes, seem to be the two main factors influencing the
success of compositional aggregation. Furthermore, our results suggest that there is real
potential to construct better heuristics in the near future.

To develop prediction models that assist in selection of a minimisation approach, we
have performed correlation tests and applied regression, and classification algorithms on
1,615 networks of LTSs using a number of potential predictors. These networks were

98 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

generated pseudo-randomly based on 88 source process LTSs, since we do not have a
sufficient number of LTS networks available to give enough statistical power. The analysis
shows that the maximum memory cost of compositional aggregation heuristics normalised
with respect to monolithic minimisation can be predicted at an average accuracy of about
one order of magnitude. The best learned classification models determining the best
minimisation approach with respect to maximum memory cost and maximum number of
generated transitions were validated against new data. The models classified between
55% and 61% of the unseen data correctly; telling whether monolithic minimisation
or smart reduction performs best in terms of memory. For the maximum number of
generated transitions metric the classification models had an accuracy between 68% and
74% on unseen data. Furthermore, as both the training data and test data contain a
class imbalance the Cohen’s κ measure for inter-rate agreement is between 0.10 and 0.22,
indicating that the models are better than random classification, but there is room for
improvement.

The prediction models could be further improved through inclusion of relevant variables,
more data, and the introduction of regression and classification techniques that are
specialised for data in the form of labelled graphs (such as LTSs). Metrics related to
interleaving density and the number of transitions in an LTS were most important for
regression techniques, while metrics related to hiding and interleaving density of sets of
LTSs where found to be the most determining factor classification techniques.

Note that the study was conducted on networks of LTSs and, therefore, the results
are possibly limited to models represented as networks of LTSs.

Structure of the chapter In Section 5.2, we discuss related work. Preliminaries are
given in Section 5.3. The methodology used in our experiment is discussed in Section 5.4.
Section 5.5 presents our results for RQ 5.1, RQ 5.2, and RQ 5.3. Special attention is
given to RQ 5.4 in Section 5.6. Finally, conclusions and future work are discussed in
Section 5.8.

5.2 Related Work
Compositional aggregation. In the past, compositional aggregation has been applied
in a number of experiments [56, 81, 197]. Tai and Koppol [197] do consider a small set
of orders for each considered case, and they target a set of models mostly consisting of
randomly generated models and variations of only one or two real use cases. Considering
a small set of orders makes it hard to indicate the quality of the considered heuristics,
i.e., how well they perform compared to how well they could potentially perform. The
usefulness of insights gained by analysing randomly generated models heavily depends on
how similar the models are to real models, in terms of their structural characteristics.

Crouzen and Lang [56] developed two of the three heuristics proposed by Tai and
Koppol further and combined this into what the authors call smart reduction. Crouzen
and Lang consider a benchmark set of 28 models that are variants of 13 models. This is
a relatively high number of subjects, but unfortunately, discussion of the results is very
limited, and the differences between subjects based on the same model are not explained.
Due to this, the effect of these differences between the subjects cannot be correlated to
the presented performance.

Garavel, Lang, and Mateescu [81] subject the combined heuristic to another experiment
to show the effect of action hiding, i.e., abstraction of behaviour irrelevant for the

5.2. Related Work 99

considered functional property. The experiment measures the largest number of states
generated during aggregation with and without action hiding. The experiment considers
90 subjects; a single (industrial) use case consisting of 5 scenarios, each considering a
subset of 25 properties. They report that action hiding improves the performance of
the heuristic. It is not reported whether there is a correlation between the amount of
reduction and the properties.

Graf and Steffen [90] were the first to propose context constraints for compositional
aggregation. A method for automatically generating context constraints for compositional
aggregation methods is proposed by Cheung and Kramer [40]. It consists of generating
an interface LTS representing the communicating behaviour of a set of components, and
then composing this interface with the remainder of the components. The resulting state
space is weakly bisimilar to the monolithically generated state space. To evaluate the
approach the authors perform several experiments with client/server models that are
scaled by adding clients to the model. In each experiment the aggregation order was fixed.
In contrast, we both scale the models and vary the aggregation orders to see how they
affect the effectiveness of the technique.

Other compositional approaches. An evaluation of automated assume-guarantee
reasoning was conducted by Cobleigh, Avrunin, and Clarke [49]. The authors study
whether assume-guarantee reasoning provides an advantage over monolithic verification.
They conclude by raising doubts whether assume-guarantee reasoning is an effective
compositional verification approach. However, no attempts were made to investigate the
effects of combining multiple components in one step, i.e., n-way decomposition, and
action hiding. Assume-guarantee reasoning may be more effective when these approaches
are involved.

Assume-guarantee reasoning by abstraction refinement [85] improves upon the appro-
ach. The technique is inspired by the experience that small interfaces between components
positively affect compositional reasoning. The study considers four cases with a total
of twelve subjects. The improved approach uses less memory than the original one in
seven of the twelve subjects. However, it is not reported how the memory consumption is
measured (i.e., of what the memory consumption is measured exactly), and furthermore,
the results are not compared to monolithic verification.

An n-way decomposition with alphabet refinement is proposed by Abd Elkader et
al. [2]. A benchmark consisting of three cases with a total of fifteen subjects is performed,
but memory consumption is not reported. In eight of the fifteen subjects, the approach
turned out to be faster than monolithic verification.

Other contributions to assume-guarantee reasoning [96,161] present similarly small
benchmarks with the number of cases not exceeding four and the number of subjects not
exceeding seventeen. Gupta, McMillan, and Fu [96] report the memory consumption as
the number of states in an assumption LTS, however, no correlation with actual memory
consumption is discussed. Păsăreanu et al. [161] report the memory consumption of the
used tools. Still, all these benchmarks compare few behavioural models that are verified
with respect to different properties. However, all variants are treated as independent
subjects, thus skewing results.

Concluding, compared to our study, none of the related studies consider (non-random)
models of varying network topologies, and take those topologies explicitly into account.
We also study in detail the effect of action hiding. Furthermore, in none of the studies
the results are corrected for repeated measures, which occur when you obtain results from
variations of test cases. Finally, it should be noted that most studies consider not enough

100 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

cases and subjects to extract general conclusions.

5.3 Background
Our experiments are performed using Cadp [81]. In this section, we explain the com-
putational model behind the compositional aggregation technique offered by Cadp. An
LTS (Definition 2.2.1) describes the behaviour of a process or system. The behaviour of
a concurrent system is described by a network of LTSs [133] (Definition 2.3.1), or LTS
network for short. From an LTS network, a system LTS (Definition 2.3.3) can be derived
describing the global behaviour of the network. The state space of these systems may be
minimised modulo an appropriate equivalence relation.

The minimisation of an LTS consists of the merging of all states that have equivalent
behaviour. A new, reduced, LTS is obtained that is equivalent to the original LTS. An
equivalence relation R between two LTSs relates states that have equivalent behaviour.
We write minR(G) for the minimisation of an LTS G according to an equivalence relation
R. Given an LTS network N = (Π,V), we write minR(N) and minR(Π,V) as a short
hand for minR(GN) and minR(G(Π,V)), respectively, denoting the minimisation of the
system LTS of a network modulo an equivalence relation R. The minimisation of an LTS
network consists of iterative composition and minimisation of its process LTSs in some
order until a complete minimised system LTS is obtained. When minimising an LTS
network, actions of processes that require synchronisation with those of other processes
cannot be abstracted away prematurely.

In this chapter we use the DPBB equivalence relation [204] (Definition 2.2.3) as
relation fo minimisation. DPBB supports action hiding and is sensitive to branching
structure and cycles of τ -transitions, i.e., infinite internal behaviour.

To maximise the potential for minimisation, maximal hiding [144] can be applied,
which identifies exactly which actions are essential to correctly determine whether an
LTS satisfies a given functional property or not. This roughly corresponds to hiding all
actions except those occurring in the formula. Maximal hiding is defined over a fragment
of the modal μ-calculus that is adequate with respect to DPBB. The defined fragment is
expressive enough to express most properties.

Projection of LTS networks To aggregate processes of a network, these processes
must be selected from the network. To this end, we define the projection of a network N
on to a set of indices I. The result is an LTS network that can be considered a subsystem
or component of N consisting of the processes originally indexed in Π at the positions
indicated by I.

Definition 5.3.1 (Projection of an LTS network). Consider a set of indices I and an
LTS network N = (Π,V). Let α(v̄, a) /∈ AV be a function associating a unique action
label to each (v̄, a) ∈ V. The projection of N on to I is defined as N I = (ΠI ,VI) where
ΠI is the vector project of Π on to I and

VI = { (v̄I , a) | (v̄, a) ∈ V ∧Ac(v̄) ⊆ I } ∪
{ (v̄I , α(v̄, a)) | (v̄, a) ∈ V ∧ ∅ ⊂ (I ∩Ac(v̄)) ⊂ Ac(v̄)}.

The synchronisation laws of the projected network N I are divided in two disjoint
subsets:

5.3. Background 101

• The first subset represents synchronisation laws that only involve process LTSs
inside I. These laws do not synchronise with processes that are not in I.

• The second subset represents the synchronisation laws that involve process LTSs
in I as well as other process LTSs (those in I�, the complement of I). As these
laws must still synchronise with LTSs outside I, the unique action label α(v̄, a) is
introduced to restore synchronisation with other LTSs when N I is composed with
processes outside I.

Compositional order. The compositional aggregation of an LTS network N = (Π,V)
is the incremental composition and minimisation of subsets of processes in Π. More
specifically, the composition of a set of LTSs followed by a minimisation of the result is
called an aggregation. The compositional aggregation modulo R of an LTS network N is
the incremental aggregation of the processes in Π subject to V such that the resulting
LTS is R-equivalent to GN . Before we formally define compositional aggregation, we must
first introduce aggregation orders.

An aggregation order organises the processes of an LTS network in a tree-structure as
presented in Definition 5.3.2. The leaves represent the individual process LTSs in Π, and
the nodes represent subsets of the processes in Π. The root represents all the processes in
Π. For the sake of simplicity, the processes are represented by their index in the process
vector Π. Let 2I denote the power set of a set I.

Definition 5.3.2 (Aggregation Order). Given an LTS network N = (Π,V) of size n, an
aggregation order of N is a tree TN = (V,E) where ∅ ⊂ V ⊂ 21..n such that

• 1..n is the root of the tree,

• The singleton sets {i} ∈ V with i ∈ 1..n are the leaves of the tree, and

• For every non-leaf node t ∈ V , the children of t must form a partitioning of t.

Consider a node t ∈ V . The set of values associated with node t is denoted val(t).
Furthermore, the list of children of t is regarded as a vector, i.e., ti indicates the ith child
of node t, and |t| denotes the number of children of t. Finally, in our examples within this
section we represent aggregation orders by nested sets described by the following EBNF
syntax:

Tree = ‘{’ Tree | i {‘,’ Tree | i} ‘}’

where i ∈ 1..n. For instance, we write {{{1, 3}, 2}, {4, 5, 6}} to represent the aggregation
tree shown in Figure 5.1.

The compositional aggregation of a network N according to an aggregation order T is
formalized in Definition 5.3.3. Let t be the root of aggregation order tree T , compositional
aggregation first decomposes N by projecting N on the sets and by pre-order walk of the
aggregation order, as indicated by the second case of aggR(N , t). That is, each component
represented by a child of t is aggregated before finally constructing and minimising the
state space. Second, minimisation starts at the leaves when no further decomposition is
possible as indicated by the first case of aggR(N , t). Finally, aggregation (state space
generation and minimisation) is performed in a post-order walk through the created
aggregation tree (i.e., children are processed before their parents). The children of the
nodes represent the (system) LTSs of the components. At each non-leaf node t the
state space of component t is constructed by concatenating the process vectors of the

102 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

{4, 5, 6}{1, 2, 3}

{1, 2, 3, 4, 5, 6}

{1} {3}

{1, 3} {2} {4} {5} {6}

Figure 5.1: An aggregation order represented by {{{1, 3}, 2}, {4, 5, 6}}: first all leaves
are reduced; next, processes {1, 3}, and {4, 5, 6} are aggregated; then, the aggregation
of {1, 3} is aggregated with process 2; finally, the remaining two LTSs are aggregated to
obtain the aggregation of the whole system

child networks and restoring synchronisations through Vsnc. The set Ac(v̄)t is the set of
children (represented by index) of a node t that are involved in a synchronisation vector
v̄.

Definition 5.3.3 (Compositional Aggregation). Let N = (Π,V) be an LTS network, and
let T be an aggregation order with root t. The compositional aggregation of N subject to
order T is defined as

aggR(N , t) =

⎧⎪⎨
⎪⎩
minR(Πi) if val(t) = {i} for i ∈ 1..n

minR(
|t|
‖

i=1

aggR(N val(ti), ti),Vsnc) otherwise

where

Vsnc = { (•|t|[i �→ a], a) | (v̄, a) ∈ V ∧Ac(v̄)t = {i} }
∪ { (•|t|[Ac(v̄)t �→ α(v̄, a)], a) | (v̄, a) ∈ V ∧ |Ac(v̄)t| > 1

∧Ac(v̄) ⊆ val(t) }
∪ { (•|t|[Ac(v̄)t �→ α(v̄, a)], α(v̄, a)) | (v̄, a) ∈ V ∧Ac(v̄) ∩ val(t) �= ∅

∧Ac(v̄) �⊆ val(t) },

and
Ac(v̄)t = {i | i ∈ 1..|t| ∧Ac(v̄) ∩ val(ti) �= ∅}

The synchronisation laws Vsnc of an aggregated component consist of three disjoint
subsets. Given an aggregation order node t, a representative of a synchronisation law
(v̄, a) is in the first set iff only one child of t is involved in v̄, (v̄, a) is in the second set
iff multiple children of t are involved in v̄, and in the third set iff v̄ involves LTSs that
are not represented by t. The laws in the sets are formulated over the aggregated child
components. That is, the synchronisation vectors are of size |t| and for each v̄ ∈ Vsnc

and i ∈ 1..|t|, v̄i is the action label performed by the aggregation of the ith child network.
The set Vsnc is organised as follows:

• The first subset constrains the number of child components that participate in a
law (v̄, a) ∈ V to a single component: Ac(v̄)t = {i}. This set contains for each child

5.3. Background 103

aggR(M{1,3}, {1, 3})

aggR(M{1}, {1}) aggR(M{3}, {3})

aggR(M{1,2,3}, {{1, 3}, 2})

aggR(M{2}, {2})

(a) A tree representation of the aggregation calls and decompositions corresponding to the
aggregation of a network N in pre-order walk through aggregation order {{1, 3}, 2}

minR(minR(Π1)⊕minR(Π3),Vsnc{1,3})

minR(Π1) minR(Π3)

minR(minR(minR(Π1)⊕minR(Π3),Vsnc{1,3})⊕minR(Π2),Vsnc{1,2,3})

minR(Π2)

(b) A tree representation of aggregation of a network in post-order walk through aggregation
order {{1, 3}, 2}, VsncI represents the set of synchronisation laws Vsync created at node I of the
aggregation order

Figure 5.2: The compositional aggregation of a network N = (Π,V) according to
aggregation order {{1, 3}, 2} (the left sub-tree of the aggregation order shown in Figure 5.1)

component laws that solely involve the child component. Hence, these laws allow
the child components to perform their independent actions.

• The second subset considers the laws (v̄, a) ∈ V which involve multiple child
components of t (|Ac(v̄)t| > 1) and only child components of t (Ac(v̄) ⊆ val(t)).
The child components involved in (v̄, a) all synchronise on a special action α(v̄, a)
that is produced by the projection of the network N val(t) on to the subsets val(ti)
with i ∈ 1..|t|. The result action of the synchronisation of children on α(v̄, a) is the
a action of the original law (v̄, a).

• The third subset contains the laws that involve the component represented by t
(Ac(v̄) ∩ val(t) �= ∅), but also components not represented by t (Ac(v̄) �⊆ val(t)). A
law in this set describes synchronisation of all involved child components on the
special α(v̄, a) action. The result is again the α(v̄, a) action indicating that the
component must still synchronise with other parts of the system.

Figure 5.2 shows an example of the compositional aggregation of an LTS network
consisting of three parallel processes. The aggregation order followed is {{1, 3}, 2}, the
left sub-tree in Figure 5.1 shows a tree representation of this aggregation order. First, in
Figure 5.2a, the aggregation calls decompose the network in pre-order walk through the
aggregation order until the leaves are reached; parents are decomposed before forming
decomposed networks passed on to the children. Then, in Figure 5.2b, the aggregations are
applied in post-order walk through the aggregation order; composition and minimisation
are applied to children before their parents.

104 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

Compositional aggregation in Cadp. The SVL scripting language1 of Cadp offers
(amongst others) the following minimisation generation strategies:

• The monolithic approach, referred to as root reduction, directly computes the system
LTS of an LTS network and then applies minimisation.

• Root leaf reduction applies minimisation to the process LTSs of a network and then
applies root reduction on the resulting network.

• Smart reduction [56] is a heuristic that attempts to find an efficient aggregation
order. First, all the process LTSs are minimised. Then, recursively, a set I of
process LTSs is selected and the LTSs in I are replaced by their aggregation.

Metrics for compositional aggregation There are a number of metrics that are of
interest for compositional aggregation. One of the most simple methods is to consider
the number of transitions in each process LTS. The number of transitions in a process
LTS G is denoted by |TG |.

Smart reduction selects the aggregation order based on a combination of two metrics:
the Hiding Metric (HM), an indication of the density of hidden transitions, and the
Interleaving Metric (IM), an indication of the interleaving density. The sum of these two
metrics is called the Combined Metric (CM).

Smart reduction scores the sets of processes it considers for aggregation using the CM
metric. The processes considered are selected by a set of process indices I. The HM and
IM metrics use an upper bound of the number of transitions in the aggregation of the
processes in I.

Definition 5.3.4 (Upper Bound of the Number of Transitions of an Aggregation [56,81]).
Given an LTS network N , an upper bound for the number of transitions in the aggregation
of the processes indicated by a set of process indices I is defined as follows

ET(I, v̄) =

{
0 if I ∩Ac(v̄) = ∅∏

i∈I\Ac(v̄)|Si| ×
∏

i∈I∩Ac(v̄)|
v̄i−→| otherwise

Informally, ET(I, v̄) computes, for synchronisation vector v̄, the maximum number of
transitions going out of every product state of I (this includes unreachable states).

Smart reduction’s CM consists of HM and IM. Hiding in an aggregation is promoted
via HM: the IM metric has a higher value for aggregations with high normalised hiding
rate. Conversely, interleaving in the aggregation is punished via IM which has a lower
value for aggregations with higher estimated amounts of interleaving.

HM gives an indication of the density of hidden transitions (compared to a total
number of transitions) normalised by the number of processes considered for aggregation.

Definition 5.3.5 (Hiding Metric [56,81]). Given a set of process indices I over a network
N , the hiding metric is defined by HM(I) = HR(I)/|I|, where HR (the hiding rate) is
defined by

HR(I) =

∑
(v̄,τ)∈V∧Ac(v)⊆I ET(I, v)

1 +
∑

(v̄,a)∈V ET(I, v̄)

IM gives an indication of the density of interleaving transitions (compared to a fully
connected LTS) normalised by the number of processes considered for aggregation.

1For more info see http://cadp.inria.fr/man/svl-lang.html

5.4. Methodology 105

Definition 5.3.6 (Interleaving Metric [56,81]). Given a set of process indices I over a
network N , the interleaving metric is defined by IM(I) = (1− IR(I))/|I|, where IR (the
interleaving rate) is defined as

IR(I) =

∑
(v̄,a)∈V ET(I, v)

1 +
∑

(v̄,a)∈V
∑

i∈I∩Ac(v̄) ET(I, v̄@i)

where v̄@ij = v̄i if i = j and v̄@ij = • otherwise.

CM used by smart reduction is defined as follows.

Definition 5.3.7 (Combined Metric [56, 81]). Given a set of process indices I over a
network N , the combined metric is defined by CM(I) = HM(I) + IM(I).

Other metrics of interest to compositional aggregation concern the ratio of synchroni-
sing transitions resulting in τ of a set of processes. High density of such synchronisations
is desirable as they do not cause interleaving and can be reduced by the aggregation.
These kind of metrics are dual to a metric such as IM, promoting synchronisation as
opposed to punishing interleaving (IM).

Given a set of processes indices I, the Hidden Synchronisation Density Vector (HSDV)
is a vector containing the ratio of hidden synchronisations within I for each processes
indicated by I.

Definition 5.3.8 (Hidden Synchronisation Density Vector). Consider a network N and a
set of process indices I over N . The synchronised hiding density vector is defined as follows
HSDV(I) = 〈 |Tτ−sync(Πi, I)|/|TΠi

| | i ∈ I〉 where Tτ−sync(Πi, I) are the transitions of Πi

that synchronise with the other processes indicated by I resulting in the invisible action τ .

The vector produced by HSDV can be used to compute an indication of the hidden
synchronisation between a set of process indices I.

Definition 5.3.9 (Weighted Hidden Synchronisation Density). Consider a network N
and a set of process indices I over N . The weighted synchronisation density is defined by
WHSD(I) = Πe∈HSDV(I) e.

The values of the vector of HSDV(I) are multiplied to represent the common wish to
synchronise. If only a few members of I have a high hidden synchronisation density, and
other have a low density, then the high density members will not have much opportunities
to synchronise; in this case HSDV(I) will be low to indicate the lack of interest in (hidden)
synchronisation. Conversely, if all members of I have a value close to 1, then WHSD(I)
will also be close to 1, indicating that all processes have high hidden synchronisation
density.

5.4 Methodology
Setup Our experiments were conducted in a controlled test bed comprising a set of
homogeneous machines from the DAS-4 [14] cluster. Each machine has a dual quad-core
Intel Xeon E5620 2.4 GHz CPU, 24 GB memory, and runs CentOS Linux 6. We
used Cadp version 2017-e “Sophia Antipolis” as implementation for the monolithic and
compositional aggregation approaches.

106 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

The monolithic approach has been used as the control group. For compositional
aggregation, all possible aggregation orders were computed using Refiner [218] in com-
bination with the decomposition.brute_force plugin. The minimisation strategies
were coded in the Script Verification Language (Svl) [80] of Cadp. Given a property
the hiding set was calculated using the maximal hiding technique [144]. This technique
produces a set of property relevant actions that may not be hidden in the system. All
other actions can be safely hidden without affecting the verification result.

As cases we consider LTS network models in Cadp’s EXP format. As subjects we
consider case instances with a particular scale and hiding set. We use minimisation strategy
to refer to both aggregation according to some order, and monolithic minimisation.

Research Questions The variable of interest, i.e., the response variable, is the maxi-
mum memory cost (measured as the maximum measured resident set size) the compo-
sitional aggregation method. However, due to techniques Cadp uses to compress the
state space it is hard to relate this response variable to other variables. Moreover, for
small cases the maximum memory cost shows little variation hindering comparison even
further.

To gain more insight we also consider the maximum number of transitions generated as
an alternative measure for maximum memory cost. The maximum number of transitions
of an LTS has a medium to strong and highly significant correlation with the memory cost
of minimisation in Cadp, especially for large models: according to 41 groups (subjects
with a large number of parallel processes); for 26 out of 41 groups these two metrics
are strongly correlated (coefficient of 0.7 or higher), and for 10 more groups they are
moderately correlated (coefficient of between 0.7 and 0.5). For all of these the p-value is at
most 1.5× 10−2. Correlations have been measured using Kendall’s τb coefficient [117]. An
additional advantage is that the maximum number of transitions metric is tool agnostic.

To answer RQ 5.1 (see Section 5.1) we measured the maximum memory cost and
maximum number of transitions among the state spaces produced by compositional
aggregation for all possible aggregation orders on a set of subjects. The effect of scaling
and action hiding were investigated by controlling, respectively, the number of parallel
processes and the property.

Next, the performance of current heuristics are compared to that of other aggregation
orders in RQ 5.2. The smart reduction and root leaf reduction heuristics were applied to
the subjects. Both heuristics are supported by Cadp and have shown to be competitive
with respect to other heuristics [56]. Again, we measured the maximum memory cost
and maximum number of transitions among the state spaces processed by compositional
aggregation.

The intention of RQ 5.3 is to explain the success or failure of composition aggregation.
Observed difference in performance between the subjects of the cases were investigated
closer by inspecting the effect of action hiding, number of parallel processes, and aggre-
gation order. Findings were verified with adjusted models fixing one or more aspects,
therefore, obtaining more controlled measurements.

Finally, RQ 5.4 aims to identify or learn predictors that predict whether heuristics
for compositional aggregation will perform better or worse than monolithic minimisation.
For this, more data was needed to increase statistical significance of the analysis. As
a solution 2,000 models were generated based on a number of extracted metrics of 88
process LTSs originating from 29 LTS networks. A series of LTS metrics were considered
as well as graph metrics over the topology of the models. The selected metrics were tested
for correlation with the response variables. Additionally, machine learning techniques,

5.4. Methodology 107

offered by the carat R package [125], were used to learn predictors.
There are numerous variables that may affect the performance of compositional

aggregation with respect to monolithic minimisation. Variables of interest are typically
related to the size of a process LTS, or the reduction or interleaving that a process LTS
or the composition of process LTSs may introduce.

5.4.1 Case and Subject Selection for RQ 5.1, RQ 5.2, and RQ 5.3
The cases were sampled using quota sampling [158], i.e., cases with various characteristics
were selected. To avoid source bias the cases were selected from four different sources,
and where needed, converted to LTS networks.

Source 1 The BEnchmark for Explicit Model checkers (BEEM) database [162]. The
benchmark includes 57 parametric models with corresponding properties. 2

Source 2 The demos of the Cadp distribution. The Cadp distribution contains a set
of 42 demos. Many of the demos were extracted from the numerous real world
verification case studies performed with Cadp.

Source 3 The cases considered in an evaluation of automated assume-guarantee rea-
soning [49]. This considered set consists of 5 scalable cases with corresponding
properties. 3

Source 4 The cases considered in our previous work [60]. In previous work we experi-
mented with a set of 10 cases of which some are scalable.4

As mentioned by Cobleigh et al. [49] the generality of their work is threatened by the
limited variety in network topology. To avoid this, we selected cases with a variety of
network topologies. In addition, we took the following considerations into account:

1. The effect of action hiding was considered by selecting for each case various relevant
safety and liveness properties.

2. To investigate the effect of the number of parallel LTSs on compositional aggregation
we selected scalable cases. Each scalable case has one or more repeatable LTSs with
which the model was scaled up; e.g., a model consisting of a single server LTS and
two client LTSs was scaled up by adding copies of the client LTSs.

3. The number of possible aggregation orders and the time required to construct state
spaces grow exponentially with scale. Due to time considerations we limited each
compositional aggregation to two hours. In addition, we prematurely terminated a
compositional aggregation procedure as soon as it required more than the available
(physical) memory, i.e., 24 GB. Any subjects violating the time or memory criteria
were discarded from the experiment.

4. It is infeasible to calculate all the 39,208 possible aggregation orders at seven parallel
LTSs within reasonable time. Therefore, we chose to limit the number of considered
aggregation orders to a random sample 2,500 aggregation orders per subject. The
size of the sample is large enough to form a significant representation of the 39,208
possible aggregation orders at seven parallel LTSs.

2 http://paradise.fi.muni.cz/beem.
3http://laser.cs.umass.edu/breakingup-examples.
4http://www.win.tue.nl/mdse/property_preservation/FAC2017_experiments.zip.

108 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

Initially the sources above provided 115 models. We selected a number of scalable
cases with a variety of network topologies. We discarded the cases for which it was
infeasible to compute 2,500 aggregation orders for at least two scaled up version of the
case. Finally, eight cases were selected covering five different network topologies. Six out
of the eight cases were able to scale to a size of six parallel LTSs while satisfying the time
and memory criteria. The other two cases were scaled to four and seven parallel LTSs,
respectively.

Next, we selected a range of properties relevant for the cases and modelled several
scaled-up LTS networks. This finally resulted in a total of 129 subjects. The experiments
were run on these 129 subjects. In total 119,078 decompositions were considered costing
a total of 2.4 CPU-years. Finally, for 119 subjects all the run aggregation orders satisfied
the time and memory criteria.

5.4.2 Case Selection for RQ 5.4
The few cases considered for the other research questions are not nearly enough to find or
learn predictors that are statistically significant. For this we need hundreds of cases, if
not more. As there are no sources (that we are aware of) that add up to the number of
cases required, the only solution is to generate these cases.

Pelánek [163] has shown that random graphs differ significantly from state spaces.
Most notably, state spaces typically contain diamonds due to parallel composition and
have different distributions of node degrees and labels.

Hence, we have avoided the first issue by generating LTS networks consisting of
generated process LTSs. The state space of such an LTS network has the famous
diamonds, but the individual LTSs do not.

The second problem was resolved by generating process LTSs where node degrees
and transition labels are sampled from a large number of existing process LTSs from the
sources mentioned in the previous section (Section 5.4.1).

We found a third problem with random graphs: they often contain many unreachable
nodes. In contrast, a process LTS typically has no unreachable states. To combat this
issue we have first generated a spanning-tree for each process LTS such that all states
were reachable from one state.

Obtaining data The distributions used for the generation of process LTSs were: node
in-degree, node out-degree, labels, and synchronising labels. These distributions were
extracted from a total of 88 process LTSs covering 29 distinct LTS networks.5 Each
process LTS was computed by sampling the distributions of one of the 88 source process
LTSs.

Topologies of LTS networks were generated following a uniform degree distribution.
Topology degree distributions were not sampled for the generation of topologies as this
could have caused a lack of variation (due to the small size of the topology graph).

Finally, with the (unlabelled) process LTSs and the topologies ready, the process LTSs
were labelled according to the label and synchronising label distributions selected for each
process LTS. Synchronisation of labels was coordinated via the generated topology.

With this approach 2,000 LTS networks were generated with five process LTSs each.
This number of process LTSs was chosen to simplify analysis: by fixing the number of
process LTSs the effect it has on the predictor variable is removed.

5The networks are available at: http://www.win.tue.nl/mdse/composition/ML_models.zip

5.5. Results – RQ 5.1, RQ 5.2, and RQ 5.3 109

s

p2p1 pn

(a) Clients pi (i ∈ 1..n) and
server s

p1 p2 pn

(b) Pipes and filters with pro-
cessing nodes pi (i ∈ 1..n)

p1

p2 pn

(c) Ring with processing no-
des pi (i ∈ 1..n)

v1 v2 vn

p1 p2 pn

(d) Processes pi sharing vari-
ables vi (i ∈ 1..n)

p1 p2

pn

s

(e) Peer-to-peer network with
peers pi (i ∈ 1..n) and
tracker-server s

Figure 5.3: Network topologies

Smart reduction, root leaf reduction, and monolithic minimisation were applied to
all the generated LTS networks. For the minimisations the no deadlock property was
considered, i.e., all (global) result actions were hidden.

Model selection criteria The method in which labels are selected for transitions has
a risk of generating an LTS network in which only deadlock states are reachable. We
have removed these, since these networks do not represent realistic systems. Furthermore,
a minimisation strategy applied to a given network was cancelled after 2 hours to limit
expensive resource consumption.

Of the 2,000 generated models the minimised state space was computed within 2 hours
by at least one minimisation strategy for 1,615 models.6 All of these minimised models
contained at least one transition. These will be the considered cases in the following
analysis.

A brief inspection of the data indicated a clear class imbalance. Smart reduction out
performed the other two approaches in over 80% of the cases. A prediction model that
would always select smart reduction as the best possible minimisation method would
automatically have an accuracy of around 80%. We have taken this into account in our
analysis methodology.

5.5 Results – RQ 5.1, RQ 5.2, and RQ 5.3

5.5.1 Case and subject descriptions
Network topologies The selected cases are characterised by the network topologies
depicted in Figure 5.3. Dots indicate parallel processes and lines indicate synchronisation
relations. Dashed lines show the synchronisation relations that are introduced by adding
a repeatable process p.

Figure 5.3a shows a client-server topology. Such a network contains one or more
servers and one or more clients.

6The the resulting data is available at: http://www.win.tue.nl/mdse/composition/data_gen_
net.zip

110 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

Table 5.1: Selected cases and their characteristics; with p ≥ 1 the # of repeated LTSs

Case Case description Topology Scaling SourceID
1 The Gas Station problem [97] a (3 servers) 3 + p ≥ 4 1,3
2 Chiron user interface (single dispatcher) [115] a (2 servers) 3 + p ≥ 4 3
3 Eratosthenes’ Sieve (distributed calculation of primes) b 1 + p ≥ 3 2
4 Le Lann leader election protocol [138] c 2 · p ≥ 4 1
5 A simple token ring c 1 + p ≥ 3 4
6 Peterson’s mutual exclusion protocol [167] d 2 · p ≥ 4 1,2,3
7 Anderson’s mutual exclusion protocol [10] d 1 + 2 · p ≥ 5 1
8 Open Distributed Processing trader (ODP) [84] e 1 + p ≥ 3 2

In Figure 5.3b a pipes and filter topology is presented. The first process p1 produces
data and each process pi (i ∈ 1..n) in the sequence processes the data and filters before
forwarding the filtered data to the next process pi+1.

A ring network topology is shown in Figure 5.3c. Communication between processes
is organised as a ring structure. Often a token is passed along the edges that grants
special privileges to the process holding the token.

Figure 5.3d depicts communication via a number of shared variables. In the selected
cases, for each repeatable process pi there is a repeatable variable vi.

In Figure 5.3e a peer-to-peer network topology is shown. Addresses and services of the
peers pi (i ∈ 1..n) are published via the tracker-server s after which the offered services
can be employed on a peer-to-peer basis.

Case descriptions We have selected eight scalable models as cases. An overview of
these cases is given in Table 5.1. We identify the cases by their case number indicated in
the Case ID column. The Scaling column shows the scaling of the cases in the number of
repeated LTSs p and, on the right-hand side of the inequality, the minimum number of
parallel LTSs; e.g., ODP’s scaling 1 + p ≥ 3 states that there is one non-repeated LTS
(the trader) and one repeated LTS (the client), but the number of processes must be at
least 3. Finally, in the Source column the sources of the cases are given, these correspond
to the list of sources (Section 5.4). 7

Subject descriptions Subjects correspond to instances of cases with a particular scale
and hiding set, i.e., property. Subjects are identified by three alphanumeric characters:
the first indicating the number of the case ID, the second indicating the letter of a
corresponding case property, and the third indicating the scale of the case model. With
“_”, we denote the absence of a property, i.e., no hiding is applied. For instance, 1e5 is
the case 1 model where actions not relevant to property e (of case 1) have been hidden
and the subject has a total of 5 parallel LTSs. For each model, we identified between two
and eight relevant properties.

The selected scaling is from the minimum scale of the case up to the possible scale
nearest to six; e.g., for case 1 with property a the set of subjects is 1a4, 1a5, 1a6 and
for case 6 with no property the set of subjects is 6_4, 6_6.

7The models are available at http://www.win.tue.nl/mdse/composition/test_cases.zip.

5.5. Results – RQ 5.1, RQ 5.2, and RQ 5.3 111

5.5.2 Analysis
Figures 5.4 and 5.5 respectively show the distribution of the normalised memory consump-
tion and normalised maximum number of transitions of the generated state spaces for all
possible aggregation orders of each subject, in the form of violin plots [101].8 The black
horizontal lines within each plot connected by a black vertical line indicate the first, second,
and third quartiles. On the x-axis the subjects are displayed, grouped by case ID and
scale. The y-axis displays the value of the response variables on a log10-scale: maximum
memory cost in Figure 5.4 and maximum number of transitions in the generated state
space in Figure 5.5. Furthermore, the dashed horizontal line indicates the performance
of monolithic construction. Finally, the normalised values of the response variables for
smart reduction and root leaf reduction are indicated by a red dot and blue diamond,
respectively.

It should be noted that the repeating of LTSs has a noticeable effect on the distribution
of aggregation orders. Some peaks arise due to accumulation of sets of symmetric
aggregation orders measuring the same normalized maximum number of transitions.
However, as can be seen in the plots, in most cases this effect does not change significantly
as more repeated LTSs are added.

5.5.2.1 RQ 5.1 How do action hiding, number of parallel processes, and
aggregation order affect the memory consumption of compositional
aggregation?

We answer this research question using Figures 5.4 and 5.5.

Aggregation order The chosen aggregation order has a major impact on the maximum
memory cost and the maximum number of transitions residing in memory. Two aggregation
orders may differ by several orders of magnitude depending on the subject for both
normalised memory cost and normalised maximum number of transitions.

Although the maximum number of transitions generated may differ with the monolithic
approach by several orders of magnitude, this does not naturally translate to normalised
maximum memory cost. This is evident in the ranges that both metrics cover: in many
cases the ranges over the normalised maximum number of transitions (Figure 5.5) cover
several orders of magnitude while the range over the normalised maximum memory cost
(Figure 5.4) is only marginal in comparison. This is likely caused by the state space
compression methods that Cadp employs resulting in a somewhat unpredictable relation
between the two metrics.

Scaling In general we observe that the range covered by the distribution of aggregation
orders increases as the number of parallel processes increases. In all cases scaling up
results in a better performance of the best aggregation orders with respect to monolithic
verification, i.e., as the subjects increase in size, compositional aggregation becomes
increasingly viable. The only exception is the normalised memory consumption in case
5 where the range does not change with scale. For both response variables the range
extends both upwards and downwards in cases 3 and 8; compared to the smaller subjects
(in scale) the bad aggregation orders become worse and the good aggregation orders
better. In cases 7 and 1 this is also observed for the normalised maximum memory cost

8All generated data is available at http://www.win.tue.nl/mdse/composition/test_cases_
data.zip.

112 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

0.985

0.990

0.995

1.000

1.002

1_4
1a4
1b4
1c4
1d4
1e4
1f4
1g4
1_5
1a5
1b5
1c5
1d5
1e5
1f5
1g5
1_6
1a6
1b6
1c6
1d6
1e6
1f6
1g6

subject ID

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t

(a) case 1

0.985

0.990

0.995

1.000

1.002

2_4
2a4
2b4
2c4
2d4
2e4
2f4
2g4
2h4
2_5
2a5
2b5
2c5
2d5
2e5
2f5
2g5
2h5
2_6
2a6
2b6
2c6
2d6
2e6
2f6
2g6
2h6

subject ID

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t

(b) case 2

0.5

1.0

10.0

100.0

200.0

3_3

3a3

3b3

3c3

3d3

3_4

3a4

3b4

3c4

3d4

subject ID

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t

(c) case 3

0.05

0.10

0.50

1.00

2.00
4_4

4a4

4b4

4c4

4d4

4_6

4a6

4b6

4c6

4d6

subject ID

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t

(d) case 4

0.99

1.00

1.01

1.02

1.03

5_3

5a3

5_4

5a4

5_5

5a5

5_6

5a6

subject ID

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t

(e) case 5

0.50

0.75

1.00

6_4

6a4

6b4

6c4

6d4

6_6

6a6

6b6

6c6

6d6

subject ID

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t

(f) case 6

0.3

0.5

1.0

5.0

10.0

7_5

7a5

7b5

7c5

7d5

7_7

7a7

7b7

7c7

7d7

subject ID

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t

(g) case 7

5e−03

1e−02

1e−01

1e+00

1e+01

2e+01

8_3
8a3
8b3
8c3
8d3
8_4
8a4
8b4
8c4
8d4
8_5
8a5
8b5
8c5
8d5
8_6
8a6
8b6
8c6
8d6

subject ID

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t

(h) case 8

Figure 5.4: Distribution of the normalised memory cost generated by the aggregation
orders per subject (violin plots) and case (sub-figures)

5.5. Results – RQ 5.1, RQ 5.2, and RQ 5.3 113

1

10

30

1_4
1a4
1b4
1c4
1d4
1e4
1f4
1g4
1_5
1a5
1b5
1c5
1d5
1e5
1f5
1g5
1_6
1a6
1b6
1c6
1d6
1e6
1f6
1g6

subject ID

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns

(a) case 1

0.1

1.0

4.0

2_4
2a4
2b4
2c4
2d4
2e4
2f4
2g4
2h4
2_5
2a5
2b5
2c5
2d5
2e5
2f5
2g5
2h5
2_6
2a6
2b6
2c6
2d6
2e6
2f6
2g6
2h6

subject ID

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns

(b) case 2

5e−01
1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

5e+05

3_3

3a3

3b3

3c3

3d3

3_4

3a4

3b4

3c4

3d4

subject ID

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns

(c) case 3

0.01

0.10

1.00

2.00

4_4

4a4

4b4

4c4

4d4

4_6

4a6

4b6

4c6

4d6

subject ID

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns

(d) case 4

0.003

0.010

0.100

1.000

2.000

5_3

5a3

5_4

5a4

5_5

5a5

5_6

5a6

subject ID

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns

(e) case 5

0.03

0.10

1.00

2.00

6_4

6a4

6b4

6c4

6d4

6_6

6a6

6b6

6c6

6d6

subject ID

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns

(f) case 6

0.01

0.10

1.00

2.00

7_5

7a5

7b5

7c5

7d5

7_7

7a7

7b7

7c7

7d7

subject ID

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns

(g) case 7

5e−03

1e−02

1e−01

1e+00

1e+01

8_3
8a3
8b3
8c3
8d3
8_4
8a4
8b4
8c4
8d4
8_5
8a5
8b5
8c5
8d5
8_6
8a6
8b6
8c6
8d6

subject ID

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns

(h) case 8

Figure 5.5: Distribution of the normalised maximum number of transitions generated by
the aggregation orders per subject (violin plots) and case (sub-figures)

114 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

and the normalised maximum number of transitions, respectively. In the remaining cases
the whole range shifts downwards as the number of parallel processes increases (again
with exception of 5 for normalised maximum memory cost). Finally, in cases 1 and 2 the
range of the normalised maximum memory cost increases slightly at 5 parallel processes
compared to 4, and suddenly drops at 6 parallel processes. As similar results are not
visible in the normalised maximum number of transitions, it is likely that the state space
compression used by Cadp is the cause of this.

The shape of the distributions tends to change as the number of parallel processes
increases, this is most notable in the maximum number of transitions. One of the
factors contributing to this phenomenon is the increasing number of data points in the
distributions as the scale increases; there are 4, 26, and 236 distinct aggregation orders at
3, 4, and 5 parallel processes, respectively. At larger scales a sample of 2,500 orders was
taken. This effect is particularly visible in case 3, where the model at scales 3 and 4 are
compared. However, most likely the changes are due to the number of repeated processes.
Due to this the balance of constituents of the model changes causing the high density
areas to change accordingly.

Action hiding One would think that applying action hiding practically always results in
an improvement. While this is indeed mostly true for the maximum number of transitions,
this varies heavily for the maximum memory cost. The memory consumption (Figure 5.4)
may remain unchanged or even increase when hiding is applied: a number of subjects
show this trend in cases 4 to 8. Some of the subjects in these cases do show reduced
memory consumption when hiding is applied. In cases 1 and 2 action hiding always
improves the worst case normalised memory consumption.

The maximum number of transitions generated (Figure 5.5) is generally affected
positively from action hiding, the only exceptions being subjects 5a3, 8a3 to 8d3. In
cases 1 and 2 practically no distinction in the maximum number of transitions is observed
between the applied hiding sets. Cases 3, 4, 6, 7, and 8 show moderate to significant
variation in performance depending on the applied hiding set. For those subjects where
the hiding sets have a noticeable impact, also the shape of the distribution is affected. For
instance, subject 7c5 has a higher density around the best performance value, forming a
vase shape between the minimum and the first quartile, than 7d5, which has a short tail
in the same area.

5.5.2.2 RQ 5.2 How effective are the aggregation orders chosen by current
heuristics?

Figures 5.4 and 5.5 show how smart reduction (indicated by a red dot) and root leaf
reduction (indicated by a blue diamond) relate to other aggregation orders. Both action
hiding and the scaling can have a significant effect on their performance. However, there
is no clear relation between these variables and the performance, which is particularly
visible for case 3.

Smart reduction has at most the memory cost of monolithic minimisation in 109 out
119 subjects, Furthermore, smart reduction generates at most the number of transitions
that the monolithic approach generates in 80 out of 119 subjects. Root leaf reduction
performs better or equal than monolithic minimisation in 109 and 96 out of 119 subjects
in terms of memory consumptions and number of transitions generated, respectively.
Furthermore, smart reduction and root leaf reduction find a best aggregation order (with
respect to the sample) for, respectively, 101 and 83 out of the 119 subjects in terms of

5.5. Results – RQ 5.1, RQ 5.2, and RQ 5.3 115

Table 5.2: Normalised (w.r.t monolithic) maximum memory cost descriptive statistics;
with “Smallest” and “Largest” indicating, respectively, the smallest and largest number of
parallel processes of the 8 subjects

Size Prop. Mean Median # < monolithic # < other heuristic
ID smart root leaf smart root leaf smart root leaf smart root leaf

Smallest _ 0.99 1.00 1.00 1.00 2 1 2 1
Smallest a 0.98 0.99 1.00 1.00 2 2 1 0
Largest _ 0.75 0.78 0.91 1.00 7 4 6 0
Largest a 0.81 0.85 0.96 0.99 7 7 6 0

Table 5.3: Normalised (w.r.t monolithic) maximum transitions descriptive statistics; with
“Smallest” and “Largest” indicating, respectively, the smallest and largest number of
parallel processes of the 8 subjects

Size Prop. Mean Median # < monolithic # < other heuristic
ID smart root leaf smart root leaf smart root leaf smart root leaf

Smallest _ 3.12 3.10 0.74 0.77 5 5 3 1
Smallest a 2.89 2.91 0.41 0.51 5 5 2 1
Largest _ 54.65 1.53 0.32 0.32 6 6 4 2
Largest a 1.68 1.36 0.05 0.22 6 7 6 1

maximum memory cost. Likewise, smart reduction and root leaf reduction find a best
aggregation order (with respect to the sample) for, respectively, 29 and 40 out of the 119
subjects in terms of maximum number of transitions generated.

Since our data is obtained from repeated measurements over eight cases, to make a
fair and meaningful comparison we select cases under related conditions. We select the
“smallest” and “largest” subjects in the number of parallel processes from the subjects
considered so far. From the properties we select the only two property IDs that all cases
have in common; “_” (no property) and “a” (no deadlock). The intersection of these two
pairs of selections yields four sets of subjects within which a comparison is made. First
a comparison between the performance of the smart reduction and root leaf reduction
is made, after which their performances are compared with the performance of best
aggregation orders of the sample sets of the corresponding subjects.

Smart reduction versus root reduction Tables 5.2 and 5.3 compare the normalised
maximum memory cost and the normalised maximum number of transitions, respectively,
of smart reduction and root leaf reduction. The first two columns indicate the selection
criteria for the number of parallel processes. A comparison is made between smart
reduction and root leaf reduction indicated by the smart and root leaf columns. The
Mean, Median columns show the mean and median normalised maximum transitions.
The final two columns, # < monolithic and # < other heuristic, indicate in how many
cases the heuristics perform better than monolithic and the other heuristics, respectively.

Mean. In terms of maximum memory consumption there is little difference between the
means of smart and root leaf reduction for all groups of subjects. For both heuristics the
mean performance is slightly lower or equal to monolithic minimisation for the groups
of “smallest” subjects. Both heuristics have a mean maximum memory cost between
0.75 and 0.85 times that of the monolithic approach in the groups of “largest” subjects,
where hiding all actions (as implied by the no deadlock property) seems to decrease the
effectiveness.

116 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

In terms of maximum number of transitions generated there is little difference between
the means of smart reduction and root leaf reduction in the groups of “smallest” subjects.
For both heuristics the mean performance is around 3 times that of the monolithic
approach. In the groups of “largest” subjects there is significant difference between the
means of smart reduction and root leaf reduction in group “_”. In group “a” this difference
is only 0.32 in favor of root leaf reduction. The high mean value for smart reduction is
caused by its poor performance at cases 1 and 3.

Although the mean maximum number of transitions generated may be several orders
larger, this does not seem to affect the mean maximum memory cost much. To draw any
conclusions we must look back to the individual subjects in Figures 5.4 and 5.5. Indeed,
we can observe that in nearly all cases both heuristics are able to find aggregation orders
that perform equally well or better than the monolithic approach in terms of maximum
memory cost even in subjects where the maximum number of transitions generated by the
heuristics is much higher than that of the monolithic approach (see 1_6, all subjects of
case 3, and all subjects of case 8 at scale 3). The converse is observed in case 5 where the
maximum number of transitions generated is lower than that of the monolithic approach,
but compositional aggregation does not seems to benefit from this. Both observations are
likely caused by the state space compression methods that Cadp employs.

Median. The median maximum memory costs is exactly 1 for both heuristics in the
“smallest” group. The median improves slightly in the “largest” group for the smart
reduction heuristic. This effect is, however, not as clear for root leaf reduction which
shows insignificant improvement, and only in group “a”.

The results are much more positive in terms of maximum number of transitions
generated, as the median is much lower than the mean for both heuristics. Smart
reduction has a slightly better median performance in general, but is over four times
better in the “smallest” group with property ID a.

While the heuristics have a much better median performance than monolithic mi-
nimisation in terms of maximum number of transitions generated, this effect is not as
evident in maximum memory cost. Again, likely the effects are dampened by state space
compression methods used by Cadp.

Number of cases better than monolithic minimisation. In maximum memory cost both
heuristics perform better that the monolithic approach in 1 to 2 out of 8 cases in the
“smallest” group: these were cases 3 and 7. For small subjects most of the aggregation
orders are situated around 1 in Figure 5.4. It is, therefore, likely that the heuristics will
find one of those aggregation orders. Results are much better in the “largest” group where
smart reduction outperforms the monolithic approach in 7 out of 8 cases for both property
groups. Case 5 is the only case for which smart reduction did not perform better than
the monolithic approach. Root leaf reduction seems to benefit from property hiding as it
outperforms monolithic minimisation in 7 out of 8 cases in the property group “a” but
only in 4 out of 8 cases in property group “_”. In the former case all cases but case 5
performed better than the monolithic approach, in the latter case monolithic minimisation
was outperformed in cases 4, 6, 7, and 8.

For maximum number of transitions generated in the “smallest” group, both heuristics
perform better than the monolithic approach in 5 out of 8 cases in both property ID
groups. The remaining three cases being 1, 3, and 8 for both heuristics and property ID
groups. Both heuristics perform better than the monolithic approach in 6 out of 8 cases
in property ID group “_”, while root leaf reduction performs better in one additional case
in group “a”. The two remaining cases being 1 and 3, excluding case 1 in group “a” for

5.5. Results – RQ 5.1, RQ 5.2, and RQ 5.3 117

Table 5.4: Normalised (w.r.t the best aggregation order of the sample) maximum memory
cost descriptive statistics

Size Prop. ID Mean Median # best found
smart root leaf smart root leaf smart root leaf

Smallest _ 1.00 1.01 1.00 1.00 8 7
Smallest a 1.00 1.00 1.00 1.00 8 7
Largest _ 1.02 1.05 1.00 1.01 5 2
Largest a 1.18 2.99 1.00 1.04 5 3

Table 5.5: Normalised (w.r.t the best aggregation order of the sample) maximum transiti-
ons descriptive statistics

Size Prop. ID Mean Median # best found
smart root leaf smart root leaf smart root leaf

Smallest _ 1.02 1.02 1.00 1.00 5 5
Smallest a 1.31 1.44 1.18 1.00 4 5
Largest _ 8.14 1.24 1.07 1.01 2 4
Largest a 2.43 6.78 1.90 1.89 2 1

root leaf reduction.

Smart reduction versus root leaf reduction. Concerning maximum memory cost smart
reduction generally performs equally or better than root leaf reduction. In the “smallest”
group the two heuristics are mostly tied. Root leaf reduction only performs better than
smart reduction in the “smallest” case with property ID “_”. In the “largest” group smart
reduction outperforms root leaf reduction in 6 out of 8 cases for both property groups.

In terms of maximum number of transitions generated the performance of the heuristics
is more evenly distributed: they outperform each other nearly an equal number of times.
Only in the “largest” group with property ID “_” root leaf reduction has a clear advantage.

Heuristics vs. the best aggregation order Tables 5.4 and 5.5 compare the maxi-
mum memory cost and the maximum number of transitions, respectively, of the smart
reduction and root leaf reduction heuristics normalised with respect to the best performing
of compositional aggregation in the sample. The final columns, # best found, indicate
how many times a best aggregation order was found.

In both tables if we go from the “smallest” groups to the “largest” groups, both the
means and medians increase, and the number of best orders found decreases. This may
indicate that it becomes harder for the heuristics to find (near-)optimal aggregation orders
as the number of parallel processes increases, however, this should be confirmed by further
experiments.

In terms of maximum memory cost both heuristics are close to the best performance
in a considerable number of cases; only in the “largest” group with property ID “a” we
observe an increase in relative memory cost (in particular root leaf reduction). As the
median performance is still close to the best of the sample, the increase of the mean is
caused by bad performance on a few cases. Upon inspection this appeared to be case 8,
which requires 2.31 and 16.65 times more memory than the best aggregation order for
smart reduction and root leaf reduction, respectively. The remainder of the cases required
at most 13% more memory than the best aggregation order of the case’s sample.

The heuristics perform a few orders of magnitude worse than the best aggregation

118 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

order in terms of the maximum number of transitions generated. For the cases in the
“smallest” group both smart reduction and root leaf reduction find a best aggregation
order in 4 to 5 out of the 8 cases. Smart reduction strays from the best order mostly in
the “largest” group when no hiding is applied (property group “_”), while for root leaf
reduction this is observed in when hiding is applied (property group “a”). In property
group “_” smart reduction performs badly in cases 1 and 3 at, respectively, 13.59 and
45.12 times the performance of the best order of the sample. In property group “a”
smart reduction performs particularly worse than the best order or the sample in cases
1 (6.92 times the best) and 7 (3.24 times the best), while root leaf reduction performs
reasonably well in case 7 (1.34 times the best). At the same time root leaf reduction
performs badly at cases 7 (14.20 times the best) and 8 (30.03 times the best), while
smart reduction measures 1.98 times the maximum number of transitions generated for
case 8. Considering the maximum number of transitions generated within the context of
the cases considered here, it seems that smart reduction and root leaf reduction may be
preferable in different cases.

5.5.2.3 RQ 5.3 How can the success or failure of compositional aggregation
be explained?

As we have seen Cadp makes use of a compression scheme to reduce the state space. As
the inner workings of this scheme have not been revealed in the literature it is hard to
reason about relation between compositional aggregation and the corresponding memory
cost. Hence, to answer this research question, we focus on the maximum number of
generated transitions.

Although our experiment involves a large number of subjects, the number of different
cases per topology is still rather limited. However, based on this data, we make the
following observations, backed up by results obtained for additional models with the same
topology that we constructed to focus on specific key aspects of the cases.

Two factors seem to be most influential regarding the effectiveness of compositional
aggregation: the amount of internal behaviour within single process LTSs, and the
amount of synchronisation among the process LTSs. In the latter case, the involvement
of data has a noticeable effect, in particular the size of the data domain; for instance,
when synchronisation on a Boolean value is specified, the receiver only needs to be able
to synchronise on true and false, while the synchronisation on a Byte value already
requires 256 transitions, many of which may be unnecessary in the complete model, since
they handle values on which synchronisation actually never happens. However, if in
an aggregation order, this receiver is selected before the corresponding sender, then in
each step before selecting the sender, all 256 transitions of the receiver will remain, and
interleave with the transitions of all LTSs that are added to the composition.

Among the subjects, case 3 demonstrates best that the involvement of a lot of (to
be synchronised) data has a negative effect on compositional aggregation. Additional
experiments with a simple pipes and filters model, one with a data domain ranging from
1 to 2 and the other from 1 to 100, underline this observation, the latter performing
an order of magnitude worse than the former. Furthermore, the former performs very
well compared to monolithic verification, demonstrating that the bad performance of
compositional aggregation is not inherent to the pipes and filters topology.

The positive effect of involving a property to be checked, and therefore action hiding,
demonstrates the importance of internal behaviour in the process LTSs, as action hiding
adds internal behaviour. It seems of little importance which property is actually added,

5.6. Results – RQ 5.4 119

i.e., whether it allows abstraction from all actions in the case of deadlock detection, or
only a subset. This is best demonstrated by the token ring cases, i.e., cases 4 and 5. We
manipulated case 5 in two different ways: increasing the amount of synchronisation, and
increasing the amount of process-local (but not hidden) behaviour. The results clearly
show that the former has a negative impact on performance, while the latter results in
much better performance (by two orders of magnitude) iff a property is involved that
allows the additional behaviour to be abstracted away, such as deadlock freedom.

The mutual exclusion algorithms, i.e., cases 6 and 7, have exactly the same set of
properties. Those results demonstrate that the effect of adding a property is not always
the same for all models of the same topology; adding a property seems to have a bigger
effect on case 7 than case 6, resulting in a bigger range between the worst and best
performing aggregation orders.

In a follow-up experiment, we will extend the number of cases and/or subjects per
topology, to achieve conclusive evidence that could generalise these observations.

5.6 Results – RQ 5.4

5.6.1 Considered variables
The main response variables are classifiers indicating which minimisation strategy per-
formed best for a given model in terms of maximum generated transitions and memory
cost; these are called best number of maximum transitions and best maximum memory
cost, respectively. Ties are resolved by selecting the strategy with the lowest overhead:
monolithic minimisation has no overhead and root leaf reduction has some overhead,
while smart reduction has the highest overhead.

Other response variables of interest are the normalised maximum number of generated
transitions and normalised maximum memory cost (normalised with respect to monolithic
minimisation) for both smart reduction and root leaf reduction. These variables give aim
to predict how much more (or less) effective smart reduction or root leaf reduction are
than the monolithic approach.

Given an LTS network N = (Π,V) the following metrics were considered as predictor
variables: HM(Ac(V)), IM(Ac(V)), |TΠ|, SD(Ac(V)), and WHSD(Ac(V)) (metrics are
discussed at the end of Section 5.3). These metrics, calculated over elements of the
network, produce a list of values. In order to test and apply these lists of metrics to
correlation and learning, they must be aggregated to a single value; for this the minimum,
maximum, mean, median, standard deviation, sum, and product were calculated over the
lists. These aggregations characterise the distribution of the metrics in different ways.

In addition, metrics on the topology of the network were considered: edge density,
edge connectivity, mean distance between nodes, and weighted diameter (weighted by
HM , IM , CM , and |TΠ|). These metrics all measure a form of connectedness of the
network. In general compositional aggregation strategies should work better for loosely
connected networks. Hence, these metrics are potential predictors for the success of the
compositional aggregation heuristics.

5.6.2 Case and subject descriptions
Table 5.6 presents a summary of the experiments. The first column indicates the
minimisation strategy. The # finished column indicates the number of cases that the
strategy was able to minimise. The # best max. transitions columns show the number of

120 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

Table 5.6: Descriptive statistics of smart reduction, root leaf reduction, and monolithic
minimisation on the 1,615 cases

Min. strategy # finished # best max. transitions # best max. memory cost
equal priority prioritised equal priority prioritised

Smart reduction 1,425 1,267 1,108 893 876
Root leaf reduction 1,361 239 239 443 443
Monolithic minimisation 1,146 268 268 296 296

cases for which the strategy generated to lowest maximum number of transitions. In the
equal priority column ties are also counted, in the priority column ties are resolved by
selecting the strategy with the lowest overhead: monolithic minimisation has no overhead
and root leaf reduction has some overhead, while smart reduction has the highest overhead.
The # best max. memory columns give the number of cases for which the strategy had
the lowest maximum memory cost. Again, in the equal priority column ties are counted,
and in the priority column ties are resolved as mentioned previously.

Smart reduction, root leaf reduction, and monolithic minimisation were able to finish
computations for 1,425, 1,361, and 1,146 models, respectively.

Smart reduction had a better or equal performance compared to the monolithic
approach in 1,267 and 893 cases in terms of maximum number of generated transitions
and maximum memory cost, respectively. In 159 and 17 cases smart reduction performed
the same as monolithic minimisation or root leaf reduction for maximum number of
transitions generated and maximum memory cost, respectively. Hence, taking overhead
into account smart reduction performed better in 1,108 and 893 cases in terms of maximum
generated transitions and maximum memory cost, respectively.

Root leaf reduction performed better than or equal to monolithic minimisation in 239
and 443 cases in terms of maximum generated transitions and maximum memory cost,
respectively. In 0 of these cases root leaf reduction performed the same as the monolithic
approach. Taking overhead into account this means that root leaf reduction is the best
in 239 and 443 cases concerning maximum generated transitions and maximum memory
cost, respectively.

Finally, monolithic minimisation performed better than or equal to the two heuristics
in 268 and 296 out of 1,615 cases in terms of maximum number of generated transitions
and maximum memory cost, respectively. Since monolithic minimisation has the lowest
computational overhead the approach is considered the best in all these cases when taking
overhead into account.

As smart reduction outperforms the other approaches by a significant margin there is
a class imbalance. We will take this into account when performing the data analysis.

Figure 5.6 shows the kernel density plots of normalised maximum number of transitions
and normalised maximum memory cost response variables for both smart reduction and
root leaf reduction. The x-axis indicates the value of the response variables and is
log10-scale. The y-axis shows the probability that the response variable of a given case
has the value indicated by the x-axis. Equal performance to monolithic minimisation,
i.e., the normality line, is indicated by the blue dashed line. The density plots are drawn
over 973 and 981 cases for smart reduction and root leaf reduction, respectively. These
cases are the ones that both the corresponding heuristic and monolithic minimisation
successfully completed. For other cases, the normal value with respect to the monolithic
approach cannot be computed. Since the plots are drawn over the intersecting cases they
may not represent the performance distribution exactly; non-overlapping data both in

5.6. Results – RQ 5.4 121

0.0

0.1

0.2

0.3

0.4

1e−06 1e−04 1e−02 1e+00 1e+02 1e+04 1e+06
Normalised maximum number of transitions

De
ns

ity

 normality line
 root leaf reduction
 smart reduction

(a) Density plot of normalised maximum num-
ber of transitions; the x-axis is log10-scale

0.0

0.2

0.4

0.6

1e−03 1e−02 1e−01 1e+00 1e+01 1e+02 1e+03
Normalised maximum memory cost

De
ns

ity

 normality line
 root leaf reduction
 smart reduction

(b) Density plot of normalised maximum me-
mory cost ; the x-axis is log10-scale

Figure 5.6: Density plots of normalised maximum number of transitions (a) and normalised
maximum memory cost (b) for both smart reduction (solid black line) and root leaf
reduction (solid red line), the dashed blue line indicates the point of equal performance
to monolithic minimisation

favour of the heuristics and in favour of monolithic minimisation is missing. Nevertheless,
they give a rough indication of the performance distributions of the heuristics.

Figure 5.6a shows that normalised maximum number of transitions generated by smart
reduction is overall significantly more skewed to the left; this shows that smart reduction
performs more often and more orders of magnitude (than monolithic minimisation) better
than root leaf reduction.

Figure 5.6b shows that also in terms of normalised maximum memory cost the values
are strongly skewed to the left; an effect made less visible by the log10-scale of the x-axis.
It seems that root leaf reduction has a higher surface on the left of the normality line
than smart reduction, however, one should note that many data points are missing that
are in favour of smart reduction; a fact confirmed by the higher number of cases in which
smart reduction occurs most often in best maximum memory cost (see Table 5.6).

5.6.3 Analysis
Analysis Procedure To perform the analysis, we first eliminate redundant variables.
Then, correlation testing is applied to test the likelihood of a monotonic relation between
predictor and response variables. Next, relations between response variables and the
predictor variables are considered all at once through machine learning methods. Finally,
the prediction models learned are validated.

Variable Elimination. Predictors that are highly correlated with other predictors intro-
duce redundancy in the analysis. Therefore, we have selected one predictor variable
among any two predictors that were highly correlated. Two predictors were considered to
be highly correlated if the Kendall correlation coefficient is greater than or equal to 0.7
and the correlation is confirmed by the scatter plot of the two predictors.

Correlation Testing. As a first analysis the Kendall correlation coefficient between the
normalised maximum number of generated transitions and normalised maximum memory
cost response variables and the remaining predictors was calculated. The correlation

122 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

coefficient gives an indication on how strongly the relation between predictor and response
variable can be captured as a monotonic relation.

Since a large range of predictor variables was tested against the response variables
there is a higher chance to find ones that are correlated, this is also called the multiple
comparison problem [182]. We have applied Bonferroni correction [30] to compensate for
this situation.

This step could not be taken for the other two response variables as they are categorical.

Machine Learning. Machine learning methods were used to investigate whether conside-
ring multiple predictors increases the accuracy of the prediction model. Furthermore,
some machine learning methods are able to learn non-linear prediction models. With this
in mind we have selected a mixture of machine learning methods.

The data was partitioned into a training set (75% of the data) and a test set (the
remaining 25%). Before the prediction models were trained, the data was standardised
using scaling to improve model performance. Scaling changes the range of the data with
respect to the standard deviation without affecting its distribution curve.

For regression (normalised maximum number of generated transitions and normalised
maximum memory cost) the selected machine learning methods were:

• Linear methods: Linear Regression (LR), Generalized Linear Model with Elasti-
cnet Regularization (GLMER), and Support Vector Machines with Linear Kernel
(SVMwLK).

• Non-linear methods: Classification and Regression Trees (CART), K-Nearest Neig-
hbours (KNN), Random Forests (RF), Support Vector Machines with Radial Kernel
(SVMwRK), and Quantile Regression Neural Network (QRNN).

Mean Absolute Error (MAE) was chosen as the performance metric for regression methods.
MAE takes the mean of the absolute value of prediction errors; indicating how concentrated
the data is around the learned fit. As the response variables are normalised with respect
to monolithic minimisation application of MAE to these variables is misleading: an error
below 1 would weigh less than an error above 1. For instance, a prediction of 0.1 and
10 instead of 1 both differ by a factor 10, but the former would have a weight of 0.9,
while the latter would have a weight of 9. Instead, we first take the log10 of the response
variables such that errors have a more intuitive meaning, i.e., error values indicate the
factor by which a prediction is off.

For classification (best number of maximum transitions and best maximum memory
cost) the selected machine learning methods were:

• Linear methods: Linear Discriminant Analysis (LDA), Generalized Linear Model
with Elasticnet Regularization (GLMER), and Support Vector Machines with Linear
Kernel (SVMwLK).

• Non-linear methods: Classification and Regression Trees (CART), K-Nearest Neig-
hbours (KNN), Random Forests (RF), Support Vector Machines with Radial Kernel
(SVMwRK), and Learning Vector Quantization (LVQ).

As the collected data suffered from a class imbalance we opted for Cohen’s κ coefficient [50]
as the performance metric as opposed to accuracy. Cohen’s κ coefficient measures
agreement between predicted and observed values for categorical items. This metric
considers the possibility of classification agreement to occur by chance. A value of 1
indicates perfect agreement, while a value of 0 indicates no agreement.

Prediction models were trained using k-fold cross validation repeated 5 times. Cross
validation estimates the skill of the prediction model on unseen data. Repeated cross

5.6. Results – RQ 5.4 123

validation reduces bias and variance of the prediction model.
The k-fold cross validation partitions the data in k random sets. Then for each set the

prediction model is trained on the union of all models minus the given set. This withheld
set is used to evaluate the model and the error estimation is remembered. Finally, the
error estimations of all iterations are averaged to summarize the total effectiveness of the
learning method.

Cross validation reduces bias since all of the data is used for training. Furthermore,
variance is reduced since all data is also used for testing at one point. A higher number of
folds reduces the partition sensitivity [120,176]. A plateau is usually reached at around
10 folds [108,120,126,176]. Furthermore, it is advisable to select a k that is a divisor of
the size of the dataset such that the data is split in equally sized sets. Therefore, we have
selected as k the divisor of the size of our data set that is closest to 10.

When cross validation is repeated the prediction model score is the mean of the models
learned during cross validation. Repeated cross validation is less affected by the chosen
partitioning as it considers a different partitioning each repetition.

The caret R package [125] was used to train the prediction models. The training
methods of the caret package by default apply cross validation to tune the parameters
of the machine learning methods. Repeated cross validation is applied with a number of
different parameter values. After a number of repetitions the best performing iteration is
chosen as the prediction model.

Validation. As validation we compare the prediction errors on the training set and the
test set of the best learned models. We report the performance of the prediction models
on both the repeated cross validation and the prediction errors comparison. The former
gives an indication on how the learning algorithm performs on the data. The latter gives
an impression of the stability with respect to unseen data and the error distribution of
the final model.

For the classification models we use the models’ accuracy and Cohen’s κ coefficient
as a first error metric. Afterwards we discuss the sensitivity, specificity, and precision of
the prediction models on the test set. The sensitivity with respect to a class C is the
probability that a case is correctly classified as C.

Sensitivity(C) =
number of C elements predicted correctly

total number of C elements

The specificity with respect to a class C is the probability that a case is correctly
classified as not being of class C.

Specificity(C) =
number of non-C elements predicted correctly

total number of non-C elements

The precision with respect to a class C is the probability that a predicted C is correct.

Precision(C) =
number of C elements predicted correctly

total number of C elements predicted

Variable Elimination There were 28 pairs of highly correlated predictors, all correlati-
ons were highly significant. These pairs were laid out in networks of correlated predictors
and resulted in 11 disjoint networks of highly correlated predictors. Then, the most
connected predictor was chosen as the representative of the network. The selection was
made as follows:

124 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

1. WHSD mean was selected in favour of WHSD median, WHSD sum, and WHSD
product ;

2. |TΠ| mean was selected in favour of |TΠ| sum, |TΠ| standard deviation, |TΠ| maximum,
and diameter weighted by |TΠ|;

3. mean distance between nodes was selected in favour of diameter weighted by HM,
diameter weighted by IM, and diameter weighted by CM ;

4. WSD median was selected in favour of WSD mean;

5. IM median was selected in favour of CM median;

6. IM mean was selected in favour of CM mean;

7. IM product was selected in favour of CM product ;

8. IM minimum was selected in favour of CM minimum;

9. IM standard deviation was selected in favour of CM standard deviation;

10. HM mean was selected in favour of HM sum; and

11. HM standard deviation was selected in favour of HM maximum.

We ended up with 33 predictor variables that were not highly correlated with each other.

Correlation Testing Table 5.7 presents the 10 predictors that are most strongly
correlated (with p-value below 0.05) with normalised maximum number of transitions
generated and normalised maximum memory cost for smart reduction and root leaf
reduction. The columns indicate the rank of the predictor, the correlation coefficient of
the predictor (with respect to the corresponding response variable), and the name of the
predictor, respectively. Even the most strongly correlated predictors are only very weakly
correlated to the corresponding response variables. This indicates a very weak monotonic
relation between the predictors and response variables.

The minimum, standard deviation, and product of IM are among predictors that are
most strongly correlated to normalised maximum number of transitions for both smart
reduction and root leaf reduction. Other predictors in the top 10 include variants of |TΠ|,
CM , and HSDV .

For both smart reduction and root leaf reduction, normalised maximum memory cost
is most strongly correlated to the mean, product, and weighted diameter corresponding to
|TΠ|, and the minimum and standard deviation of IM . Other predictors in the top 10
include variants of IM , CM , and HSDV .

To get a better impression of the relation between the predictors and the response
variables we have investigated the corresponding scatter plots. The scatter plots of the
strongest correlated predictor versus the corresponding response variable are shown in
Figure 5.7. The response variables and predictors are laid out on the y-axis and x-axis,
respectively. The y-axis has a log10-scale for both predictors, the x-axis for normalised
maximum number of transitions has a continuous scale, and the x-axis for normalised
memory cost has a continuous log10-scale. The normality line, i.e., the line indicating
equal performance with respect to monolithic minimisation, is indicated by the dashed
blue line. The solid red line indicates an estimated trend line in the data computed using
LOcally WEighted Scatterplot Smoothing (LOWESS) [48]. The grey area around the

5.6. Results – RQ 5.4 125

Table 5.7: The 10 best Kendall correlation coefficients of the 33 predictors with respect to
the response variables normalised maximum number of transitions (a,c) and normalised
maximum memory cost (b,d) for smart reduction (a,b) and root leaf reduction (c,d)

(a) Smart reduction – Correlation w.r.t nor-
malised maximum number of transitions

Coefficient Predictor
1 -0.212 IM minimum
2 -0.154 IM standard deviation
3 0.147 IM product
4 -0.142 |TΠ| mean
5 -0.141 Diameter weighted by |TΠ|
6 -0.122 HSDV median
7 -0.117 CM maximum
8 -0.109 Diameter weighted by HSDV
9 -0.097 HSDV product
10 0.093 WHSD mean

(b) Smart reduction – Correlation w.r.t nor-
malised maximum memory cost

Coefficient Predictor
1 -0.212 |TΠ| mean
2 -0.209 Diameter weighted by |TΠ|
3 0.201 IM minimum
4 -0.191 |TΠ| product
5 -0.158 IM standard deviation
5 -0.137 HSDV median
7 -0.131 Diameter weighted by HSDV
8 0.124 IM product
9 -0.121 HSDV product
10 -0.121 CM max

(c) Root leaf reduction – Correlation w.r.t
normalised maximum number of transitions

Coefficient Predictor
1 0.217 IM minimum
2 -0.187 IM standard deviation
3 -0.141 CM maximum
4 0.133 IM product
5 -0.124 |TΠ| mean
6 -0.124 Diameter weighted by |TΠ|
7 -0.106 IM maximum
8 0.092 |TΠ| minimum
9 -0.085 HSDV median
10 -0.079 CM sum

(d) Root leaf reduction – Correlation w.r.t
normalised maximum memory cost

Coefficient Predictor
1 -0.263 |TΠ| mean
2 -0.260 Diameter weighted by |TΠ|
3 -0.225 |TΠ| product
4 0.216 IM minimum
5 -0.152 IM standard deviation
5 0.145 IM product
7 0.119 IM median
8 -0.109 CM maximum
9 -0.099 Diameter weighted by HSDV
10 -0.086 HSDV median

trend line indicates their 95%-confidence interval. The scatter plots against the response
variables are similarly distributed for most predictors.

Normalised Maximum Number of Transitions. The scatter plots for both smart reduction
(Figure 5.7a) and root leaf reduction (Figure 5.7c) show an upward trend: a higher value
of IM minimum is roughly associated with a higher normalised maximum number of
transitions. This trend is expected as high IM values indicate that an LTS network is
expected to have relatively many interleaving transitions.

The confidence interval is quite narrow along most of the x-axis: wider at the extremes
where relatively little data is located and especially thin between 0 and 0.1. If an IM
minimum is between 0 and 0.1, then it is highly likely that the normalised maximum
number of transitions generated by smart reduction and root leaf reduction will be between
1 to 1× 104 times smaller than that of monolithic minimisation. Still, even in this range,
there is an off chance that smart reduction and root leaf reduction generate 1× 106 times
the number of transitions of the monolithic approach.

The scatter plots for both heuristics are most dense below a normalised maximum
number of transitions value of 1. In Table 5.6 we already observed that smart reduction
performs better than monolithic minimisation in most of the cases, the scatter plot of
root leaf reduction shows that also root leaf reduction performs better than monolithic
minimisation in most cases. Finally, for root leaf reduction most of the data is located on

126 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

1e−061e−06
1e−05
1e−04
1e−03
1e−02
1e−01
1e+00
1e+01
1e+02
1e+03
1e+04
1e+05
1e+06

0.00 0.05 0.10 0.15 0.20
IM minimum

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns normality line

 trend line

(a) Smart reduction – Scatterplot of normalised
maximum number of transitions versus IM
minimum; the y-axis is log10-scale

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

10 100 1000 10000
Mean number of transitions

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t

 normality line
 trend line

(b) Smart reduction – Scatterplot of normalised
maximum memory cost versus |TΠ| mean; both
axis are log10-scale

1e−061e−06
1e−05
1e−04
1e−03
1e−02
1e−01
1e+00
1e+01
1e+02
1e+03
1e+04
1e+05
1e+06

0.00 0.05 0.10 0.15 0.20
IM minimum

No
rm

ali
se

d
m

ax
im

um
 n

um
be

r o
f t

ra
ns

itio
ns normality line

 trend line

(c) Root leaf reduction – Scatterplot of norma-
lised maximum number of transitions versus
IM minimum; the y-axis is log10-scale

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

10 100 1000 10000
Mean number of transitions

No
rm

ali
se

d
m

ax
im

um
 m

em
or

y c
os

t
 normality line
 trend line

(d) Root leaf reduction – Scatterplot of norma-
lised maximum memory cost versus |TΠ| mean;
both axis are log10-scale

Figure 5.7: Scatter plots showing the data distribution of the predictor that is most
strongly correlated to normalised maximum number of transitions (a,c) and normalised
maximum memory cost (b,d) for smart reduction (a,b) and root leaf reduction (c,d); the
dashed blue line at value 1 indicates the line of equivalent performance to monolithic
minimisation, the sold red line indicate the estimated trend line, the grey area around
these line indicate their 95%-confidence interval

or just below the normality line, while for smart reduction the data is spread more evenly
below the normality line.

Normalised Maximum Memory Cost. For both smart reduction (Figure 5.7b) and root
leaf reduction (Figure 5.7d) the scatter plots indicate a downward trend: a higher
mean |TΠ| is roughly associated with a lower normalised maximum memory cost. We
suspect that the heuristics have an advantage at higher mean |TΠ| values since they
perform minimisation steps on the individual processes potentially lowering the number
of transitions residing in memory.

Again, the confidence interval is quite thin along most of the x-axis. If the mean |TΠ|
is between 30 and 10,000 for root leaf reduction and between 300 and 10,000 for smart
reduction, then it is highly likely that the normalised maximum memory cost is between
1 to 50 times lower than that of monolithic minimisation. Smart reduction seems to
perform particularly bad with respect to root leaf reduction below mean |TΠ| values of a

5.6. Results – RQ 5.4 127

MAE

RF

GLMER

SVMwRK

LR

QRNN

SVMwLK

KNN

CART

1.0 1.1 1.2 1.3 1.4 1.5 1.6

(a) Smart reduction
MAE

RF

SVMwLK

SVMwRK

QRNN

GLMER

LR

KNN

CART

1.0 1.1 1.2 1.3 1.4 1.5 1.6

(b) Root leaf reduction

Figure 5.8: Box plots of the performance of cross validation on normalised maximum
number of transitions for smart reduction (a) and root leaf reduction (b) ordered by mean
MAE (lower is better), with MAE in orders of magnitude

1,000. Despite the narrow confidence interval indicating a high chance to that cases are
more efficient than monolithic minimisation, for both heuristics there are cases in which
they require up to a 1,000 times the maximum that monolithic minimisation uses.

Also for the normalised maximum memory cost most of the data points are located
near the normality line for root leaf reduction. The data points for smart reduction are
spread out much more evenly. Finally, there is a lack of data in certain ranges of mean
|TΠ|; in particular between a mean |TΠ| of 3,000 and 7,000 there are nearly no data points.
Apparently, the LTS network generator has a low chance of generating a network with a
mean |TΠ| in this range by sampling distributions from the 88 source process LTSs. This
indicates that such networks are not common in the set of generated networks. Increasing
the size of the set of source process LTSs may improve variety of mean |TΠ|.

Machine Learning & Validation

Normalised Maximum Number of Transitions. Figure 5.8 shows the performance of the
cross validations in learning the normalised maximum number of transitions for the
previously selected machine learning methods. The minimum and maximum are indicated
by vertical dashed lines (these are called the whiskers). The first and third quartiles are
indicated by the ends of the solid box. The median of the distribution is stipulated by
the dot in the box. The box plots show the distribution of MAE in order of magnitude
for each of the machine learning methods. The methods are shown in decreasing order of
mean MAE. The prediction performance for smart reduction and root leaf reduction is
shown in Figures 5.8a and 5.8b, respectively.

The prediction performance for smart reduction ranges between 1.01 (minimum for
SVMwRK) and 1.62 (maximum for QRNN), these extremes indicate an MAE of factor 101
(≈ 10) and 101.6 (≈ 40), respectively. GLMER and LR are the most stable as they have
the least variation between the different cross validations. In terms of smallest minimum
MAE the SVMwRK method is the clear winner.

MAE for root leaf reduction ranges between 1.07 (minimum for RF and QRNN) and
1.59 (maximum for QRNN), these extremes indicate an MAE of approximately factor
12 and 39, respectively. There is one outlier at 105.89 for SVMwLK not shown in the
Figure 5.8b. CART and GLMER are the most stable, while RF and QRNN have the

128 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

Error in orders of magnitude

CART

GLMER

KNN

LR

QRNN

RF

SVMwLK

SVMwRK

−5 −4 −3 −2 −1 0 1 2 3 4 5

(a) Prediction errors on the training set for
smart reduction

Error in orders of magnitude

CART

GLMER

KNN

LR

QRNN

RF

SVMwLK

SVMwRK

−5 −4 −3 −2 −1 0 1 2 3 4 5

(b) Prediction errors on the test set for smart
reduction

Error in orders of magnitude

CART

GLMER

KNN

LR

QRNN

RF

SVMwLK

SVMwRK

−5 −4 −3 −2 −1 0 1 2 3 4 5

(c) Prediction errors on the training set for
root leaf reduction

Error in orders of magnitude

CART

GLMER

KNN

LR

QRNN

RF

SVMwLK

SVMwRK

−5 −4 −3 −2 −1 0 1 2 3 4 5

(d) Prediction errors on the test set for root
leaf reduction

Figure 5.9: Box plots of the normalised maximum number of transitions prediction errors
of the best learned models on the training set (a,b) and the test set (c,d) for smart
reduction (a,c) and root leaf reduction (b,d) in alphabetical order

smallest minimum MAE.
Prediction of the normalised maximum number of transitions seems to be feasible at

around one order of magnitude for both heuristics.
Next, presented in Figure 5.9 are the error distributions of the best learned pre-

diction models on both the training set and the test set for both smart reduction
(Figures 5.9a and 5.9b) and root leaf reduction (Figures 5.9c and 5.9d). Errors are
displayed in orders of magnitude, where negative numbers indicate an underestimate and
positive numbers an overestimate. Outliers are indicated by a circle.

For smart reduction the median error is about 0 in both the training and test sets.
This indicates that the predictor underestimated and overestimated the values in roughly
an equal number of cases. In most cases the box plots do not differ much between training
set and test set, with the exception of RF. Hence, all models, with the exception of RF,
tend to perform as expected on unseen cases.

The first and third quartiles of all prediction models are between -1 and 1.4; this
indicates that in half of the cases the prediction is off by no more than a factor 25. Based
on the test set, the best prediction models are QRNN, LR, and GLMER; these have a
minimum error of -4.49, -4.63, and -4.59, respectively, a first quartile at -0.82, -0.92, and
-0.86, respectively, a third quartile at 1.15, 1.06, and 1.14, respectively, and a maximum

5.6. Results – RQ 5.4 129

MAE

RF

GLMER

SVMwLK

LR

SVMwRK

QRNN

CART

KNN

0.6 0.7 0.8 0.9 1.0 1.1 1.2

(a) Smart reduction
MAE

RF

QRNN

SVMwLK

SVMwRK

LR

GLMER

CART

KNN

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

(b) Root leaf reduction

Figure 5.10: Box plots of the performance of the cross validations on normalised maximum
memory cost for smart reduction (a) and root leaf reduction (b) ordered by mean MAE
(lower is better), with MAE in orders of magnitude

error of 5.90, 5.81, and 5.91, respectively (error in orders of magnitude). For these three
prediction models, in half of the cases the models underestimate no more than a factor
9, and overestimate no more than a factor 15. Disregarding outliers QRNN, LR, and
GLMER have a minimum of -3.60, -3.72, and -3.54, respectively and a maximum of 3.79,
3.89, and 3.98, respectively. When disregarding outliers LR seems to perform worse than
QRNN and GLMER. Finally, the range of QRNN is slightly smaller than that of GLMER.
Hence, QRNN should be preferred over GLMER.

The median error for root leaf reduction ranges between -0.27 and 0 in both the
training and test sets with more prediction models having a slightly negative median.
Most prediction models underestimate slightly more cases than they overestimate. Between
training set and test set the box plots for RF and QRNN differ significantly. The remainder
of the machine learning methods seem stable with respect to unseen cases.

The first and third quartiles of all prediction models are between -1.1 and 1; this
indicates that in half of the cases the prediction is off by no more than a factor 13.
Based on the test set, the best prediction models are SVMwRK and CART; these have
a minimum error of -6.16 and -6.58, respectively, a first quartile at -0.76 and -0.90,
respectively„ a third quartile at 0.93 and 0.88, respectively, and a maximum error of
4.50, and 4.72, respectively (error in orders of magnitude). The minimum and maximum
values of SVMwRK and CART are outliers not shown in Figure 5.9d. For these two
prediction models, in half of the cases the models underestimate no more than a factor 8,
and overestimate no more than a factor 9. Removing outliers, SVMwRK and CART have
a minimum of -3.29 and -3.38, respectively, and a maximum of 3.33 and 3.47, respectively.
When disregarding outliers SVMwRK seems to outperform CART as it has a smaller
range.

The five most important variables (and their weight) of the best model for smart
reduction (QRNN) are: IM minimum (100), IM standard deviation (62), IM median (41),
IM mean (36), and diameter weighted by HSDV (29). The five most important variables
(and their weight) of the best model for root leaf reduction (SVMwRK) are: IM minimum
(100), IM standard deviation (76), IM median (53), CM maximum (31), and IM mean
(27).

Normalised Maximum Memory Cost. Figure 5.10 shows the performance of the cross

130 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

Error in orders of magnitude

CART

GLMER

KNN

LR

QRNN

RF

SVMwLK

SVMwRK

−4 −3 −2 −1 0 1 2 3 4

(a) Prediction errors on the training set for
smart reduction

Error in orders of magnitude

CART

GLMER

KNN

LR

QRNN

RF

SVMwLK

SVMwRK

−4 −3 −2 −1 0 1 2 3 4

(b) Prediction errors on the test set for smart
reduction

Error in orders of magnitude

CART

GLMER

KNN

LR

QRNN

RF

SVMwLK

SVMwRK

−5 −4 −3 −2 −1 0 1 2 3 4 5

(c) Prediction errors on the training set for
root leaf reduction

Error in orders of magnitude

CART

GLMER

KNN

LR

QRNN

RF

SVMwLK

SVMwRK

−5 −4 −3 −2 −1 0 1 2 3 4 5

(d) Prediction errors on the test set for root
leaf reduction

Figure 5.11: Box plots of the normalised maximum memory cost prediction errors of the
best learned models on the training set (a,b) and the test set (c,d) for smart reduction
(a,c) and root leaf reduction (b,d) in alphabetical order

validations in learning the normalised maximum memory cost for the previously selected
machine learning methods. The box plot shows the distribution of MAE in order
of magnitude for each of the machine learning methods. The methods are shown in
decreasing order of mean MAE. The prediction performance for smart reduction and root
leaf reduction is shown in Figures 5.10a and 5.10b, respectively.

The prediction performance for smart reduction ranges between 0.68 (minimum for
SVNwLK and RF) and 1.20 (maximum for QRNN), these extremes indicates an MAE of
factor 100.68 (≈ 5) and 101.20 (≈ 16), respectively. CART and WVMwRK are the most
stable as they have the least variation between the different cross validations. Considering
the smallest minimum MAE, the method RF performs the best.

MAE for root leaf reduction ranges between 0.51 (minimum for RF) and 0.86 (maximum
for CART), these extremes indicate an MAE of approximately a factor 3 and 7, respectively.
CART is the most stable, while RF has by far the smallest minimum MAE.

Prediction of the normalised maximum number of transitions seems to be feasible
with an MAE of less than one order of magnitude.

Next, shown in Figure 5.11 are the error distributions of the best learned pre-
diction models on both the training set and the test set for both smart reduction
(Figures 5.11a and 5.11b) and root leaf reduction (Figures 5.11c and 5.11d). Again, errors

5.6. Results – RQ 5.4 131

are displayed in orders of magnitude, where negative numbers indicate an underestimate
and positive numbers an overestimate.

Similar to the maximum number of transitions, the median error with respect to
prediction of maximum memory cost for smart reduction is about 0 in both the training
and test sets, indicating that the prediction model underestimated and overestimated the
values in roughly an equal number of cases. In most cases the box plots do not differ
much between training set and test set, with the exception of SVMwRK and RF. Thus,
with exception of these prediction models, all models tend to perform as expected on
unseen cases.

The first and third quartiles of all prediction models are between -0.75 and 0.81;
this indicates that in half of the cases the prediction is off by no more than a factor
7. Based on the test set, the best prediction models are SVMwLK and QRNN; these
have a minimum error of -3.49 and -3.47, respectively, a first quartile at -0.63 and -0.64,
respectively, a third quartile at 0.61 and 0.62, respectively, and a maximum error of 3.74
and 3.78, respectively (error in orders of magnitude). For these three prediction models,
in half of the cases the models underestimate and overestimate by no more than a factor 5.
The minimum and maximum values of SVMwLK and QRNN, removing outliers they have
a minimum of -2.44 and -2.40, respectively, and a maximum of 2.39 and 2.44, respectively.
There is no strong distinction between these two prediction models.

The median error for root leaf reduction ranges between -0.27 and 0 in the training
set and between -0.37 and 0 in the test set. Hence, the models tend to underestimate
more cases than they overestimate. Between training set and test set the box plots for
RF and QRNN differ significantly. The remainder of the machine learning methods seem
stable with respect to unseen cases.

The first and third quartiles of all prediction models are between -0.49 and 0.51; this
indicates that in half of the cases the prediction is off by no more than a factor 4. Based
on the test set, the best prediction models are SVMwRK, GLMER, and CART; these have
a minimum error of -3.59, -2.96 and -3.93, respectively, a first quartile at -0.39, -0.62 and
-0.42, respectively, a third quartile at 0.55, 0.43 and 0.32, respectively, and a maximum
error of 2.67, 3.02, and 2.52, respectively (error in orders of magnitude). For these three
prediction models, in half of the cases they underestimate and overestimate by no more
than a factor 5. Removing outliers SVMwRK, GLMER, and CART have a minimum of
-1.81, -1.89 and -1.50, respectively, and a maximum of 1.90, 1.95 and 1.42, respectively.
CART performs particularly well when outliers are not considered, the chance that its
predictions are off by more than a factor 31 are negligible.

The five most important variables (and their weight) of the best model for smart
reduction (QRNN) are: |TΠ| mean (100), diameter weighted by |TΠ| (90), IM minimum
(84), IM standard deviation (70), and HSDV median (46). The five most important
variables (and their weight) of both the best model for root leaf reduction (CART) are:
IM standard deviation (100), IM minimum (94), |TΠ| product (93), |TΠ| mean (72), and
diameter weighted by |TΠ| (71).

Best Maximum Number of Transitions. Prediction models for the best maximum number
of transitions response variable aim to predict which minimisation method is most effective
for a given LTS network in terms of maximum number of generated transitions. Figure 5.12
shows the performance of the cross validations in learning the best maximum number of
transitions. The box plots show the distribution of accuracy (Figure 5.12a) and Cohen’s
κ coefficient (Figure 5.12b).

The no information rate of the training data is 0.67; this indicates that any prediction

132 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

Accuracy

KNN

CART

LVQ

LDA

SVMwLK

GLMER

RF

SVMwRK

0.40 0.45 0.50 0.55 0.60 0.65

(a) Accuracy of the cross validations
Kappa

CART

KNN

SVMwLK

LDA

LVQ

GLMER

SVMwRK

RF

0.0 0.1 0.2 0.3 0.4 0.5

(b) Cohen’s κ coefficient of the cross validations

Figure 5.12: Box plots of the accuracy (a) and Cohen’s κ coefficient (b) of the cross valida-
tions on best maximum number of transitions ordered by the corresponding performance
metric (higher is better)

Table 5.8: Performance of the best learned prediction models with respect to best maximum
number of transitions for each prediction method on the test set ; the classes “smart”,
“rt.leaf”, and “mono.” stand for smart reduction, root leaf reduction, and monolithic
minimisation, respectively

Model Acc. κ
Sensitivity Specificity Precision

smart rt.leaf mono. smart rt.leaf mono. smart rt.leaf mono.
SVMwRK 0.61 0.22 0.85 0.24 0.30 0.39 0.87 0.94 0.67 0.40 0.47
SVMwLK 0.74 0.17 0.98 0.00 0.22 0.18 1.00 0.96 0.76 - 0.44
RF 0.73 0.20 0.94 0.05 0.28 0.26 0.99 0.93 0.77 0.43 0.38
LVQ 0.68 0.10 0.89 0.07 0.17 0.22 0.95 0.93 0.75 0.19 0.26
LDA 0.72 0.14 0.95 0.09 0.15 0.17 0.98 0.96 0.75 0.42 0.36
KNN 0.69 0.18 0.87 0.16 0.24 0.32 0.95 0.90 0.77 0.33 0.28
GLMER 0.73 0.19 0.95 0.07 0.24 0.23 0.99 0.94 0.76 0.57 0.39
CART 0.72 0.20 0.92 0.00 0.33 0.31 1.00 0.89 0.78 - 0.32

model that has an accuracy above 67% performs better than a random guess based on
the distribution of the data.

The SVMwRK and RF methods have the highest median accuracy (0.69) and RF has
the highest median κ (0.21). SVMwRK and LVQ have the highest maximum accuracy
(0.70) and κ (0.37), respectively. The best prediction models among the cross validations
have an accuracy between 0.69 and 0.74, and a κ between 0.16 and 0.37. Considering the
no information rate, all of these best prediction models have a moderate accuracy and a
weak inter-rater agreement.

Next, we investigate the performance of the best prediction models amongst the cross
validations with respect to the training and test sets. Table 5.8 shows, for each prediction
model, its accuracy (Acc. column) and κ coefficient, and its sensitivity, specificity, and
precision with respect to the classes “smart” (for smart reduction), “rt.leaf” (for root leaf
reduction), and “mono.” (for monolithic minimisation). The best scores are indicated in
bold.

The accuracy and κ on the training set are, respectively, 0.72 and 0.24 for SVMwRK,
0.71 and 0.23 for SVMwLK, 1.00 and 1.00 for RF, 0.70 and 0.26 for LVQ, 0.70 and 0.22
for LDA, 0.75 and 0.43 for KNN, 0.70 and 0.24 for GLMER, and 0.71 and 0.26 for CART
(in the same order as the models appear in Table 5.8). RF and KNN are the least stable

5.6. Results – RQ 5.4 133

in their accuracy; differencing more than 0.05 from training set to test set. The other
models are relatively stable with an accuracy difference no more than 0.05. In all models,
except for SVMwLK and GLMER, the κ is significantly lower in the test set than in the
training set. The least amount of change is seen for the models SVMwRK and GLMER
where the κ is lowered from 0.23 to 0.17 and from 0.24 to 0.19, respectively. Despite that
RF seems to have over fitted on the training set it still has a reasonably high performance
on the unseen test set.

We now focus the discussion on the performance of the prediction models on the test
set (see Table 5.8). The SVMwRK, SVMwLK, RF, KNN, GLMER, and CART prediction
models perform best on at least one aspect on the unseen test set (see bold numbers in
Table 5.8).

Very high sensitivity for the “smart” class is achieved by all prediction models, the
lowest sensitivity is 0.87 and the highest is 0.99. SVMwRK is the most sensitive to
the “smart” class: it correctly classifies 99% of the cases that perform best with smart
reduction. The “rt.leaf” and “mono.” classes are predicted correctly at a very low to
low probability with sensitivity ranging from, respectively, 0.00 to 0.16, and 0.15 to 0.32.
KNN has the highest probability of predicting the “rt.leaf” correctly, namely a probability
of 0.16. With a probability of 0.33 CART has the highest probability to predict the
“mono.” class correctly. Less than 33% of the training class consists of cases that belong
to “rt.leaf” or “mono.”, the low sensitivity to these classes may be caused by a lack of
data.

Specificity for the “smart” class is low: the probability of correctly predicting that a
case should not be classified as “smart” ranges from 0.16 to 0.32. KNN has the highest
specificity to the “smart” class at 32%. Specificity is significantly better for the “rt.leaf”
and the “mono.” classes where specificity ranges from 0.95 to 1.00 for the root leaf
reduction and from 0.90 to 0.97 for monolithic minimisation. Specificity for “rt.leaf” is
the highest for SVMwRK, SVMwLK, and CART, while it is highest for “mono.” for
SVMwRK. The specificity for the “smart” class is the worst and the specificity for the
“rt.leaf” class is the best. Most of the cases in the training set belong to the “smart”
class and the fewest of the cases belong to the “rt.leaf” class. Hence, there are relatively
few cases not belonging to the “smart” class. It is, therefore, likely that results can be
improved by adding more cases to the training set that are not of the “smart” class.

The prediction models have a moderate to high precision. The probability that a case
predicted as “smart” is indeed a case belonging to the “smart” class ranges from 0.75 to
0.78. The highest probability (0.78) is achieved by CART. The precision for the “rt.leaf”
class ranges from 0.19 to 0.57, where GLMER has the highest precision. The precision for
the “mono.” class ranges from 0.26 to 0.44 with SVMwLK achieving the highest precision.

With the current data it seems feasible to predict cases that will perform best with
smart reduction. The sensitivity, and precision for the other classes is too low. There are,
however, indications that more data may improve sensitivity and precision for root leaf
reduction and monolithic minimisation.

The five most important variables for the “smart” and “rt.leaf” classes were: HM mean,
IM product, IM mean, IM min, and IM median (in descending order of importance). For
the “mono.” class the five most important variables were: HM mean, HM median, IM
median, |TΠ| mean, and IM median (in descending order of importance).

Best Maximum Memory Cost. Prediction models for the best maximum memory cost
response variable aim to predict the most effective minimisation method for a given LTS
network in terms of maximum memory cost. Figure 5.13 shows the performance of the

134 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

Accuracy

KNN

CART

LVQ

SVMwLK

LDA

GLMER

RF

SVMwRK

0.40 0.45 0.50 0.55 0.60 0.65

(a) Box plots of the accuracy of the cross vali-
dations

Kappa

CART

KNN

SVMwLK

LVQ

LDA

SVMwRK

GLMER

RF

0.0 0.1 0.2 0.3 0.4 0.5

(b) Box plots of the Cohen’s κ coefficient of
the cross validations

Figure 5.13: Box plots of the accuracy (a) and Cohen’s κ coefficient (b) of the cross
validations on best maximum memory cost ordered by the corresponding performance
metric (higher is better)

Table 5.9: Performance of the best learned prediction models with respect to best maximum
memory cost for each prediction method on the test set ; the classes “smart”, “rt.leaf”,
and “mono.” stand for smart reduction, root leaf reduction, and monolithic minimisation,
respectively

Model Acc. κ
Sensitivity Specificity Precision

smart rt.leaf mono. smart rt.leaf mono. smart rt.leaf mono.
SVMwRK 0.61 0.22 0.85 0.24 0.30 0.39 0.87 0.94 0.67 0.40 0.47
SVMwLK 0.59 0.17 0.87 0.14 0.31 0.31 0.91 0.93 0.64 0.37 0.44
RF 0.60 0.22 0.83 0.23 0.33 0.43 0.86 0.92 0.68 0.37 0.42
LVQ 0.57 0.22 0.71 0.36 0.34 0.55 0.78 0.90 0.70 0.37 0.37
LDA 0.59 0.20 0.83 0.21 0.31 0.41 0.85 0.93 0.67 0.33 0.45
KNN 0.55 0.17 0.73 0.34 0.20 0.49 0.79 0.90 0.67 0.36 0.27
GLMER 0.58 0.16 0.84 0.14 0.30 0.39 0.86 0.92 0.66 0.26 0.40
CART 0.58 0.18 0.81 0.22 0.28 0.41 0.84 0.93 0.66 0.32 0.41

cross validations in learning the best maximum memory cost. The box plot shows the
distribution of accuracy (Figure 5.13a) and Cohen’s κ coefficient (Figure 5.13b).

The no information rate of the training data is 0.53; this indicates that any prediction
model that has an accuracy above 53% performs better than a random guess based on
the distribution of the data.

The highest median accuracy is 0.59 (achieved by SVMwRK, GLMER and RF). The
highest median κ is 0.27 (RF). RF has both the highest maximum accuracy and κ at
0.67 and 0.37, respectively. The best prediction models among the cross validations have
an accuracy between 0.58 and 0.67, and a κ between 0.27 and 0.42. Considering the no
information rate, all of these best prediction models have a moderate accuracy and a
weak inter-rater agreement.

Next, we investigate the performance of the best prediction models amongst the cross
validations with respect to the training and test sets. Table 5.9 shows, for each prediction
model, its accuracy (Acc. column) and κ coefficient, and its sensitivity, specificity, and
precision with respect to the classes “smart” (for smart reduction), “root leaf” (for root
leaf reduction), and “mono.” (for monolithic minimisation). The best scores are indicated
in bold.

5.6. Results – RQ 5.4 135

The accuracy and κ on the training set are, respectively, 0.69 and 0.45 for SVMwRK,
0.60 and 0.29 for SVMwLK, 1.00 and 1.00 for RF, 0.62 and 0.36 for LVQ, 0.61 and 0.30
for LDA, 0.64 and 0.38 for KNN, 0.61 and 0.30 for GLMER, and 0.59 and 0.26 for CART
(in the same order as the models appear in Table 5.9). All models, except for RF and
KNN, are relatively stable in their accuracy; not differencing by more than 0.05 between
training set and test set. All models have a significantly lower κ in the test set than in the
training set. The least amount of change is seen for the models LDA and CART where
the κ decreases from 0.30 to 0.20 and from 0.26 to 0.18, respectively. Despite that RF
seems to have over fitted on the training set it still has a reasonably high performance on
the unseen test set.

We shall now discuss the performance of the prediction models on the test set (see
Table 5.9). The SVMwRK, SVMwLK, RF, and LVQ prediction models perform best on
various aspects on the test set (see bold numbers in Table 5.9). However, amongst these
the RF model is outmatched on all performance metrics but κ.

All prediction models have a very high sensitivity for the “smart” class, the lowest
being 0.71 and the highest being 0.87. SVMwLK is the most sensitive to the “smart”
class: it correctly classifies 87% of the cases that perform best with smart reduction. The
“rt.leaf” and “mono.” classes are predicted correctly at a low to moderate probability with
sensitivity ranging from, respectively, 0.14 to 0.36, and 0.2 to 0.34. LVQ has the highest
probability of predicting the “rt.leaf” and “mono.” correctly: in respectively, 36% and
34% of the cases. As over half of the cases in the training set are classified as “smart”, it
may be the cases that there is not enough data to predict the other classes well.

Although the specificity for the “smart” class is slightly better for best maximum
memory cost than for best maximum number of transitions it is still moderate: the
probability of correctly predicting that a case should not be classified as “smart” ranges
from 0.31 to 0.55. LVQ has the highest specificity to the “smart” class at 55%. Specificity
is significantly better for the “rt.leaf” and the “mono.” classes where specificity ranges from
0.78 to 0.91 for the root leaf reduction and from 0.90 to 0.94 for monolithic minimisation.
Specificity for “rt.leaf” and for “mono.” is the highest for SVMwLK and SVMwRK,
respectively. The number of cases that do not belong to the “smart” class has increased
with respect to the training set for the best maximum number of transitions. This seems
to have resulted in a slightly better specificity for the “smart” class. Still the specificity
is only moderate and may possibly be further improved by including more cases to the
training set that are not of the “smart” class.

The precision of the “smart” class is high: the probability that a case predicted as
“smart” is indeed a case belonging to the “smart” class ranges from 0.64 to 0.70 with LVQ
having the highest precision. Precision for the “rt.leaf” class ranges from 0.26 to 0.40 and
precision for the “mono.” class ranges from 0.27 to 0.47, where SVMwRK achieves the
highest precision for both classes.

Prediction on unseen cases is the most feasible for smart reduction. The sensitivity,
and precision for the other classes is too low. Again we find indications that more data
may improve sensitivity and precision for root leaf reduction and monolithic minimisation.

The five most important variables for the “smart” class were: IM minimum, HM
mean, IM product, IM median, and IM mean (in descending order of importance). For
the “rt.leaf” and “mono.” classes the five most important variables were: HM mean, IM
product, IM mean, IM minimum, and IM median (in descending order of importance).

136 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

5.7 Threats to validity
When interpreting the results of this study consider the following threats to validity:

• Only one tool has been involved to conduct the experiment, hence the results may
be implementation specific. On the other hand, involving multiple tools introduces
the problem that differences in implementations may affect the outcome.

• The scope of this study is limited to models that are represented as networks of LTSs.
Therefore, the results of this study are possibly only applicable to models represented
as networks of LTSs. As the compositional aggregation method is limited to these
kind of models we have not considered alternative model representations.

• The study only considers the DPBB equivalence as aggregation relation. Results
may vary depending on the chosen equivalence relation. The DPBB equivalence
is the strongest aggregation order offered by Cadp that still allows abstraction.
Hence, other relations are expected to show better performance improvements.

• Models with a relatively small number of parallel processes were considered. Beyond
models with six parallel LTSs the experiment quickly becomes infeasible. Extrapola-
tion of the results presented in this work to models with more parallel LTSs should
be done with caution. In the future, we plan to extend our analysis to subjects with
more processes.

• The scaled up models, investigated in Section 5.5, make use of repeatable LTSs. It
may be possible that the results are skewed due to lack of heterogeneous process
LTSs. However, the used compositional aggregation methods do not take advantage
of the symmetry in the model.

The repeating of LTSs is noticeable in the violin plots (Fig. 5.5) as accumulation
of sets of symmetric aggregation orders measuring the same normalized maximum
number of transitions. Nevertheless, in most cases this effect does not change
significantly as more repeated LTSs are added.

• Due to a bug in our aggregation order calculator the possible aggregation orders
were not sampled completely uniformly at random. This affects RQ 5.1 and RQ 5.2.
We were unable to retrieve results for these cases as our version of Cadp was
recently updated (which is more memory efficient) and we were unable to roll back.
Hence, a fair comparison is impossible without redoing all experiments.

After inspection, it turned out that about 3.8% of the orders were not considered
in the subjects with six parallel processes. These orders represented a binary tree.
Still, a portion of the aggregation orders forming a binary three were considered.
The conclusions of our analysis are not strongly affected as the difference between
compositional aggregation and monolithic minimisation and the samples and the
heuristics are quite clear.

• In Section 5.5, a relatively small set of different cases has been studied, even though
this experiment is the most comprehensive one performed thus far. The lack of
a (publicly available) set of nicely scalable models is a problem in general when
analysing and designing formal verification techniques.

5.8. Conclusions 137

• Despite our best efforts to generate realistic networks of LTSs in Section 5.6, the
generated networks may still differ in many aspects from man-made models. If the
generated networks that were used for training differ too much, then the learned
predictors may not be applicable to man-made networks. Other aspects may have
been missed due to distribution sampling of 88 source process LTSs, i.e., the variance
of the set of source LTSs may have been too low. Still in this study we have shown
that predictors for relevant response variables can be learned using machine learning.

• In the majority of the cases considered in Section 5.6 smart reduction performed
best. As such, the data used to generated predictors for best maximum number of
transitions and best maximum memory cost contained a significant class imbalance.
We have dealt with this by using Cohen’s κ coefficient as performance metric.
Alternatives, such as up-sampling or down-sampling, may have given different
results.

5.8 Conclusions
Our thorough analysis of compositional aggregation when applied to 119 subjects with
varying topology, scale, and hiding set (Section 5.5) provides the following insights:

1. The amount of internal behaviour in process LTSs and the amount of synchronisation
between process LTSs have the biggest impact on the performance, in terms of the
largest number of generated transitions in memory.

2. The involvement of a functional property, and therefore a hiding set, is significant.
The size of this hiding set is of less importance. For typical properties, maximal
hiding already allows the hiding of a relatively large amount of behaviour.

3. Among the five network topologies we considered, none of them fundamentally rule
out compositional aggregation as an effective technique.

4. As the number of processes in a model is increased, the effectiveness of compositional
aggregation with respect to the monolithic approach tends to increase as well.

It should be noted that we only considered a few cases per topology. To generalise
our conclusions, we will have to work on extending our benchmark set. The first two
conclusions underline observations made in earlier work [56]. Since they worked with a
set of subjects of less variety, we can make these observations with more confidence.

Machine learning on generated LTS networks showed that the maximum memory cost
and maximum number of generated transitions of compositional aggregation heuristics
normalised with respect to monolithic minimisation can be predicted at an average
accuracy of one order of magnitude for half of the cases in our test set. The learned
classification models that predict the best minimisation approach with respect to maximum
memory cost and maximum number of generated transitions have an accuracy between
55% and 61% and between 68% and 74%, respectively, on unseen data. Furthermore, as
both the training data and test data contain a class imbalance the Cohen’s κ measure
for inter-rate agreement is between 0.10 and 0.22, indicating that the models are better
than random classification, but there is room for improvement. The classifiers were
most sensitive to the class of cases for which smart reduction was the best choice with a
sensitivity value of 0.87 for maximum memory cost and 0.99 for maximum number of

138 To Compose, Or Not to Compose: An Analysis of Compositional Minimisation

generated transitions. Metrics related to interleaving density and the number of transitions
in an LTS were most important for regression techniques, while metrics related to hiding
and interleaving density of sets of LTSs were found to be the most determining factor for
classification techniques.

Future Work In the near future, we will extend the current analysis to further explain
the success and failure of compositional aggregation for the different subjects, and based
on this, work on the construction of a new heuristic. For this to be successful, we will have
to involve many more cases. As scalable models have now been thoroughly investigated,
we can next focus on non-scalable models, of which many are publicly available.

To strengthen the validation in this chapter, we will validate the results against a
number of LTS networks provided by the literature.

The generation of realistic LTS networks also has many interesting directions for
future work. We would like to investigate the use of commonly occurring graphlets in the
generation of LTSs. Furthermore, more intelligent ways to generate the LTS networks
may be considered. For instance, our generator has a small chance of generating a model
that has no reachable states other than the initial state; we see potential in an alternative
method where an unlabelled state space is constructed before labelling transitions of LTSs
to ensure reachability of nearly all states in process LTSs.

We had to aggregate some of the metrics before we could apply machine learning
techniques. The ability to apply machine learning techniques to graphs directly would
open up many opportunities by preventing the need to aggregate graph data.

Chapter 6

Avoidance of Sequential Consistency Violations under
Relaxed-Memory Models

When targeting modern hardware architectures with parallel computation capabilities,
constructing software that is correct and optimally takes advantage of these capabilities is
complex and time-consuming. In particular, interleaving orders that break intended atomic
behaviour are a major source of bugs. However, applying synchronisation mechanisms
to repair atomicity should be done sparingly: synchronisation mechanisms can cause
contention negatively impacting performance.

This chapter develops a monitor that detects sequential consistency violations in
concurrent programs specifying atomic behaviour. The monitor is optimised to reduce its
memory footprint by summarising the program order of the trace it monitors. A further
optimisation step is proposed that makes the monitor efficient for detection of sequential
consistency violations in model checkers. The model checker only needs to considering
sequences of atomic instructions, thereby, avoiding a significant amount of interleaving
and reordering of memory accesses. Moreover, the monitor remembers the information
that is relevant to suggest a minimal set of locks and delays (e.g., memory fences).

The monitor over approximates certain aspects of the program while it is more precise
than static analysis in other aspects as it considers the dynamic semantics of the program.
Through a pre-analysis (e.g., one reporting only critical cycles) the monitor can be
focussed on a given set of accesses to reduce over-approximation of the cycle detection
while maintaining the precision gained from evaluation of the dynamic semantics of the
program.

The proposed monitor is built on the well known theory of Shasha and Snir, and
therefore, supports weak memory that guarantee store atomicity.

This chapter has not yet been published elsewhere

de Putter, S., and Wijs, A. Model Driven Avoidance of Atomicity Violations
under Relaxed-Memory Models. In ESOP (2019). Submitted

140 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

6.1 Introduction
When developing parallel software it is very challenging to guarantee the absence of bugs.
Achieving the intended execution order of instructions while obtaining a high performance
is extremely hard. In particular, interleaving orders that break intended sequential and
atomic behaviour are a major source of bugs [140]. These can be avoided by appropriately
using synchronisation mechanisms such as fences, semaphores, hardware-level atomic
operations, and software/hardware transactional memory [189]. On the other hand, over
using such mechanisms can cause contention, which negatively impacts performance
and therefore defeats the purpose of using parallelism in the first place. When using
transactional memory, Hardware Transactional Memory (HTM) is preferable over software
support [67], for performance reasons, but the former cannot handle transactions of
arbitrary size. Even if the transactions are defined small enough, HTM can still negatively
impact performance, which is in part influenced by the size of the transactions [27]. In
other words, synchronisation mechanisms should be used only for those memory accesses
that may be involved in a violation of the expected behaviour.

Sequential consistency is arguably the most understood concurrency model. An
(execution) trace of a concurrent program is Sequentially Consistent (SC) iff all memory
accesses are performed in program order, atomicity constraints are respected, and accesses
are serviced from a single First In First Out (FIFO) queue. As this model does not
deviate from the software developers’ specification it is the most intuitive programming
model.

Sequential consistency is a very restrictive model and does not benefit from modern
compiler and processor optimisations. It is sufficient, however, that traces of a program
produce results that are observably equivalent to SC traces. Such traces are said to be
SC serialisable. A trace is SC serialisable iff it can be rewritten into an SC trace without
commuting conflicting accesses. Two accesses are in conflict iff they access the same
(memory) location and at least one of them is a write access.

Shasha and Snir proposed a method to derive a minimal set of locks and delays that
together restrict the possible executions to SC serialisable ones [188]. The set of locks
specifies which accesses may be mutually exclusively executed while the set of delays
enforces a partial order on accesses, indicating which accesses must be delayed until others
have finished. Sasha and Snir use a specification of the program to derive a dependency
graph. The locks and delay sets are derived from so-called critical cycles that are found
in this dependency graph. To achieve their static dependency analysis, techniques must
be used that are quite pessimistic as they must be conservative [5]. Such analyses is
particularly pessimistic in the presence of program branches: certain executions may in
fact not be reachable due to branches being disabled at run-time.

Sequential consistency monitoring is an alternative approach that is more precise
with respect to branches. A monitor analyses executions as streams of memory accesses
and can, thus, be applied at run-time. Similar to Shasha and Snir a dependency graph
between these accesses is built and a cycle indicates a sequential consistency violation.
These dependency graphs are called conflict graphs [19, 39, 159]. To derive locks and
delays, a model checker can be applied to feed a trace to a monitor [73]. While this is
more precise with respect to branches, a monitor inherently reports more than just the
critical cycles.

In this chapter, we consider concurrent programs consisting of a number of threads,
each performing a number of atomic instructions. Each instruction can perform one or
more memory accesses.

6.1. Introduction 141

We propose a sequential consistency monitor that combines conflict graphs and the
theory of Shasha and Snir. On the one hand, the monitor over approximates certain
aspects of the program since it finds all cycles (not just the critical ones). On the other
hand, the monitor is more precise as it considers the dynamic semantics of the program.
The efficiency of the monitor can be improved by focusing its inspection to accesses
reported by a pre-analysis algorithm (e.g., the algorithm of Shasha and Snir). This
increases both the precision and the run-time performance of the monitor.

Furthermore, we propose a summarised conflict graph that summarises completed
instructions. Finally, the summarised conflict graph is optimised further for the use in
a model checker to efficiently derive locks and delays similar to Shasha and Snir. By
building on the theory of Shasha and Snir our results cover many weak memory models
such as Total Store Order, Release Consistency, Partial Store Order, and Relaxed Memory
Order.

In the literature little attention is given to preservation of sequential consistency for
Domain Specific Languages (DSLs) when generating code. To this end, the proposed
conflict graph is applied in the mCRL2 [54] model checker to derive a minimal sets of locks
and delays for a number of programs specified in the Simple Language of Communicating
Objects (Slco) [71]. These locks and delays ensure observably SC behaviour with respect
to the Slco semantics.

Contributions We propose a monitor that detects sequential consistency violations.
The correctness of the monitor is deduced from the theory of Shasha and Snir; thereby
achieving support for a wide variety of weak memory models.

We show that completed instructions can safely be summarised if all the preceding
instructions are completed. This leads to a summarised conflict graph that is more
memory efficient.

The monitor is further optimised for the use in model checkers. The monitor treats
SC traces of instructions. In contrast to related literature, the instructions are treated as
a whole, thereby reducing the number of interleaving accesses that need to be explored.
Furthermore, we summarise the conflict relation between instructions, eventually resulting
in self-loops on vertices of the conflict graph in case those vertices are involved in a
sequential consistency violation, which manifests itself in the graph as a loop.

To further improve efficiency of violation detection, we filter out accesses that are
deemed safe by a static analysis: these safe accesses are ignored by the conflict graphs and,
furthermore, allow the application of Partial Order Reduction (POR) in the model checker.
We employ the approach in the mCRL2 model checker on a number of experiments for
the Slco DSL.

Structure of the chapter. Section 6.2 briefly reviews related work. In Section 6.3,
the theory of Shasha and Snir is introduced. We explain the shortcomings of existing
conflict graphs and summarised conflict graphs, and propose improvements for monitoring
SC in Section 6.4. Section 6.5 proposes further summarised conflict graph optimisations
specifically tailored for deriving lock and delay sets with a model checker. An implemen-
tation of sequential consistency checking with a model checker is discussed in Section 6.6,
and experimental results are presented in Section 6.7. Finally, conclusions and pointers
to future work are given in Section 6.8.

142 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

6.2 Related Work
The monitor proposed in this chapter uses a conflict graph that is inspired by database and
atomicity monitoring literature [19,39,73]. Farzan and Madhusudan employ a summarised
conflict graph, where completed accesses are summarised to reduce memory cost, to detect
atomicity violations using a model checker [73]. They assume that accesses performed
by a thread are executed in program order. This is a shortcoming, as modern hardware
gives no such guarantees.

We show that the conflict graph and summarised conflict graph proposed by Farzan
and Mudhusudan indeed do not detect all atomicity (and sequential consistency) violations
when compilers and processors are allowed to reorder accesses. Furthermore, we present
an improved conflict graph and a summarised conflict graph that monitor sequential
consistency (which is strictly stronger than atomicity). In addition, we present an adapted
summarised conflict graph that is further optimised for model checkers. Using this monitor
it suffices to consider all SC instruction traces instead of all SC access traces, thus, a
significant number of interleaving is avoided.

There is more related work in the field of valid-time databases [41,75]. In valid-time
databases transactions must be serialised in submission order. However, here the source of
the atomic transaction (database equivalent to an instruction) is not considered. Therefore,
consistency from the point of view of the client (similar to a program thread) is not
considered.

Burnim, Sen, and Stergiou propose a sequential consistency monitor for Total Store
Order and Partial Store Order architectures [38]. They summarise the dependency relation
between accesses by modelling the store buffer. By encoding the buffer semantics explicitly
the monitors are able to summarise more behaviour than the monitor presented in this
chapter. As their monitors are defined on access traces, their monitors would require
similar optimisations as ours to efficiently be employed in a model checker. Additionally,
our algorithm also allows derivation of sets of locks and delays that guarantee sequential
consistency.

With respect to avoiding locks where possible, transforming code to remove locks [227]
is related, although we aim to avoid locking initially. Poetzl and Kroening [172] transform
threads to optimise them. It would be interesting to use their results to further refine pro-
duced code. In work on model-based code generation [42,99,175] automatic optimisations
are being applied. However, these do not analyse the model to produce a tailor-made
implementation. In [66], a state machine-based language is presented together with a
data race checker, but sequential consistency checking is not addressed.

Kuperstein, Vecheve, and Yahav [128] propose a model checking algorithm to automa-
tically compute a set of memory fences that restricts a program P to SC-serialisable traces
under a given memory model M . A downside of their approach is that they compute
the transition system of the given program under M involving interleaving and possible
reordering of accesses. In contrast to their approach, our algorithm only needs to consider
SC traces. As our method does not target specific memory models it would be interesting
to see if the two approaches could be combined.

6.3 Guaranteeing Sequential Consistency
Sequential Consistency of a Program. To reason about sequentially consistent
behaviour of a concurrent program we consider its execution on, and its effects on the

6.3. Guaranteeing Sequential Consistency 143

memory of, a multi-core machine. To this end we assume that the state of the machine
is defined by the values stored in its storage locations. The set of storage locations of a
machine is denoted by L. A location may be a register, a memory location (e.g., associated
to some variable), or another medium.

Figure 6.1 gives an overview of the concepts related to a concurrent program used
in this work. A program consists of a set of threads T, each performing a sequence of
atomic instructions called a thread program. An atomic instruction executes one or more
operations atomically. Each operation performs zero or more accesses to locations.

An access either reads from, or writes to, a given location ∈ L and has a unique
identifier. We write rt() and wt() for read and write accesses, respectively, by a thread
t ∈ T at a location ∈ L (leaving the identifier implicit). An access is performed
atomically, i.e., two accesses on the same location behave as if they occur serially in some
order. The set of accesses of a thread t ∈ T is denoted by Vt. The set of all accesses of a
program is defined as V =

⋃
t∈T

Vt.
The order of the thread program t ∈ T, or the thread order for short, is defined by an

irreflexive total order Pt ⊆ Vt × Vt on the accesses performed by t. The program order
P ⊆ V×V consists (at least) of the union of the thread orders of all threads:

⋃
t∈T

Pt ⊆ P .
In most cases, accesses of different threads are unrelated by P . However, P may relate
accesses of different threads to represent, for instance, synchronisation constraints across
threads.

Execution
trace

execution order ≺

Program program order P

Thread
(program) Threads T

Atomic
in-

struction
Thread order Pt

Operation atomicity relation A

Access set of accesses V

1..*

1..*

1..*

1..*

0..*

Figure 6.1: Overview of a program

The atomic instructions of some thread t ∈ T

are defined using an equivalence relation At ⊆
Vt × Vt identifying classes of accesses that are to
be performed (observably) atomically. We write
[a] for the equivalence class under At that contains
access a ∈ Vt plus any other accesses in Vt that
are equivalent to a according to At. The atomicity
relation over all accesses of a program is A =⋃

t∈T
At. In examples, we write 〈. . .〉 to indicate

an atomic instruction, i.e., all accesses within the
brackets are related by A.

The quotient order X/A of an order X ⊆ V×V

aggregates X by the atomic instructions of A:
[a1] X/A [a2] iff [a1] �= [a2] and there exist
a ∈ [a1], a′ ∈ [a2] such that a X a′. The quo-
tient order P/A is the program order over atomic
sets and, hence, defines a partial order over in-
structions.

A relation R can be extended to a total order
iff its transitive closure is irreflexive. Consider a
graph representing R. It follows that R can be
extended to a total order iff this graph is acyclic.

An execution trace, or trace for short, is a se-
quence of accesses ordered by a total execution
order ≺. A trace captures an (interleaved) execu-
tion of a multi-threaded program and describes
the order in which the accesses of the program segments of threads are (visibly) performed.

Programmers rely on a programming paradigm where atomic instructions are, or appear
to be, executed in programmed order and without interruption. That is, programmers

144 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

expect their program to behave sequentially consistent. Hence, a program is correct if all
possible execution traces appear to be sequentially consistent (SC).

Definition 6.3.1 (Sequential Consistency). An execution trace π is sequentially consis-
tent (SC) iff π is an extension of P in which for each instruction, its accesses appear in an
uninterrupted sequence, i.e., π is SC iff it extends P and is of the form S1≺S2≺ . . .≺Sn

with n the number of instructions (i.e., n = |V/A|) and Si (i ∈ 1..n) a sequence of
accesses of an instruction.

An SC trace executes all atomic instructions sequentially, without interruption, follo-
wing the program order. Hence, by definition any SC trace retains atomicity of instructions.
It is sufficient, however, that a trace is observably no different from an SC trace.

SC up to observation. A trace appears to be sequentially consistent if it computes the
same values as an SC trace. The observable values of some location ∈ L are restricted
by the order in which reads from and writes to occur. The potential values of may
depend on the order in which two accesses on are executed if one of these accesses is a
write access. In this case, those accesses are said to be in conflict.

Definition 6.3.2 (Conflict). Two accesses conflict iff they access the same location ∈ L

and at least one of them is a write access.

Two traces π, π′ are equivalent if they compute the same values, meaning that they
read and write the same values. As long as one is a permutation of the other and
conflicting accesses appear in π and π′ in the same order, the values written to and read
from locations remain the same.

Definition 6.3.3 (Trace Equivalence). Two traces π and π′ are equivalent, denoted
π ≈ π′ iff π can be rewritten to π′ (and vice versa) by commuting non-conflicting accesses.

A trace π is said to be SC-serialisable if it is equivalent to an SC trace.

Definition 6.3.4 (SC-Serialisable). An execution trace π is SC-serialisable iff there exists
an SC trace π′ such that π ≈ π′.

From the perspective of a programmer a program behaves correctly iff all possible
execution traces are SC-serialisable.

Detecting non-SC-serialisable traces. A non-SC-serialisable trace (or non-SC trace
for short) exists when accesses of different threads have a cyclic conflict with each other.
To formally detect such cyclic conflicts a conflict relation C is used. The conflict relation
C : V × V is an irreflexive symmetric relation relating any two accesses (of different
threads) that are in conflict. An orientation O of C is an irreflexive asymmetric relation
specifying the order in which conflicting accesses are to be executed; a1 C a2 iff either
a1 O a2 or a2 O a1.

Violation of SC-serialisability can be detected by searching for cycles in C/A ∪ P/A
as indicated by Proposition 6.3.5. We assume that conflicts within an instruction are not
commuted (by compilers and processing units) as this is always unsound.

Proposition 6.3.5. A program has non-SC-serialisable traces iff C/A ∪ P/A contains
a cycle. Furthermore, if O is an orientation of C the class of traces defined by O is
non-SC-serialisable iff O/A ∪ P/A contains a cycle.

6.3. Guaranteeing Sequential Consistency 145

Proof. We have assumed that conflicting accesses are not commuted within atomic
instructions. It follows from Lemma 2.1 of Shasha and Snir [188] that a program has
non-SC traces iff there exists an orientation O of C such that O/A∪P/A contains a cycle.
It follows that the program has non-SC traces iff C/A ∪ P/A contains a cycle.

If there is a cycle in C/A∪P/A a non-SC-serialisable trace can be performed by execu-
ting the accesses of any non-singleton atomic set of accesses in the cycle and interleaving
between these the other accesses in the cycle in a certain order. Figure 6.2 shows such a
cycle causing a violation of sequential consistency. Edges marked by P and C indicate

a1 a2
P P

a4

a3

P

an−1

an

P

C ∪ P

C ∪ P

C

Figure 6.2: A generic
cycle in C/A ∪ P/A

P -edges and C-edges, respectively. The grey boxes indicate
atomic instructions. A solid line or box indicates a single edge or
instruction, respectively. A dashed line or box indicates a path
of zero or more edges or instructions, respectively. For instance,
a trace π = a1≺an−1≺an≺ . . .≺ai−1≺ai≺ . . .≺a3≺a4≺a2 is not
SC-serialisable. It is constructed by respecting the P -order within
each involved instruction, and placing the instructions against
the cycle direction between accesses a1 and a2. Although for
all even i (4 ≤ i ≤ n) access ai may be commuted towards the
right, ai−1 cannot follow because of its conflict with ai−2 (and
symmetrically for odd i (3 ≤ i < n)). Hence, a1 and a2 cannot be
brought together without breaking atomicity or program order
of other instructions. In addition, compilers and processing units
may (locally) reschedule non-conflicting accesses leading to other
possible non-SC traces. For instance, if a1 and a2 do not conflict with each other, another
non-SC trace can be obtained by completely sticking to the cycle order, but swapping a1
and a2.

Example 6.3.6 (A non-SC program). Consider the following program: t1 = 〈w1(y) P1

r1(x)〉 and t2 = 〈w2(x)〉 P2 〈r2(y)〉. As compilers and processors may (locally) reschedule
non-conflicting accesses the non-SC trace π = r1(x)≺w2(x)≺r2(y)≺w1(y) may occur.
This trace contains the following cycle: r1(x) C w2(x) P2 r2(y) C w1(y) A w1(x).

In π atomicity of 〈w1(y) P1 r1(x)〉 is broken and the accesses appear out of order. To
reach an equivalent trace in which atomicity is not broken and the accesses of t1 are in
order our only option is to, first, commute the two accesses of t2, and then commute the
accesses of t1 inward: π = r1(x)≺w2(x)≺r2(y)≺w1(y) ≈ r1(x)≺r2(y)≺w2(x)≺w1(y) ≈
r2(y)≺w1(y)≺r1(x)≺w2(x) = π′. However, by commuting to π′ we are forced to break the
thread order of t2. Hence, the program is not SC.

Guaranteeing SC-serialisability. To guarantee correctness of a program all possible
SC violations have to be ruled out. As these are represented by cycles in C/A ∪ P/A, we
have to apply appropriate synchronisation constructs to the accesses in such cycles. Next,
we discuss how to do this.

The delay relation D ⊆ P ∪ A is a partial order that enforces a (local) precedence
relation between accesses of a program. If a1 D a2, then a2 is delayed until access a1 is
executed and a2’s commit to memory is delayed until a1 is committed to memory. A
delay between two accesses may be achieved by applying a memory fence.

Definition 6.3.7 (Sufficient Delay Relation). A delay relation D is sufficient iff all
execution traces respecting D are SC-serialisable with respect to P .

146 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

A delay relation D is minimal iff it is sufficient and there is no strict subset D′ ⊂ D
that is sufficient. SC-violations can be found by detecting simple cycles in C/A ∪ P/A.
A simple cycle may contain any node and edge at most once; edges from A and C are
considered non-directional edges (e.g., a simple cycle may contain either a1 C a2 or
a2 C a1, but never both). A minimal delay relation can be computed by detecting critical
cycles in C/A ∪ P/A.

Definition 6.3.8 (Critical Cycle). A cycle σ in C/A ∪ P/A is a critical cycle if it is a
simple cycle and has no chords in P/A (i.e., (a1, a2) /∈ P/A for any two non-adjacent
accesses a1 and a2 in the critical cycle).

Because of the absence of chords in P/A, a critical cycle is a minimal cycle with no
more than two successive accesses in any thread.

A minimal delay relation that guarantees sequential consistency of a program can
be derived from the P ∪ (A \ C)-edges represented in the set of all critical cycles of the
program.

Proposition 6.3.9 ([188]). Let D0 consist of all edges in P ∪ (A\C) that are represented
by a critical cycle in C/A ∪ P/A. Then, D0 is sufficient iff D0 is acyclic. Furthermore,
D0 is minimal iff D0 is acyclic.

In contrast to Shasha and Snir we do not include A-edges that are also C-edges in the
definition of a critical cycle. Otherwise, say that (a1, a2) ∈ P and that (a2, a1) ∈ A ∩ C
is in a critical cycle, then it is possible to include (a2, a1) in D0, thus enforcing a delay
against program order between accesses that are in conflict. In this case D0 becomes cyclic
as the reverse edge (a1, a2) ∈ P in the direction of the program order is also contained
in a critical cycle. The exclusion of A ∩ C-edges in critical cycles does not influence the
proofs presented by Shasha and Snir.

If D0 is acyclic, then the relation D0 specifies a minimal set of constraints that
limits a program to SC-serialisable executions. When D0 contains a cycle, a sufficient
delay relation does not exist. The accesses in these delay cycles must be protected by a
synchronisation mechanism that prevents mutual access to locations (e.g., through the
use of locks or transactional memory).

We use an equivalence relation M ⊆ A to define classes of accesses that require
prevention of mutual accesses, and a locking protocol to achieve this prevention. For
each class l ∈ M the protocol protects all locations accessed by the accesses in l. The
protection starts at the first executed access in l and ends when all accesses in l have been
executed. Multiple read accesses may read from the same location while the location is
not being written to. At all times only one access may have access to a location that is
being written to.

Shasha and Snir propose a minimal locking relation M ⊆ A and derive a minimal delay
relation D(M) ⊆ P ∪ (A \ C) that guarantees SC-serialisable execution of a program:

Proposition 6.3.10. Let M be defined as follows: a1 M a2 iff a1 and a2 are in the
same strongly connected component of the graph representing D0. Furthermore, let
D(M) = (D0 \M) ⊆ P ∪A. Then,

1. M ⊆ A, D(M) ⊆ P ∪A, and D(M) and D(M)/M are acyclic;

2. M and D(M) ensure SC-serialisability of execution traces (constrained by M and
D(M)); and

6.4. Monitoring Conflict Serialisability Violations 147

3. M is minimal, and D(M) is minimal (after fixing M).

Proof. We have assumed that conflicting accesses are not commuted within atomic
instructions. Therefore, we may omit delays reported by the work of Shasha and Snir
that are within instructions. The remainder of the proof follows from Theorem 5.4 of
Shasha and Snir [188].

We briefly discuss the conclusions of the proposition above. The first point states
that M and D(M) are subsets of the intended relations and that the delay relation D(M)
does not contain any cycles that could prevent it from being applied. The second point
says that if the program is constrained by M and D(M), then all traces of the program
are SC-serialisable. Finally, the third point indicates that there are no smaller sets M ′

and D′ that together are sufficient to guarantee SC-serialisability of all traces. Note
that the last point only holds for programs that do not have branches (e.g., if-then-else
statements) as the theory so far has not considered these.

6.4 Monitoring Conflict Serialisability Violations
Conflict Graphs. The use of a conflict graph or a summary of it is common practice
to monitor transaction traces in the database literature [19, 39, 159]. While this literature
is focussed on monitoring atomicity violations, there is an increasing interest in moni-
toring sequential consistency violations [38,159]. In the field of databases a transaction
corresponds to an atomic instruction and an event corresponds to an access or a symbol
denoting the completion of a transaction. However, for the sake of consistency we will
keep using the terms introduced in the previous section.

In the remainder an access a is an element of a trace π, denoted by a ∈ π, iff a occurs in
π. The projection of a set S of accesses onto a trace π is define as Sπ = {a | a ∈ S∧a ∈ π}.
Similarly, the projection of a relation R : V× V onto a trace π is define by a1 Rπ a2 iff
a1 R a2 and a1, a2 ∈ π.

Accesses of a thread t have a unique identifier based on their rank in Pt, i.e., the
thread program execution order. Hence, also instructions have a unique identifier. Let It
be the set of instruction identifiers, and let I =

⋃
t∈T

It. The set of instruction identifiers
of t that are in π (completed or uncompleted) is defined by Iπt . The set of all instructions
in π is defined by Iπ =

⋃
t∈T

Iπt . In the remainder, we write [i] to refer to the set of
accesses of an instruction i. We say that i is P -before an instruction i′ ∈ Iπ in a trace π
iff [i] P/A [i′], meaning that at least one access of i is P -before at least one access of i′.

Furthermore, there is a special trace element �i ∈ π that denotes the completion of
an instruction i ∈ Iπ. The atomicity relation Aπ can be derived from a trace involving
this special element if the relation is not known otherwise.

A conflict graph is a tool for monitoring execution traces, and is therefore defined by
a trace π. Furthermore, since it monitors sequential consistency of a trace the orientation
of conflicts is relevant, i.e., we do not want to report a violation when an observed trace is
SC (even if there exist variations that are not SC). A trace violates atomicity constraints
iff its conflict graph contains a cycle [73].

Definition 6.4.1 (Conflict Graph [73,159]). The conflict graph of a trace π is the directed
graph Gπ = (V,E, L). The set V consists of vertices representing instructions i ∈ Iπ. L
is a vertex-labelling function, labelling a vertex representing i ∈ Iπ with [i]π, i.e., the set

148 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

of accesses of i that are in π. The set E consists of edges. There is an edge (i1, i2) ∈ E
between two vertices/ instructions i1, i2 ∈ V iff

• i1, i2 ∈ Iπt of some thread t and L(i1) ≺/Aπ L(i2), or

• L(i1) C
π/Aπ L(i2) and L(i1) ≺/Aπ L(i2).

A trace π violates atomicity observably when there is a cycle in the conflict graph
Gπ [73]. However, the current conflict graph does not consider thread local optimisations,
that is, compilers or processing units may reorder accesses within thread programs that
are not conflicting. Example 6.4.2 shows that there are non-SC traces with acyclic conflict
graphs.

Example 6.4.2 (A non-SC trace missed by its
conflict graph). Reconsider the non-SC trace
of Example 6.3.6 π = r1(x)≺w2(x)≺�〈w2(x)〉
≺r2(y)≺w1(y) presented in Example 6.3.6 and
the corresponding program: t1 = 〈w1(y) P1

r1(x)〉 and t2 = 〈w2(x)〉 P2 〈r2(y)〉. Figure 6.3
presents the conflict graph corresponding to the
non-SC trace. Although the trace is non-SC, the
violation is not observed in Gπ, since there is
no directed cycle. To detect the SC-violation
an edge from vertex 〈r2(y)〉 to vertex 〈w2(x)〉 is
needed.

{w2(x)} {r2(y)}

{r1(x), w1(y)}

≺ ∩ Cπ ≺ ∩ Cπ

≺

Figure 6.3: Conflict graph Gπ with π =
r1(x)≺w2(x)≺�〈w2(x)〉≺r2(y)≺w1(y)

An Improved Conflict Graph. To add support for SC-violations due to thread local
reordering we adapt the conflict graph to the theory of Shasha and Snir. For this, the
conflict graph of a trace π requires knowledge about the local thread orders for each
thread t ∈ T involved in π. In the area of serialisability of database transactions this can
be achieved by supplying the transaction rank upon submission of the transaction. In
the area of sequential consistency of concurrent programs the conflict graph needs the
relation Pπ

t . The specified order for π is defined as Pπ.

Definition 6.4.3 (Improved Conflict Graph). The improved conflict graph of a trace π
is the directed graph IGπ = (V,E, L). Sets V , L are defined as for Gπ. The set E consists
of edges. There is an edge (i1, i2) ∈ E between two vertices/ instructions i1, i2 ∈ V iff

1. i1, i2 ∈ Iπt of some thread t and L(i1) P
π
t /A

π
t L(i2), or

2. L(i1) C
π/Aπ L(i2) and L(i1) ≺/Aπ L(i2).

Reconsider Example 6.4.2. In IGπ, an edge is drawn from {r2(y)} to {w2(x)} (based
on the thread program order Pt) instead of in the other direction, by which the ordering
≺ of π for accesses within the second thread is ignored and the presence of a sequential
consistency violation is revealed.

Propositions 6.4.4 and 6.4.5 show that IGπ contains a cycle iff π is a non-SC trace.

Proposition 6.4.4. Consider a trace π. If IGπ contains a cycle, then π is a non-SC
trace.

6.4. Monitoring Conflict Serialisability Violations 149

{w1(x)}

π3 = w1(x)

1.
{w1(x)}

{r2(x)}

π2 = π3≺r2(x)

C 2.
{w1(x)} H : {r2(x)}

{r2(y)}

π1 = π2≺�〈r2(x)〉≺r2(y)

3.
{w1(y)}

{r2(y)}

π = π1≺�〈w1(x)〉≺w1(y)

C

Figure 6.4: Construction of the summarised conflict graph for a non-SC trace π =
w1(x)≺r2(x)≺�〈r2(x)〉≺r2(y)≺�〈w1(x)〉≺w1(y) with program t1 = 〈w1(y)〉 P1 〈w1(x)〉
and t2 = 〈r2(x)〉 P2 〈r2(y)〉 according to Farzan and Madhusudan [73].

Proof. The edges of IGπ are defined by 1)
⋃

t∈T
Pπ
t /A

π
t and 2) C/Aπ ∩ ≺/Aπ. For the

first set we have
⋃

t∈T
Pπ
t /A

π
t = Pπ/Aπ. Furthermore, the second set contains C/Aπ.

Hence, if there is a cycle σ in IGπ, then σ is a cycle in C/Aπ ∪ Pπ/Aπ. It follows from
Proposition 6.3.5 that π violates sequential consistency.

Proposition 6.4.5. Let π be a non-SC trace, then IGπ contains a cycle.

Proof. Let Oπ ⊆ ≺∩Cπ be the orientation of Cπ followed by ≺. Since π is a non-SC trace,
then by Proposition 6.3.5, there is a non-trivial cycle σ in Oπ/A∪P/A that only involves
accesses in π. Furthermore, Oπ ⊆ ≺ ∩ Cπ and

⋃
t∈T

Pπ
t /A

π
t = Pπ/Aπ by definition.

Hence, σ is also a cycle of IGπ.

Note that for a trace π, IGπ contains all cycles, including non-critical ones.

Summarising the Conflict Graph. Maintaining vertices for each instruction in a
stream of instructions can impose significant burden on a machine’s memory. For this
reason summarised conflict graphs [39] were introduced. In a summarised graph each
vertex corresponds to a thread t ∈ T and contains, besides the current instruction, an
aggregation of t’s completed instructions and conflicting accesses of other threads.

The summarised conflict graph of Farzan and Madhusudan [73] uses a second vertex-
labelling function H that collects, for any thread t and instruction i of t, the accesses of
completed instructions of other threads that had conflicts with i. Whenever an instruction
i is completed, the vertex corresponding to i is removed from the summarised conflict
graph, all the (immediate) predecessors and successors of the vertex are connected, and
the function H is updated. However, this summary loses essential information to detect
that a trace violates the intended observable order P as shown in the following example.

Example 6.4.6 (The summarised conflict graph of Farzan and Madhusudan [73] may lose
information). Consider the program t1 = 〈w1(x)〉 P1 〈w1(y)〉 and t2 = 〈r2(y)〉 P2 〈r2(x)〉,
and corresponding non-SC trace π = r2(x)≺�〈r2(x)〉≺w1(x). Once the first access in the
trace has been executed, a vertex is added to the graph for 〈r2(x)〉. Reading the second
element, i.e., �〈r2(x)〉, this vertex is deleted again. Since this vertex has no successors or
predecessors, the fact that r2(x) took place is lost. Naturally, as the execution continues,
the summarised conflict graph will never contain a cycle.

In addition to the flaw above, essential information may be lost when instructions are
not immediately completed.

Example 6.4.7 (The summary function H may lose information when access order
is relevant). Consider the same program as in Example 6.4.6, and non-SC trace π =

150 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

w1(x)≺r2(x)≺�〈w1(x)〉≺w1(y)≺�〈r2(x)〉≺r2(y). Figure 6.4 shows how the summarised
conflict graph for π is constructed:

1. A new vertex for 〈r2(x)〉 is introduced and an edge is drawn for the conflict from
the vertex for 〈w1(x)〉 to the new vertex.

2. A summary is accumulated when �〈w1(x)〉 appears; the vertex for 〈w1(x)〉 is deleted,
and its access is added to H(〈w1(x)〉). Furthermore, a vertex is created for 〈w1(y)〉.

3. When �〈w1(x)〉 appears, the vertex 〈w1(x)〉 is deleted along with the information it
contained via H. Hence, in the final graph, no cycle is present; the information
required to form a cycle, i.e., that t1 executed a write to x, has been forgotten.

From the theory of Shasha and Snir it is clear that accesses that are P -before a
currently considered access may still cause sequential consistency violations. It follows
that accesses performed by a thread must be remembered. In the summarised conflict
graph presented below (Definition 6.4.8) such accesses are stored in special vertices called
P-summaries, one for each thread t ∈ T, denoted by PSt. A P -summary PSt summarises
all past accesses of t, thus maintaining the transitive closure of Pt. We refer with PS to
the set of all the PSt: PS = {PSt | t ∈ T}.

In particular, given an access, PSt stores the location and type of access performed.
The rank of the access in the trace is irrelevant for finding cycles; if a cycle exists via
an access to a location then a cycle exists via any such access performed at any time
by the same thread. For an access at() (a ∈ {r, w}, t ∈ T, ∈ L), the summarised
information is stored in PSt as (a,). In addition, a read may be forgotten once a
write to the same location has occurred, since any access a conflicting with an access
r() also conflicts with an access w(), but not vice versa. We extend the definition of
the vertex-labelling function L to provide the summaries: for each PSt (t ∈ T), L(PSt)
contains the tuples representing all completed accesses of t. Updating a P -summary PSt

with a set of accesses X can be formalised using a special union operator as follows:
PSt X = {(a,) | (a,) ∈ PSt ∨ at() ∈ X ∧ (a = r =⇒ (w,) �∈ PSt ∧ wt() �∈ X)}.

Consider a trace π and the corresponding summarised conflict graph SGπ. In SGπ,
there are vertices for each instruction that has appeared but has not yet completed, plus
the PSt for all t ∈ T. In the following, we say an instruction is alive iff it has a vertex in
the summarised conflict graph.

A conflict (orientation) edge is represented by drawing an edge from a vertex v to a
vertex v′ iff L(v) ≺/Aπ L(v′) and their labels conflict. A P -edge is represented by an
edge from a vertex v to another vertex v′ whenever L(v) Pπ/Aπ L(v′). Furthermore,
there is a P -edge from each PSt to every instruction vertex belonging to t.

To make it explicit how the summary graph is maintained we inductively define
the summarised conflict graph for detecting sequential consistency violations. Given an
e ∈ V ∪ {�i | i ∈ Iπ}, let in(e) denote the instruction i that e belongs to.

Definition 6.4.8 (Summarised Conflict Graph). The summarised conflict graph of trace
π is a graph SGπ = (Vπ, Eπ, Lπ), where (Vπ, Eπ) is a graph with PS ⊆ Vπ, and Lπ is the
vertex-labelling function. The vertices in Vπ \ PS represent all the alive instructions.

The summarised conflict graph over the empty trace is the graph SGε = (PS, ∅, L),
where L(PSt) = ∅ for all t ∈ T.

Consider a trace element e ∈ V ∪ {�i | i ∈ Iπ} of some thread t. We now build the
graph SGπ≺e.

6.4. Monitoring Conflict Serialisability Violations 151

Let ExistsPAfter(i) = (∃i′ ∈ Vπ. Lπ(i) P
π/Aπ Lπ(i

′)) ∨ (Lπ(i) P
π/Aπ [e]π≺e) be the

proposition stating that there exists in SGπ, or will exist in SGπ≺e, a vertex that is P -after
a given instruction i. Furthermore, let AllPBeforeCompleted(i) = ∀i′ ∈ I. [i′] P/A [i] =⇒
(i′ ∈ Vπ ∧�i′ ∈ Lπ(i

′)) ∨ (e = �i′) be the predicate stating that all instructions P -before
some instruction i have been completed in SGπ or will be completed in SGπ≺e. Finally,
let Del = {i ∈ Vπ | (�i ∈ Lπ(i)∨ e = �i)∧ExistsPAfter(i)∧AllPBeforeCompleted(i)} be
the set of vertices that are to be deleted: for each such vertex v, there is at least one other
vertex that is P -after v, and vertices v′ that are P -before v have completed as well.

The summarised conflict graph of trace π≺e is defined by SGπ≺e=(Vπ≺e, Eπ≺e, Lπ≺e),
with

• Vπ≺e = Vπ ∪ {in(e)} \Del;

• Lπ≺e(in(e)) = Lπ(in(e)) ∪ {e} and Lπ≺e(PSt) = Lπ(PSt)
⋃

i∈Del[i]
π≺e;

• Eπ≺e = Eπ \DE ∪ CA ∪ CI ∪ CT ∪ PA ∪ PT, where

– DE = {(i, i′) | i ∈ Del ∨ i′ ∈ Del}, i.e., the set of edges between instructions
to be deleted;

– CA = {(i, in(e)) | i ∈ Vπ≺e ∧ ∃e′ ∈ Lπ≺e(i). e Cπ/Aπ e′}, i.e., new C-edges
between alive instructions and the instruction of e;

– CI = {(PSt′ , in(e)) | t′ �= t ∧ PSt′ ∈ Vπ≺e ∧ ∃e′ ∈ Lπ≺e(PSt). e Cπ e′}, i.e.,
new C-edges between P -summaries and the instruction of e;

– CT = {(PSt, v) | v ∈ Vπ≺e ∧ (i′, v) ∈ Eπ ∧ i′ ∈ Del} ∪ {(v,PSt) | v ∈
Vπ≺e ∧ (v, i′) ∈ Eπ ∧ i′ ∈ Del}, i.e., the C-edges to be connected to PSt due to
the deletion of instructions of t;

– PA = {(in(e), i) | i ∈ Vπ≺e ∧ {e} Pπ/Aπ Lπ≺e(i)} ∪ {(i, in(e)) | i ∈ Vπ≺e ∧
Lπ≺e(i) P

π/Aπ {e}}, i.e., new P -edges between the instruction of e and alive
instructions, and

– PT = {(PSt, in(e))}, i.e., the P -edge between PSt and the instruction of e.

The summarised conflict graph over an empty trace only contains P -summaries that
are labelled with the empty set. When a new trace element e ∈ V∪ {�i | i ∈ Iπ} of some
thread t is added to a trace π, forming π ≺ e, SGπ is updated to SGπ≺e.

The vertices Vπ are updated by adding a vertex for the instruction of e if it is not
already there. Furthermore, vertices that may be summarised (i.e., those in the set Del)
are deleted. A vertex i is in Del iff i is a completed instruction (i.e., �i ∈ Lπ≺e(i)), i is
not the last instruction in the program order Pπ (i.e., there is another vertex P -after i),
and all vertices that P -precede i are completed as well. The summary (thus, deletion)
of an instruction i removes the Pπ-edge from preceding vertices, i.e., the summary of a
vertex places the vertex’s accesses in the corresponding P -summary; this signifies that
those accesses P -precede those of alive vertices of the same thread. Hence, if a vertex i
is summarised that has an alive P -preceding vertex i′, then suddenly it appears as if i
occurs P -before i′ (instead of after). For similar reasons the Pt-last vertex in the trace
may not be deleted. To maintain the correct program order relation, vertices that have
uncompleted P -preceding vertices are thus not in Del.

The labelling function Lπ is updated to Lπ≺e for the instruction i of e by adding e to
the set of accesses of vertex i. The labelling function is updated for PSt by adding tuples

152 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

{w1(x)}

π1 = w1(x)

1.
{w1(x)}

{r2(x)}

π2 = π1≺r2(x)

C 2.
{w1(x)}

{(r, x)} t2

{r2(y)}

C

P

π3 = π2≺�〈r2(x)〉≺r2(y)

3.
{w1(x),�} {w1(y)}

{(r, x)} t2

{r2(y)}

π = π3≺�〈w1(x)〉≺w1(y)

C

P

P

C

Figure 6.5: Construction of the summarised conflict graph for a non-SC trace π =
w1(x)≺r2(x)≺�〈r2(x)〉≺r2(y)≺�〈w1(x)〉≺w1(y) with program t1 = 〈w1(y)〉 P1 〈w1(x)〉
and t2 = 〈r2(x)〉 P2 〈r2(y)〉 according to Definition 6.4.8.

for accesses of deleted vertices and removing from the resulting set all read access tuples
for which a corresponding write access tuple is also in the set.

The edges Eπ are updated to Eπ≺e by removing edges to deleted vertices (in DE). If
e is an access, then C-edges are drawn to the instruction vertex of e from alive vertices
with conflicting accesses (the CA set of edges) and from P -summaries containing tuples
representing conflicting accesses (the CI set of edges). Furthermore, any C-edges in SGπ

connected to a vertex v of t to be deleted are redirected to PSt (CT). Finally, the set of
P -edges is updated by adding edges between alive vertices and the instruction of e (PA)
and from PSt and the instruction of e (PT). PT updates the transitive closure of Pπ.

Example 6.4.9 (Example summarised conflict graph). Reconsider the program and
non-SC trace in Example 6.4.7. Figure 6.5 shows how the summarised conflict graph for
π is constructed according to Definition 6.4.8. P -summaries are represented by a grey
box with rounded corners, alive instruction vertices are represented by a white box with
sharp corners. To simplify the visualisation a P -summary is only shown when it has an
edge to an alive instruction vertex. We omit indices of the � as they can be derived from
the corresponding vertex. The summarised conflict graph is constructed as follows as we
traverse π:

1. The same as in Example 6.4.7: a vertex for 〈r2(x)〉 is added and an edge is drawn
for the conflict.

2. The completion of 〈r2(x)〉 is marked by �〈r2(x)〉. However, the vertex is not yet
deleted as at that moment it is the last instruction of thread t2. Next, when r2(y)
arrives a new vertex is created for it. Since r2(y) follows r2(x) in the program order,
the vertex labelled {r2(x),�} may be summarised: 1) the C-edge pointing to the
vertex labelled {r2(x),�} is redirected to PSt2 , 2) (r, x) is added to PSt2 , and 3) a
P -edge is drawn from PSt2 to new vertex 〈r2(y)〉 to represent the program order.

3. First the completion of 〈w1(x)〉 is marked. Although this instruction is completed, its
vertex is kept alive (thus not summarised) because it is the last instruction of thread t1.
When access w1(y) arrives a new vertex is created for its corresponding instruction.
The vertex labelled {w1(x),�} is still kept alive, removing and summarising the
vertex now would be unsound since otherwise the direction of the program order
would be represented in reverse order (w1(x) P w1(y) instead of w1(y) P w1(x)).
Finally, a cycle is found indicating that the trace is non-SC.

6.4. Monitoring Conflict Serialisability Violations 153

i [e]π

C

P
P

(a) A cycle in IGπ≺e or
SGπ≺e within the same
thread program.

j [e]π

ii′

t

t′

P

P

C
C

C

(b) A cycle in IGπ≺e between
multiple thread programs.

j [e]π

ii′

t

t′′ t′

P

PC

C
C

C

(c) A cycle in SGπ≺e between
that goes via a P -summary.

Figure 6.6: Possible cycles in Gπ≺e if Gπ does not contain cycles for some newly added
e ∈ V ∪ {�i | i ∈ Iπ} of a thread t.

Summarised conflict graph SGπ correctly represents all cycles in conflict graph IGπ.

Proposition 6.4.10. Let π be a trace, then there is a cycle in IGπ iff there is a cycle in
SGπ′ for some π′ that is a prefix of π.

Proof. We prove this by induction on π. For the smallest trace π = ε the proposition
trivially holds since there are no cycles in SGε.

Assume, for an Induction Hypothesis (IH), that the proposition holds for a trace π.
We show that the proposition still holds for a trace π≺e with e ∈ V ∪ {�i | i ∈ Iπ}. By
IH, it follows that there is a cycle in Gπ≺e iff there is a cycle in SGπ′ for any prefix of π.
If there is a cycle in IGπ or in SGπ then the proposition again holds by IH. It remains to
be shown that if there is no cycle in IGπ and SGπ, then there is a cycle in IGπ≺e iff there
is a cycle in SGπ≺e.

Let t be the thread that executes e. Suppose that there are no cycles in IGπ and SGπ.

• ⇒: There is a cycle in IGπ≺e iff adding e to IGπ introduces a cycle. Hence, e
introduces a new C-edge to some instruction node i ∈ IGπ of a thread t′ oriented
from i to in(e). We distinguish two cases:

– t = t′. In order to have a cycle, there must be a P -edge from in(e) to i in
IGπ≺e, more specifically {e} Pπ≺e/Aπ≺e Lπ≺e(i) as illustrated in Figure 6.6a.
In this case, i could not have been deleted in SGπ≺e as e must be an access
and Del does not contain vertices that have uncompleted P -preceding vertices.
In SGπ≺e, the C-edge and P -edges are contained in CA and PA, respectively.
Hence, the cycle is in SGπ≺e.

– t �= t′. As illustrated in Figure 6.6b, there must be a possibly empty P -path
from in(e) to a vertex j, a path consisting of at least one C-edge to a vertex i′

of thread t′, and a possibly empty P -path from i′ to i. Note that j cannot be
a P -summary of t, because it P -succeeds in(e), and therefore, is not deleted
by Del.
If the cycle is formed between in(e) and i directly, then the cycle is visible
through the edge added by CA.
We now show that the cycle is visible if the cycle goes through vertices other
than in(e) and i. If there is a P -path from vertex in(e) to j and j �= in(e),
then this path is still there in SGπ≺e as the edges were added by PA, j is
not a P -summary, and the vertices on the path were not deleted by Del
since they P -succeed in(e). Furthermore, if along the cycle there is a conflict

154 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

via a P summary, then these remain visible in SGπ≺e through CT or past
applications of CT. Similarly, any conflicts between alive nodes along the
path were maintained by CA. If the cycle goes through the P -summary of
t′, i.e., i′ = PSt′ , then PT has created an edge from i′ to i in the past
via PT. Alternatively, if the cycle does not go through PSt′ , then there is a
possibly empty P -path from i′ to i through uncompleted vertices, because any
uncompleted vertex P -before i is not deleted by Del and the edges representing
P were added by PA at some point. As all parts of the cycle are still represented
in SGπ≺e in the same direction as in IGπ≺e, the cycle is reported by SGπ≺e as
well.

• ⇐: There is a cycle in SGπ≺e iff e is an element of a cycle consisting of the accesses
in π. Hence, e introduces a new conflict with some alive vertex i ∈ SGπ of a thread
t′ oriented from i to in(e). As PSt has an edge towards in(e) as well, the cycle
cannot involve the PSt. We distinguish two cases:

– t = t′ or the cycle only goes through alive vertices. If t = t′, then the cycle
cannot involve PSt as the edge between it and in(e) goes from PSt to in(e),
while the conflict edge goes from i (which also succeeds PSt) to in(e). Hence,
the cycle only goes through alive vertices as sketched by Figure 6.6a. As all
nodes involved in the cycle are alive, the cycle must also be present in IGπ≺e.

– t �= t′ and the cycle goes through at least one P -summary (Figure 6.6c). The
C-edges in this cycle are represented in IGπ≺e as well: CA only adds C-edges
between alive vertices, these are in IGπ≺e too; CI adds C-edges between alive
vertices and P -summaries; and finally, CT adds C-edges from alive vertices to
P -summaries, but only for vertices that are deleted (by DE), and direction is
maintained. The P -edges in the cycle are represented in IGπ≺e as well: PA
ads P -edges between alive vertices, these are also in in IGπ≺e; and, any non-P -
summary has an incoming P -edge from its P -summary, since Pt′′ is total for
any thread t′′ ∈ T the edge must also be represented in IGπ≺e. Furthermore,
for edges to and from P -summaries there must be some vertex IGπ≺e to and
from vertices represented by P -summaries or alive vertices in SGπ≺e. It follows
that also IGπ≺e contains a cycle.

6.5 Deriving Locks and Delays with Model Checking
The algorithm of Shasha and Snir is a static analysis method. It depends on detecting
conflicting accesses at compile time, which can be pessimistic [5]. With a monitor
actual execution traces can be verified. However, it is inefficient to consider all possible
reorderings and interleavings of a program.

In this section, we adapt the summarised conflict graph, in a number of iterations, to
a monitor that can be used to efficiently report a sufficient delay set by means of a model
checker. Cycles within instructions will be considered separately by a preprocessing step.

We first adapt the summarised conflict graph to reduce the required state space of
the model checker. Then, we adapt the summarised conflict graph further to optimise
cycle detection.

Reduce the state space. The following changes are applied to the summarised conflict
graph for state space reduction:

6.5. Deriving Locks and Delays with Model Checking 155

1. The orientation of conflicts in the trace is omitted. For the derivation of the delay
relation the orientation of conflicts is not relevant: all the required information is in
P ∪ C.

2. Traces are expected in program order. As is evident from the theory of Sasha and
Snir it is sufficient to consider only the program order and the conflict relation. The
model checker will explore all possible SC-traces, and not all SC-serialisable traces.

3. Entire instructions are added to the trace at once instead of one access at a time.
Since traces are in program order, it is sufficient to consider entire instructions at
once for the detection of cycles in P/A. Drawing edges according to the theory of
Sasha and Snir covers all possible interleavings of individual accesses.

With the above changes, a model checker can explore all possible SC-traces, and
each time when encountering a transition associated with an instruction j of a thread
t, consider j’s predecessor j′ in the P -order of t to have terminated. Therefore, it will
summarise vertex j′ in the summarised conflict graph and add a vertex j.

Optimisation of cycle detection. For efficiency we want to be able to detect cycles
by comparing as few vertices as possible. To achieve this we make two changes to the
summarised conflict graph which summarises conflicts (and their direction via P -edges).
Cycle appear as self-loops of these summarised conflicts.

The P -summaries are replaced by a function; the content of a PSt is stored via a
function PS(t) that returns the summarised access tuples for t. Any edges that are lost
due to the removal of PSt can be derived from the PS function and alive vertices.

Furthermore, the C-relation is summarised. More precisely, the transitive closure of
the C-relation in combination with the P -relation stored for each alive instruction vertex.
For each alive vertices the accesses of the corresponding thread are stored such that delays
can be derived from the C-summary.

The adapted summary graph for a trace π is denoted by AGπ.

Summary of the C-Relation. Consider a trace π and an alive instruction i ∈ Vπ. We
refer with th(i) to the thread executing instruction i. Given an alive instruction k ∈ Vπ

the set of accesses of i conflicting with k is defined as Ci(k) = {a ∈ [i] | a′ ∈ [k] ∧ a C a′}.
The transitive in- and out-C-summary of an instruction i, denoted by CSin

π (i) and
CSout

π (i), respectively, consists of pairs of threads and accesses. Given a thread t and a
set of accesses X, the presence of such a pair (t,X) in CSin

π (i) indicates that thread t
conflicts either directly or indirectly with instruction i, and X is the set of accesses of
th(i) that are involved in the conflict.

The CSin
π (i) is inductively defined as follows (CSout

π (i) is defined symmetrically).
Initially, CSin

ε (i) = ∅.
Consider an observed instruction j and its P -preceding instruction j′ (which will be

summarised after computing the C-summaries). The cases for the inductive step CSin
π≺j(i)

are illustrated in Figure 6.7. The traversed instruction i is represented by the top right
vertex. The dashed diagonal edge represents a C-summary edge and is the consequence of
the vertical and horizontal edges. These C-summary edges are collected in the set CSπ≺i

which consists of the sets C-P, CS-P, C-CS, C-C, and CS-CS. A C-summary edge from
vertex k to i with sets of access X and Y at its tail and head, respectively, indicates that
the thread of k is in the incoming C-summary of i and Y is the set of accesses of the
tread of i that are involved in the conflict. Similarly, the edge indicates that the thread

156 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

j′ j = i

k

C

P

C-P

Ck(j
′)

Cj′(k)

(a) C-P

j′ j = i

k

CSπ

X

Y

P

CS-P

Y

X

(b) CS-P

j i

k

C

CSπY X

C-CS

Ck(j)

X

(c) C-CS

k i

j

C

CSπ

Y

X
C-CS

X

Ci(k)

(d) C-CS

j i

k

C

C

C-C

Ck(j)

Ci(j)

(e) C-C

j i

k

CSπ

Z

W

CSπY X

CS-CS

W

X

(f) CS-CS

Figure 6.7: C-summaries for some trace π, vertices i, i′ ∈ Vπ≺j , and traversed vertex
j ∈ Vπ \ Vπ≺j ; the diagonal edge is the consequence of the vertical and horizontal edges.

of i is in the outgoing C-summary of k and that X is the set of accesses of the thread of
k that are involved in the conflict. Formally, CSin

π≺j(i) is defined as follows:

CSin
π≺j(i) = CSin

π (i) \ {th(j)} ∪ C-Pin ∪ CS-Pin ∪ C-CSin ∪ CS-Cin ∪ C-C ∪ CS-CSin

where

• C-Pin = {(th(k), Cj′(k)) | i = j ∧ k ∈ Vπ \ {i} ∧ Lπ(k) Cπ Lπ(j
′)} is the set of

thread/access pairs directly conflicting with the P -predecessor of j (Figure 6.7a);

• CS-Pin = {(th(k), X) | i = j ∧ k ∈ Vπ \ {i} ∧ (th(i′), X) ∈ CSin
π (th(i))} is the set of

thread/access pairs indirectly conflicting with the P -predecessor of j (Figure 6.7b);

• C-CSin = {(th(k), X) | k ∈ Vπ ∧ j Cπ k ∧ (th(j), X) ∈ CSin
π (i)} is the set of

thread/access pairs that conflict indirectly with i via a direct conflict and a C-
summary (Figure 6.7c);

• CS-Cin = {(th(j), Ci(k)) | k ∈ Vπ ∧ k Cπ i ∧ (th(j), X) ∈ CSin
π (k)} is the set of

thread/access pairs that conflict indirectly with i via a C-summary and a direct
conflict (Figure 6.7d);

• C-C = {(th(k), Ci(j)) | k ∈ Vπ ∧ k Cπ j Cπ i} is the set of thread/access pairs that
conflict with i indirectly via two C-edges (Figure 6.7e); and

• CS-CSin = {(t,X) | (th(j), X) ∈ CSπ(i) ∧ (t, Y) ∈ CSπ(j)} is the transitive step
merging two incoming C-summaries. (Figure 6.7f).

Moreover, CSin
π≺j(j

′) = ∅, and CSout
π≺j(k) is defined symmetrically.

In the definition of CSin
π≺j(i), first, the old set is recalled through CSin

π (i). Second,
the thread of j is discarded. As j′ has a P -edge to j any vertices k with incoming

6.5. Deriving Locks and Delays with Model Checking 157

{w1(y)}

{
w3(z),
r3(y)

}

{r2(x)}

C

π1 = 〈w1(y)〉≺〈r2(x)〉≺〈w3(z)Pr3(y)〉

1.

{(w, y)} {w1(x)}

{
w3(z),
r3(y)

}
{r2(x)}

CC

PS(t1)

(r, y)

(w, y)

π2 = π1≺〈w1(x)〉

2.

{(w, y)} {w1(x)}

{
w3(z),
r3(y)

}
{(r, x)}

{r2(z)}

C

C

C

PS(t1)

PS(t2)

(r, y)

(w, y)

(r, x)

(w, x)

π3 = π2≺〈r2(z)〉

3.

{(w, y)} {w1(x)}

{
(w, z),
(r, y)

}
{(r, x)}

{r2(z)}

CC

C

PS(t1)

PS(t2)(r, x)

(w, x)

(r, z)

(w, y)

π4 = π3≺�3

4.

{(w, y)} {w1(x)}

{
(w, z),
(r, y)

} {
(r, x),
(r, z)

}CC

PS(t1)
(w, x)

(w, y)

π = π4≺�2

Figure 6.8: Construction of the adapted summarised conflict graph for a trace of in-
structions π = 〈w1(y)〉≺〈r2(x)〉≺〈w3(z) P3 r3(y)〉≺〈r2(z)〉 for a program t1 = 〈w1(y)〉 P1

〈w1(x)〉, t2 = 〈r2(x)〉 P2 〈r2(z)〉, and t3 = 〈w3(z) P3 r3(y)〉; the C-summaries are
indicated by dashed arrows.

conflicts from j′ will not be able to form a cycle together with j. Finally, the conflicts
are summarised through the sets C-Pin

π≺j , C-CSin, C-C, and CS-CSin.
Example 6.5.1 demonstrates how the conflict relation is summarised to a self-loop.

Example 6.5.1 (Detecting a cycle via C-summaries). Consider the program t1 =
〈w1(y)〉 P1 〈w1(x)〉, t2 = 〈r2(x)〉 P2 〈r2(z)〉, and t3 = 〈w3(z)〉 P2 〈r3(y)〉. The program
may execute the non-SC trace π′ = w1(x)≺�〈w1(x)〉≺r2(x)≺�〈r2(x)〉≺r2(z)≺�〈r1(z)〉≺
w3(z)≺r3(y)≺w1(y). The adapted summarised conflict graph detects this SC violation in
the trace of instructions π = 〈w1(y)〉≺〈r2(x)〉≺〈w3(z) P3 r3(y)〉≺〈r2(z)〉≺�3≺�2.

Figure 6.8 illustrates the construction of the adapted summarised conflict graph AGπ

for trace π. The P -summary function PS(t) for some thread t is depicted as a grey vertex
(though it is a function, not a vertex) with rounded corners that has a PS(t)-edge to the
vertices of alive instructions of t. The C-summaries are indicated by dashed arrows. To
simplify the illustration, the C-summaries are omitted for threads that do not have alive
instructions. Below we discuss how the adapted summary graph is constructed and show
that, using the C-summaries, the (summarised) cycle of π′ can eventually be found as a
self-loop.

After transitioning the first instruction of each thread we obtain the conflict graph
π1 shown in the top left corner. Construction of the adapted summarised conflict graph
proceeds as follows:

158 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

r1(y1), . . . , w1(yn)

w1(yn)

(r, x1)

(a) Self-loop indicating “(r, x1) be-
fore w1(yn)” from the C-summary.

(r, yn), (r, x1), . . . , (xn)

r1(y1), . . . , w1(yn)

PS(t) C

(b) Self-loop indicating “(r, yn) before w1(yn)” from the
P -summary (grey node represents value of function PS(t)).

Figure 6.9: Deriving delays from self-loops.

1. When instruction 〈w1(x)〉 is traversed by the model checker the conflict from r3(y) to
w1(x) via w1(y) is stored by the C-summaries: CSin

π2(〈w1(x)〉) = {t3} via C-Pin
π2 , and

CSout
π2 (〈w3(z) P3 r3(y)〉) = {t1} via C-Pout

π2 (Figure 6.7a). Furthermore, instruction
〈w1(y)〉 is summarised and stored by adding (w, y) to PS(t1)

2. Next, instruction 〈r2(z)〉 is traversed. An edge representing the conflict between
w3(z) and r2(z) is added. The conflict between 〈w1(x)〉 and the instruction 〈r2(x)〉
that will be summarised is stored in CSout

π3 (〈w1(x)〉) and CSin
π3(〈r2(z)〉) via C-Pin

π3 and
C-Pout

π3 , respectively (Figure 6.7a). Finally, the 〈r2(x)〉 instruction is summarised by
adding (r, x) to PS(t2) and the conflict between w3(z) and r2(z) is now represented
via PS(t2).

When the dashed arrows are omitted the resulting conflict graph corresponds to the
summarised graph SGπ3 for the non-SC trace π′. The cycle is now visible via PS-
and C-edges.

3. Thread t3 terminates. The conflict path from 〈r2(z)〉 to 〈w1(x)〉 via vertex 〈w3(z) P3

r3(y)〉 and its C-summary to 〈w1(x)〉 is added to the C-summaries via C-CS:
CSin

π4(〈w1(x)〉) = {t2, t3}, and CSout
π4 (〈r2(z)〉) = {t1} (Figure 6.7c). Finally, vertex

〈w3(z)Pr3(y)〉 is summarised to PS(t3) = {(w, z), (r, y)} and any conflicts on
〈w3(z)Pr3(y)〉 are updated to target PS(t3).

4. Finally, thread t2 terminates. The subset CS-CSin in CSin
π4≺〈r2(z)〉 summarises the

two C-summary edges in the graph AGπ4 (Figure 6.7f). Since t2 ∈ CSin
π4(〈w1(x)〉),

we now have a C-summary self-loop on vertex 〈w1(x)〉 via t1 ∈ CSin
π4≺〈r2(z)〉(〈w1(x)〉)

formally summarising the cycle first visible in the graph AGπ3 . The loop shows that
w1(x) should be delayed until writes to y have been completed. As the last step, the
final instruction of thread t2 is summarised.

All cycles in C/A∪ P/A eventually appear as self-loops if all SC-traces are considered
by the model checker. To derive delays two kinds of self-loops must be considered
as illustrated by Figure 6.9. Cycles involving instructions of multiple threads can be
detected through C-summary self-loops (Figure 6.9a and Example 6.5.1). A self-loop on
an instruction i such as the one presented in Figure 6.9a indicates that the accesses of
CSout

π (i) must be delayed until those of CSin
π (i) are completed. To detect cycles between

instructions of the same thread the P -summary function must be considered (Figure 6.9b);
similar to the summary graph, a cycle between an instruction i that is P -after another
instruction of the same thread appears as a conflict of an instruction i on its P -summary
function. A self-loop on an instruction i via its P -summary such as the one presented
in Figure 6.9 indicates that accesses of the instruction must be delayed until conflicting
accesses of the P -summary have been completed.

6.5. Deriving Locks and Delays with Model Checking 159

Reconsider Example 6.5.1. If all SC-traces are considered, then a self-loop appears on
the final instruction of each thread. The scenario presented gives rise to a self-loop from
which the delay (w, y) before w1(x)” is derived. Furthermore, when �1 is traversed in
step 4 instead of �3 the delay “(r, x) before r2(z)” is derived. Similarly, when �1 and �2

are traversed in step 3 and 4, then the delay “w3(z) before r3(y)” is derived.

Focussing the Model-Checker. It is possible to initially over-approximate the poten-
tial for sequential consistency violations in a static analysis algorithm. Such an analysis
can identify the instructions that are safe, i.e., of which the involved accesses cannot
be separated by conflicting accesses of other threads. This helps to subsequently focus
the model checking algorithm on unsafe instructions, i.e., when traversing a transition
associated with a safe instruction i, AGπ≺i is set to AGπ and no cycle detection needs to
take place. For static analysis one can use any method that identifies at least all critical
delays in the program specification (e.g., the algorithm of Shasha and Snir). However, as
their algorithm involves iterating over all cycles in the dependency graph containing a
node for every instruction in the program, we have opted for a less precise, but faster al-
ternative: first, we construct a dependency graph involving all instructions, and represent
both the P - and C-relations as edges between the instruction-nodes. Then, we identify
all strongly connected components (using Tarjan’s algorithm [199]) and subsequently
identify the components that involve at least one P -edge and one C-edge. In addition, if
either at least two threads are involved with multiple instructions, i.e., instructions that
are in the component, or the involved C-edge represents conflicts between more than two
accesses, then the component includes cycles that may constitute violations. In that case,
all instructions in that component should be marked unsafe.

To further reduce the computational effort, state space reduction techniques such as
Partial Order Reduction [89, 164, 202] can be applied. Prominent approaches to POR
are the Ample set approach [164], the Stubborn set approach [202], and the Sleep set
approach [89]. In each approach, a subset of transitions is identified, either statically or
dynamically while exploring the state space, that is sufficient to explore all behaviour
relevant for the property to be verified. In the context of SC violation detection, we use
the Ample set approach; identifying the set A consisting of all instructions that do not
access shared variables. Pruning can then be performed as follows: from any state in
which at least one thread t can only perform instructions in A, only those transitions of t
can be traversed, ignoring the others, as they will also be enabled in the successor states.
However, special attention is needed to ensure that in cycles of such instructions, at least
one state is fully explored; if not, the exploration may be restricted too much, missing
any behaviour beyond such cycles. Note that in this approach, A is trivially a subset of
the set of safe instructions as defined above. For any version of POR to be compatible
with SC violation detection, this is a requirement.

Support for conditionally enabled instructions. So far, we have always considered
instructions that are not guarded, i.e., that are not conditionally enabled depending on
whether the system state satisfies some Boolean predicate. However, in (multi-threaded)
programs, the use of guards is very common, and in fact makes its necessary to analyse
the dynamic semantics of a program, as opposed to statically analysing it. Without
taking precautions, our algorithm may miss violations in which read accesses associated
to checking a guard are involved, in particular when the guard evaluates to false. Namely,
when in a particular system state, an instruction is disabled, it is by definition not
observable as an outgoing transition from the associated state in the state space, even

160 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

Table 6.1: Runtime results (secs.) of standard exploration and SC violation checking

Test case |T| |I| Original Monitored SA SC-check time |D|#States #Trans. #States #Trans. Full POR OTF
adding.1 2 6 7.4k 11.1k 722.4k 1.4m 3/3 2.2k 2.2k 249.2 22
adding.2 2 6 836.8k 1.3m 92.4m 169.2m 3/3 241.2k 239.5k 3.2k 22
anderson.1 2 12 352.6k 704.3k t.o. t.o. 3/3 t.o. t.o. 93.2 t.o.
anderson.2 3 18 1.5k 3.7k t.o. t.o. 4/4 t.o. t.o. 55.7k t.o.
backery.1 2 16 1.5k 2.7k t.o. t.o. 4/4 t.o. t.o. 10.1 t.o.
mcs.2 3 39 1.4k 3.2k 2.9m 8.5m 7/7 13.4k 12.3k 6.2k 143
rushhour.2 8 17 2.3k 12.6k n.a. n.a. 0/36 n.a. n.a. n.a. n.a.
telephony.1 2 62 501 1.4k 31.5m 63.1m 8/8 251.5k 249.4k 80.6k 4.5k

though in the corresponding program, read accesses would need to be performed to
determine that the instruction is indeed not enabled.

Our algorithm can be made sound by making the read accesses for guard checking
observable. To do so, each time a transition of a thread t is explored, we add its
corresponding instruction to the dependency graph, but also a second vertex representing
all the reads needed in the source state to evaluate the guards of all the instruction options
(enabled or not) in the corresponding state of the model. Before doing so, similarly, the
existing vertex of t for guard checking in the graph is summarised, together with the
current instruction vertex of t. Finally, to handle situations correctly in which a thread t
cannot execute any instruction because all its options are disabled, a ‘dummy’ transition
for t can be explored in the state space, by which the read accesses needed to check
the guards of t can still be made visible in the graph, and summarised once a follow-up
(possibly also dummy) transition of t is explored.

6.6 Implementation
In the literature little attention is given to preservation of SC-serialisability for DSLs
when generating code. To this end, we chose to implement the presented model checking
approach for the Slco DSL. In Slco, multi-threaded programs can be modelled using
state machines and shared variables of types Boolean, Integer, Byte, and arrays containing
values of those types. For the details, we refer the reader to [71]. We have implemented
a tool in Python using the packages textX [65] and Jinja2

1 that statically under-
approximates whether an Slco model can be transformed to code without the use of
synchronisation mechanisms. If possible sequential consistency violations exist, the tool
produces an mCRL2 model capturing the semantics of the Slco model and our SC
violation resolution algorithm, so that the mCRL2 toolset [54] can be used for more
precise analysis via state space exploration. This analysis is focussed on those variables
that have been identified by the static analysis as possibly critical in sequential consistency
violations.

6.7 Experimental Results
We have conducted numerous experiments on the DAS-5 cluster [17], with nodes equipped
with an Intel Haswell E5-2630-v3 2.4 GHz CPU, 64 GB memory, and running
CentOS Linux 7.4.

1http://jinja.pocoo.org.

6.7. Experimental Results 161

Table 6.1 contains a representative selection of the obtained results.2 All models have
been taken from the Beem benchmark set [162]. The cases are all relatively small, yet
the Beem models represent real protocols and systems.

For each test case, the number of threads (|T|) and distinct instructions |I| are listed. If
values exceed a thousand, then they reported in thousands (k), or even millions (m). The
time-out for exploration was set to 80 hours; ‘t.o.’ indicates that the analysis timed-out.
The state space before and after application of the monitor are shown in the Original and
Monitored columns, where #States indicates the number states and #Trans. indicates
the number of transitions.

The cases demonstrate that the state space explosion, when keeping track of P - and
C-summaries is considerable, compared to the original state spaces. This is a big challenge,
currently making the applicability of the model checking approach very limited. It is
also to be expected, since it involves bookkeeping of dependencies between instructions,
including the accesses that cause those dependencies.

The SA column indicates the outcome of the static analysis, in the form 〈number of
variables requiring analysis〉 / 〈total number of variables in the system〉. In all cases, the
runtime of static analysis is negligible. If statis analysis was able to determine that no
violations can occur, then there was no need to conduct state space exploration. In this
case runtime and monitored state space are reported as not applicable (n.a.).

The SC-check time column shows the runtime of exhaustive analysis (Full), exhaustive
analysis with POR (POR), and on-the-fly resolution (OTF). The output of the first two
setups is a list of delays, the size of which is given in the |D| column. In the on-the-fly
resolution setup, detected cyclic delays will be directly marked for locking, after which
the involved variables are no longer tracked in the remainder of the analysis, allowing
for early termination if at any point, no more variables are tracked. The drawback is
that the produced result is coarser: if there are accesses to a variable x involved in cyclic
delays, then the outcome is that all accesses to x should be protected (for instance, all
accesses should be included in a transaction when using transactional memory, or variable
x should be protected by a lock).

In all cases, with exception of the rushhour.2 case, on-the-fly resolution helps to reduce
the analysis time significantly. In the anderson.1, anderson.2, bakery.1, and phils.1 cases,
on-the-fly resolution is able to produce a result while the others time out. Its effectiveness
is hard to predict, though; notice that for anderson.2, many more states and transitions
need to be explored than for anderson.1, even though the two cases are variants of the
same model, and the original state space of the former is much smaller than the one of
the latter. POR has little effect. Our applied POR (Ample set) is quite conservative, and
in the future, we will conduct experiments with more effective variants of POR.

We have not experimentally compared our approach to others, due to the fact that
other model checking-based algorithms do not provide the same features, or reason about
interleavings of accesses as opposed to instructions. Note that a model checking approach
in which all interleavings of accesses are considered would scale much worse; if we need to
consider n parallel instructions, each consisting of m accesses, then our approach explores
worst-case 2n states, while the other approach would have to explore (m + 1)n states,
and up to n · (m + 1)n and n ·m · (m + 1)n transitions when a complete thread-local
access ordering and partial orderings are assumed, respectively. Nevertheless, for practical
use, the scalability issues have to be overcome. We will work on this, and see multiple
possibilities for improvement (see Section 6.8).

2Tools and models can be downloaded at http://www.win.tue.nl/~awijs/seq_con.

162 Avoidance of Sequential Consistency Violations under Relaxed-Memory Models

6.8 Conclusions
In this chapter we have proposed a monitor that detects sequential consistency violations.
The correctness of the monitor is deduced from the theory of Shasha and Snir; thereby
achieving support for a wide variety of weak memory models.

Furthermore, we showed how to safely summarise instructions once all the preceding
instructions are completed. In the worst case, if accesses of transactions appear in reverse
order the memory footprint is equivalent to that of a conflict graph that is not summarised.
However, in most cases the summary vertices will get saturated and efficiently summarise
most of the accesses.

The monitor is further developed for efficient use in model checkers. The monitor
treats SC-traces of instructions, and therefore, instructions can be treated as a whole;
reducing the number of interleaving accesses that need to be explored. In addition, we
summarise the conflict relation between instructions such that cycles eventually appear
as self-loops on the vertices of the conflict graph.

To further improve the efficiency of the conflict graphs we filter out accesses that are
deemed safe by a static analysis: these safe accesses are ignored by the conflict graphs
and, furthermore, allow the application of POR in the model checker.

Finally, we have employed the approach in the mCRL2 model checker on a number of
Beem models expressed in the Slco DSL. The results indicate that in order to obtain
an efficient model checking setup for sequential consistency violation checking, further
improvements are required. We experimented with on-the-fly resolution of conflicts, which
helps to reduce the runtimes, but a more sophisticated resolution procedure is required to
not overestimate the amount of required synchronisation in the multi-threaded program.

Future Work Scalability is currently still a source of concern. However, we see potential
to make the analysis more efficient. Techniques that iteratively search different parts
of the state space, such as incremental counter-example construction [220], could be
very effective. These kinds of techniques must be adapted to take sequential consistency
resolution results into account as the analysis continues. Furthermore, parallelisation
using graphics processors could be very effective, which has been demonstrated for model
checking before [211,212,221].

More advanced POR techniques could reduce the state space even further than the
Ample set approach employed in this work. It will have to be investigated how restrictive
these approaches can be without missing any information essential for SC violation
detection.

Finally, we would like to investigate the summary of conflict graphs based on the
theory of Alglave and Maranget [6]. This would further extend the support for weak
memory models by our model checking technique to memory models that allow store
atomicity relaxation (e.g., the Power and ARM architectures).

Chapter 7

A Framework for Verified, Model-Driven Construction
of Component Software

We present the Simple Language of Communicating Objects (Slco) framework, which
builds on results from our research on applying formal methods for correct and efficient
model-driven development of multi-component software. At the core is a domain specific
language called Slco that specifies software behaviour. In this chapter, we discuss the
language, give an overview of the features of the framework, and discuss our roadmap for
the future.

New to the Slco framework are three features that are the results of this thesis.
First, a first step to model-to-model transformation verification is offered based on the
transformation verification theory developed in Chapter 3. Second, due to the theory
presented in Chapter 4, the divergence-preserving branching bisimulation equivalence
relation may be compositionally applied during verification of Slco models. Third, the
sequential consistency violation resolution algorithm described in Chapter 6 is applied to
generate efficient Java implementations for Slco models.

This chapter is an extension of

[63] de Putter, S., Wijs, A., and Zhang, D. The SLCO Framework for
Verified, Model-Driven Construction of Component Software. In FACS (2018),

LNCS, Springer, pp. 288–296

164 A Framework for Verified, Model-Driven Construction of Component Software

7.1 Introduction
The development of complex, multi-component software is time-consuming and error-
prone. One important cause is that there are multiple concerns to address. In particular,
the software should be functionally correct, but also efficient. Careless optimisation of
code may introduce bugs and make it less obvious to reason about the core functionality.
To improve this, it is crucial that techniques are developed that make every step in the
development work flow systematic and transparent.

With the Simple Language of Communicating Objects (Slco) framework [71,224], we
conduct research on the development of techniques for this purpose. Key characteristics
are

1. The use of a Domain-Specific Language (DSL) based on well-known software
engineering concepts, i.e., objects, variables, state machines, and sequences of
instructions,

2. Formal verification in every development step, from model to code, that does not
require expert verification knowledge from the developer, and

3. Optimised code generation, by which (parallel) programming challenges are hidden
from the developer.

The framework uses the model-driven software development methodology, in which
models are constructed and transformed to other models and code by means of model
transformations. The framework makes use of a verified code generator [224,225]. Furt-
hermore, the framework supports some verification of model-transformations; extension
to support the complete theory of Chapter 3 is planned in the near future.

Contributions This chapter presents a brief overview of the Slco framework. The
overview covers all recent work involving the new Slco 2.0 language; formal verification of
models, model visualisation, verification of model-to-model transformations, and verified
code generation with efficient use of synchronisation constructs while at the same time
guaranteeing sequential consistency up to observation. These observably Sequential
Consistent (SC) implementations are indistinguishable from implementations that execute
in the program order specified by the source Slco model and where memory accesses
are serviced from a single FIFO queue. Furthermore, special attention is given to recent
developments in verifying Slco model-to-model transformations and the efficient use of
synchronisation constructs.

As a first step towards verified Slco transformations the framework offers a translation
from transformations defined in Henshin [12] to Refiner (transformation) rule systems.
These rule systems can then be verified using Refiner, a tool implementing the transfor-
mation verification approach presented in Chapter 3. Currently, only transformations
over user-defined actions can be translated to rule systems.

The Slco framework offers a (semantics preserving) translation to Slco-al (Slco

Annotated Level), a slightly more detailed version of the language that allows the
specification of synchronisation fences. The algorithm presented in Chapter 6 is used to
factor out certain statements from atomic sequences of statements (reducing the length of
the critical section) that require heavy-weight synchronisation constructs and to introduce
light-weight fences where they are a safe alternative. The introduced synchronisation
constructs restrict the executions of the Slco-al model to those that are SC with the
source Slco model.

7.2. Related Work 165

Structure of the chapter In Section 7.2 related work is discussed. Next, we introduce
the Slco 2.0 language and mention differences with respect to the previous version of Slco

in Section 7.3. Section 7.4 describes the features offered by the framework. In particular,
we elaborate on the verification of model-to-model transformations, code generation,
and the translation to Slco-al. Finally, in Section 7.5 the chapter is concluded with a
roadmap consisting of planned future work for the Slco framework.

7.2 Related Work
In most related work on model transformations, no verification is done (e.g. [66,178]) or
only on either model-to-model or model-to-code transformations [173]. Some techniques
cover both, e.g. [152], but they do not address the direct verification of transformations.
This means that correctness of a transformation cannot be determined once-and-for-
all; instead, every time it is applied, its result has to be verified. Furthermore, a few
transformation steps may quickly render verification infeasible [11].

The Slco framework has yet to achieve direct verification of all transformations, but
transformations between transition structures consisting of actions can already be verified.

Scade 6 [69], Simulink [200], and Event-B [3] are frameworks offering features
similar to Slco. All frameworks offer automatic code generation and verification methods
for their models. Scade can make use of Lustre’s verified compiler [31] to generated code.
Both Simulink and Event-B support verification of generated code [78,157], however,
to our knowledge the generators have not been mechanically verified and, thus, require
some form of consistency verification between model and code.

Unlike Scade, Slco is not limited to the sampling-actuating model of control engi-
neering, but can specify such systems via user defined actions serving as sampling and
actuating calls. Of these frameworks, only Event-B offers verification of refinement
transformations. Slco, in addition, also supports verification of other kinds of model-
transformations. Finally, similar to Scade, the Slco code generator is mechanically
verified and preserves certain correctness criteria without the need for a consistency check.

7.3 An introduction to Slco 2.0 Language
The second version of Slco is the core of the framework. The Slco DSL should be used
in the first development step to specify the intended functionality of a system. Slco has
been designed to model systems consisting of concurrent, communicating components
at a convenient level of abstraction. It has a formal semantics.1 New to version 2.0 is
the support for array, user defined actions, composite statements, the specification of
a channel’s buffer capacity, and transition priorities. We will introduce these additions
together with the rest of Slco.

Slco models consist of a finite number of classes, which can be instantiated as objects,
channels for communication between objects, and user defined actions ; each are declared
in their own section of the model.

A class consists of a finite number of concurrent state machines, and ports and
variables shared by them that can be used for communication.

Variables are of type Integer, Byte, Boolean, or Array of one of these. Further-
more, state machines can have private variables that are only accessible by the owning

1See http://www.win.tue.nl/~awijs/SLCO/SLCO2doc.pdf.

166 A Framework for Verified, Model-Driven Construction of Component Software

state machine. Variables are declared in the variables section of classes or state
machines: Integer x := y + 1 declares an integer variable named x that initially
has the value of the expression y + 1.

A channel connects two ports of two objects; it is used to send messages between
state machines of two different objects. A channel accepts messages (optionally with
parameters of types Integer, Byte, or Boolean), it is either synchronous or asynchro-
nous. Furthermore, an asynchronous channels is either lossless or lossy (lossy means
that it may lose messages at any time). In case a channel is asynchronous, a buffer
size can be defined, which is by default 1. Let p and q be objects with ports InOut,
In, and Out, then c(Byte) sync between p.InOut and q.InOut and c(Byte)
async[2] lossy from p.Out to q.In respectively denote a synchronous and a
lossy asynchronous channel named c that accepts messages with one Byte parameter,
and the asynchronous channel may buffer up to two messages. A port is attached to at
most one channel. Furthermore, messages sent over ports have a name and optionally a
number of parameters with the same types as defined on the connected channel.

Slco supports components at two levels: each object forms a component that can
communicate with other objects via message-passing, while inside an object multiple
components may exist that can interact via shared variables.

A state machine consists of local variables, a finite number of states, an initial state,
and transitions between states. Transitions have an optional priority and a (possibly
empty) sequence of statements associated with it. For instance, given user defined action a
and variable x; the construct 1: s1 -> s2 {x := x + 1; a} denotes a transition,
with the priority 1, starting at state s1 that first performs the statement x := x +
1 and then performs the action a. Upon completion of the statements the state s2
is reached. A lower number indicates higher priority. Higher priority transitions are
considered for firing before lower priority ones. Transitions with the same priority are fired
non-deterministically. By default, a transition has priority 0. Furthermore, a transition
may be guarded by a boolean expression occurring as the transition’s first statement; a
guarded transition is able to fire iff the guard expression evaluates to true.

Parallel execution of transitions is formalised using an interleaving semantics, in which
Slco statements are atomic, i.e., the transition with sequence of statements is equivalent
to a sequence of transitions each executing one of the statements in the same order. No
finer-grained interleaving is allowed. Slco offers five types of statements:

1. (Boolean) Expression: a condition that is blocked if it evaluates to false. In an
expression, state machine-local and object-local variables may be referenced.

2. Assignment : x := e indicates that the evaluation of an expression e is assigned
to variable x. The expression may be logical (boolean) or arithmetic expressions.
Again, both state machine-local and object-local variables may be referenced. It is
always able to fire.

3. Composite: a statement grouping an optional boolean expression and one or more
assignments (in that order). It is enabled iff the expression at the head is enabled.
If no expression is included, it is always able to fire. For instance, [x>0; x:=x-1;
y:=y+1] (the square brackets denote a composite statement) indicates that in case
x is greater than 0, x is decremented and y is incremented, all in one atomic step.

4. Send and Receive: send and receive attempt to send or receive a message to
or from a particular channel, respectively. If the buffer associated to the channel

7.3. An introduction to Slco 2.0 Language 167

1 model Test {
2 a c t i on s in i t
3 c l a s s e s
4 P { . . . }
5 Q {
6 va r i a b l e s In t eg e r x y
7 por t s Out1 Out2 InOut
8 s t a t e machines
9 SM1 {

10 va r i a b l e s Boolean s t a r t ed := f a l s e
11 i n i t i a l Com0 s t a t e s Com1 Com2
12 t r a n s i t i o n s
13 Com0 −> Com1 { send M(f a l s e , 0) to Out1 ;
14 s t a r t ed := true }
15 Com1 −> Com1 { [x > 0 ; x:=x−1; y:=y+1] ;
16 send N(y) to Out2}
17 1 : Com1 −> Com2 { receive S () from InOut }
18 Com2 −> Com0 { in i t }
19 }
20 SM2 { . . . }
21 }
22 ob j e c t s p : P() , q : Q(x :=10 , y :=0)
23 channe l s
24 c1 (Boolean , In t eg e r) async [2] l o s s l e s s
25 from q . Out1 to p . In1
26 c2 (In t eg e r) async l o s s y from q . Out2 to p . In2
27 c3 () sync between p . InOut and q . InOut
28 }

Figure 7.1: An example Slco model

is full, a send operation is blocked. A receive operation is blocked if the buffer is
empty, or if the next message is not as expected; the receive statement can store
the received parameter values in variables, and check whether an expression related
to these values evaluates to true. If not, the receive statement is not enabled, and
communication fails.

5. User-defined action: an action that indicates yet-unspecified behaviour. User-defined
actions can be implemented in code or transformed to concrete behaviour.

Figure 7.1 presents part of an Slco model Test. It defines classes P, Q (lines 4, 5).
At line 6-7 variables x and y and ports Out1, Out2 and InOut are defined. Class Q
contains state machines SM1, SM2 (lines 9-20). At line 22, objects p and q are declared
as instances of P and Q, respectively. The object ports are attached to channels at lines
24-27. Channel c1 accepts messages with a Boolean parameter, is asynchronous, has a
buffer of size 2, is lossless, and connects ports Out1 and In1 of q and p, respectively.

State machine SM1 has a boolean local variable started (line 10), an initial state
Com0, and other states Com1 and Com2 (line 11).

Between the states, transitions with sequences of atomic statements are defined (lines
12-18). The ‘1:’ in front of the transition at line 17 denotes the priority of the transition.
This priority enforces SM1 in state Com1 to consider the Com1 self-loop (line 15) before
the transition to Com2 at line 17, i.e., it is first checked whether x > 0, only if this is
not the case the transition to Com2 is considered. Recall that messages optionally carry
some parameters; a message named M with parameters false and 0 is sent at line 13,
while the transition at line 17 attempts to receive a message named S without parameters.
When the former transitions is fired the message M is stored in the buffer along with
its parameters. The transition at line 17 is unable to fire as long as there are no state
machines that are able to send message S(). At line 18, a user-defined action init is

168 A Framework for Verified, Model-Driven Construction of Component Software

1. 2.

3.

4.

4.

4.

5.

5.

Figure 7.2: An overview of the Slco framework

used, to indicate that some unspecified initialisation procedure is to be performed when
moving from Com2 to Com0.

7.4 Features of the Framework
Figure 7.2 provides an overview of the Slco framework. The Slco framework2 is imple-
mented in Python, using TextX [65] for meta-modelling and Jinja2

3 or Henshin [12]
for model transformations. Given an Slco model (the grey ellipse at the top-left corner),
a number of features can be used:

1. Verification of the Slco model via a translation to mCRL2. Compositional reasoning
modulo Divergence-Preserving Branching Bisimulation (DPBB) is supported as a
result of Chapter 4.

2. Model visualisation: graphical representation of the Slco model via Dot.

3. Slco model-to-model transformations using Jinja2 or Henshin. Some Henshin

transformations can be verified (Chapter 3) via a translation of the Henshin

transformation to Refiner rule systems [218].

4. Transformation to multi-threaded Java code using two verified code generators.

5. Reducing the use of synchronisation constructs through a translation to Slco-al

(Slco Annotated Level) relying on atomicity checking (Chapter 6) to detect how
and where to synchronise.

1. Formal verification of Slco models To formally verify that an Slco model
satisfies desirable functional properties, it can be transformed to an mCRL2 model. With
the mCRL2 toolset [54], it is then possible to apply model checking [16]. Properties
specified as μ-calculus formulas can be checked by first combining model and property
into a Parametrised Boolean Equation System [93], and then checking the latter’s state
space.

Chapter 4 established that DPBB is a congruence for parallel composition and synchro-
nisation. Hence, compositional abstraction modulo DPBB and branching bisimulation
can be applied to mCRL2 models. The abstraction is applied globally to the mCRL2

2Git repository of the framework: https://gitlab.tue.nl/SLCO/SLCO.git.
3http://jinja.pocoo.org.

7.4. Features of the Framework 169

model hiding all actions that are not communicating actions or relevant for the property
to be checked. This abstraction technique reduces the search space considered by mCRL2

and, therefore, allows faster verification and verification of larger models.

2. Model visualisation Slco models can be transformed to Dot files to visualise
the state machines, thereby providing more insight into the structure of a model.

3. Slco model-to-model transformations Transformations can be used to itera-
tively re-factor or refine Slco models, for instance rewrite state machines or replace
user-defined actions with concrete behaviour. Some user-defined transformations, specifi-
cally the ones between patterns of user-defined actions, can be verified directly for the
preservation of functional properties, using our transformation verification technique [60]
(Chapter 3) implemented in the Refiner tool [218]. It checks whether a transformation
introduces patterns that are branching bisimilar to the replaced patterns after abstraction
with respect to a given property. In other cases, preservation of properties can be deter-
mined for specific transformation applications by verifying the resulting Slco model via
mCRL2.

Verification of transformations is done on transformations expressed in Henshin, a
transformation language for the Eclipse Modelling Framework [193]. Henshin transfor-
mations can be translated into rule systems that are verified using Refiner. Currently,
only transformations expressed over transitions with user-defined actions of a single state
machine are supported. Supported transformations can be translated automatically to
Refiner rule systems using our Henshin2Refiner tool. 4 These rule systems can then
be verified by Refiner.

In Henshin transformations are expressed over patterns of object diagrams (i.e.,
an instance of a class diagram) of the source and target languages (in our case both
are the Slco language). Formally a transformation consists of a match-pattern and a
replace-pattern. The match-pattern must be present in any model of the source language
that the transformation is applied to. The replace-pattern replaces every match of the
match-pattern; i.e., the application of a transformation replaces every pattern that is
matched on by the match-pattern by the replace-pattern. However, for convenience,
Henshin displays both patterns in a single graph: links and elements that are present
in both patterns, in the match pattern only, and in the replace pattern only are marked
«preserve», «create», and «delete», respectively. As Refiner relies on the Double Push-
out Approach, transformation rules in Henshin “Check Dangling” and “Injective Matching”
must be set to true to ensure compatibility of the verification with the Henshin rule.

Figure 7.3 presents a transformation that refines user-defined actions named init; it
inserts a transition performing a processConfig action after transitions with an init
action. There are two transformation rules: refineInit (left) and addActionProcessConfig
(right). The former rule performs the processConfig transition insertion, the latter
rule has to be applied once to ensure well-formedness of the Slco model (i.e., it adds the
processConfig action to the model if it is not already present).

The addActionProcessConfig rule matches any model that defines an init action
(indicated by the two top most «preserve» nodes and link), but does not define a
processConfig action (indicated by the «forbid» node and link at the bottom). If

4Available in the “SLCOtoSLCO_Verification/Henshin_to_REFINER” directory of the Slco Git
repository

170 A Framework for Verified, Model-Driven Construction of Component Software

Figure 7.3: A Henshin transformation that refines user-defined actions named init; the
left rule inserts a processConfig transition after an init transition, the right rule
adds processConfig as a user-defined action if not already present

the rule matches, then the processConfig action is added to the model’s user actions
(indicated by the «create» node and link in the middle).

The refineInit rule matches any model that defines an init action (indicated
by the two nodes at the top right) and one or more state machines containing one
or more transitions with an init action (indicated by all remaining nodes that are
preserved). The rule has two var parameters src and tgt ; these variables are populated
during the application of the transformation and are used to generate a new state named
src+“to”+tgt (the middle node). The transformation replaces the source state of the
original transition with the newly created stated (indicated by the «delete»-link between
the right most node and the centre second left most node). Furthermore, a transition
performing a processConfig action is created (indicated by «create» on the centre
and bottom second right most nodes). All the nodes are appropriately linked to the
state machine. If the refineInit rule is applied to the model defined in Figure 7.1, then
transition Com2 -> Com0 { init } (line 18) will be replaced by two transitions Com2
-> Com2toCom0 { processConfig } and Com2toCom0 -> Com0 { init }.

Given a Henshin transformation over Slco the Henshin2Refiner tool translates
the transformation to a Refiner rule system in three steps:

1. The match- and replace-patterns are extracted from the Henshin transformation
and a mapping between the two patterns is created mapping the preserved nodes.

2. The two patterns are translated to patterns of Labelled Transition Systems (LTSs)
following the Slco semantics. This step relies heavily on the way Slco semantics
are specified. That is, semantics of incomplete models or patterns of models can
be derived; e.g., the semantics of (part of) a state machine is formalised on an
individual (state machine) basis allowing the specification of state machine patterns.

3. The generated LTS-patterns are written as a Refiner transformation rule and the
rule system is completed by specifying that each action label in the LTSs operates
independently of other concurrent processes or state machines.

7.4. Features of the Framework 171

1 transform
2 des (1 , 2 , 2 , 0)
3 (1 , "init" , 0)
4 −>
5 des (2 , 3 , 2 , 0)
6 (1 , "init" , 2)
7 (2 , "processConfig" , 0)
8
9 add

10 "processConfig"

(a) The generated Refiner rule system

1̃

1̃

V̂ =
{
(〈processConfig〉, processConfig)

}V′ =
{
(〈init〉, init)

}
R1

L1
init

0̃

init
2̃

processConfig
0̃

(b) The graphical representation of the generated
Refiner rule system

Figure 7.4: The Refiner rule system generated by Henshin2Refiner from the Henshin

transformation shown in Figure 7.3 and its graphical representation following the graphical
representation presented in Chapter 3: the match-pattern is given by L1, the replace-
pattern is given by R1, preserved states are indicated by an incoming arrow and grey
colour, white states in R1 indicate states that are created, finally, V ′ and V̂ respectively
contain ‘to be matched’ and ‘to be added’ synchronisation laws (in this figure the laws
indicate that the init and proccessConfig are independent actions)

This methodology is not necessarily limited to transformations specified over Slco: the
methodology is applicable to any language that formalises the semantics in a compositional
manner, such that LTSs over partial models can be derived. Hence, in the future, the
Henshin2Refiner tool can be extended to other languages.

Figure 7.4 shows the Refiner rule system that is the result of the application of
Henshin2Refiner to the Henshin transformation shown in Figure 7.3. The rule system’s
textual representation is given in Figure 7.4a and its graphical representation is given in
Figure 7.4b. The refineInit rule is translated to the Refiner rule on lines 2-7 (L1 ⇒ R1).
The match-pattern-LTS and replace-pattern-LTS are defined respectively at lines 2-3
(L1), and 5-7 (R1). The arrow -> tells Refiner that the LTS pattern above it is the
match-pattern and the LTS below it is the replace-pattern. Furthermore, for the purpose
of verification the processConfig action label is considered to be added in transformed
LTSs (line 10 and V̂). The addActionProcessConfig rule is not translated since it does
not concern dynamic semantics, but well-formedness. If the processConfig action is
hidden before verification, then Refiner will indicate that this rule system is indeed
dynamic semantics preserving.

4. Reducing the use of synchronisation constructs with Slco-al In imple-
mentation code, the naive use of nested locking or atomic blocks for all statements
often leads to congestion and, thus, results in under-performing parallel programs. As
previously mentioned, Slco-al can be used to instruct code generators. Currently, this
only extends Slco with a fence statement.

Some statements do not actually need protection by a synchronisation mechanism; in
such a case, the lack of such synchronisations is not observable. Furthermore, it is possible
that statements within a composite statement can be factored out in a way that the
model remains observably SC with respect to the source model. To detect such situations,
the framework provides a transformation to mCRL2 including the sequential consistency
violation resolution algorithm based on the work on sequential consistency monitoring of
parallel programs [62] in Chapter 6. This algorithm checks which specified data accesses
in a model need to be protected in the code by a synchronisation mechanism in order to
avoid potential sequential consistency violations. Furthermore, the algorithm determines

172 A Framework for Verified, Model-Driven Construction of Component Software

when a fence suffices as an alternative to the more heavy-weight locks or atomic blocks.
With the output of the sequential consistency monitor, composite statements can be

decomposed and the need for synchronisations can be indicated in an Slco-al model.
In the adapted model the use of these synchronisations is restricted to the absolutely
necessary and least costly ones. The adapted model is semantically indistinguishable from
the original one during execution of their respective generated code.

The transformation of Slco to Slco-al proceeds as follows:

1. All composite statements are normalised. For each shared variable that is read from
by at least two sub-statements a new statement is introduced that stores the shared
variable locally, and the sub-statements are updated to refer to this local variable
instead. Finally, all writes to a shared variable are localised similarly except for
the last one. This normalisation is semantics preserving and ensures that there is
at most one read and one write, respectively, from and to a shared variable: this
satisfies with assumption of the algorithm.

2. The atomicity boundary on the composite statements is temporarily removed: the
composite statement is converted to a regular statement sequence.

3. The statements are reordered according to the suggestion of the algorithm.

4. Fence suggestions by the algorithm are applied.

5. Composite statements are (re-)formed according to the suggestions of the algorithm.

This procedure strictly follows the suggestions of the sequential consistency monitor.
Hence, the observable behaviour of the Slco model the procedure is applied to remains
unchanged.

5. Transformation to multi-threaded Java Before code is generated an Slco

model is translated to an Slco-al model. An Slco-al model is an Slco model that is
more specific on how and where to ensure atomicity.

The Slco framework offers two partly verified code generators that take an Slco-al

model and generate multi-threaded Java code. The generators use different methods to
ensure atomicity of statements: the first generator uses a locking mechanism, while the
second generator uses transactional memory.

In both generators, each state machine in the given Slco-al model is mapped to an
individual thread. Hence, any variables shared by state machines correspond with shared
variables in the Java code. The code is constructed modularly: implementations of generic
concepts that are reusable in the generated code, such as channel and a locking mechanism
for shared variables, have been added to a generic component library [224]. The functional
correctness of these parts of the generator have been proven [33] using VeriFast [107]: 1)
the atomicity of statements is preserved in generated code, 2) messages sent over lossless
channels are eventually received, and 3) generated code does not introduce deadlocks. In
addition, the Slco framework offers a verified robustness mechanism called Failbox [224]
that is applied in the code to ensure that in case of a malfunctioning thread, dependent
threads are notified if a thread fails.

The first generator enforces the use of a nested locking mechanism [225] to ensure
that variables are safely shared. Each variable (and each array cell) is associated with
an individual lock, and whenever for the execution of a statement a number of shared
variables needs to be accessed, it is attempted to acquire the corresponding locks in a

7.4. Features of the Framework 173

1 . . .
2 case Com1:
3 // [x > 0 ; x := x − 1 ; y := y + 1]
4 java_lockIDs [0] = 0 ; java_lockIDs [1] = 1 ;
5 java_kp . l ock (java_lockIDs , 2) ;
6 i f (! (x > 0)) {
7 SignalMessage m = c3 . receive ("S") ;
8 java_kp . unlock (java_lockIDs , 2) ;
9 i f (! (m == nu l l)) {

10 // Change s t a t e
11 java_currentState =
12 Test . java_State .Com2;
13 }
14 break ;
15 }
16 x = x − 1 ; y = y + 1 ;
17 java_kp . unlock (java_lockIDs , 2) ;
18 // send N(y) to Out2
19 java_lockIDs [0] = 1 ;
20 java_kp . l ock (java_lockIDs , 1) ;
21 c2 . blocked_send ("N" , y) ;
22 java_kp . unlock (java_lockIDs , 1) ;
23 // Change s t a t e
24 java_currentState = Test . java_State .Com1;
25 break ;
26 case Com2:
27 . . .

Figure 7.5: Excerpt of the generated Java implementation of the Slco model in Figure 7.1

predefined order. The use of the fixed order prevents deadlocks and we have proven that
it ensures the preservation of the atomicity of Slco statements [225].

In Figure 7.5, part of the Java implementation of model Test of Figure 7.1 is presented.
This part covers the transitions at lines 15-17 in the Slco model and is part of a switch
construct inside a while loop. This loop is responsible for the continuous movement
between state machine states.

In the Slco composite construct, shown at line 3, 6, and 16, class variables x and y are
accessed. For this reason, locks need to be acquired for both variables before the statement
can be executed. At line 4, the IDs for both variables are added to array java_lockIDs
in a sorted way to ensure ordered locking. Finally, the locks are requested (line 5). If
the locks are granted and the guard expression evaluates to true, the assignments of
the composite statement are executed (line 16). Note the releasing of the locks once
a statement has been executed. Alternatively, if the locks were not acquired or the
guard expression evaluated to false, it is attempted to perform the receive statement
specified at line 17 of the Slco model. If the receive statement succeeded (line 9), the
code ‘changes state’ according to the Slco transition description (line 11). Finally, at
line 18-23, the send statement at line 16 of the Slco model is executed. It is executed
as a possibly blocking send operation, since in the model, the state machine is in the
middle of executing the statements of the transition at lines 15-16, and cannot consider
alternatives.

The second generator enforces the use of transactional memory, relying on the Atom-

Java code translation [100]. Instead of our nested locking mechanism, atomic blocks
are used, to indicate that whenever the execution of a statement accesses a variable
simultaneously accessed by another thread, the execution should be rolled back.

174 A Framework for Verified, Model-Driven Construction of Component Software

7.5 Roadmap
In the near future, we will continue our research in a number of directions. For instance,
it is our goal that most, if not all, Slco model transformations will be directly verifiable.
Our current technique in Refiner [60, 218] is restricted to transformations between
action patterns, as opposed to the transformation of (patterns of) other types of Slco

statements. Establishing that a transformation preserves properties for arbitrary input is
stronger than having to verify resulting models each time the transformation is applied.

Regarding model verification, we plan to work on a new version of our GPU accelerated
model checker GPUexplore [221] that will accept Slco models as input. Great speed-
ups over 500× have been reported with this tool, and connecting Slco will make it
feasible to rapidly produce verification results for larger models. We will also continue
our research on compositional model checking [58], to modularly verify Slco models.

Regarding the Slco-al language, we will consider extending it to cover various other
optimisation possibilities. In that respect, one can also think of optimising code with
respect to other criteria than performance, such as power efficiency and security. To make
smart decisions regarding quantitative characteristics of models, it may be required to
extend our analysis towards probabilistic or stochastic model checking [16].

Research on verified code generation will focus on verifying complete programs, as
opposed to only verifying generic components. We plan to use VerCors [25] for this.

We plan to address the development of GPU software. For this, we need to extend
Slco to model such systems, and construct additional code generators.

Finally, we are considering to integrate our tool chain into the Eclipse IDE, to create
one environment in which all tools in the framework can be accessed.

Chapter 8

Conclusions

In this chapter, first, we discuss the main contributions of the thesis. For each of the
research questions presented in Chapter 1 we recall the main results and conclusions.
Finally, directions for future work are discussed. Additional details are available in the
chapters that cover the research questions.

8.1 Contributions
In this thesis we have investigated several areas of verification of concurrent systems:
verification of model transformations, compositional minimisation of state spaces, selection
of minimisation approaches, guaranteeing sequential consistency for generated code with
respect to source models. Finally, we discussed how to integrate these in the Model-Driven
Engineering (MDE) work flow. To this end, five research questions were formulated. Each
of the research questions was addressed in one chapter of this thesis.

Verification of Transformations Current model transformation verification techni-
ques are mainly focused on verifying preservation of well-formedness or static seman-
tics [210]. So far little attention is given to the verification of dynamic semantics preser-
vation for model transformations. Techniques that do support verification of dynamic
semantics do not have intrinsic support for concurrency. The following research question
addresses verification of transformations of concurrent systems.

RQ 1:How can we verify preservation of dynamic semantics of model trans-
formations of concurrent models?

This question is addressed in Chapter 3 where a verification method is developed for
transformations of concurrent systems. A concurrent system is modelled as a network
of Labelled Transition Systems (network of LTSs), or LTS network for short. A trans-
formation is specified as a rule system consisting of a set of transformation rules over
LTSs, a set of synchronisation laws that are expected in the input LTS network, and a

176 Conclusions

set of synchronisation laws that will be introduced. A transformation rule specifies an
LTS pattern to match and its replacement.

A transformation is considered to be correct iff it preserves the dynamic semantics
for all possible LTS networks it is applicable to. More specifically, the input and output
networks of a transformation must be equivalent modulo branching bisimulation for any
LTS network used as input. Formally, we have shown that given an LTS network N and
a rule system Σ the transformed network TΣ(N) is branching bisimilar to N if the so
called κ-extension of the composition of LTS patterns to match and the composition of
the replacement LTS patterns are branching bisimilar and a small number of application
conditions hold. The application conditions require that the transformation is aware of
the synchronisation laws that are relevant for the correctness of the transformation.

Finally, the proof is mechanically verified using the Coq interactive theorem prover 1

and the verification method is tested in a number of experiments. The verification of
transformations is extremely efficient as it only needs to consider the fraction of the state
space of a system that is specified in the rule system. This makes the approach especially
useful for the verification of details that would otherwise increase the state space to a size
that is infeasible for conventional verification methods.

Compositional State Space Minimisation One of the greatest aids in the verifica-
tion of concurrent systems is congruences for parallel composition operators that also
perform synchronisations. For many equivalence relations it has been shown that they
are a congruence for such a parallel composition operator. Although it is generally assu-
med that Divergence Preserving Branching Bisimulation (DPBB), the finest equivalence
relation in the linear time - branching time spectrum of van Glabbeek [205], is also
a congruence for parallel composition with synchronisation, no such results have been
published. To this end we investigated the following research question.

RQ 2:Is DPBB a congruence for parallel composition with synchronisations?

Chapter 4 finally proves that DPBB is indeed a congruence for parallel composition
with synchronisations. That is, we have shown that, given two LTS networks N and N ′

that are equivalent modulo DPBB and a third LTS network P, N composed with P is
equivalent modulo DPBB to M ′ composed with P . Additionally, we show that DPBB is
a congruence for LTS networks: given n LTSs G1 to Gn that are equivalent to LTSs G′

1 to
G′
n, the LTS resulting from the composition of G1 to Gn is equivalent to the LTS resulting

from the composition of G′
1 to G′

n under the same set of synchronisation laws.
Sometimes, an existing network must be decomposed into several smaller ones. We

have discussed how to decompose an existing specification of a concurrent system into
sub-components that is consistent with the original specification. Furthermore, the
components may be rearranged since parallel composition with synchronisation enjoys
the desirable commutativity and associativity properties in the context of DPBB. Finally,
confidence in the proofs was strengthened by mechanically verifying the most important
proofs in Coq.

Selection of Minimisation Approaches The selection of verification techniques
amongst the numerous alternatives is often a daunting task; it is often not obvious what
technique offers the best (or even reasonable) performance for a given model. Frequently,
the memory consumption of a verification technique is the major limiting factor for its

1https://coq.inria.fr/

8.1. Contributions 177

application. The following research question considers this selection scenario for the
compositional aggregation technique [55] as it is applicable in many scenarios concerning
the model checking of concurrent systems.

RQ 3:When can compositional aggregation be expected to be more (memory)
efficient than monolithic minimisation?

This question is addressed in Chapter 5. We first analysed compositional aggregation
on 119 subjects with varying topology, scale, and hiding set. The analysis was concluded
with the following findings: 1) the amount of internal behaviour in process LTSs and
the amount of synchronisation between process LTSs have the biggest impact on the
performance; 2) the application of hiding may result in significant reduction of the
state space and memory cost, the amount of hidden behaviour is less important as
synchronisation will limit the effect of hiding; 3) among the five network topologies
we considered, none of them fundamentally ruled out compositional aggregation as an
effective technique; and 4) as the number of processes in an LTS network is increased,
the effectiveness of compositional aggregation with respect to the monolithic approach
tends to increase as well.

Furthermore, we applied a variation of machine learning methods to develop predictors
for the effectiveness of two compositional aggregation heuristics. As data is scarce we
resorted to data collected over to 1,615 generated models. The data was split in a training
set, on which the machine learning methods were trained, and a test set, on which the
learned predictors were validated.

The maximum memory cost and maximum number of generated transitions of compo-
sitional aggregation heuristics normalised with respect to monolithic minimisation was
predicted at an average accuracy of one order of magnitude for half of the cases in our test
set. The learned classification models that predict the best minimisation approach with
respect to maximum memory cost and maximum number of generated transitions had an
accuracy between 55% and 61% and between 68% and 74%, respectively, on the test set.
The classifiers were most sensitive for the class of cases for which smart reduction was
the best choice with a sensitivity value of 0.87 for maximum memory cost and 0.99 for
maximum number of generated transitions. Metrics related to interleaving density and
the number of transitions in an LTS were most important for regression techniques, while
metrics related to hiding and interleaving density of sets of LTSs were found to be the
most determining factor for classification techniques.

Guaranteeing Sequential Consistency of Concurrent Systems Most software de-
velopers expect their programs to be Sequentially Consistent (SC). A concurrent program
is SC iff all operations of a program are executed in a total order, i.e., atomically and in
the order specified by the program. Due to modern compiler and hardware optimisations
non-SC behaviour may be observed during execution of a program. By appropriately using
synchronisation mechanisms such as semaphores and atomic instructions one can ensure
that a program is observably SC. The next research question was stated to investigate
the preservation of (observable) sequential consistency for concurrent models.

RQ 4:How can sequential consistency be preserved (up to observation) from
model to execution of generated code?

In Chapter 6 we developed a monitor using a conflict graph that spots all non-SC
execution traces of a concurrent program. Such non-SC traces are indicated by a cycle in

178 Conclusions

the conflict graph. Correctness of the monitor is underlined by the well known theory
of Shasha and Snir [188]. The monitor was optimised to reduce its memory footprint
by summarising the conflict graph. We have shown that this summarised conflict graph
recognises the same cycles as the (normal) conflict graph, i.e., just like the conflict graph,
the summarised conflict graph detects all non-SC execution traces.

The summarised conflict graph was further optimised for use in a model checker. The
model checking algorithm monitors a set of memory accesses provided by a pre-processing
step. Similar to the algorithm of Shasha and Snir, the model checker reports which
accesses may cause SC violations and how they may possibly be resolved.

The algorithm is more precise than that of Sasha and Snir in certain aspects as it
explores the dynamic semantics of the program, while it is less precise in other aspects as
the model checker cannot limit its search to the critical cycles. Since the model checking
algorithm can be focussed on a given set of accesses, the algorithm of Shasha and Snir
can be used as preprocessing step to select a set of unsafe accesses.

Application of Results in MDE The results obtained from the previous research
questions are applicable to some underlying mathematical model. The following research
question addresses how to integrate these results in an MDE work flow to make them
accessible for developers.

RQ 5:How can our results be applied in an MDE context?

Chapter 7 integrates the results of the previous research questions in the Simple
Language for Communicating Objects (Slco) framework. Models in Slco describe
concurrent state machines that may communicate with each other via message passing or
shared variables.

In Slco model transformations are specified using Jinja2 or Henshin. Some Henshin

transformations can be verified via a translation of the Henshin transformation to rule
systems. These rule systems can then be verified using the approach that resulted from
RQ 1.

The framework supports verification of Slco models via a translation to mCRL2.
Compositional reasoning modulo Divergence-Preserving Branching Bisimulation (DPBB)
is supported as a result of RQ 2.

SC execution of Slco models can be guaranteed as a result of RQ 4. An Slco model is
transformed to an mCRL2 specification that includes the sequential consistency monitor.
When the mCRL2 toolset explores its state space, it reports where synchronisation
mechanisms need to be applied. Based on the findings of the model checker the Slco

model is then translated to an Slco-al (Slco Annotated Level) model from which an
efficient implementation can be generated that is indistinguishable from an SC one.

8.2 Future Work
In this section, we discuss some possible extensions of the work presented in this thesis.

Verification of Transformations There are a number of natural extensions for the
transformation verification method proposed in this thesis.

To determine semantics preservation the verification method uses branching bisimula-
tion equivalence. A natural extension would be to consider the DPBB equivalence relation

8.2. Future Work 179

that supports distinction between deadlocks and livelocks. Furthermore, by combining
the transformation verification method with the consistent decomposition presented
in Chapter 4 the transformation verification technique can be made compositional as
was proposed by Wijs [214]. The two results are a natural fit, thus, the correctness of
compositional transformation verification can be proven by referencing these two results.
Compositional transformation verification weakens the completeness condition ANC1
regarding synchronising behaviour being transformed (see Section 3.4.1). Therefore, the
approach becomes applicable to systems with cyclic dependencies as well.

Timing information could be included in the LTSs to design timed systems and
express transformations of timed behaviour. This would also introduce the possibility
to analyse the impact a transformation will have on the performance of a system under
transformation [219] by means of timed branching bisimulation checking [76]. The
capability to reason about system performance could be further strengthened by also
introducing probabilities on the LTS transitions [16]. Existing tools, such as PRISM [129]
and extensions [32], could then be employed to conduct the analysis of the systems.
An interesting challenge is then how to involve these probabilities in the verification of
transformations as well.

Moreover, it would be interesting to investigate valorisation of the transformation
verification approaches. To achieve this, the practical limitations of the pre-conditions of
the method in industrial sized transformation systems must be examined first. Further-
more, the transformation verification method will need to be able to deal with variables
with large or infinite data domains. Such a feature can be supported by integrating the
verification approach with symbolic techniques for quotienting of Parametrised Boolean
Equation Systems such as that of Neele, Willemse, and Groote [154].

Finally, we want to take into account the evolution of properties as the system
under transformation becomes more detailed. We conjecture that this can be done by
incorporating the property that holds before transformation in the context of the LTS
patterns to match and replacement LTS patterns. The patterns should generically model
a matched system in which the property holds. This further extends the flexibility of the
verification approach as the current approach considers the most general context up to
hiding property irrelevant behaviour.

Compositional State Space Minimisation The proof that DPPB is a congruence
for parallel composition with synchronisations has been conducted in the context of LTS
networks. An interesting direction for future work is the integration of the proof in a
meta-theory for process algebra. This integration would give a straightforward extension
of our results to parallel composition for process algebra formalisms.

Again, the consideration of time in compositional model checking would be an inte-
resting topic for future work. Applying timed specification approaches such as that of
Wijs and Fokkink [213,219] with our results would allow to compositionally reason about
timed behaviour.

Selection of Minimisation Approaches The work presented in this thesis has confir-
med existing insights and revealed new insights through statistical means. The statistical
power of the analysis performed should be further improved by including a larger amount
of subjects in the study. Further study of aggregation orders could lead to the development
of new heuristics for the selection of aggregation orders. As scalable models have now
been thoroughly investigated, we can next focus on non-scalable models, of which many
are publicly available.

180 Conclusions

For the classification and regression predictors we would like to strengthen the vali-
dation applying the predictors to a number of LTS networks provided by the literature.
Moreover, the accuracy and precision of the predictors may be improved with more data.
Therefore, we would like to apply the classification and regression algorithms to a larger
data set.

The generation of realistic LTS networks also has many interesting directions for
future work. We would like to investigate the use of commonly occurring graphlets in the
generation of LTSs. Furthermore, we see potential in an alternative method for labelling
the transitions of generated LTS where an unlabelled state space is constructed before
labelling transitions of LTSs to ensure reachability of nearly all states in process LTSs.

We had to aggregate some of the metrics before we could apply machine learning
techniques. The ability to apply machine learning techniques to graphs directly would
open up many opportunities by preventing the need to aggregate graph data.

Guaranteeing Sequential Consistency of Concurrent Systems Scalability of the
sequential consistency monitor in model checking is currently still a source of concern.
However, we see potential to make the analysis more efficient. Techniques that iteratively
search different parts of the state space may be applied (e.g., [220]). A similar approach
could be very effective here, taking reported resolution for sequential consistency violations
into account as the analysis continues. Efficiency can be further improved by applying
partial order reduction methods specifically designed for transition systems labelled with
memory accesses of instructions.

There are also other systems that need to appear SC such as GPU programs. Our
approach could be particularly effective on GPUs as all threads execute the same thread
program, and therefore try to perform the same set of memory accesses. It should suffice
to consider only two threads when searching for possible sequential consistency violations.

The Slco framework The features of the Slco framework may be expanded in a
number of directions. First, it is our goal that most, if not all, Slco model transformations
will be directly verifiable. Our current transformation verification method is restricted to
transformations between action patterns, as opposed to the transformation of (patterns of)
other types of Slco statements. To support other types of statements the transformation
verification method needs to be able to reason symbolically about the transformation of
the state space.

So far we have not applied the predictors learned in Chapter 5. We would like to apply
these predictors to select minimisation approaches for the compositional verification of
Slco models.

Research on verified code generation will focus on verifying complete programs, as
opposed to only verifying generic components. Moreover, as more and more software is
written for GPU systems, we are considering further extension towards GPU programs.

Regarding the Slco-al language, we will consider extending it to cover various other
optimisation possibilities. In that respect, one can also think of optimising code with
respect to other criteria than performance, such as power efficiency and security. To make
smart decisions regarding quantitative characteristics of models, it may be required to
extend our analysis towards probabilistic or stochastic model checking [16].

Bibliography

[1] Abadi, M., and Lamport, L. The Existence of Refinement Mappings. Theoretical
Computer Science 82 (1991), 253–284.

[2] Abd Elkader, K., Grumberg, O., Păsăreanu, C. S., and Shoham, S.

Automated Circular Assume-Guarantee Reasoning with N-way Decomposition and
Alphabet Refinement. In CAV (2016), vol. 9779 of LNCS, Springer, pp. 329–351.

[3] Abrial, J.-R., and Abrial, J.-R. The B-book: assigning programs to meanings.
Cambridge University Press, 2005.

[4] Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., and

Voisin, L. Rodin: An Open Toolset for Modelling and Reasoning in Event-B.
STTT 12, 6 (2010), 447–466.

[5] Adve, S. V. Designing memory consistency models for shared-memory multipro-
cessors, vol. 2. University of Wisconsin–Madison, 1993.

[6] Alglave, J., Maranget, L., Sarkar, S., and Sewell, P. Fences in Weak
Memory Models. In CAV (2010), Springer Berlin Heidelberg, pp. 258–272.

[7] Amrani, M., Combemale, B., Lúcio, L., Selim, G. M. K., Dingel, J., Le

Traon, Y., Vangheluwe, H., and Cordy, J. R. Formal Verification Techniques
for Model Transformations: A Tridimensional Classification. JOT 14, 3 (2015),
1–43.

[8] Andersen, H. Partial Model Checking. In LICS (1995), IEEE Computer Society
Press, pp. 398–407.

[9] Andersen, H. Partial Model Checking of Modal Equations: A Survey. STTT 2, 3
(1999), 242–259.

[10] Anderson, J. H., Kim, Y.-J., and Herman, T. Shared-memory mutual exclusion:
major research trends since 1986. Distributed Computing 16, 2-3 (2003), 75–110.

[11] Andova, S., van den Brand, M. G. J., and Engelen, L. Reusable and Correct
Endogenous Model Transformations. In ICMT (2012), Springer Berlin Heidelberg,
pp. 72–88.

182 Bibliography

[12] Arendt, T., Biermann, E., Jurack, S., Krause, C., and Taentzer, G.

Henshin: Advanced Concepts and Tools for In-Place EMF Model Transformations.
In MODELS (2010), Springer Berlin Heidelberg, pp. 121–135.

[13] Armstrong, B., and Eigenmann, R. Challenges in the automatic parallelization
of large-scale computational applications. In Commercial Applications for High-
Performance Computing (2001), vol. 4528, International Society for Optics and
Photonics, pp. 50–61.

[14] ASCI. The Distributed ASCI Supercomputer DAS4. http://www.cs.vu.nl/
das4/. Accessed: 2017-08-09.

[15] Avrunin, G. S., Corbett, J. C., Dwyer, M. B., Pasareanu, C. S., and

Siegel, S. F. Comparing Finite-State Verification Techniques for Concurrent
Software. Technical Report UM-CS-1999-069, University of Massachusetts, 1999.

[16] Baier, C., and Katoen, J.-P. Principles of model checking. MIT Press, 2008.

[17] Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Sein-

stra, F., Snoek, C., and Wijshoff, H. A Medium-Scale Distributed System
for Computer Science Research: Infrastructure for the Long Term. IEEE Computer
49, 5 (May 2016), 54–63.

[18] Baldan, P., Corradini, A., Ehrig, H., Heckel, R., and König, B. Bisimila-
rity and Behaviour-preserving Reconfigurations of Open Petri Nets. In CALCO
(2007), vol. 4624 of LNCS, Springer, pp. 126–142.

[19] Bernstein, P. A., and Goodman, N. Concurrency Control in Distributed
Database Systems. ACM Computing Surveys 13, 2 (June 1981), 185–221.

[20] Bertot, Y., and Castéran, P. Interactive Theorem Proving and Program Deve-
lopment, Coq’ Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer, 2004.

[21] Bézivin, J., Breton, E., Dupé, G., and Valduriez, P. The ATL
Transformation-based Model Management Framework. Research Report 03.08,
IRIN, Université de Nantes, 2003.

[22] Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. Symbolic Model Checking
without BDDs. In TACAS (1999), Springer Berlin Heidelberg, pp. 193–207.

[23] Blech, J. O., Glesner, S., and Leitner, J. Formal Verification of Java Code
Generation from UML Models. In 3rd International Fujaba Days (2005), Fujaba
Days, pp. 49–56.

[24] Bliudze, S., and Sifakis, J. The Algebra of Connectors—Structuring Interaction
in BIP. IEEE Transactions on Computers 57, 10 (Oct 2008), 1315–1330.

[25] Blom, S., Darabi, S., Huisman, M., and Oortwijn, W. The VerCors Tool
Set: Verification of Parallel and Concurrent Software. In IFM (2017), vol. 10510 of
LNCS, Springer, pp. 102–110.

[26] Bloom, B. Structural Operational Semantics for weak bisimulations. Theoretical
Computer Science 146, 1 (1995), 25 – 68.

Bibliography 183

[27] Bobba, J., Moore, K. E., Volos, H., Yen, L., Hill, M. D., Swift, M. M.,

and Wood, D. A. Performance Pathologies in Hardware Transactional Memory.
In ISCA (2007), vol. 35 of ACM SIGARCH Computer Architecture News, ACM,
pp. 81–91.

[28] Boehm, B., and Basili, V. R. Software Defect Reduction Top 10 List. Computer
34, 1 (Jan. 2001), 135–137.

[29] Boehm, H.-J., and Adve, S. V. Foundations of the C++ Concurrency Memory
Model. In PLDI (2008), ACM, pp. 68–78.

[30] Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilità. Pubblica-
zioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8
(1936), 3–62.

[31] Bourke, T., Brun, L., Dagand, P.-E., Leroy, X., Pouzet, M., and Rieg,

L. A Formally Verified Compiler for Lustre. In PLDI (2017), ACM SIGPLAN
Notices, ACM, pp. 586–601.

[32] Bošnački, D., Edelkamp, S., Sulewski, D., and Wijs, A. GPU-PRISM: An
Extension of PRISM for General Purpose Graphics Processing Units. In PDMC
(2010), IEEE Computer Society Press, pp. 17–19.

[33] Bošnački, D., van den Brand, M., Gabriels, J., Jacobs, B., Kuiper, R.,

Roede, S., Wijs, A., and Zhang, D. Towards Modular Verification of Threaded
Concurrent Executable Code Generated From DSL Models. In FACS (2015),
vol. 9539 of LNCS, Springer, pp. 141–160.

[34] Bowen, J. P., and Hinchey, M. G. Formal Methods. In Computer Science
Handbook. ACM, 2004, ch. 106, pp. 106–1–106–25.

[35] Bradfield, J., and Walukiewicz, I. The mu-calculus and Model Checking.
Springer International Publishing, 2018, pp. 871–919.

[36] Braunstein, C., and Encrenaz, E. CTL-Property Transformation Along an
Incremental Design Process. In AVOCS (2004), vol. 128 of ENTCS, Elsevier,
pp. 263–278.

[37] Broadfoot, G. H. ASD Case Notes: Costs and Benefits of Applying Formal
Methods to Industrial Control Software. In FM (2005), Springer Berlin Heidelberg,
pp. 548–551.

[38] Burnim, J., Sen, K., and Stergiou, C. Sound and complete monitoring of
sequential consistency for relaxed memory models. In TACAS (2011), Springer,
pp. 11–25.

[39] Casanova, A. M. The Concurrency Control Problem for Database Systems.
Springer, 1981.

[40] Cheung, S. C., and Kramer, J. Context Constraints for Compositional Reacha-
bility Analysis. TOSEM 5, 4 (Oct. 1996), 334–377.

[41] Chomicki, J., and Toman, D. Time in database systems. Handbook of Temporal
Reasoning in Artificial Intelligence (2005), 429–467.

184 Bibliography

[42] Christen, M., Schenk, O., and Burkhart, H. PATUS: A Code Generation
and Auto-Tuning Framework For Parallel Stencil Computations. In ISPA (2011),
IEEE, pp. 676–687.

[43] Clarke, E. M., Emerson, E. A., Jha, S., and Sistla, A. P. Symmetry
reductions in model checking. In CAV (1998), Springer Berlin Heidelberg, pp. 147–
158.

[44] Clarke, E. M., Enders, R., Filkorn, T., and Jha, S. Exploiting symmetry
in temporal logic model checking. Formal Methods in System Design 9, 1 (Aug
1996), 77–104.

[45] Clarke, E. M., Grumberg, O., and Peled, D. Model Checking. The MIT
Press, 1999.

[46] Clarke, E. M., Klieber, W., Nováček, M., and Zuliani, P. Model Checking
and the State Explosion Problem. In Tools for Practical Software Verification:
LASER 2011 (2012), vol. 7682 of LNCS, Springer Berlin Heidelberg, pp. 1–30.

[47] Clarke, E. M., Long, D. E., and McMillan, K. L. Compositional model
checking. In LICS (Jun 1989), IEEE Computer Society Press, pp. 353–362.

[48] Cleveland, W. S., and Devlin, S. J. Locally weighted regression: an approach
to regression analysis by local fitting. Journal of the American statistical association
83, 403 (1988), 596–610.

[49] Cobleigh, J. M., Avrunin, G. S., and Clarke, L. A. Breaking Up is Hard
to Do: An Evaluation of Automated Assume-guarantee Reasoning. TOSEM 17, 2
(May 2008), 7:1–7:52.

[50] Cohen, J. Weighted kappa: Nominal scale agreement provision for scaled dis-
agreement or partial credit. Psychological bulletin 70, 4 (1968), 213.

[51] Combemale, B., Crégut, X., Garoche, P.-L., and Thirioux, X. Essay on
Semantics Definition in MDE - An Instrumented Approach for Model Verification.
Journal of Software 4, 9 (2009), 943–958.

[52] Cousot, P., and Cousot, R. Abstract Interpretation Frameworks. Journal of
Logic and Computation 2, 4 (1992), 511–547.

[53] Cousot, P., and Cousot, R. Refining Model Checking by Abstract Interpretation.
Automated Software Engineering 6, 1 (Jan. 1999), 69–95.

[54] Cranen, S., Groote, J., Keiren, J., Stappers, F., de Vink, E., Wesselink,

W., and Willemse, T. An Overview of the mCRL2 Toolset and Its Recent
Advances. In TACAS (2013), vol. 7795 of LNCS, Springer, pp. 199–213.

[55] Crouzen, P., and Hermanns, H. Aggregation ordering for massively compositi-
onal models. In ACSD (2010), IEEE, pp. 171–180.

[56] Crouzen, P., and Lang, F. Smart Reduction. Springer Berlin Heidelberg, 2011,
pp. 111–126.

Bibliography 185

[57] de Moura, L., Rueß, H., and Sorea, M. Bounded Model Checking and
Induction: From Refutation to Verification. In CAV (2003), Springer Berlin
Heidelberg, pp. 14–26.

[58] de Putter, S., Lang, F., and Wijs, A. Compositional Model Checking is Lively
- Extended Version. Science of Computer Programming (2019). Special Issue on
FACS. Manuscript under review.

[59] de Putter, S., and Wijs, A. Verifying a Verifier: On the Formal Correctness of
an LTS Transformation Verification Technique. In FASE 2016 (2016), vol. 9633 of
LNCS, Springer, pp. 383–400.

[60] de Putter, S., and Wijs, A. A formal verification technique for behavioural
model-to-model transformations. Formal Aspects of Computing (Oct 2017).

[61] de Putter, S., and Wijs, A. To Compose, or Not to Compose, That Is the
Question: An Analysis of Compositional State Space Generation. In FM (2018),
Springer International Publishing, pp. 485–504.

[62] de Putter, S., and Wijs, A. Model Driven Avoidance of Atomicity Violations
under Relaxed-Memory Models. In ESOP (2019). Submitted.

[63] de Putter, S., Wijs, A., and Zhang, D. The SLCO Framework for Verified,
Model-Driven Construction of Component Software. In FACS (2018), LNCS,
Springer, pp. 288–296.

[64] de Putter, S., and Wijs, A. J. Compositional Model Checking Is Lively. In
FACS (2017), vol. 10487 of LNCS, Springer, pp. 117–136.

[65] Dejanović, I., Vaderna, R., Milosavljević, G., and Vuković, v. TextX:
A Python tool for Domain-Specific Languages implementation. Knowledge-Based
Systems 115 (2017), 1–4.

[66] Deligiannis, P., Donaldson, A. F., Ketema, J., Lal, A., and Thomson,

P. Asynchronous Programming, Analysis and Testing with State Machines. In
Proceedings of PLDI 2015 (2015), vol. 50 of ACM SIGPLAN Notices, ACM Press,
pp. 154–164.

[67] Dice, D., and Shavit, N. Understanding Tradeoffs in Software Transactional
Memory. In CGO (2007), IEEE Computer Society, pp. 21–33.

[68] Dodds, M., and Plump, D. Graph Transformation in Constant Time. In ICGT
(2006), vol. 4178 of LNCS, Springer, pp. 367–382.

[69] Dormoy, F.-X. Scade 6: a model based solution for safety critical software
development. In ERTS (2008), pp. 1–9.

[70] Emerson, E. A., and Halpern, J. Y. “Sometimes” and “Not Never” Revisited:
On Branching Versus Linear Time Temporal Logic. JACM 33, 1 (Jan. 1986),
151–178.

[71] Engelen, L. From Napkin Sketches To Reliable Software. PhD thesis, Eindhoven
University of Technology, 2012.

186 Bibliography

[72] Eppstein, D., Galil, Z., and Italiano, G. Dynamic Graph Algorithms. In
CRC Handbook of Algorithms and Theory of Computation. CRC Press, 1997, ch. 22.

[73] Farzan, A., and Madhusudan, P. Monitoring Atomicity in Concurrent Programs.
In CAV (2008), vol. 5123 of LNCS, Springer, pp. 52–65.

[74] Fernandez, J. ALDEBARAN : un système de vérification par réduction de
processus communicants. (Aldebaran : a system of verification of communicating
processes by using reduction). PhD thesis, Joseph Fourier University, Grenoble,
France, 1988.

[75] Finger, M., and McBrien, P. Concurrency control for perceivedly instantaneous
transactions in valid-time databases. In TIME (May 1997), pp. 112–118.

[76] Fokkink, W., Pang, J., and Wijs, A. Is Timed Branching Bisimilarity an
Equivalence Indeed? In FORMATS (2005), vol. 3829 of LNCS, Springer, pp. 258–
272.

[77] Foster, H., Uchitel, S., Magee, J., and J., K. Model-based verification of
Web service compositions. In ASE (Oct 2003), pp. 152–161.

[78] Fürst, A., Hoang, T. S., Basin, D., Desai, K., Sato, N., and Miyazaki, K.

Code Generation for Event-B. In IFM (2014), Springer International Publishing,
pp. 323–338.

[79] Garavel, H. Reflections on the Future of Concurrency Theory in General and
Process Calculi in Particular. Research report, INRIA, 2007.

[80] Garavel, H., and Lang, F. SVL: A Scripting Language for Compositional
Verification. In FORTE (2002), Kluwer, pp. 377–392.

[81] Garavel, H., Lang, F., and Mateescu, R. Compositional Verification of
Asynchronous Concurrent Systems using CADP (extended version). Research
Report RR-8708, INRIA Grenoble - Rhône-Alpes, Apr. 2015.

[82] Garavel, H., Lang, F., Mateescu, R., and Serwe, W. CADP 2010: A
Toolbox for the Construction and Analysis of Distributed Processes. In TACAS
(March 2011), vol. 6605 of LNCS, Springer, pp. 372–387.

[83] Garavel, H., and Mounier, L. Specification and Verification of various Dis-
tributed Leader Election Algorithm for Unidirectional Ring Networks. Research
Report RR-2986, INRIA, 1996.

[84] Garavel, H., and Sighireanu, M. A Graphical Parallel Composition Operator
for Process Algebras. In FORTE/PSTV (1999), vol. 156 of IFIP Conference
Proceedings, Kluwer, pp. 185–202.

[85] Gheorghiu Bobaru, M., Păsăreanu, C. S., and Giannakopoulou, D.

Automated Assume-Guarantee Reasoning by Abstraction Refinement. In CAV
(2008), Springer Berlin Heidelberg, pp. 135–148.

[86] Giese, H., Glesner, S., Leitner, J., Schäfer, W., and Wagner, R. Towards
Verified Model Transformations. In MoDeVVa (2006), pp. 78–93.

Bibliography 187

[87] Giese, H., and Lambers, L. Towards Automatic Verification of Behavior Preser-
vation for Model Transformation via Invariant Checking. In ICGT (2012), vol. 7562
of LNCS, Springer, pp. 249–263.

[88] Giese, H., and Wagner, R. Incremental Model Synchronization with Triple
Graph Grammars. In MODELS (2006), Springer Berlin Heidelberg, pp. 543–557.

[89] Godefroid, P. Partial-Order Methods for the Verification of Concurrent Systems –
An Approach to the State-Explosion Problem. PhD thesis, University of Liege, 1994.

[90] Graf, S., and Steffen, B. Compositional minimization of finite state systems.
In CAV (1991), Springer Berlin Heidelberg, pp. 186–196.

[91] Groote, J., Jansen, D., Keiren, J., and Wijs, A. An O(m log n) Algorithm
for Computing Stuttering Equivalence and Branching Bisimulation. ACM TOCL
18, 2 (2017), 13:1–13:34.

[92] Groote, J. F., Kouters, T. W. D. M., and Osaiweran, A. Specification
Guidelines to Avoid the State Space Explosion Problem. In FSEN (2012), Springer
Berlin Heidelberg, pp. 112–127.

[93] Groote, J. F., and Willemse, T. Parameterised Boolean Equation Systems. In
CONCUR (2004), Springer Berlin Heidelberg, pp. 308–324.

[94] Group, O. M. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, 2016.

[95] Guillen-Scholten, J., Arbab, F., de Boer, F., and Bonsangue, M. A
Channel-based Coordination Model for Components. ENTCS 68, 3 (2003), 419 –
438. FOCLASA (Satellite Workshop of CONCUR 2002).

[96] Gupta, A., McMillan, K. L., and Fu, Z. Automated Assumption Generation
for Compositional Verification. In CAV (2007), Springer Berlin Heidelberg, pp. 420–
432.

[97] Heimbold, D., and Luckham, D. Debugging Ada Tasking Programs. IEEE
Software 2 (1985), 47–57.

[98] Hennessy, M. The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. John Wiley & Sons, Inc., 1990.

[99] Hijma, P., Jacobs, C., van Nieuwpoort, R., and Bal, H. Cashmere: Hetero-
geneous Many-Core Computing. In IPDPS (2015).

[100] Hindman, B., and Grossman, D. Atomicity via Source-to-source Translation. In
MSPC (2006), ACM Press, pp. 82–91.

[101] Hintze, J., and Nelson, R. Violin Plots: A Box Plot-Density Trace Synergism.
The American Statistician 52, 2 (1998), 181–184.

[102] Hoare, C. A. R. An Axiomatic Basis for Computer Programming. Communications
of the ACM 12, 10 (Oct. 1969), 576–580.

[103] Hoare, C. A. R. Communicating Sequential Processes. Communications of the
ACM 21, 8 (Aug. 1978), 666–677.

188 Bibliography

[104] Holzmann, G. J. Formal methods for early fault detection. In FTRTFT (1996),
Springer Berlin Heidelberg, pp. 40–54.

[105] Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C.,

and Wehrheim, H. Showing Full Semantics Preservation in Model Transformations
- A Comparison of Techniques. In IFM (2010), vol. 6396 of LNCS, Springer, pp. 183–
198.

[106] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open
Systems Interconnection, 1989.

[107] Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., and

Piessens, F. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and
Java. In NFM (2011), vol. 6617 of LNCS, Springer, pp. 41–55.

[108] James, G., Witten, D., Hastie, T., and Tibshirani, R. An introduction to
statistical learning, vol. 112. Springer, 2013.

[109] Jhala, R., and Majumdar, R. Software Model Checking. ACM Computing
Surveys 41, 4 (Oct. 2009), 21:1–21:54.

[110] Jones, C. B. Specification and Design of (Parallel) Programs. In IFIP congress
(1983), vol. 83, pp. 321–332.

[111] Kahlouche, H., Viho, C., and Zendri, M. An Industrial Experiment in
Automatic Generation of Executable Test Suites for a Cache Coherency Protocol. In
IFIP TC6 11th International Workshop on Testing Communicating Systems (1998),
IWTCS, Kluwer, B.V., pp. 211–226.

[112] Kahsai, T., and Roggenbach, M. Property Preserving Refinement for Csp-Casl.
In WADT (2008), vol. 5486 of LNCS, Springer, pp. 206–220.

[113] Karsai, G., and Narayanan, A. On the Correctness of Model Transformations
in the Development of Embedded Systems. In Monterey Workshop (2007), vol. 4888
of LNCS, Springer, pp. 1–18.

[114] Keiren, J., Reniers, M. A., and Willemse, T. A. C. Structural Analysis of
Boolean Equation Systems. ACM TOCL 13, 1 (2012), 8:1–8:35.

[115] Keller, R. K., Cameron, M., Taylor, R. N., and Troup, D. B. User
Interface Development and Software Environments: The Chiron-1 System. In ICSE
(1991), IEEE, pp. 208–218.

[116] Keller, R. M. Formal Verification of Parallel Programs. Communications of the
ACM 19, 7 (July 1976), 371–384.

[117] Kendall, M., and Gibbons, J. Rank correlation methods, 5 ed. Oxford University
Press, 1990, ch. 3.

[118] Keshishzadeh, S., and Mooij, A. J. Formalizing and testing the consistency of
DSL transformations. Formal Aspects of Computing 28, 2 (Apr 2016), 181–206.

Bibliography 189

[119] Kleppe, A., Warmer, J., and Bast, W. MDA Explained: The Model Driven
Architecture(TM): Practice and Promise. Addison-Wesley Professional, 2005.

[120] Kohavi, R. A Study of Cross-validation and Bootstrap for Accuracy Estimation
and Model Selection. In IJCAI (1995), Morgan Kaufmann Publishers Inc., pp. 1137–
1143.

[121] Kolovos, D. S., Paige, R. F., and Polack, F. A. C. The Epsilon Transforma-
tion Language. In ICMT (2008), Springer Berlin Heidelberg, pp. 46–60.

[122] Koomen, C. J. Algebraic specification and verification of communication protocols.
Science of Computer Programming 5 (1985), 1 – 36.

[123] Kozen, D. Results on the Propositional μ-calculus. Theoretical Computer Science
27 (1983), 333–354.

[124] Krimm, J.-P., and Mounier, L. Compositional state space generation from
LOTOS programs. Springer, 1997, pp. 239–258.

[125] Kuhn, M. Caret package. JSS 28, 5 (2008), 1–26.

[126] Kuhn, M., and Johnson, K. Applied predictive modeling, vol. 26. Springer, 2013.

[127] Kundu, S., Lerner, S., and Gupta, R. Automated Refinement Checking of
Concurrent Systems. In ICCAD (2007), IEEE, pp. 318–325.

[128] Kuperstein, M., Vechev, M., and Yahav, E. Automatic Inference of Memory
Fences. SIGACT News 43, 2 (June 2012), 108–123.

[129] Kwiatkowska, M., Norman, G., and Parker, D. PRISM 4.0: Verification
of Probabilistic Real-Time Systems. In CAV (2011), vol. 6806 of LNCS, Springer,
pp. 585–591.

[130] Laboratory for Advanced Software Engineering Research. Example
Repository for Finite State Verification Tools. http://laser.cs.umass.edu/
verification-examples/, 8 Jan. 2003. Last Accessed 20 Dec. 2017.

[131] Lamport, L. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers 28, 9 (Sept. 1979),
690–691.

[132] Lang, F. Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-The-Fly Verification Methods. In IFM (2005), vol. 3771 of LNCS, Springer,
pp. 70–88.

[133] Lang, F. Refined Interfaces for Compositional Verification. In FORTE (2006),
vol. 4229 of LNCS, Springer, pp. 159–174.

[134] Lang, F. Unpublished textual and PVS proof stating that branching bisimulation
is a congruence for Networks of LTSs, this proof does not consider divergence-
preserving branching bisimulation, 2016. Personal communication.

[135] Lang, F., and Mateescu, R. Partial Model Checking Using Networks of Labelled
Transition Systems and Boolean Equation Systems. In TACAS (2012), Springer
Berlin Heidelberg, pp. 141–156.

190 Bibliography

[136] Lang, F., and Mateescu, R. Partial Model Checking Using Networks of Labelled
Transition Systems and Boolean Equation Systems. Logical Methods in Computer
Science 9, 4 (2013), 1–32.

[137] Lano, K. The B Language and Method, A Guide to Practical Formal Development.
Springer, 1996.

[138] Le Lann, G. Distributed Systems - Towards a Formal Approach. In IFIP Congress
(1977), pp. 155–160.

[139] Long, D. E. Model Checking, Abstraction, and Compositional Verification. PhD
thesis, Carnegie Mellon University, 1993. UMI Order No. GAX94-02579.

[140] Lu, S., Park, S., Seo, E., and Zhou, Y. Learning from Mistakes: A Compre-
hensive Study on Real World Concurrency Bug Characteristics. In ASPLOS (2008),
pp. 329–339.

[141] Luttik, S. P. Description and Formal Specification of the Link Layer of P1394.
Technical Report SEN-R9706, CWI, 1997.

[142] Manson, J., Pugh, W., and Adve, S. V. The Java Memory Model. In POPL
(2005), ACM, pp. 378–391.

[143] Maraninchi, F. Operational and compositional semantics of synchronous automa-
ton compositions. Springer, 1992, pp. 550–564.

[144] Mateescu, R., and Wijs, A. Property-Dependent Reductions Adequate with
Divergence-Sensitive Branching Bisimilarity. Science of Computer Programming 96,
3 (2014), 354–376.

[145] Mazzara, M., and Lanese, I. Towards a Unifying Theory for Web Services
Composition. In WS-FM (2006), vol. 4184 of LNCS, Springer, pp. 257–272.

[146] McMillan, K. L. Symbolic Model Checking. Springer US, 1993, pp. 25–60.

[147] McMillan, K. L. Interpolation and SAT-Based Model Checking. In CAV (2003),
Springer Berlin Heidelberg, pp. 1–13.

[148] Milner, R. Communication and Concurrency. Prentice-Hall, 1989.

[149] Milner, R., Parrow, J., and Walker, D. A Calculus of Mobile Processes, I &
II. Information and Computation 100, 1 (Sept. 1992), 1–77.

[150] Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M. A., Nord-

moen, B., and Fritzsche, M. Where does model-driven engineering help?
experiences from three industrial cases. Software & Systems Modeling 12, 3 (Jul
2013), 619–639.

[151] Mounier, L. A LOTOS Specification of a "Transit-Node". Technical Report
SPECTRE 94-8, VERIMAG, 3 1994.

[152] Narayanan, A., and Karsai, G. Towards Verifying Model Transformations. In
GT-VMT (2008), vol. 211 of ENTCS, Elsevier, pp. 191–200.

Bibliography 191

[153] National Institute of Standards and Technology. Data Encryption Stan-
dard (DES). Federal Information Processing Standards 46-3, 1999.

[154] Neele, T., Willemse, T., and Groote, J. F. Solving Parameterised Boolean
Equation Systems with Infinite Data Through Quotienting. In FACS (2018), LNCS,
Springer International Publishing, pp. 216–236.

[155] Nicola, R., and Vaandrager, F. Action versus State Based Logics for Transition
Systems. In Semantics of Systems of Concurrent Processes, LITP Spring School on
Theoretical Computer Science (1990), vol. 469 of LNCS, Springer, pp. 407–419.

[156] Object Management Group. Object Management Group Model Driven Archi-
tecture (MDA) MDA Guide, 2014.

[157] O’Halloran, C. Automated verification of code automatically generated from
Simulink R©. Automated Software Engineering 20, 2 (Jun 2013), 237–264.

[158] O’Leary, Z. The Essential Guide to Doing Research. SAGE Publications, 2004.

[159] Papadimitriou, C. The Theory of Database Concurrency Control. Computer
Science Press, Inc., 1986.

[160] Păsăreanu, C. S., Dwyer, M. B., and Huth, M. Assume-Guarantee Model
Checking of Software: A Comparative Case Study. In Theoretical and Practical
Aspects of SPIN Model Checking (1999), Springer Berlin Heidelberg, pp. 168–183.

[161] Păsăreanu, C. S., Giannakopoulou, D., Bobaru, M. G., Cobleigh, J. M.,

and Barringer, H. Learning to divide and conquer: applying the L* algorithm
to automate assume-guarantee reasoning. Formal Methods in System Design 32, 3
(Jun 2008), 175–205.

[162] Pelánek, R. BEEM: Benchmarks for Explicit Model Checkers. In SPIN (2007),
vol. 4595 of LNCS, Springer, pp. 263–267.

[163] Pelánek, R. Properties of state spaces and their applications. STTT 10, 5 (Oct
2008), 443–454.

[164] Peled, D. All from one, one for all: on model checking using representatives. In
CAV (1993), Springer, pp. 409–423.

[165] Peled, D. Ten years of partial order reduction. Springer, 1998, pp. 17–28.

[166] Peled, D. Partial-Order Reduction. Springer International Publishing, 2018,
pp. 173–190.

[167] Peterson, G. L. Myths About the Mutual Exclusion Problem. Information
Processing Letters 12 (1981), 115–116.

[168] Petri, C. A. Kommunikation mit Automaten. PhD thesis, Universität Hamburg,
1962.

[169] Ploeger, B. Analysis of ACS Using mCRL2. Technical Report 09-11, Eindhoven
University of Technology, 2009.

192 Bibliography

[170] Plotkin, G. D. The origins of Structural Operational Semantics. The Journal
of Logic and Algebraic Programming 60-61 (2004), 3 – 15. Structural Operational
Semantics.

[171] Pnueli, A. In Transition From Global to Modular Temporal Reasoning about
Programs. In Logics and Models of Concurrent Systems (1985), vol. 13 of NATO
ASI, Springer, pp. 123–144.

[172] Poetzl, D., and Kroening, D. Formalizing and Checking Thread Refinement for
Data-Race-Free Execution Models. In TACAS (2016), vol. 9636 of LNCS, Springer,
pp. 515–530.

[173] Rahim, L. A., and Whittle, J. A survey of approaches for verifying model
transformations. Software and Systems Modeling (2013), 1–26.

[174] Ramalingam, G., and Reps, T. On the Computational Complexity of Dynamic
Graph Problems. Theoretical Computer Science 158 (1996), 233–277.

[175] Rivera, V., and Cataño, N. Code generation for Event-B. STTT 19, 1 (2017),
31–52.

[176] Rodriguez, J. D., Perez, A., and Lozano, J. A. Sensitivity Analysis of k-Fold
Cross Validation in Prediction Error Estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32, 3 (March 2010), 569–575.

[177] Romijn, J. Model Checking a HAVi Leader Election Protocol. Technical Report
SEN-R9915, CWI, 1999.

[178] Rompf, T., and Odersky, M. Lightweight Modular Staging: A Pragmatic
Approach to Runtime Code Generation and Compiled DSLs. Communications of
the ACM 55, 6 (2012), 121–130.

[179] Roscoe, A. The Theory and Practice of Concurrency. Prentice-Hall, 1998.

[180] Roscoe, A. W. The Theory and Practice of Concurrency. Prentice Hall PTR,
1997.

[181] Rünger, G. Parallel Programming Models for Irregular Algorithms. In Parallel
Algorithms and Cluster Computing (2006), Springer Berlin Heidelberg, pp. 3–23.

[182] Rupert Jr, G. Simultaneous statistical inference. Springer Science & Business
Media, 2012.

[183] Sabnani, K. K., Lapone, A. M., and Uyar, M. U. An algorithmic procedure
for checking safety properties of protocols. IEEE Transactions on Communications
37, 9 (1989), 940–948.

[184] Saha, D. An Incremental Bisimulation Algorithm. In FSTTCS (2007), vol. 4855
of LNCS, Springer, pp. 204–215.

[185] Schmidt, D. C. Guest Editor’s Introduction: Model-Driven Engineering. Computer
39, 2 (Feb 2006), 25–31.

[186] Schürr, A. Specification of graph translators with Triple Graph Grammars. In
WG (1994), Springer, pp. 151–163.

Bibliography 193

[187] Selim, G., Lúcio, L., Cordy, J., Dingel, J., and Oakes, B. Specification and
Verification of Graph-Based Model Transformation Properties. In ICGT (2014),
vol. 8571 of LNCS, Springer, pp. 113–129.

[188] Shasha, D., and Snir, M. Efficient and Correct Execution of Parallel Programs
That Share Memory. TOPLAS 10, 2 (Apr. 1988), 282–312.

[189] Shavit, N., and Touitou, D. Software Transactional Memory. Distributed
Computing 10, 2 (1997), 99–116.

[190] Silva, M. 50 years after the PhD thesis of Carl Adam Petri: A perspective. IFAC
Proceedings Volumes 45, 29 (2012), 13 – 20. 11th IFAC Workshop on Discrete Event
Systems.

[191] Sokolsky, O., and Smolka, S. Incremental Model Checking in the Modal
Mu-Calculus. In CAV (1994), vol. 818 of LNCS, Springer, pp. 351–363.

[192] Spaninks, L. An Axiomatisation for Rooted Branching Bisimulation with Explicit
Divergence. Master’s thesis, Eindhoven University of Technology, 2013.

[193] Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M. EMF:
Eclipse Modeling Framework. Pearson Education, 2008.

[194] Stenzel, K., Moebius, N., and Reif, W. Formal Verification of QVT Transfor-
mations for Code Generation. In MODELS (2011), vol. 6981 of LNCS, Springer,
pp. 533–547.

[195] Swamy, G. M. Incremental Methods for Formal Verification and Logic Synthesis.
PhD thesis, University of California, 1996.

[196] Tai, K.-C., and Koppol, P. V. Hierarchy-based incremental analysis of commu-
nication protocols. In ICNP (1993), IEEE, pp. 318–325.

[197] Tai, K.-C., and Koppol, P. V. An incremental approach to reachability analysis
of distributed programs. In IWSSD (1993), IEEE Computer Society Press, pp. 141–
150.

[198] Talupur, M. Hardware Model Checking: Status, Challenges, and Opportunities.
In FMCAD (2011), FMCAD Inc, pp. 154–154.

[199] Tarjan, R. Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing 1, 2 (1972), 146–160.

[200] The MathWorks Inc. Simulink R©.

[201] Ulidowski, I., and Phillips, I. Ordered SOS Process Languages for Branching
and Eager Bisimulations. Information and Computation 178, 1 (2002), 180 – 213.

[202] Valmari, A. Stubborn Sets for Reduced State Space Generation. In Advances in
Petri Nets (1990), vol. 483 of LNCS, Springer, pp. 491–515.

[203] Valmari, A. Compositional state space generation. In Advances in Petri Nets
(1993), Springer, pp. 427–457.

194 Bibliography

[204] van Glabbeek, R., Luttik, S., and Trčka, N. Branching Bisimilarity with
Explicit Divergence. Fundamenta Informaticae 93, 4 (Dec. 2009), 371–392.

[205] van Glabbeek, R. J. The linear time — Branching time spectrum II. In CONCUR
(1993), Springer Berlin Heidelberg, pp. 66–81.

[206] van Glabbeek, R. J., Luttik, B., and Trc̆ka, N. Computation Tree Logic
with Deadlock Detection. LMCS 5, 4 (2009).

[207] van Glabbeek, R. J., and Weijland, W. P. Branching Time and Abstraction
in Bisimulation Semantics. JACM 43, 3 (1996), 555–600.

[208] Varró, D., and Pataricza, A. Automated Formal Verification of Model Trans-
formations. In CSDUML (Sept. 2003), pp. 63–78.

[209] Verhoef, C. A congruence theorem for structured operational semantics with
predicates and negative premises. Springer, 1994, pp. 433–448.

[210] Whittle, J., Hutchinson, J., and Rouncefield, M. The State of Practice in
Model-Driven Engineering. IEEE Software 31, 3 (May 2014), 79–85.

[211] Wijs, A., and Bošnački, D. Many-core on-the-fly model checking of safety
properties using GPUs. STTT 18, 2 (Apr 2016), 169–185.

[212] Wijs, A., Katoen, J.-P., and Bošnački, D. Efficient GPU algorithms for parallel
decomposition of graphs into strongly connected and maximal end components.
Formal Methods in System Design 48, 3 (2016), 274–300.

[213] Wijs, A. J. Achieving Discrete Relative Timing with Untimed Process Algebra.
In ICECCS (2007), IEEE Computer Society Press, pp. 35–44.

[214] Wijs, A. J. Define, Verify, Refine: Correct Composition and Transformation
of Concurrent System Semantics. In FACS (2013), vol. 8348 of LNCS, Springer,
pp. 348–368.

[215] Wijs, A. J. Confluence Detection for Transformations of Labelled Transition
Systems. In GaM (2015), vol. 181 of EPTCS, Open Publishing Association, pp. 1–15.

[216] Wijs, A. J. GPU Accelerated Strong and Branching Bisimilarity Checking. In
TACAS (2015), vol. 9035 of LNCS, Springer, pp. 368–383.

[217] Wijs, A. J., and Engelen, L. J. P. Efficient Property Preservation Checking of
Model Refinements. In TACAS (2013), vol. 7795 of LNCS, Springer, pp. 565–579.

[218] Wijs, A. J., and Engelen, L. J. P. Refiner: Towards Formal Verification
of Model Transformations. In NFM 2014 (2014), vol. 8430 of LNCS, Springer,
pp. 258–263.

[219] Wijs, A. J., and Fokkink, W. J. From χt to μCRL: Combining Performance
and Functional Analysis. In ICECCS (2005), IEEE Computer Society Press,
pp. 184–193.

[220] Wijs, A. J., and Neele, T. Compositional Model Checking with Incremental
Counter-Example Construction. In CAV (2017), vol. 10426 of LNCS, Springer,
pp. 570–590.

Bibliography 195

[221] Wijs, A. J., Neele, T., and Bošnački, D. GPUexplore 2.0: Unleashing
GPU Explicit-state Model Checking. In FM (2016), vol. 9995 of LNCS, Springer,
pp. 694–701.

[222] Winskel, G. A Compositional Proof System on a Category of Labelled Transition
Systems. Information and Computation 87, 1-2 (1990), 2–57.

[223] Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., and Mei, H. Towards
Automatic Model Synchronization from Model Transformations. In ASE (2007),
ACM, pp. 164–173.

[224] Zhang, D. From Concurrent State Machines to Reliable Multi-threaded Java Code.
PhD thesis, Eindhoven University of Technology, 2018.

[225] Zhang, D., Bošnački, D., van den Brand, M., Huizing, C., Jacobs, B.,

Kuiper, R., and Wijs, A. Verifying Atomicity Preservation and Deadlock Freedom
of a Generic Shared Variable Mechanism Used in Model-To-Code Transformations.
In MODELSWARD (2017), vol. 692 of CCIS, Springer, pp. 249–273.

[226] Zhang, D., Bošnački, D., van den Brand, M., Huizing, C., Jacobs, B.,

Kuiper, R., and Wijs, A. Verification of Atomicity Preservation in Model-To-
Code Transformations. In MODELSWARD (2016), SCITEPRESS, pp. 578–588.

[227] Zheng, L., Liao, X., Wu, S., Fan, X., and Jin, H. Understanding and
Identifying Latent Data Races Cross-Thread Interleaving. Frontiers of Computer
Science 9, 4 (2015), 524–539.

Summary

Verification of Concurrent Systems in a Model-Driven
Engineering Workflow

Concurrent systems form an integral part of today’s society. From smartphones,
desktops and web systems to the car you drive, and even your coffee machine, concurrent
systems can be found everywhere. Concurrency in systems has many benefits; e.g. better
performance, better distribution of services. However, due to their non-deterministic
nature concurrent systems are also more complex, harder to understand, and harder to
develop than sequential programs.

Researchers and practitioners have sought to alleviate complexity, increase understan-
dability, and facilitate the early and automated detection of faults. To this end, formal
methods and Model-Driven Engineering (MDE) are widely applied.

In this thesis, we investigate automated formal methods to determine and guarantee
correctness of concurrent systems and the integration of formal methods with MDE.

Over the years, various formal methods have been proposed and further developed to
determine the functional correctness of concurrent systems. One of those methods is called
model-checking in which a model is verified as a formal representation of the concurrent
system against a number of requirements. The requirements are expressed as formal
properties of the model. The model-checker then determines whether the formal behaviour
described by de model, also called the state-space, satisfies these formal properties. Thus,
model-checking gives guarantees that a model meets the specified requirements. With the
model serving as a formal specification of the concurrent system, the expectation is that
the implementations of the concurrent system will also meets the requirements. Yet there
are several significant problems to cover.

First, if the implementation does not formally adhere to the specification all guarantees
are void. The closer the model serving as specification is to the actual implementation,
the more confidence one has in the correctness of the implementation.

A rigorous solution to the this problem is to generate code that is proven to preserve
desired properties. However, the verified specification models from which this code must
be generated are often lacking important details due to the high abstraction level. To
bridge the gap between specification and implementation a series of transformations can
be applied adding the required details. These transformations have to be verified as well.
Nonetheless, verification of model transformations is still in its infancy.

In this thesis we propose a formal verification technique to determine that formali-
sations of such transformations in the form of rule systems are guaranteed to preserve
functional properties, regardless of the models they are applied on.

198 Summary

Second, another problem arises when the model becomes too detailed called the state
space explosion problem. The overall state space of a concurrent system is exponential in
the size of the individual components and the number of parallel components. There are
many model checking techniques making use of the fact that certain equivalence relations
are congruences for parallel composition with synchronisation to reduce the state space
explosion.

Since Divergence Preserving Branching Bisimulation (DPBB) is the finest equivalence
relation in the linear time – branching time spectrum of van Glabbeek, it is desirable to
apply DPBB as a first state space minimisation step. Although it is generally assumed
that DPBB is a congruence for parallel composition with synchronisation, no proof has
been published. This thesis finally proves that this is indeed the case.

Third, to further limit state space explosion, several approaches have been propo-
sed that reason compositionally about concurrent systems. One such approach, called
compositional aggregation, iteratively reduces the concurrent components modulo an
appropriate equivalence relation during the construction of the state space. Compositional
aggregation has shown to perform better (in the size of the largest state space in memory
at one time) than classical monolithic composition in a number of cases. Although, there
are also cases in which compositional aggregation performs much worse. It is unclear
when one should apply compositional aggregation in favour of other techniques and how
it is affected by action hiding and the scale of the model.

This thesis presents a descriptive analysis following the quantitative experimental
approach and apply machine learning techniques to predict which of three compositional
strategies performs best in terms of maximum memory cost. The learned prediction
models achieved an accuracy between 55% and 61% on unseen data.

Fourth, even when code is generated from the verified model, bugs may still occur due
to the interleaving of parallel execution of the components. Software developers expect
their executions of their programs to be Sequentially Consistent (SC), i.e., the program
executes in sequential order and atomic behaviour is not interrupted. Violations of
sequential consistency are a major source of bugs. These can be avoided by appropriately
using synchronisation mechanisms such as fences, semaphores and atomic instructions.
On the other hand, over using such mechanisms can negatively impact performance.

Static analysis techniques can be used to insert synchronisation mechanisms that
guarantee that program executions are indistinguishable SC ones. Alternatively, executions
can be monitored and violations can be reported at run-time. While the first approach is
more efficient (no run-time monitoring is required), the second approach is more precise.

In this thesis we combine the two approaches into an efficient monitor for model
checkers. The output of the algorithm is used to add annotations to the concurrent model.
These annotations are then used to generate efficient code that employs a minimal set of
synchronisation mechanisms.

Finally, we combine our results in an framework supporting verification various aspects
of the MDE workflow. The framework is centred around a domain specific language for
concurrent state machine models. The framework support verification of models and
model transformations, and offers a verified code generated. The generator produces
efficient implementations of which executions are observably SC with respect to the
corresponding model.

Curriculum Vitae

Personal Information
Name: Sander M. J. de Putter
Date of birth: March 10, 1986
Place of birth: Oostburg, the Netherlands

Education
Ph.D Candidate 2014.9–2019.1

Eindhoven University of Technology, Eindhoven, the Netherlands

M.Sc in Computer Science and Engineering 2011.9–2014.6

Eindhoven University of Technology, Eindhoven, the Netherlands

B.Sc in Technische Informatica 2003.9–2007.7

Hogeschool Avans, Breda, the Netherlands

Work Experience
Software Engineer 2007.9–2011.7

VSTEP B.V, Rotterdam, the Netherlands

Software Engineer Intern 2007.2–2007.7

VSTEP B.V, Rotterdam, the Netherlands

Software Engineer Intern 2005.9–2006.2

Codeglue, Schiedam, the Netherlands

Research Project Experience
AIPP5 EMC2 project (Embedded Multi-Core systems for Mixed Criticality applications
in dynamic and changeable real-time environments) 2014.9–2017.6

Eindhoven University of Technology, Eindhoven, the Netherlands

200 Curriculum Vitae

Awards
Best Student Paper Award 2017.10

Formal Aspects of Component Software (FACS) 2017, Braga, Portugal

Extracurricular Activities
Organiser of the colloquia of the Software Engineering Technology group 2014.10–2018.1

Eindhoven University of Technology, Eindhoven, the Netherlands

Member of the PhD council of Mathematics and Computer Science 2015.5–2016.9

Eindhoven University of Technology, Eindhoven, the Netherlands

Member of the student sounding board of the department of informatica 2004.9–2005.7

Hogeschool Avans, Breda, the Netherlands

Titles in the IPA Dissertation Series since 2015

G. Alpár. Attribute-Based Identity Ma-
nagement: Bridging the Cryptographic De-
sign of ABCs with the Real World. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstracti-
ons for Visualization and Interaction. Fa-
culty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Faculty of
Mechanical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibility
and Trustworthiness. Faculty of Mathema-
tics and Computer Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of Elec-
trical Engineering, Mathematics, and Com-
puter Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics and
Computer Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtai-
ning and understanding fixpoints in mo-
del checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security pro-
tocols. Faculty of Science, Mathematics
and Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Archi-
tecture Framework and Quality Evaluation
for Automotive Software Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2015-12

J. Bransen. On the Incremental Evalua-
tion of Higher-Order Attribute Grammars.
Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutio-
nary Computation to Cryptology. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localization
for Service-Oriented Software Systems. Fa-
culty of Electrical Engineering, Mathema-
tics, and Computer Science, TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-16

R.W.J. Kersten. Software Analysis Met-
hods for Resource-Sensitive Systems. Fa-
culty of Science, Mathematics and Compu-
ter Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fa-
culty of Mathematics and Natural Sciences,
UL. 2015-18

M. Stolikj. Building Blocks for the Inter-
net of Things. Faculty of Mathematics and
Computer Science, TU/e. 2015-19

D. Gebler. Robust SOS Specifications of
Probabilistic Processes. Faculty of Scien-
ces, Department of Computer Science,
VUA. 2015-20

M. Zaharieva-Stojanovski. Closer to
Reliable Software: Verifying functional be-
haviour of concurrent programs. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-21

R.J. Krebbers. The C standard formali-
zed in Coq. Faculty of Science, Mathema-
tics and Computer Science, RU. 2015-22

R. van Vliet. DNA Expressions – A For-
mal Notation for DNA. Faculty of Mathe-
matics and Natural Sciences, UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Faculty
of Mathematics and Natural Sciences,
UL. 2016-01

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis and
Verification of Embedded Systems for He-
althcare. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Models to Sa-
fety Assurance – Applying Model-Based
Techniques to Support Safety Assurance.
Faculty of Mathematics and Computer
Science, TU/e. 2016-06

B. Ege. Physical Security Analysis of Em-
bedded Devices. Faculty of Science, Mathe-
matics and Computer Science, RU. 2016-07

A.I. van Goethem. Algorithms for Cur-
ved Schematization. Faculty of Mathema-
tics and Computer Science, TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Deci-
sion Diagrams. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2016-09

I. David. Run-time resource manage-
ment for component-based systems. Faculty
of Mathematics and Computer Science,
TU/e. 2016-10

A.C. van Hulst. Control Synthesis using
Modal Logic and Partial Bisimilarity – A

Treatise Supported by Computer Verified
Proofs. Faculty of Mechanical Engineering,
TU/e. 2016-11

A. Zawedde. Modeling the Dynamics
of Requirements Process Improvement.
Faculty of Mathematics and Computer
Science, TU/e. 2016-12

F.M.J. van den Broek. Mobile
Communication Security. Faculty of
Science, Mathematics and Computer
Science, RU. 2016-13

J.N. van Rijn. Massively Collaborative
Machine Learning. Faculty of Mathematics
and Natural Sciences, UL. 2016-14

M.J. Steindorfer. Efficient Immu-
table Collections. Faculty of Science,
UvA. 2017-01

W. Ahmad. Green Computing: Effi-
cient Energy Management of Multipro-
cessor Streaming Applications via Model
Checking. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-02

D. Guck. Reliable Systems – Fault tree
analysis via Markov reward automata. Fa-
culty of Electrical Engineering, Mathema-
tics & Computer Science, UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Radio Ap-
plications Scheduled on Heterogeneous Mul-
tiprocessors. Faculty of Mathematics and
Computer Science, TU/e. 2017-04

A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communication on
the Internet and in the Internet of Things
(IoT). Faculty of Science, Mathematics and
Computer Science, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty
of Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Limita-
tions and Opportunities. Faculty of Science,
UvA. 2017-07

W. Lueks. Security and Privacy via Cryp-
tography – Having your cake and eating it
too. Faculty of Science, Mathematics and
Computer Science, RU. 2017-08

A.M. Şutîi. Modularity and Reuse of
Domain-Specific Languages: an explora-
tion with MetaMod. Faculty of Mathema-
tics and Computer Science, TU/e. 2017-09

U. Tikhonova. Engineering the Dyna-
mic Semantics of Domain Specific Langua-
ges. Faculty of Mathematics and Computer
Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty
of Mathematics and Computer Science,
TU/e. 2017-11

A. Amighi. Specification and Verifica-
tion of Synchronisation Classes in Java:
A Practical Approach. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2018-01

S. Darabi. Verification of Program Pa-
rallelization. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2018-02

J.R. Salamanca Tellez. Coequations
and Eilenberg-type Correspondences. Fa-
culty of Science, Mathematics and Compu-
ter Science, RU. 2018-03

P. Fiterău-Broştean. Active Model Le-
arning for the Analysis of Network Proto-
cols. Faculty of Science, Mathematics and
Computer Science, RU. 2018-04

D. Zhang. From Concurrent State Machi-
nes to Reliable Multi-threaded Java Code.
Faculty of Mathematics and Computer
Science, TU/e. 2018-05

H. Basold. Mixed Inductive-Coinductive
Reasoning Types, Programs and Logic. Fa-
culty of Science, Mathematics and Compu-
ter Science, RU. 2018-06

A. Lele. Response Modeling: Model Refi-
nements for Timing Analysis of Runtime
Scheduling in Real-time Streaming Systems.

Faculty of Mathematics and Computer
Science, TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and pro-
gramming. Faculty of Mathematics and
Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of rai-
lway maintenance: Analysis and optimi-
zation of maintenance via fault trees and
statistical model checking. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2018-10

F. Yang. A Theory of Executability: with
a Focus on the Expressivity of Process Cal-
culi. Faculty of Mathematics and Compu-
ter Science, TU/e. 2018-11

L. Swartjes. Model-based design of bag-
gage handling systems. Faculty of Mecha-
nical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Simi-
larity Measures for Curves and Surfaces.
Faculty of Mathematics and Computer
Science, TU/e. 2018-13

M. Talebi. Scalable Performance Analy-
sis of Wireless Sensor Network. Faculty
of Mathematics and Computer Science,
TU/e. 2018-14

R. Kumar. Truth or Dare: Quantitative
security analysis using attack trees. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software Deve-
lopment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2018-16

M. Mehr. Faster Algorithms for Geome-
tric Clustering and Competitive Facility-
Location Problems. Faculty of Mathema-
tics and Computer Science, TU/e. 2018-17

M. Alizadeh. Auditing of User Behavior:
Identification, Analysis and Understanding
of Deviations. Faculty of Mathematics and
Computer Science, TU/e. 2018-18

P.A. Inostroza Valdera. Structuring
Languages as Object-Oriented Libraries.
Faculty of Science, UvA. 2018-19

M. Gerhold. Choice and Chance - Model-
Based Testing of Stochastic Behaviour. Fa-
culty of Electrical Engineering, Mathema-
tics & Computer Science, UT. 2018-20

S.M.J. de Putter. Verification of Con-
current Systems in a Model-Driven Engi-
neering Workflow. Faculty of Mathematics
and Computer Science, TU/e. 2018-21

