

GPU Enabled Automated Reasoning

Citation for published version (APA):
Mahmoud, M. O. (Accepted/In press). GPU Enabled Automated Reasoning. Eindhoven University of
Technology.

Document status and date:
Accepted/In press: 10/03/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 09. mrt.. 2022

https://research.tue.nl/en/publications/8475ec97-e833-4d10-a7dd-10e4f173a00d

GPU Enabled Automated Reasoning

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor Promoties,
in het openbaar te verdedigen op donderdag 10 maart

2022 om 16:00 uur

door

Muhammad Osama Mahmoud

geboren te Minya, Egypte

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr. Johan J. Lukkien
1e promotor: prof.dr. Mark G.J. van den Brand
co-promotor: dr.ing. Anton J. Wijs
externe leden: prof.dr.ir. Joost-Pieter Katoen (RWTH Aachen University)

prof.dr. Armin Biere (University of Freiburg)
dr.ir. Ana L. Varbanescu (Universiteit Twente)

lid TU/e: prof.dr. Hans Zantema
dr.ir. Michel A. Reniers

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

This work is part of the project GEARS
with project number TOP2.16.044, which
is (partly) financed by the Dutch Research
Council (NWO).

In addition, this work made use of the Dutch national e-infrastructure
with the support of the SURF Cooperative using grant numbers
2020.024 and EINF-1688.

The work in the thesis has been carried out under the auspices of
the research school IPA (Institute for Programming research and
Algorithmics).

IPA dissertation series 2022-02.

A catalogue record is available from the Eindhoven University
of Technology Library

ISBN: 978-90-386-5445-4

An electronic version of the thesis is also available online via the
link: https://gears.win.tue.nl/publications

Printed by: Gildeprint – www.gildeprint.nl

Cover design by: Walid Osama Mahmoud

Copyright © 2022 by Muhammad Osama Mahmoud. All Rights Reserved. You
may not reproduce any content in whole or in part without the consent of the
owner.

https://gears.win.tue.nl/publications
www.gildeprint.nl

Contents

Preface xiii

1 Introduction 1
1.1 Model Checking . 2
1.2 SAT-based Bounded Model Checking 3
1.3 SAT Solving . 4
1.4 Contributions and Thesis Hierarchy 5
1.5 How to Read the Thesis . 9
1.6 Origin of the Chapters . 9

2 Preliminaries 13
2.1 SAT Encoding . 13
2.2 SAT Solving . 16

2.2.1 Optimisations . 18
2.2.2 Heuristics . 19

2.3 SAT Simplifications . 20
2.3.1 Bounded Variable Elimination 20
2.3.2 Subsumption Elimination 23
2.3.3 Blocked Clause Elimination 24

3 Graphics Processing Units 27
3.1 50 Years of Microprocessors . 27
3.2 GPU Architecture . 29
3.3 CUDA Programming Model . 30

3.3.1 GPU Kernel . 30
3.3.2 Memory Hierarchy . 33

i

ii Contents

3.4 Streams and Concurrent Execution 35
3.5 Specifications of our GPUs . 35

4 SAT Preprocessing 37
4.1 GPU Challenges: Memory and Data 39

4.1.1 Memory Management . 39
4.1.2 Data Structures . 40

4.2 Algorithm Design and Implementation 41
4.2.1 Parallelisation Approach 41
4.2.2 Parallel Variable Elimination 45
4.2.3 Parallel Subsumption Elimination 47
4.2.4 Parallel Blocked Clause Elimination 49
4.2.5 Hidden Redundancy Elimination 50
4.2.6 Multi-GPU Support . 53

4.3 Benchmarks and Analysis . 55
4.3.1 SAT-Simplification Benchmarks 56
4.3.2 SAT-Solving Benchmarks 58

4.4 Related Work . 60
4.5 Conclusion . 61

5 SAT Inprocessing 63
5.1 GPU Memory and Data Structures 65
5.2 Parallel Garbage Collection . 67
5.3 Proof Memory Management . 71
5.4 Variable Scheduling . 75
5.5 Main Inprocessing Procedure . 76
5.6 Three-Phase Parallel Variable Elimination 79
5.7 Parallel Subsumption Elimination Revisited 82
5.8 Eager Redundancy Elimination 84
5.9 Kernel Automated Tuning . 85
5.10 Benchmarks and Analysis . 87

5.10.1 SAT-Simplification Speedup 88
5.10.2 SAT-Solving Benchmarks 91

5.11 Related Work . 97
5.12 Conclusion . 97

6 Multiple Decision Making 99
6.1 SAT Solving with CDCL . 100

Contents iii

6.1.1 The CDCL procedure . 101
6.1.2 Multiple Decision Making 105

6.2 MDM with Decision Heuristics 106
6.2.1 Decision Heuristics . 106
6.2.2 2-WL Optimisation . 108
6.2.3 Decision Freezing . 108
6.2.4 The MDM Procedure with Optimisations 109

6.3 MDM Integration in CDCL . 112
6.3.1 The Overjump Effect . 114
6.3.2 Correctness of Applying MDM in CDCL 115

6.4 Benchmarks and Analysis . 116
6.5 Related Work . 124
6.6 Conclusion . 124

7 Bounded Model Checking 125
7.1 Incremental Bounded Model Checking 128

7.1.1 Incremental SAT Solving 131
7.1.2 MDM in Incremental Solving 133

7.2 GPU-Accelerated Bounded Model Checking 133
7.2.1 The Workflow . 133
7.2.2 Data Structures and Memory Management 135
7.2.3 Parallel VCE . 136

7.3 Benchmarks and Analysis . 139
7.4 Related Work . 141
7.5 Conclusion . 145

8 Conclusions 147
8.1 Contributions . 147
8.2 Future Work . 153

Bibliography 155

Summary 171

Samenvatting 173

Curriculum Vitae 177

List of Figures

1.1 Thesis implication graph . 10

3.1 40 years of microprocessors trend data 28
3.2 CPU vs GPU . 29

4.1 An example of CNF and OT data structures. 40
4.2 Complete workflow of SIGmA with multi-GPU support. 42
4.3 SIGmA impact on MiniSat for various simplification modes . . 59
4.4 SIGmA impact on Lingeling for various simplification modes . 59

5.1 Data structures to store a SAT formula on a GPU 66
5.2 An example of parallel GC on a GPU 68
5.3 An example showing the DRAT proof generated by ParaFROST 72
5.4 An example of binary DRAT counting on a GPU 73
5.5 Parallel GC vs. sequential speedup 89
5.6 Three-Phase BVE vs. atomic version speedup 89
5.7 Parallel funTab vs. sequential speedup 90
5.8 Parallel proof generation vs. sequential speedup 90
5.9 ParaFROST vs. CaDiCaL with(out) proof emission 91
5.10 ParaFROST vs. Kissat with(out) irregular-gate reasoning . . 92
5.11 Time spent on simplifications . 92
5.12 Percentage of simplification time to runtime 93
5.13 Reduction efficiency with(out) irregular-gate reasoning 93
5.14 Heatmap showing the time-memory distribution of DRAT proof . 95

6.1 A visualization of CDCL solving on a small example 105
6.2 An example of (non)-valid multiple decisions sets 106
6.3 An example of decision dependency 109
6.4 A working example of multiple decision making procedure 111

v

vi List of Figures

6.5 MDM scaling functions (rounds = 3) 117
6.6 Number of MDM rounds (scaleFunction = nlogn) 118
6.7 MDM steps (scaleFunction = nlogn) 118
6.8 MDM prioritisation (mdmStep = 2,000) 119
6.9 MDM ranking with histogram score β 119
6.10 MDM with local search WalkSAT 120
6.11 Different solvers comparison . 120

7.1 Variable redundancy in CBMC SAT formulas 127
7.2 A 2-bit counter transition system 130
7.3 An activity diagram for the workflow of ParaFROST 134
7.4 VCE rules in ParaFROST . 136
7.5 Verification time (timeout: 3,600 seconds) 140
7.6 Percentage of verification time used for VCE 140
7.7 ParaFROST vs. ParaFROST (noGPU) speedup 141
7.8 ParaFROST (MDM) vs. ParaFROST (noGPU) speedup . . 143
7.9 ParaFROST (MDM) vs. ParaFROST speedup 143
7.10 ParaFROST (MDM) vs. MiniSat speedup 144
7.11 ParaFROST (MDM) vs. Glucose speedup 144
7.12 ParaFROST (MDM) vs. CaDiCaL speedup 145

List of Tables

2.1 CNF representations for logical operators 14

3.1 Microarchitectures released by NVIDIA during the last 5 years . 31
3.2 Comparison between the GPUs used in this thesis 36

4.1 SIGmA acceleration with single/multi-GPU configuration 56
4.2 SIGmA performance compared to various simplifiers 56
4.3 SIGmA reductions with different phases on the largest 34 cases . 57
4.4 SIGmA impact on MiniSat solving performance 58
4.5 SIGmA impact on Lingeling solving performance 60

5.1 funTab impact on 30 formulas solved by ParaFROST. 96

6.1 Solvability evaluation of all solvers 121
6.2 MDM impact on 50 formulas solved by ParaFROST 122
6.3 MDM impact on 50 formulas solved by Glucose 123

7.1 CBMC performance analysis using the various solvers 142

vii

List of Acronyms

ALU Arithmetic and Logic Unit 32
AWS Amazon Web Services 2
BCE Blocked Clause Elimination 20
BCP Boolean Constraint Propagation 4
BDD Binary Decision Diagram 3
BMC Bounded Model Checking 1
BVE Bounded Variable Elimination 20
BVIPE Bounded Variable-Independent Parallel Elimination 38
CC Compute Capability 31
CDCL Conflict-Driven Clause Learning 2
CIM Computation in Memory 154
CNF Conjunctive Normal Form 13
CPU Central Processing Unit 2
CTL Computational Tree Logicg 2
CUDA Compute Unified Device Architecture 4
DIMACS Discrete Mathematics and Theoretical Computer Science 16
DPLL Davis, Putnam, Logemann, and Loveland 4
DRAT Deletion Resolution Asymmetric Tautology 65
ERE Eager Rendundancy Elimination 11
FPGA Field Programmable Gate Arrays 29
GC Garbage Collection 67
GFLOPS Giga FLoating-point Operations Per Second 28

ix

x List of Acronyms

GPU Graphics Processing Unit 1
HRE Hidden Rendundancy Elimination 11
IC Integrated Circuit 27
ID Thread identifier in a grid 32
IG Implication Graph 9
IPC Instructions Per Cycle 28
ITS Independent Thread Scheduling 32
LBD Literal Block Distance 19
LCV Least Constrained Variable 54
LCVE Least-Constrained Variable Elections 38
LTL Linear Temporal Logic 2
MC Model Checking 1
MCV Most Constrained Variable 54
MDM Multiple Decision Making 2
OL Occurrence List 41
OT Occurrence Table 41
ParaFROST Parallel Formal Reasoning On SaTisfiability 7
PC Program Counter 32
PCI-E Peripheral Component Interconnect Express 53
RES BVE by resolution 136
RT Ray Tracing 31
SAT Satisfiability 1
SIGmA SAT sImplification on GPU Architectures 6
SIMT Single-Instruction Multiple-Thread 29
SM Streaming Multiprocessor 29
SMT Satisfiability Modulo Theory 3
SpMV Sparse Matrix-Vector 154
SUB Subsumption Elimination 20
TDP Thermal Design Power 31
VCE Variable-Clause Eliminations 65
VSIDS Variable State Independent Decaying Sum 5
WL Watched Literal 5

List of Symbols

k Counterexample maximum length 3
S SAT Boolean formula (conjunction of clauses) 13
m Number of clauses in S 13
C Clause (disjunction of literals) 13
r Number of literals in a clause 13
ℓ Literal (Boolean variable x or its negation ¬x) 13
var(ℓ) Boolean variable of ℓ 13
L Domain of all literals 13
var(L) Domain of all variables 14
L(S) Set of all literals in S 14
Sℓ All clauses containing ℓ in S 14
Ex All clauses containing x or ¬x in S 14
B Domain of the Booleans 17
⊤ True 17
⊥ False 17
↑ Undetermined 17
Free(C) All unassigned literals in C 17
α VSIDS variable score 19
L Set of learnt clauses 21
R(S) Set of resolvents in S 21
Gℓ(S) Gate clauses containing ℓ in S 21
Hℓ(S) Non-gate clauses containing ℓ in S 21

xi

xii List of Symbols

A Set of authorised variables 43
h Histogram function 43
µ Maximum occurrences of a variable in S 43
x D y y depends on x 43
Φ Set of elected variables 43
F Set of frozen variables 43
T Instance of OT 44
σ Set of assigned literals 100
var(S) Set of all variables in S 101
M Set of multiple decisions 105
WC(ℓ) Predicate of ℓ being watched in C 108
M Finite state machine (model) 125
φ Temporal property 125
JM, φKk SAT formula encoding M and φ up to length k 129
π Finite trace in M 129
si i-th state in M 129
I(s0) Initial set of states 129
τ(si, si+1) Set of transitions from si to si+1 129
JMKk SAT formula encoding M up to k states 129
J¬φKk SAT formula encoding ¬φ up to k states 129
E(i) Predicate encoding error states at step i 129
e(sj) j-th error state in M 129
θ Set of assumptions (unit clauses) 129
AGφ φ holds by every reachable state 130
Mθ Set of multiple assumed decisions 133
ML Set of multiple non-assumed decisions 133

Preface

My fondness for GPUs started when my father brought me my first computer
in 1994, when I was 6 years old. I now realize, without him, I would not be
in this position writing my PhD thesis in computer engineering. Back in time,
we used to play together, an Indie game called rescue rover. I was fascinated
with the graphics; even though, the resolution could barely touch the 320 × 200
quality. My only knowledge about a graphics card was that it commercially sold
as a Video Graphics Array (VGA); a technology to process streaming frames
or display images. Back then, the quality of a VGA was measured by the size
of video memory, since processing power was not on demand. The only thing
that mattered to upgrade my desktop as far I remember, was to replace my old
8 MB VGA with a top-notch edition with 32 MB of memory, manufactured by
ATI (Radeon now).

Years passed, after which it was time to find a suitable post-secondary school
to pursue my higher education. The funny thing is, I chose Petroleum engineering
as a field of study to make a lot of money. After three months, I knew back
in my mind this is not my track. If I like video games, perhaps I should learn
how to make them, and this was where my career really started. So, I chose to
study computer engineering. At the third year, we had a course called parallel
computing taught by Tarek Hagras, but the material focused more on theoretical
complexity of parallel patterns and network topologies. I wanted to program
some of these patterns in parallel to see its impact on run time. Fate brought me
again to GPUs, when I learned about a programming model released by NVIDIA
in 2007, called CUDA. Unfortunately, there were not many resources about this
new technology, and anyone interested would have to read the programming
guide (manual) to get acquainted with its capabilities. During my period as a
teaching assistant, I had the opportunity to teach the same course, but somehow
felt that my help to the students was not enough due to the lack of equipment.

xiii

xiv Preface

Therefore, I contacted NVIDIA about any funding possibilities to establish my
own CUDA lab. They told me about a program that can provide six high-end
GPUs in exchange for preparing a complete course about CUDA fundamentals.
Even with all my doubts, especially for someone who just started his career in
academia, I took my chance and submitted the required material built from
scratch with great support from Aiman Tarek. We gratefully received the grant
from NVIDIA and started our CUDA education (with help from Omar Shaaban)
as part of the parallel computing course. We also dedicated this lab to post-
graduate research and to conduct my master project. Now I find myself with
a PhD thesis which I would not have managed to complete on my own. For
that, I am grateful to my former professors who helped me during my time as a
Bachelor and Master student, and working as a TA: Mohammad Moness, Aziza
Ibrahim, Hassan Al-Ansary, and Tarek Hagras.

Now, my warmest gratitude goes to my promoters, Anton Wijs and Mark van
den Brand. First, let me begin with how I found my PhD project and had the
privilege to work with them. After obtaining my MSc degree, I started looking for
a PhD project on using GPUs for accelerating SAT-based model checking. I kept
searching desperately for two years until finally I found Anton offering a project
called GEARS with the aim to perform GPU-enabled automated reasoning about
system designs. To the best of my knowledge, after sweeping over 100 universities
for PhD positions, this project was the only one available all over the world; I
mean, what are the odds. Anton had a very ambitious idea to do robust and fast
SAT-based symbolic checking on GPUs and I emphasize ‘very’ because the SAT
problem is truly hard to parallelize (let alone, it is NP-Complete). I had the
exact ambition for parallel SAT solving, model checking, and GPU computing in
general. Therefore, I got the position and began a new endeavor in my career.

I am grateful to Anton and Mark for giving me absolute confidence that one
can achieve anything in life by working hard and being determined. Mark, I
will not forget the recommendation letter (two pages long) you wrote me to join
the Marktoberdorf summer school. During my work on multi-GPU setup in
SAT simplifications, you inspired me with an excellent idea to fairly distribute
the workload among n GPUs. Later, we named this scheme ‘the ping-pong
distribution’. Even though, Mark was not directly responsible for the project’s
main objectives, I learned a great deal on how to carefully plan, achieve and
present my work.

Anton, on the other hand, acted as my main supervisor during my PhD
study. However, I felt him being a friend more than a formal advisor, and we
are doing this as joint work. I enjoyed our adventure in Oxford and watching
the finale of the 2018 world cup during our visit to the FLoC conference. There,

xv

after my first paper rejection, I remember you saying: ‘in this line of work, one
should have the skin of an elephant’. Despite all disappointments and setbacks,
I never gave up, and eventually we had five excellent publications in top-tier
conferences and two additional journal papers to be submitted.

In that occasion, we had the privilege to collaborate with Armin Biere on two
papers related to SAT inprocessing. Thanks, Armin, for sharing your knowledge
and experience. My special thanks to the committee members: Joost-Pieter
Katoen, Armin Biere, Michel Reniers, Hans Zantema, and Ana Varbanescu for
spending their precious time reading my thesis and providing me with feedback
to fix any remaining issues in the text.

Through my time at the Formal Systems Analysis (FSA) and Software
Engineering Technology (SET) groups, I presented my work regularly in the
colloquia and always received rich feedback from Jan Friso Groote, Hans Zantema,
Alexander Serebrenik, Erik de Vink, Wieger Wesselink, and Tim Willemse.
This allowed me to improve my research outputs. As a PhD candidate, I was
also responsible for organising the SET colloquia and for helping in several
courses: programming, SET seminar, program verification techniques, and GPU
computing (part of IPA advanced courses). Thanks to Kees Huizing, Anton
Wijs, and Alexander Serebrenik for the invaluable experience.

Next, my thanks go to my former office mates in the FSA group, Maurice
Laveaux, Olav Bunte, Mauricio Verano Merino, Thomas Neele, Alexander Fedo-
tov, and Ruud van Vijfeijken for the warm welcoming and the inducing work
atmosphere. To my new mates from the SET group: Lars van den Haak, Nathan
Cassee, Hossain Muctadir, and David Manrique Negrin. I enjoyed our interesting
discussions at the coffee machine. Omar al Duhaiby, thanks for our friendly time
and talks about learning new languages. I am also thankful to Thomas Neele,
Mahmoud Talebi, and Sander de Putter; who made me feel at home when I
came to Eindhoven.

I wish to thank all other colleagues from the Model-Driven Software Engineer-
ing (MDSE) group for the exquisite time we had together: Rick Erkens, Önder
Babur, Fei Yang, Yousra Hafidi, Sangeeth Kochanthara, Ana-Maria Sutii, Dan
Zhang, Mark Bouwman, Rodin Aarssen, Nan Yang, Gema Rodriguez, Mahdi
Saeedi, Jouke Stoel, Priyanka Karkhanis, Kousar Aslam, Weslley Silva Torres,
Felipe Ebert, Lina Ochoa, Miguel Botto Tobar, Arash Khabbaz, and Ferry
Timmers. Thanks for the support and wonderful memories you have given to
me. My gratitude to Margje Mommers and Agnes van den Reek, for taking care
of all the arrangements of my travels and work activities.

There are several people outside TU/e to whom, I would like to send my
gratitude. Hassan Ramadan, many thanks for hosting me during my first three

xvi Preface

days in Eindhoven and letting me taste, for the first time, the local snacks:
‘Kibbeling’ fries and ‘Stroop’ waffles. During the TACAS 2019 conference in
Prague, I spent a delightful time discovering the city with my friend Mahmoud
Khaled and had cheerful dinners with him, Anton and others.

Last but not least, I wish to thank my family for their outstanding resilience
that inspired me along my career. First, to my brother Walid, thanks for
designing the thesis’ cover and being there during the toughest times. To my
parents, I am truly grateful for your endless prayers and support to complete my
education and be successful in my career. To my wife Sara, despite my pitfalls
and impatience sometimes, your love and solace, kept me going on the right
path. You were always a source of inspiration and motivation.

Muhammad Osama
Den Bosch, December 2021

Chapter 1

Introduction

"Sometimes it is the people no one can imagine anything of who do
the things no one can imagine."

– Alan Turing

The development of complex hardware and software systems is error-prone
and costly. Testing can be effective to detect the presence of bugs in these
designs, but it cannot prove their absence [Dij72]. One technique that can
provide worthful feedback on the correctness of system designs is model checking
(MC) [CE81, BK08]. It involves exhaustively analysing a system design to
determine whether it satisfies desirable functional specifications. However, it is
computationally very demanding. Bounded Model Checking (BMC) is currently
a contemporary symbolic technique that can analyse large designs in reasonable
time. In this thesis, we investigate how Graphics Processing Units (GPUs)
can be employed effectively for BMC, narrowing our focus to the reasoning on
propositional Satisfiability (SAT) [FM09]. BMC determines whether a model
satisfies a certain property expressed in temporal logic, by translating the model
checking problem to a SAT problem, for instance. GPUs offer great potential for
parallel computation, while keeping power consumption low. However, not all
types of computation can trivially be performed on GPUs, in most applications,
the algorithms need to be entirely redesigned.

1

2 Chapter 1 Introduction

We focus on the simplifications of SAT formulas prior to the solving process
(i.e. preprocessing); a strategy that leads to a drastic prune of the formula size,
and the search space [OW19a, OW19b]. Next, we present a new SAT solver which
rigorously interleaves the search with simplifications (i.e. inprocessing) [OWB21b,
OWB21a]. Inprocessing has proven to be powerful in modern SAT solvers,
particularly when applied on SAT formulas encoding software and hardware
verification problems. The new solver is hybrid, capable of running the parallel
part on the GPU while the actual solving will run sequentially on the Central
Processing Unit (CPU). Further, we discuss the design aspects of the data
structures and the memory management of our parallel implementations, leading
to substantial improvements in execution performance.

Concerning the solving part, we extend the Conflict-Driven Clause Learning
(CDCL) search algorithm with Multiple Decision Making (MDM) [OW20]. The
MDM procedure has the ability to make and propagate multiple decisions at
once. Moreover, it is augmented with local search to improve the accuracy in
assigning truth values to these decisions [OW21b].

Finally, we describe the integration of the hybrid solver to a state-of-the-art
bounded model checker. After optimising further the inprocessing engine and
making the solving process incremental, we study the impact of GPU-enabled
BMC on software verification [OW21a] using Amazon Web Services (AWS) C99
library.

1.1 Model Checking
MC is a computer-aided method for reasoning about system designs to formally
uncover violations of the given specifications. A state-transition diagram can be
used to model the design behavior, while the specification is described by temporal
properties. A property is formalised in temporal logic such as Linear Temporal
Logic (LTL) [Pnu77] or Computational Tree Logic (CTL) [EH83]. Over decades,
research and industry have been shifting towards model checking rather than
testing in hardware and software verification. Common examples are verifying
railway interlocking systems [GH21], nuclear control systems [PBB21], medical
imaging [BBC+20], and microprocessor designs [BCRZ99, VB01]. Companies
such as Amazon [CKK+18], Microsoft [BCLR04], and Facebook [DFLO19] use
and develop MC technology to ensure their products behave functionally correct.
MC can be applied with explicit-state [CE81] or symbolic [BCM+92] techniques.
The former suffers the notorious state-explosion problem [CG87] as it exhaustively
traverses the entire state space, considering all possible values of the state

1.2 SAT-based Bounded Model Checking 3

variables (e.g. SPIN [Hol97]). Symbolic techniques can represent groups of
states by symbolic expressions (as in the NuSMV checker [CCGR99]), rather
than explicitly enumerating states or transitions. The encoding of symbolic
expressions may be implemented as Binary Decision Diagrams (BDDs) [Bry86],
or propositional formulas. BMC is a prodigious example of symbolic checking
without BDDs [BCCZ99]. This thesis addresses the propositional SAT solving
and its application in BMC.

1.2 SAT-based Bounded Model Checking

SAT-based BMC was first proposed by Biere et al. [BCCZ99, BCC+03] to
determine whether a model satisfies a certain property, by translating the
application to a SAT or Satisfiability Modulo Theories (SMT) [BSST09] problem.
The term bounded refers to the fact that the BMC procedure searches for a
counterexample to the property, i.e., an execution trace, which is bounded
in length by some integer value k. If no counterexample up to this length
exists, k can be increased and BMC can be applied again. This process can
continue until a counterexample has been found, a user-defined threshold has
been reached, or it can be concluded (via k-induction [BCCZ99]) that increasing
k further will not result in finding a counterexample. A major advantage
of BMC is that for many system designs, it scales better than explicit-state
MC [Hol97, WB14]. CBMC (C Bounded Model Checker) [CKL04, KT14] is an
example of a successful BMC tool that uses SAT solving. CBMC can check
ANSI-C programs. The verification is performed by unwinding the loops in the
program under verification a finite number of times, and checking whether the
bounded executions of the program satisfy a particular safety property [KS16].
These properties may address common program errors, such as null-pointer
exceptions and array out-of-bound accesses, and user-provided assertions.

The performance of BMC heavily relies on the performance of the solver.
Over the last decade, efficient SAT solvers have been developed and applied for
BMC [BCCZ99, DLL62, DKW08, BCMD90, Bro13, Bra11, SG99, SBS96, JS05].
For instance, CBMC has been using MiniSat solver for years to check the
satisfiability of the generated formulas.

Leiserson et al. [LTE+20] concluded that in the future, advances in com-
putational performance will come from many-threaded algorithms that can
employ hardware with a massive number of processors such as Graphics proces-
sors (GPUs). Even though, effectively parallelising BMC is hard. Parallel
SAT solving often involves running several solvers, each solving the prob-

4 Chapter 1 Introduction

lem in their own way [ABK+13, HJS09]. For BMC, multiple solvers can
be used to solve the problem for different values of the bound k in paral-
lel [ÁSB+11, WNH09, KT11]. However, in these approaches, the individual
solvers are still single-threaded. Multi-threaded BMC model checkers have been
proposed, such as in [IT20, CRDL20, PMP15], but these address only tens of
threads, not thousands.

GPUs have become attractive for general-purpose computing with the avail-
ability of the Compute Unified Device Architecture (CUDA) programming model.
CUDA is widely used to accelerate applications that are computationally inten-
sive w.r.t. data processing. For instance, GPUs have been applied to accelerate
explicit-state MC [BESW10, WB14], bisimilarity checking [Wij15], metaheuristic
SAT solving [YIMO15], and SAT-based test generation [OGHM18]. Since BMC
relies on SAT solving, the GPU acceleration of BMC should start with the GPU
acceleration of SAT solving.

1.3 SAT Solving
The objective of SAT solving is to determine, given a Boolean formula, whether
an assignment of truth values to the propositional variables exists, such that
the formula evaluates to true. If such an assignment exists, the formula is said
to be satisfiable; otherwise, it is unsatisfiable. SAT solving is performed with
two approaches, using complete and incomplete search algorithms. The former
always proceeds with a backtracking search procedure until it finds a solution;
if it cannot find a solution the (un)satisfiability of the problem is proven. The
latter might be able to satisfy a problem or run out of time without giving a
determinate decision. The first complete algorithm was introduced back in 1961
by Davis, Putnam, Logemann, and Loveland and was called DPLL after their
names [DLL62]. The basic idea behind it is to assign a truth value to a Boolean
variable, propagate the effect of that assignment through the formula and then
recursively check if the resulting formula is satisfiable. If this is the case, the
procedure terminates; otherwise, the recursion assumes the opposite truth value.
The propagation of the assignment is known as Boolean Constraint Propagation
(BCP).

After nearly 40 years, Marques-Silva and Sakallah proposed the CDCL
algorithm [SS99] which introduced a significant improvement over DPLL in the
sense that the search space can be pruned by learning so-called conflict clauses.
Learning these clauses prevents the solver from repeating bad assignments.
Modern SAT solvers employ CDCL, including (but not limited to) Grasp [SS99],

1.4 Contributions and Thesis Hierarchy 5

Chaff [MMZ+01], BerkMin [GN07], MiniSat [ES03a], Glucose [AS09], and
CaDiCaL [BFFH20]. Grasp was the first tool applying CDCL, after which
Chaff introduced the so-called two watched literals (2-WL) optimisation and the
Variable State Independent Decaying Sum (VSIDS) decision heuristic. BerkMin
and MiniSat introduced further implementation and heuristics optimisations.
The authors behind Glucose presented robust clause deletion and restart
heuristics [AS12]. The CaDiCaL solver introduced the effective use of SAT
simplifications [SP04, EB05, BJK21] as an in-processing technique during the
solving process [JHB12].

Acceleration of DPLL on a GPU has been done, in which some parts of
the search tree were implemented in parallel and the remainder is handled by
the CPU [PDFP15]. Incomplete approaches are more amenable to be executed
entirely on a GPU, e.g., an approach using metaheuristic algorithms [YIMO15].
Throughout the thesis, we propose novel parallel algorithms and various opti-
misations in a new SAT solver which is capable of running parts of the solving
procedure on one or more GPUs.

1.4 Contributions and Thesis Hierarchy
Recall that the running performance of a SAT-based model checker relies heavily
on the performance of the SAT solver. The main goal of this thesis is to accelerate
SAT solving targeting GPU architectures and apply this on BMC.

A journey of a thousand miles begins with a single step.

The first step in our GPU-accelerated BMC journey began with parallel SAT
simplifications. Along the road we stumbled on some obstacles, attempting to
parallelise the CDCL search algorithm itself, but we ended up improving the
original sequential version which is something we never expected. Moreover, we
showed how efficiently GPU-accelerated simplifications work on the GPU using
its hardware capabilities and together with the CPU part without sacrificing any
achieved speedup in communications. These contributions are discussed briefly
below.

First, Chapter 2 gives the mathematical notions for all contributions and
background including SAT encoding, history of SAT solving, and SAT simpli-
fications. Furthermore, we show how these notions relate to each other. Next,
Chapter 3 prepares the reader to understand the GPU architecture and the

6 Chapter 1 Introduction

CUDA programming model. The main body of the thesis will take the reader
deeply through these topics:

⋆ How can GPUs be effectively employed to solve SAT problems that stem
from real-world applications, e.g., hardware and software verification?

⋆ How can this be extended to perform SAT-based BMC on GPUs?

Recently, the authors of [HW12, BS18] discussed the current main challenges
in parallel SAT solving. One of these challenges concerns the parallelisation
of SAT simplification in modern SAT solvers. Massively parallel computing
systems such as GPUs offer great potential to speed up computations, but to
achieve this, it is crucial to engineer new parallel algorithms and data structures
from scratch to make optimal use of those architectures. Therefore, we pose the
following research question:

RQ1: How can GPUs be employed to perform scalable parallel SAT simpli-
fications?

Chapter 4 introduces a solution for this question in which parallel algorithms are
proposed for various techniques widely used in SAT simplification. We discuss
the various performance aspects of the proposed implementations and data
structures, dealing with the main challenges in CPU-GPU memory management
and how to address them. In a nutshell, we aim to effectively simplify SAT
formulas, even if they are extremely large, in only a few seconds using the
massive computing capabilities of GPUs. Building on our results for RQ1, we
ask ourselves if the proposed parallel simplifications scale up as well on multiple
GPUs:

RQ2: Can we run parallel simplifications on a multi-GPU environment,
with or without sharing information?

We propose in Chapter 4 a generalisation of all developed algorithms to distribute
simplification work over single or multiple GPUs, if these are available in a single
machine. This work is implemented in a new tool called SAT sImplification on
GPU Architectures (SIGmA). We discuss the experimental results of SIGmA
and its impact on different SAT solvers.

Next, we investigate the feasibility of applying simplifications frequently
within SAT solving which is known as inprocessing [JHB12]:

1.4 Contributions and Thesis Hierarchy 7

RQ3: Is it possible to run parallel simplifications regularly during CDCL
SAT solving, considering the growing size of the formula by learning new
clauses and transferring data back and forth to the CPU?

Since 2013, the leading SAT solvers in the SAT competition1all use inpro-
cessing. However, applying inprocessing frequently can still be a bottleneck,
i.e., for hard or large formulas. In Chapter 5, we discuss the first attempt to
parallelise inprocessing on GPU architectures. As memory is a scarce resource in
GPUs, we present new space-efficient data structures and devise a data-parallel
garbage collector. It runs in parallel on the GPU to reduce memory consumption
and improves memory access locality. Our new parallel variable elimination
algorithm is twice as fast as the one presented in Chapter 4. Furthermore, a new
SAT solver called Parallel Formal Reasoning On SaTisfiability (ParaFROST)
is devised from scratch based on the heuristics of CaDiCaL solver [BFFH20]
bolstered with the GPU-accelerated inprocessing. This imposes the next research
question:

RQ4: Can we harness the intrinsic CUDA capabilities such as intra-warp
communications and concurrent streams for pushing ParaFROST perfor-
mance beyond its limits?

The compute capabilities of modern GPUs rapidly evolve, and some of the ideas
suggested in previous work should be reconsidered for today’s GPUs. Thereby, we
continue improving ParaFROST by leveraging these capabilities. In Chapter 5,
we discuss the implementation of warp-level primitives in accelerating heavy-used
operations like insertions to data vectors and parallel reduction with shuffling.

Correctness of the implemented algorithms on the GPU is crucial for the
soundness of our tools, especially if they are used in critical applications such as
model checkers [OW21a]. If the solver claims that a formula is satisfiable, the
generated solution (model) can be checked linearly in the size of the formula.
However, if a solver declares a formula is unsatisfiable (i.e. has no solutions),
there is no guarantee that the GPU code is sound and correct. Thus, this leads
to the following question:

1http://www.satcompetition.org/

http://www.satcompetition.org/

8 Chapter 1 Introduction

RQ5: Can we generate a clausal proof for the GPU code implemented in
our solver ParaFROST?

The answer is yes and we can do that quite efficiently without causing any
penalty to the solver’s overall performance. Clausal proofs are generated by
the solver to express its progress in both simplifications and search in the form
of lemmas where each lemma is a sequence of literals. Essentially, a lemma
expresses the outcome of a resolution step or clause deletion. The generated
lemmas are verified via an external tool called drat-trim. In Chapter 5, we
explain in detail how this can be achieved effectively, without adding a significant
overhead to the GPU memory or time.

Regarding parallel SAT solving, most papers in the existing literature are
focused at the portfolio approach [ABK+13] where multiple instances of a SAT
solver run simultaneously in solving the same problem with different configura-
tions. On the other hand, the cube-and-conquer approach [HKWB11] tries to
decompose the original formula into many smaller subformulas then solve all of
them in parallel via multiple solvers. Therefore, the next question is:

RQ6: Can CDCL search be partially or entirely parallelizable?

The answer is yes to “partially” and no to “entirely”. During our work on
implementing SAT solving on the GPU, we proposed an algorithm called multiple
decision making (MDM) which is explained in detail at Chapter 6. MDM is
capable of making thousands, even millions of decisions in the CDCL decision-
making step that are independent of each other and hence can be assigned
and propagated in parallel. Nonetheless, doing so in parallel is actually slower
than the sequential propagation. Additionally, parts of the CDCL search are
inherently sequential and cannot be run in parallel. Later, we observed that
applying MDM sequentially has a positive impact on large formulas, particularly
stemming from verification problems.

In our last research question, we address the integration and the impact of a
GPU-accelerated solver on existing BMC tools:

RQ7: How can GPUs be employed effectively to speed up BMC?

The structure of typical BMC SAT formulas suggests that GPU pre- and in-
processing will be effective due to large variable redundancy. Chapter 7 ad-
dresses the integration of ParaFROST with the CBMC checker and applying

1.5 How to Read the Thesis 9

ParaFROST on programs from the Core C99 package of Amazon Web Ser-
vices [Ama21].

The new extension provides an interface with CBMC that is implemented
in C++. Moreover, it offers patches to CBMC in order to allow configuring
ParaFROST via a configuration file. This file contains all options supported
by ParaFROST. The latter, the interface, and all patches are part of the
framework GPU4BMC. Due to the massive amount of redundancies in BMC
formulas, the acceleration on the GPU offers particular challenges. We explain
these challenges and provide effective solutions in Chapter 7.

Additionally, to support BMC, ParaFROST should be an incremental
solver, i.e., it must exploit that a number of very similar SAT problems are
solved in sequence [ES03b, WKS01]. In Chapter 7, we discuss how that can be
implemented in ParaFROST without causing any harm on parallel inprocessing.

Finally, we conclude the thesis by discussing the strengths and weaknesses of
the proposed contributions in Chapter 8 and suggest future work.

1.5 How to Read the Thesis
The work presented in this thesis consists of three main parts. The first part
concerns the GPU acceleration of preprocessing and inprocessing in Chapters 4
and 5, respectively. The second part deals with SAT solving itself using CDCL
search and is explained in Chapter 6. The last part introduces the application of
the former parts to BMC which is discussed in Chapter 7. Figure 1.1 visualises
the flow of our chapters by an implication graph (IG) [APT79] where the vertices
represent the thesis chapters and edges indicate whether to move to the next
chapter or backtrack non-chronologically to a previous vertex. Notice that an
implication here implies that the reader cannot advance to the next chapter
without reading the current one (finished reading means true).

1.6 Origin of the Chapters
The first part (Chapters 4 and 5) partially originates from the following three
publications:

[OW19a] M. Osama and A. Wijs. Parallel SAT Simplification on GPU
Architectures. In Proc. of TACAS (Apr. 2019), Prague, Czech Republic,
volume 11427 of LNCS, pages 21–40. Springer. doi:10.1007/978-3-030-
17462-0_2

https://doi.org/10.1007/978-3-030-17462-0_2
https://doi.org/10.1007/978-3-030-17462-0_2

10 Chapter 1 Introduction

Figure
1.1:

T
hesis

im
plication

graph

1.6 Origin of the Chapters 11

[OW19b] M. Osama and A. Wijs. SIGmA: GPU Accelerated Simplifica-
tion of SAT Formulas. In Proc. of IFM (Dec. 2019), Bergen, Norway,
volume 11918 of LNCS, pages 514–522. Springer. doi:10.1007/978-3-030-
34968-4_29

[OWB21b] M. Osama, A. Wijs, and A. Biere. SAT Solving with GPU
Accelerated Inprocessing. In Proc. of TACAS (Mar. 2021), Luxembourg,
volume 12651 of LNCS, pages 133–151. Springer. doi:10.1007/978-3-030-
72016-2_8

[OWB21a] M. Osama, A. Wijs, and A. Biere. Certified SAT Solving
with GPU Accelerated Inprocessing. 2021. To be submitted

The second publication extends the first one with multi-GPU support for SAT pre-
processing, a new simplification technique called hidden redundancy elimination
(HRE), and extensive evaluation of our simplifier SIGmA. The last publication
discusses how parallel simplifications can be applied frequently within SAT
solving with efficient data structure and parallel garbage collection. Moreover,
the eager redundancy elimination (ERE) which is a variant of HRE is presented
with various optimisations to deal with learnt clauses effectively. Part of the
contributions in Chapter 5 concerning GPU proof generation and finding general
gate definitions is recently submitted as a journal manuscript in [OWB21a]. The
work discussed in these chapters is based on the SAT encoding, SAT simplifica-
tions, and GPU programming model in Chapters 2 and 3 (see Figure 1.1). The
former summarises all the preliminaries in the above publications.

The second part of this thesis (Chapter 6) partially originates from the
following manuscripts:

[OW20] M. Osama and A. Wijs. Multiple Decision Making in Conflict-
Driven Clause Learning. In Proc. of ICTAI (Nov. 2020), Baltimore,
USA, pages 161–169. IEEE. doi:10.1109/ICTAI50040.2020.00035

[OW21b] M. Osama and A. Wijs. Multiple Decision Making in CDCL
SAT Solvers. 2021. To be submitted

The first publication discusses the basic MDM extension to CDCL search dealing
with MiniSat and Glucose heuristics. However, Chapter 6 has additional
content addressing the local search and the usage of multiple decision queues.
This work has been recently submitted as a journal manuscript in [OW21b].
Overall, the CDCL search is explained in Chapter 6. The basic SAT notations
and unit propagation are defined in Chapter 2.

The last part of this thesis concerns the application of GPU SAT solving on
bounded model checking which originates partially from the following publication:

https://doi.org/10.1007/978-3-030-34968-4_29
https://doi.org/10.1007/978-3-030-34968-4_29
https://doi.org/10.1007/978-3-030-72016-2_8
https://doi.org/10.1007/978-3-030-72016-2_8
https://doi.org/10.1109/ICTAI50040.2020.00035

12 Chapter 1 Introduction

[OW21a] M. Osama and A. Wijs. GPU Acceleration of Bounded Model
Checking with ParaFROST. In Proc. of CAV (Jul. 2021), USA, volume
12760 of LNCS, pages 447–460. Springer. doi:10.1007/978-3-030-81688-
9_21

The preliminaries of pre- and inprocessing are discussed in Chapter 2; while
the basics of CDCL and MDM notations are explained in detail in Chapter 6
(check Figure 1.1).

Finally, two sequential configurations of ParaFROST (executed by a single
CPU thread) were among the top ten solvers at the SAT competition 2021.
The solver description is available through the following technical report:

[OW21c] M. Osama and A. Wijs. ParaFROST at the SAT Race 2021.
In Proc. of SC (2021), volume B-2021-1 of Report Series B, pages 32–34.
University of Helsinki. URL http://hdl.handle.net/10138/333647

https://doi.org/10.1007/978-3-030-81688-9_21
https://doi.org/10.1007/978-3-030-81688-9_21
http://hdl.handle.net/10138/333647

Chapter 2

Preliminaries

"A mathematical formula should never be owned by anybody! Math-
ematics belong to God."

– Donald Knuth

This chapter gives the basic mathematical notions and the heuristics that are
used in the thesis. These include the SAT encoding, SAT simplifications, history
of SAT solving, common heuristics used in CDCL SAT solvers.

2.1 SAT Encoding
Given a Boolean formula, SAT is the problem of finding an assignment of
Boolean values to the propositional variables in that formula, such that the
formula evaluates to true. If such an assignment exists, the formula is said to be
satisfiable; otherwise, it is unsatisfiable.

A SAT Boolean formula S is typically converted to Conjunctive Normal
Form (CNF) before it is solved by current SAT solvers. A CNF formula is a
conjunction of clauses

∧m
i=1 Ci where each clause Ci is a disjunction of literals∨r

j=1 ℓj such that (m ≥ 1) and (r ≥ 1). A literal is a Boolean variable x or
its negation ¬x. For a literal ℓ, var(ℓ) denotes the referenced variable, i.e.,
var(x) = x and var(¬x) = x. The domain of all literals is L. The domain of

13

14 Chapter 2 Preliminaries

Table 2.1: CNF representations for logical operators

Logical Operator Definition CNF Representation
implication y → a {¬y, a}

equivalence y ↔ a {{y, ¬a}, {¬y, a}}

not y ↔ ¬a {{y, a}, {¬y, ¬a}}

and y ↔ a ∧ b
{{¬y, a}, {¬y, b},

{¬a, ¬b, y}}

or y ↔ a ∨ b
{{y, ¬a}, {y, ¬b},

{a, b, ¬y}}

xor y ↔ a ⊗ b
{{y, ¬a, b}, {y, a, ¬b},

{¬y, a, b}, {¬y, ¬a, ¬b}}

((a ∧ b) → y) ∧
y ↔ if a then b ((a ∧ ¬b) → ¬y) ∧ {{¬a, ¬b, y}, {¬a, b, ¬y},

else c ((¬a ∧ c) → y) ∧ {a, ¬c, y}, {a, c, ¬y}}
((¬a ∧ ¬c) → ¬y)

all variables is var(L). With L(S), we denote all literals in S. We interpret
a clause C as a set of literals {ℓ1, . . . , ℓr} representing the clause ℓ1 ∨ . . . ∨ ℓr,
and a SAT formula S as a set of clauses {C1, . . . , Cm} representing the formula
C1 ∧ . . . ∧ Cm. Furthermore, we denote the set of all clauses of S in which ℓ
occurs by Sℓ = {C ∈ S | ℓ ∈ C}. The set of clauses Ex = Sx ∪ S¬x is called the
environment of x.

The most common CNF translation of SAT formulas was introduced by
Tseitin in 1983 [Tse83] which generates a linear number of clauses at the cost
of introducing a linear number of new variables, and generates an equivalent
satisfiable formula (i.e. satisfiable if and only if the original formula is satisfiable).
Tseitin encodings work by adding new variables to the CNF formula, one for every
sub-formula of the original formula. The resulting CNF encoding is linear in the
size of the original formula as long as the Boolean operators that appear in the
formula have linear clausal encodings. Table 2.1 gives the clausal representations
of the most common operators in CNF encoding. A gate definition of y is written

2.1 SAT Encoding 15

as y ↔ f(v1, . . . , vn). The simplest example is the AND gate y ↔ a ∧ b. The
CNF translation of the xor gate (y ↔ a ⊗ b) in Table 2.1 can be derived as
follows:

y ↔ a ⊗ b = (y ↔ (a ∨ b) ∧ (¬a ∨ ¬b))
= (¬y ∨ ((a ∨ b) ∧ (¬a ∨ ¬b))) ∧ (y ∨ ¬((a ∨ b) ∧ (¬a ∨ ¬b)))︸ ︷︷ ︸

equivalence translation

= ((¬y ∨ a ∨ b) ∧ (¬y ∨ ¬a ∨ ¬b))︸ ︷︷ ︸
distributing “¬y”

∧ (y ∨ (¬(a ∨ b) ∨ ¬(¬a ∨ ¬b))︸ ︷︷ ︸
dist. “¬”

)

= ((¬y ∨ a ∨ b) ∧ (¬y ∨ ¬a ∨ ¬b)) ∧ (y ∨ ((¬a ∧ ¬b)︸ ︷︷ ︸
dist. “¬”

∨ (a ∧ b)︸ ︷︷ ︸
dist. “¬”

))

= ((¬y ∨ a ∨ b) ∧ (¬y ∨ ¬a ∨ ¬b)) ∧
(y ∨ ((¬a ∨ a) ∧ (¬a ∨ b) ∧ (¬b ∨ a) ∧ (¬b ∨ b))︸ ︷︷ ︸

dist. “(¬a ∧ ¬b)”

)

= ((¬y ∨ a ∨ b) ∧ (¬y ∨ ¬a ∨ ¬b)) ∧ (y ∨ ((¬a ∨ b) ∧ (¬b ∨ a)))
= ((¬y ∨ a ∨ b) ∧ (¬y ∨ ¬a ∨ ¬b)) ∧ ((y ∨ ¬a ∨ b) ∧ (y ∨ ¬b ∨ a))︸ ︷︷ ︸

dist. “y”

Similarly, using the CNF representation of the implication translation (see
Table 2.1), the if-then-else relation is encoded as follows:

y ↔ if a then b else c = ((a ∧ b) → y) ∧ ((a ∧ ¬b) → ¬y) ∧
((¬a ∧ c) → y) ∧ ((¬a ∧ ¬c) → ¬y)

= (¬(a ∧ b) ∨ y)︸ ︷︷ ︸
impl. transl.

∧ (¬(a ∧ ¬b) ∨ ¬y)︸ ︷︷ ︸
impl. transl.

∧

(¬(¬a ∧ c) ∨ y)︸ ︷︷ ︸
impl. transl.

∧ (¬(¬a ∧ ¬c) ∨ ¬y)︸ ︷︷ ︸
impl. transl.

= (¬a ∨ ¬b︸ ︷︷ ︸
dist. “¬”

∨ y) ∧ (¬a ∨ b︸ ︷︷ ︸
dist. “¬”

∨ ¬y) ∧

(a ∨ ¬c︸ ︷︷ ︸
dist. “¬”

∨ y) ∧ (a ∨ c︸ ︷︷ ︸
dist. “¬”

∨ ¬y)

16 Chapter 2 Preliminaries

Example 2.1. Consider the following formula S = ((a ∧ b) → ¬c). By intro-
ducing new variables to all subformulas, the formula is decomposed into

x1 ↔ a ∧ b x2 ↔ ¬c x3 ↔ x1 → x2

The Tseiting encoding is then obtained by taking the conjunction of all sub-
formulas shown above with the main formula itself as follows: Tseitin(S) =
x3 ∧ (x1 ↔ a ∧ b) ∧ (x2 ↔ ¬c) ∧ (x3 ↔ x1 → x2). Finally, the equivalent
CNF formula is generated by substituting the logical operators for their clausal
representations (see Table 2.1). For instance, x2 ↔ ¬c is expressed by the clause
set {{¬x2, ¬c}, {x2, c}}.

The CNF representation has the advantage of being simple to encode and
implement in a common file format. A widely used format was developed for the
DIMACS challenge of 1993 [JT96], and it has been adopted ever since. This has
allowed the research community to generate and store an enormous range of SAT
benchmark problems over the years in the regular SAT solving competitions2.
The file may contain optional comment lines that begin with the letter c followed
by a line of the form p cnf variables clauses. The variables and clauses
state the total number of variables and clauses in the file respectively. The
variables stored in the file are numbered from 1 to variables in integer format.
The rest of the file contains the clauses, each of which is represented by a list
of non-zero integers, followed by a zero to mark the end of the clause. The
integers can be separated by any amount of white spaces. Furthermore, a positive
integer v represents a literal xv, while −v represents the negated literal ¬xv.
For instance, the following line (2 -3 1 0) represents the clause {x2, ¬x3, x1}.
The order in which the numbers are written is irrelevant, as the logical or is
commutative and associative.

In this thesis, we interpret constants and data structures with all-capital
letters in the format CONSTANT or STRUCT. All arrays/lists and structure members
are named in the format array or member. Function and solver names are written
as function or solver. The variables defined within the algorithms have the
font shape variable.

2.2 SAT Solving
SAT solving can be performed with two approaches, using complete and incom-
plete search algorithms. The former always proceeds with a backtracking search

2http://www.satcompetition.org/

http://www.satcompetition.org/

2.2 SAT Solving 17

procedure until it finds a solution; if it cannot find a solution the (un)satisfiability
of the problem is proven. The latter might be able to satisfy a problem or run
out of time without giving a determinate decision. The first complete algorithm
was the DPLL algorithm [DLL62]. The basic idea behind it is to assign a truth
value to a Boolean variable, propagates the effect of that assignment through
the formula and then recursively checks if the resulting formula is satisfiable. If
this is the case, the procedure terminates; otherwise, backtracking is applied and
the recursion assumes the opposite truth value. Propagating the effects of an
assignment in a CNF formula is called Boolean Constraint Propagation (BCP).

Let the domain of the Booleans be B = {⊤, ⊥, ↑}, where true is represented
by ⊤, false by ⊥, and undetermined by ↑. We have ¬⊤ = ⊥, ¬⊥ = ⊤, and
¬ ↑ = ↑. An assignment ℓ refers to assigning ⊤ to literal ℓ and is denoted by
ℓ |= ⊤. An unassigned literal is denoted by ℓ |= ↑. An assignment is called
a decision iff it is not implied by another assignment. We refer to a clause
being satisfied by C |= ⊤ iff ∃(ℓ ∈ C).ℓ |= ⊤. A clause C is called unit iff
∃(ℓ ∈ C).ℓ |= ↑ and ∀(ℓ′ ̸= ℓ ∈ C).ℓ′ |= ⊥. An assignment to that unit is called
an implication. A unit clause can be implied by another decision or implication.
Further, with Free(C) = {ℓ ∈ C | ℓ |= ↑}, we refer to the set of unassigned
literals in C.

Definition 2.1 (Boolean Constraint Propagation). For a CNF formula S,
BCP simplifies S based on unit clauses by repeating the following until fixpoint:
If there is a unit clause C ∈ S, set the literal ℓ ∈ Free(C) to ⊤ for satisfying all
clauses that have the assignment ℓ, and set all occurrences of the complementary
literal ¬ℓ in S to ⊥. We call the resulting formula BCP(S). A formula S is
satisfied iff ∀(C ∈ BCP(S)).C |= ⊤. If for some clause C ∈ BCP(S), we have
Free(C) = ∅ and C |= ⊥, we say that BCP derives a conflict in S.

Example 2.2. Consider the formula S = {{a, b, c}, {¬b, a}, {¬c, ¬a}, {¬b, ¬c}}.
A DPLL solver will pick a variable, say a and set it to an arbitrary truth value
(in this example ⊤ is assigned). As a result, the first two clauses are satisfied,
and the literal ¬a from the third clause is set to ⊥, producing a new unit clause.
Therefore, BCP sets ¬c to ⊤, by which the last clause is satisfied. Since all
clauses are now satisfied, we declare S satisfiable.

The CDCL algorithm [SS99] introduced a significant improvement over
DPLL in the sense that the search space can be pruned by learning so-called
conflict clauses. Learning these clauses prevents the solver from repeating bad
assignments. Next, in Chapters 4 and 5, we explain how effectively pre- and
inprocessing are integrated with the CDCL search algorithm. For this, we

18 Chapter 2 Preliminaries

consider clauses to be either LEARNT or ORIGINAL. A LEARNT clause is added
to the formula by the CDCL clause learning process, and an ORIGINAL clause
is part of the formula from the very start. Furthermore, each assignment is
associated with a decision level that acts as a time stamp, to monitor the order
in which assignments are performed. The first assignment is made at decision
level 1. When propagating, implications are given the same decision level as the
most recent assignment.

Example 2.3. Consider the formula in Example 2.2. The variable a is assigned
⊤ at decision level 1. Hence, the new implication {¬c} resulting from falsifying
¬a in the third clause is, in turn, assigned at level 1.

Regarding the incomplete algorithms to solve a SAT formula, one could use
the WalkSAT strategy proposed in [SK93]. WalkSAT tries to find the best
truth values that satisfy the most unsatisfied clauses in the formula by randomly
flipping literals weighed by their scores. A literal score is the number of clauses
that will change from satisfied to unsatisfied if that literal is flipped. The random
walking starts by picking a random clause which is unsatisfied by the current
assignment and flipping a literal within that clause. A literal is chosen with a
probability determined by the fewest previously satisfied clauses if the literal is
assigned true becoming unsatisfied. The local search can be stopped once the
number of clauses inspected reach some threshold value.

2.2.1 Optimisations

Two-Watched Literal Optimisation

The BCP procedure as explained in Definition 2.1 is considered the hotspot
of a SAT solver. Therefore, the authors in [MMZ+01] introduced the so-called
two-watched literals (2-WL) optimisation which significantly reduces the memory
accesses and the effort spent in propagating assignments. The idea is that in
each clause C ∈ S, two unassigned literals ℓ1, ℓ2 ∈ C are marked as watched, and
as soon as one is set to false, another unassigned literal is selected for watching,
unless there are no unassigned, unwatched literals left. The intuition is, if ℓ is
assigned true, all clauses C ∈ Sℓ become satisfied. Thus, checking them can be
completely avoided and turn the focus to the watched clauses among the set S¬ℓ

in which implications are likely to be produced.

2.2 SAT Solving 19

Clause Deletion Policy

Keeping learnt clauses forever will eventually exhaust all available memory to
the solver and drastically slows down BCP procedure. Therefore, it is crucial
to frequently delete a fraction of these clauses. All modern SAT solvers now
use the literal block distance (LBD or Glucose level) as a metric of the clause
importance [AS09]. LBD is the number of distinctive decision levels in a learnt
clause. Clauses with an LBD value of 2 are called glue clauses and never deleted.
A percentage of clauses with higher LBD values can be deleted every some
interval.

2.2.2 Heuristics
Search Restarts

Another optimization used by current state-of-the-art CDCL solvers is called a
restart. A restart is a termination of the current search loop and undoing either
all assignments [GSK98] or reusing some of them [vdTRH11]. Even though, the
search space is terminated, current learnt clauses are always preserved. The
frequency of restarts can be configured during the solving time and initialised to
some interval by the algorithm input. For example, the MiniSat solver applies
the geometric [Wal99] and Luby [LSZ93] restarts which are scaled by the current
number of conflicts. One drawback of this technique is that it can cause the
exploration to bail out early when it is close to finding a solution to a satisfiable
formula. Later, as reported in [AS12], this was improved by blocking restarts
whenever the current search seems to be close to a solution.

Decision Heuristics

The decision making step in CDCL solvers determines which literals should be
selected and assigned true for the next decisions. Actually, in existing solvers,
a variable is selected and specific heuristics are used to set it either to true or
false. For the latter, an effective way is to reuse the last phase of a variable x
saved during the backtracking step [PD07]. Saved phases can be rephased by
flipping, randomly set, or improved by stochastic local search every once in a
while [BFFH20]. Furthermore, WalkSAT can be combined with CDCL search
to improve the quality of the picked decisions.

Regarding variable selection, one could use Variable State Independent
Decaying Sum (VSIDS) [MMZ+01] to improve the quality of the decisions made.
In VSIDS, each variable has a counter (sum), denoted as α, which initially

20 Chapter 2 Preliminaries

has the value 0. Once a conflict clause is deduced, the α-values of all variables
it refers to are incremented (i.e. bumped), and the α-values of all variables
in the formula are divided by some constant (simulating decay). Each time
a decision must be made, the variable x with the highest α is selected. The
BerkMin [GN07] solver improves VSIDS by incrementing the α-values of those
variables referenced by any clause involved in the conflict analysis.

2.3 SAT Simplifications
Simplifying SAT problems prior to solving (preprocessing) [BJK21] or during the
solving (inprocessing) [JHB12] has proven its effectiveness in modern CDCL SAT
solvers [ES03a, BFFH20, AS09]. It can achieve larger reductions in reasonable
processing time. In this section, we formally describe the following simplification
methods: bounded variable elimination (BVE) [SP04, EB05], subsumption elimi-
nation (SUB) [EB05, Zha05], and blocked clause elimination (BCE) [JBH10].

In parallel computing, confluence is a very beneficial property of a parallel
algorithm. That means, for some algorithms, all threads can reach a fixpoint
(i.e., produce the same formula). Therefore, we address confluence of the
simplifications discussed in this chapter, and also in Chapter 4, when we focus
on the parallel execution of the simplifications.

2.3.1 Bounded Variable Elimination
BVE can remove variables completely from the CNF formula by trivially elimi-
nating pure literals [DLL62], applying the resolution rule [Kul99, DLL62, SP04]
or gate-equivalence reasoning [Li00, OGMS02, EB05].

Definition 2.2 (Pure literal). For a formula S, a literal ℓ is called pure iff
S¬ℓ = ∅. This literal can be eliminated from S, resulting in the new formula
S ′ = S \ Sℓ.

Definition 2.3 (Resolution rule). Given two clauses C1 and C2 such that for
some variable x, we have x ∈ C1 and ¬x ∈ C2. We represent the application
of the rule w.r.t. some variable x using a resolving operator ⊗x on C1 and C2.
Given that x ∈ C1 and ¬x ∈ C2, the operator ⊗x is defined as

C1 ⊗x C2 = (C1 \ {x}) ∪ (C2 \ {¬x})

The result of applying the rule is called the resolvent [SP04]. Moreover, The ⊗x

operator can be extended to resolve sets of clauses w.r.t. variable x.

2.3 SAT Simplifications 21

Definition 2.4 (Resolvents set). For a formula S, let L ⊂ S be the set of learnt
clauses when we apply the resolution rule during the solving procedure. The set
of new resolvents is then defined as

R(S) = {C1 ⊗x C2 | C1 ∈ Sx \ L ∧ C2 ∈ S¬x \ L ∧ C1 ⊗x C2 ̸|= ⊤}

Notice that the learnt clauses can be ignored [JHB12] (i.e., in practice, it is not
effective to apply resolution on learnt clauses). The last condition expresses that
a resolvent should not be a tautology.

Definition 2.5 (tautology). A clause C is called a tautology (i.e. C |= ⊤) iff
∃x.{x, ¬x} ⊆ C.

The resolvents set Rx(S) replaces S, producing a logically-equivalent SAT for-
mula. A bounded version of variable elimination restricts replacing S by Rx(S)
iff |Rx(S)| ≤ |Ex|.

In gate-equivalence reasoning, we substitute eliminated variables by deduced
logical equivalent expressions. Combining gate equivalence reasoning with the
resolution rule tends to result in smaller formulas compared to only applying
the resolution rule [JHB12, EB05]. Let Gℓ(S) be the gate clauses having ℓ as
the gate output and Hℓ(S) the non-gate clauses, i.e., clauses not contributing
to the gate itself. For regular gates (i.e., all logical operators in Table 2.1),
substitution can be performed by resolving non-gate with gate clauses as follows:
Rx(S) = {{Gx⊗H¬x}, {G¬x⊗Hx}}, omitting the tautological and the redundant
parts {Gx ⊗ G¬x} and {Hx ⊗ H¬x}, respectively [JHB12].

Example 2.4. Consider the following formula:

{{x, ¬a, ¬b}︸ ︷︷ ︸
Gx

, {¬x, a}, {¬x, b}︸ ︷︷ ︸
G¬x

, {x, c}︸ ︷︷ ︸
Hx

, {y, f}︸ ︷︷ ︸
Hy

, {¬y, d, e}︸ ︷︷ ︸
G¬y

, {y, ¬d}, {y, ¬e}︸ ︷︷ ︸
Gy

}

Given the CNF representations in Table 2.1, the first three clauses in the formula
above capture the AND gate (x ↔ a ∧ b) and the last three clauses capture the
OR gate (y ↔ d ∨ e). Thus, resolving the fourth clause with the second and
the third clauses yield the resolvents {G¬x ⊗ Hx} = {{a, c}, {b, c}}. Similarly,
eliminating y results in {G¬y ⊗ Hy} = {{f, d, e}}.

Proposition 2.1. BVE is non-confluent when applied on an arbitrary set of
variables in a CNF formula.

Proof. Consider the following formula S = {C1 = {x, a, b}, C2 = {a, d}, C3 =
{¬x, ¬a, c}, C4 = {¬a, x}}. Suppose that the goal is to obtain a simplified

22 Chapter 2 Preliminaries

formula by eliminating the variables x and a, in that order. Resolving x yields
the following resolvents

Rx(S) = {C1 ⊗ C3} ∪ {C4 ⊗ C3} ∪ {C2}
= {{x, a, b} ⊗ {¬x, ¬a, c}} ∪ {{¬a, x} ⊗ {¬x, ¬a, c}} ∪ {C2}
= {{¬a, c}} ∪ {C2}
= {C ′1 = {¬a, c}, C2}

Then by resolving a, we get the simplified formula

Ra(Rx(S)) = {C ′1 ⊗ C2}
= {{¬a, c} ⊗ {a, d}} = {{c, d}}

On the other hand, eliminating a first gives the resolvents

Ra(S) = {C1 ⊗ C3} ∪ {C2 ⊗ C3} ∪ {C1 ⊗ C4} ∪ {C2 ⊗ C4}
= {{x, a, b} ⊗ {¬x, ¬a, c}} ∪ {{a, d} ⊗ {¬x, ¬a, c}} ∪

{{x, a, b} ⊗ {¬a, x}} ∪ {{a, d} ⊗ {¬a, x}}
= {{¬x, d, c}} ∪ {{x, b}} ∪ {{x, d}}
= {C ′1 = {¬x, d, c}, C ′2 = {x, b}, C ′3 = {x, d}}

Then by eliminating x, we get the simplified formula

Rx(Ra(S)) = {C ′1 ⊗ C ′2} ∪ {C ′1 ⊗ C ′3}
= {{¬x, d, c} ⊗ {x, b}} ∪ {{¬x, d, c} ⊗ {x, d}}
= {{b, c, d}} ∪ {{c, d}} = {{b, c, d}, {c, d}}

Clearly, Rx(Ra(S)) is different from Ra(Rx(S)), which subsumes the former.
Thus, the order in which the variables are eliminated influences the resulting
formula, i.e., BVE does not have a unique fixpoint for all formulas. In practice,
a fixpoint is rather determined by the variable ordering heuristics.

Later, in Chapter 4, we prove that applying BVE on a set of mutually-
independent variables is actually confluent. In other words, the elimination
of these particular variables in any arbitrary order always produces the same
simplified formula.

2.3 SAT Simplifications 23

2.3.2 Subsumption Elimination
Suppose that we have two clauses C1, C2 and C2 ⊂ C1. In subsumption elimina-
tion, C1 is said to be subsumed by C2 or C2 subsumes C1. The subsumed clause
C1 is redundant and can removed [EB05]. If C2 is a LEARNT clause, it must be
considered as ORIGINAL in the future, to prevent deleting it during learnt clause
reduction [BFFH20] (see Section 2.2.1).

Definition 2.6 (self-subsuming resolution). The self-subsuming resolution is a
special case of subsumption. The former can be applied on clauses C1, C2 iff for
some variable x, we have one of the following three cases:

• C1 = C ′1 ∪ {x}, C2 = C ′2 ∪ {¬x}, and C ′2 ⊂ C ′1. In this case, x can be
removed from C1 and we say that C1 is strengthened by C2.

• C1 = C ′1 ∪ {¬x}, C2 = C ′2 ∪ {x}, and C ′2 ⊂ C ′1. In this case, ¬x can be
removed from C1.

• C1 = C ′1 ∪ {x}, C2 = C ′2 ∪ {¬x}, and C ′1 = C ′2. In this case, x is removed
from C1.

In this work, with SUB, we refer to the application of self-subsuming resolution
followed by subsumption elimination until a heuristic fixpoint is reached.

Proposition 2.2. Self-subsuming resolution is a combination of resolution and
subsumption elimination.

Proof. Consider the first case in Definition 2.6. The outcome of self-subsuming
resolution can be deduced by applying the resolution step C1 ⊗x C2 which yields
the resolvent C ′1 ∪C ′2. Since, C ′2 ⊂ C ′1 then the resolvent can be simplified to just
C ′1 which, in turn, subsumes the original clause C1. Thus, the latter is removed
while the former and C2 are kept, stimulating the removal of x from C1. The
same reasoning applies on the second and third cases.

Example 2.5. Consider the formula {{a, b, c}, {¬a, b}, {b, c, d}}. The first clause
is self-subsumed by the second clause w.r.t. variable a and can be strengthened
to {b, c} which in turn subsumes the last clause {b, c, d}. The latter clause is
then removed and the simplified formula becomes {{b, c}, {¬a, b}}.

Proposition 2.3. SUB (the mixture of self-subsuming resolution and subsump-
tion elimination) is confluent when applied on an arbitrary set of clauses in a
CNF formula.

24 Chapter 2 Preliminaries

Proof. It suffices to prove that both self-subsuming resolution and subsumption
elimination are confluent when applied separately. It follows from this that
applying one after the other (SUB) is also confluent.

1. Suppose that we have C1, C2 ∈ S, with C1 ̸= C2. Two possible scenarios
are feasible. First, both C1 and C2 may be strengthened by other clauses
C ′, C ′′ ∈ S, where possibly C ′ = C ′′. In that case, since by Definition 2.6,
C ′ and C ′′ are not altered when C1 and C2 are strengthened with self-
subsuming resolution w.r.t. C ′ and C ′′, the order in which C1 and C2 are
strengthened does not influence the outcome, even if C ′ = C ′′. Second, C1
can strengthen C2, or vice versa. By Definition 2.6, either one of these
cases hold, but not both, i.e., C1 and C2 cannot strengthen each other.
Thus, either C1 or C2 can be strengthened, regardless of the order in
which they are checked for self-subsuming resolution, leading to the same
simplified formula.

2. Similarly, in subsumption elimination, two clauses C1 and C2, C1 ̸= C2,
may be subsumed by other clauses C ′, C ′′ ∈ S, with possibly C ′ = C ′′,
or either C1 is subsumed by C2 or C2 by C1, but not both. Thus, either
both can be subsumed by other clauses, and removing them in any order
produces the same outcome, or either C1 or C2 is removed. Regardless of
the order in which they are checked for subsumption, the same simplified
formula is always obtained.

By proofs (1) and (2), SUB is confluent, i.e., the order of clauses in which SUB
is applied does not influence the simplified formula.

2.3.3 Blocked Clause Elimination
The BCE simplification removes so-called blocked clauses from a given for-
mula [JBH10].

Definition 2.7 (Blocking literal). For a given formula S, a literal ℓ is blocking
a clause C ∈ S iff ∀C ′ ∈ S¬ℓ, the resolvent C ∪ C ′ \ {ℓ, ¬ℓ} obtained by the
operation C ⊗ℓ C ′ is a tautology.

Definition 2.8 (Blocked clause). A clause is blocked iff it has a blocking literal.

Example 2.6. Consider the formula {{a, b, c, d}, {¬a, ¬b}, {¬a, ¬c}}. Both the
literals a and c are blocking the first clause, since resolving a produces the
tautologies {{b, c, d, ¬b}, {b, c, ¬c, d}}. Likewise, resolving c yields the tautology
{a, b, ¬a, d}. Hence the blocked clause {a, b, c, d} can be removed from S.

2.3 SAT Simplifications 25

Proposition 2.4. BCE is non-confluent when applied on an arbitrary set of
clauses in a CNF formula.

Proof. Consider the formula {C1 = {¬a, ¬b, c}, C2 = {a, b}}. Picking C1 first
gives {a, b}, since C1 ⊗a C2 = {¬b, c, b}. However, picking C2 first gives
{¬a, ¬b, c}, since C2 ⊗a C1 = {b, ¬b, c}. Hence, the order of clauses being
checked for BCE, influences the resulting formula. Interestingly, note that our
proof contradicts the proposition by the authors Järvisalo et al. [JBH10] in which
they state that BCE is confluent.

Chapter 3

Graphics Processing Units

"Moore’s law is dead and GPUs will soon replace CPUs."

– Jensen Huang

This chapter gives a brief introduction to the GPU architecture and CUDA
programming model which is the core technology utilized in the parallel imple-
mentations in this thesis. First, we discuss Moore’s law and how the GPUs
evolved so quickly over the years, dominating both the game industry and
general-purpose computing. Second, we take a glance over the GPU architecture,
outlining its capabilities and the different types of memory supported. Third,
the CUDA model and its algorithmic notations are explained. Finally, we discuss
concurrent kernel execution and data transfer overlapping via asynchronous calls.

3.1 50 Years of Microprocessors
Since 1970, microprocessors based on a single-core CPU, such as those in the
Intel and the AMD Opteron families, enhanced the computation performance of
all developed software while reducing the costs and power consumption. Gordon
Moore predicted that the number of transistors in an integrated circuit (IC)
doubles about every two years which is subsequently called Moore’s law [Moo65].
For 40 years, the law was guiding the semiconductor industry to advance the

27

28 Chapter 3 Graphics Processing Units

CPU manufacturing by almost doubling the number of transistors per die every
two years, which drastically impacted the computer application functionality
and performance.

Figure 3.1: 40 years of microprocessors trend data3

Nevertheless, the computational power of CPUs measured in giga floating-
point operations per second (GFLOPS) has stopped doubling since 2003 due
to the increasing heat dissipation, which limits the clock frequency and the
instructions per cycle (IPC). From this point, microprocessor vendors started
to add more cores to the CPU, trying to keep the energy consumption to a
minimum while boosting the computational power.

After four decades of achieving steady gains in performance of about 200%
per two years, Moore’s law has finally run its course (see Figure 3.1). The
reason is that the industry has reached the upper bound of how many cores can
be cost-effectively installed on a single CPU chip which means that the CPU
performance now only grows by 10 percent per year. In contrast, since NVIDIA
introduced the first many-core architecture for general-purpose programming
around 2007, GPUs have been growing rapidly in terms of number of cores and
peak performance. NVIDIA is expecting to reach a 1,000× speedup by 2025.

3https://www.nvidia.com/en-gb/about-nvidia/ai-computing/

https://www.nvidia.com/en-gb/about-nvidia/ai-computing/

3.2 GPU Architecture 29

3.2 GPU Architecture
The GPU provides a remarkable data throughput and memory bandwidth
compared to the CPU within a reasonable price and low power consumption.
Thanks to CUDA, a wide range of scientific applications can now leverage
its hardware capabilities to run faster on the GPU than on the CPU. Other
accelerators, such as field programmable gate arrays (FPGAs), can be energy
efficient, but offer less programming flexibility than GPUs.

Figure 3.2: CPU vs GPU

The design scheme in Figure 3.2 shows an example distribution of chip
resources for a CPU versus a GPU. The main difference between the CPU and
the GPU is that the GPU is specialized for massively parallel computations in
contrast to data caching and flow control, which are what the CPU is optimised
for. Therefore, the CPU is fast in executing a sequence of operations (called
thread) and can execute up to tens of these threads in parallel; the GPU executes
thousands of threads for simple operations to achieve much higher throughput.

A GPU typically consists of multiple streaming multiprocessors (SMs) and
each SM resembles an array of streaming processors or cores (green squares in
Figure 3.2) where every core can execute multiple threads grouped together in
32-thread scheduling units called warps. To handle all these threads, an SM
employs the Single-Instruction Multiple-Thread (SIMT) paradigm where the
instructions are pipelined, utilizing both instruction-level parallelism within a
single thread, and thread-level parallelism through simultaneous warp scheduling.

30 Chapter 3 Graphics Processing Units

Unlike CPU threads, GPU threads are issued in order and there is no branch
prediction or any complex control flow.

Table 3.1 makes a comparison between various GPU micro-architectures
designed by NVIDIA during the last 5 years. All entries represent the peak
values of all GPU models that belong to a certain architecture. For example,
the Quadro P6000 GPU has a clock speed of 1,506 MHz while the Titan Xp
has 1,406 MHz. The reader can observe a gigantic leap in the number of
cores between Pascal and Ampere architectures by a growth of 300%. Add
to that, the technology of ray-tracing and tensor cores which contributed to
major improvements in both graphics and AI applications. Compared to the
CPU generations, in the same period of time, this is remarkable. Since the
introduction of Zen 32-core CPU by AMD in 2017, the number of cores has only
increased to 64 in Zen 2 generation. Keep in mind that a GPU of 10,496 cores
(RTX 30 series) only consumes up to 350 Watt against 280 Watt of 64-core CPU
(Ryzen Threadripper series).

3.3 CUDA Programming Model
The CUDA programming model defines how the programmer sees the GPU as a
general-purpose computing facility [FVS11]. In this section, we give the GPU
hierarchy starting from a top-level C/C++ program to all the way down to the
smallest execution unit so-called thread, including different types of memory that
can be used to store the program and any relative data.

3.3.1 GPU Kernel
In a GPU program, a CPU thread launches a kernel (GPU global function)
to be executed by thousands of threads packed in thread blocks of up to 1,024
threads or 32 warps. All threads together form a grid. Threads and blocks can
be indexed by a one-dimensional, two-dimensional, or three-dimensional unique
identifier accessible within the kernel. The GPU manages the execution of a
launched kernel by evenly distributing the launched blocks to the available SMs
through a hardware warp scheduler. A warp executes a single shared instruction
at a time, therefore optimal efficiency is achieved when all 32 threads of a warp
agree on their execution path. If threads in a warp diverge via a conditional
branch, the warp executes each path taken, disabling threads that are not on
the same path. Control divergence occurs only within a warp, whilst different
warps are executed simultaneously regardless of the path they are executing.

3.3 CUDA Programming Model 31

Ta
bl

e
3.

1:
M

ic
ro

ar
ch

ite
ct

ur
es

re
le

as
ed

by
N

V
ID

IA
du

rin
g

th
e

la
st

5
ye

ar
s

A
rc

hi
te

ct
ur

e
La

un
ch

Li
th

og
ra

ph
y

C
C

4
C

U
D

A
T

en
so

r5
R

T
6

B
as

e
C

lo
ck

M
em

or
y

T
D

P
7

IT
S8

G
P

U
M

od
el

D
at

e
C

or
es

C
or

es
C

or
es

Sp
ee

d
Si

ze
B

an
dw

id
th

(W
at

t)
Su

pp
or

t
E

xa
m

pl
es

(M
H

z)
(G

B
)

(G
B

/s
)

P
as

ca
l

20
16

14
/1

6
nm

6.
1

3,
84

0
—

—
1,

50
6

24
43

2
25

0
no

T
ita

n
X

p,
Q

ua
dr

o
P6

00
0

V
ol

ta
20

17
12

nm
7

5,
12

0
64

0
—

1,
20

0
32

87
0

25
0

ye
s

T
ita

n
V

,
Q

ua
dr

o
G

V
10

0
T

ur
in

g
20

18
12

nm
7.

5
4,

60
8

57
6

72
1,

45
5

48
67

2
29

5
ye

s
T

ita
n

RT
X

,
Q

ua
dr

o
RT

X
80

00
A

m
pe

re
20

20
7

nm
8

6,
91

2
43

2
—

76
5

40
/8

0
1,

55
5/

1,
93

5
25

0/
30

0
ye

s
A

10
0

40
/8

0
G

B
A

10
0

A
m

pe
re

20
21

8
nm

8.
5

10
,4

96
32

8
82

1,
39

5
24

93
6

35
0

ye
s

RT
X

30
80

,
R

T
X

30
RT

X
30

90

4
C

om
pu

te
C

ap
ab

ili
ty

:
gi

ve
s

th
e

de
vi

ce
co

m
pu

te
sp

ec
ifi

ca
ti

on
s

an
d

C
U

D
A

fe
at

ur
es

.
5

T
he

y
ar

e
de

si
gn

ed
sp

ec
ifi

ca
lly

to
ac

ce
le

ra
te

m
ix

ed
-p

re
ci

si
on

co
m

pu
ta

ti
on

s
(e

.g
.

8,
16

,a
nd

32
bi

ts
).

6
R

ay
Tr

ac
in

g:
a

ne
w

te
ch

no
lo

gy
fo

r
im

pr
ov

in
g

an
d

ac
ce

le
ra

ti
ng

th
e

lig
ht

re
nd

er
in

g.
7

T
he

rm
al

D
es

ig
n

P
ow

er
:

m
ax

im
um

am
ou

nt
of

he
at

ge
ne

ra
te

d
by

th
e

co
m

pu
te

r
ch

ip
.

8
In

de
pe

nd
en

t
T

hr
ea

d
Sc

he
du

lin
g:

gr
ou

ps
id

le
th

re
ad

s
in

to
a

si
ng

le
w

ar
p

to
ex

ec
ut

e
th

e
sa

m
e

ne
xt

in
st

ru
ct

io
n.

32 Chapter 3 Graphics Processing Units

Before the Volta architecture, warps used a single program counter (PC) for
all the 32 threads with an active mask specifying the active threads within a
warp. Hence, threads from the same warp in divergent paths cannot signal each
other or exchange data, and algorithms requiring data guards by locks or mutexes
often led to deadlocks on a GPU. Starting with the Volta architecture, the
Independent Thread Scheduling (ITS) allows independent execution of threads
within a single warp. ITS maintains execution state per thread, including a PC
and call stack (these were implemented per warp in older architectures), either
to leverage all available resources (e.g. ALUs) or to allow one thread instead of
a whole warp to wait for data that is produced by another thread. This allows
the threads to diverge and reconverge at sub-warp granularity [NVI20a].

Through the next chapters, we use three conventions in our developed kernels.
First of all, we express a thread dimension with a bold italic font dimension.
For example, threads or blocks can be launched in the x or y or z dimension.
Second of all, with tx , we refer to the block-local identifier (ID) of the working
thread. By using this ID, we can achieve that different threads in the same block
work on different data. Third of all, we use so-called grid-stride loops to process
data elements in parallel. The statement for all tid ∈ J0, NK do in parallel
expresses that all natural numbers in the range [0, N) must be considered in the
loop, and that this is done in parallel by having each executing thread start with
element tx , i.e., tid = tx , and before starting each additional iteration through
the loop, the thread adds to tid the total number of threads on the GPU. If
the updated tid is smaller than N , the next iteration is performed with this
updated tid. Otherwise, the thread exits the loop. A grid-stride loop ensures
that when the range of numbers to consider is larger than the number of threads,
all numbers are still processed.

Moreover, we use intra-warp device functions when possible in our kernels to
facilitate communications between threads inside a warp. Such functions offer
data exchange primitives among a group of threads per warp that do not require
synchronization between kernel blocks. A common example is activemask which
indicates the current active threads executing a branch. With their IDs, we can
do warp voting to elect a leader. A leader is particularly useful to propagate the
result of an atomic operation to other thread registers without the need to use
atomics across all warp threads. An ideal situation, with a full warp taking the
same branch, the number of atomics and global memory accesses is reduced by
a factor of 31, i.e., only the leader does the atomic operation. Another example
is shfl_sync which is employed by most developers to do parallel reduction on
the last warp per block. We deployed device functions in several algorithms in
Chapter 5 to rationalise atomics and shared memory synchronizations.

3.3 CUDA Programming Model 33

3.3.2 Memory Hierarchy
Concerning the memory hierarchy, a GPU has multiple types of memory:

• Global memory with high bandwidth but also high latency is accessible by
both GPU threads and CPU threads and thus acts as interface between
CPU and GPU.

• Constant memory is read-only for all GPU threads. It has a lower latency
than global memory, and can be used to store any pre-defined constants.

• Shared memory is on-chip memory shared by the threads in a block. Each
SM has its own shared memory. It is much smaller in size than global and
constant memory (in the order of tens of kilobytes), but has a much lower
latency. It can be used to efficiently communicate data between threads in
a block.

• Registers are used for on-chip storage of thread-local data. They are very
small, but provide the fastest memory and the possibility for threads in a
warp to exchange register data.

• Local memory is part of the global memory but provides extra storage
for thread-local data with faster access using the ability of interleaved
addressing.

Regarding atomicity, a GPU is capable of executing atomic operations on
both global and shared memory. A GPU atomic function typically performs a
read-modify-write memory operation on one 32-bit or 64-bit word.

To hide the latency of global memory, ensuring that the threads perform
coalesced accesses is one of the best practices. When the threads in a warp
try to access a consecutive block of 32-bit words, their accesses are combined
into a single (coalesced) memory access. Uncoalesced memory accesses can,
for instance, be caused by data sparsity or misalignment. Furthermore, we
use unified memory [NVI20a] to store the main data structures that need to
be regularly accessed by both the CPU (host) and the GPU (device). Unified
memory creates a pool of managed memory that is shared between the host and
the device. This pool is accessible to both sides using the same addresses.

To maximise the bandwidth of memory transfers of device and host arrays
allocated via dedicated memory (non-unified), we use page-locked (or pinned)
memory. Memory allocations on the host are pageable by default and the GPU
cannot access data directly from pageable host memory. Therefore, when a data

34 Chapter 3 Graphics Processing Units

Algorithm 3.1: Naive matrix transpose with shared memory
Input : global A
Input : shared tile
Output : global B

1 A, B← allocate(width, height) // allocate global memory for matrices A, B
2 B← matrixTranspose(A) // invoke the transpose kernel

3 kernel matrixTranspose(A):
4 shared tile[blockDim][blockDim] // shared memory for a matrix tile
5 for all tidy ∈ J 0, height Ky do in parallel // grid-stride loop for y threads
6 for all tidx ∈ J 0, width Kx do in parallel // grid-stride loop for x threads
7 register row← tidy , col← tidx
8 if row < height ∧ col < width then
9 tile[ty][tx] = A[row× width + col] // load block data to shared memory

10 end
11 syncThreads() // synchronize a block after each load to tile
12 col← tx + blockidy × blockDim // blockidy : block ID in y
13 row← ty + blockidx × blockDim // blockidx : block ID in x
14 if col < height ∧ row < width then
15 B[row× height + col] = tile[tx][ty] // write back to global memory
16 end
17 end
18 end
19 end

transfer from device to host pageable memory (and vice versa) is invoked, the
CUDA driver must first allocate a temporary pinned buffer, and copy the data
to the buffer first before it reaches its destination. We can avoid this extra
transfer by directly allocating a host array in the pinned memory. However,
pinned-memory allocations should be avoided for large data structures (a SAT
formula, for instance) as they may reduce the physical memory available for the
operating system.

Algorithm 3.1 shows a simple kernel for matrix transpose to point out the
algorithmic notations commonly used in Chapters 4, 5, and 7. First of all, all
device codes and kernel invocations are highlighted with light gray background
to distinguish them from the host executable code. For example, line 1 allocates
global memory (depicted by the global keyword) on the host for matrices A
and B. At line 2, a kernel is invoked by the host and executed on the device.
The kernel is given at lines 3-19. At line 4, a shared memory 2D array is
allocated on-demand to transpose tiles of the input matrix at lines 9 and 15.
The grid-stride loops at lines 5-6 are responsible for sweeping all matrix elements
in parallel and iteratively over multiple grids if necessary. Local thread variables
are stored in register memory at line 7. The conditions at lines 8 and 14 ensure
that the matrix indices cannot go out of boundary in case of irregular size (i.e.,

3.4 Streams and Concurrent Execution 35

when it is not a power of two). The syncThreads procedure at line 11 is needed
to synchronize all threads per block after writing to shared memory. At the end
of the kernel, all blocks are synchronized automatically and there is no need to
explicitly call syncThreads again.

In SAT applications, a CNF formula is usually (if not always) irregular;
implying that the number of (variables, clauses, literals) in the formula and
the clause size are expected to be a non-power-of-two and to change constantly
during the solving procedure. Therefore, in our algorithmic design of GPU SAT
solving, we always assume irregularity to guarantee a correct behaviour of the
proposed techniques.

3.4 Streams and Concurrent Execution
A stream is a sequence of instructions issued in order by one or more host threads.
These instructions shape the GPU kernels described above. On the other hand,
different streams may execute their kernels out of order or concurrently. This
behavior is not guaranteed as it relies on the available resources on the GPU (e.g.
SMs, memory, etc.) or the data dependency between kernels. This dependency
may arise from different kernels on the same stream or from other streams. In
such case the programmer must be aware when and where to synchronize the
launched kernels on the device w.r.t. the host. With multiple streams, it is
possible to overlap the memory copies with the kernel launches assuming they
run on different streams.

Similarly, a device task (i.e. a kernel launch or data transfer) can be executed
asynchronously w.r.t. the host thread. This is facilitated by asynchronous CUDA
functions that return control to the host immediately after their call and before
the device completes its task. Asynchronous calls have the benefit of queuing
different device operations while the host is busy doing other tasks. The data
transfers between the host and the device can be overlapped as well iff the host
memory is page-locked as discuss earlier regarding memory optimisations.

3.5 Specifications of our GPUs
Finally, with Table 3.2, we wrap up this chapter by summarising the key features
between the GPUs that are used in this thesis (Chapters 4, 5, and 7). A
comparison between different types of architectures is outlined at Table 3.1.
More information on CUDA compute capabilities can be found in [NVI20a].

36 Chapter 3 Graphics Processing Units

Table 3.2: Comparison between the GPUs used in this thesis

Feature Titan Xp RTX 2080 Ti Titan RTX
Usage Chapter 4 Chapter 7 Chapter 5
Architecture Pascal Turing Turing
SMs 30 68 72
CUDA cores per SM 128 64 64
CUDA cores 3,840 4,352 4,608
Core base speed (MHz) 1,405 1,350 1,350
Core boost speed (MHz) 1,582 1,545 1,770
Maximum threads per SM 2,048 1,024 1,024
Maximum threads per block 1,024 1,024 1,024
Maximum blocks per SM 32 16 16
Warp size 32 32 32
Maximum 32-bit registers per thread 255 255 255
Local memory per thread (KB) 512 512 512
Global memory type GDDR5X GDDR6 GDDR6
Global memory size (GB) 12 11 24
Global memory speed (MHz) 1,426 1,750 1,750
Global memory bus width (bits) 384 352 384
Global memory bandwidth (GB/s) 547.7 616 672
Shared memory per block (KB) 48 64 64
Constant memory size (KB) 64 64 64
NVLink support no yes yes
CUDA CC 6.1 7.5 7.5

Chapter 4

SAT Preprocessing

"Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by defi-
nition, not smart enough to debug it"

– Brian Kernighan

Simplifying SAT problems prior to solving them has proven its effectiveness
in modern conflict-driven clause learning (CDCL) SAT solvers [SS99, Bie13],
particularly when applied on real-world applications relevant to software and
hardware verification [HS07, BCMD90, JS05, EB05]. It tends to produce rea-
sonable reductions in acceptable processing time. Many techniques based on
e.g. variable elimination, clause elimination, and equivalence reasoning are
being used to simplify SAT problems, prior to the solving phase (preprocess-
ing) [SP04, EB05, GM13, HS07, HJB10, JBH10]. However, applying variable
and clause eliminations iteratively to large problems (in terms of the number
of literals) may actually be a performance bottleneck in the whole SAT solving
procedure, or increase the number of literals, therefore negatively impacting the
solving time.

Recently, the authors of [HW12, BS18] discussed the current main challenges
in parallel SAT solving. One of these challenges concerns the parallelisation of
SAT simplification in modern SAT solvers. Massively parallel computing systems
such as GPUs offer great potential to speed up computations, but to achieve

37

38 Chapter 4 SAT Preprocessing

this, it is crucial to engineer new parallel algorithms and data structures from
scratch to make optimal use of those architectures. GPU platforms have become
attractive for general-purpose computing with the availability of the CUDA
programming model. More information about CUDA is provided in Section 3.3.

In this chapter, we introduce the first parallel algorithms for various techniques
widely used in SAT simplification and discuss the various performance aspects
of the proposed implementations and data structures. Also, we discuss the main
challenges in CPU-GPU memory management and how to address them. In a
nutshell, we aim to effectively simplify SAT formulas, even if they are extremely
large, in only a few seconds using the massive computing capabilities of GPUs.

Contributions

We propose novel parallel algorithms to simplify SAT formulas using GPUs, and
experimentally evaluate them, i.e., we measure both their runtime efficiency
and their effect on the overall solving time, for a large benchmark set of SAT
instances encoding real-world problems. We show how multiple variables can be
eliminated simultaneously on a GPU while preserving the original satisfiability of
a given formula. We call this technique Bounded Variable-Independent Parallel
Elimination (BVIPE). The eliminated variables are elected first based on some
criteria using the proposed algorithm Least-Constrained Variable Elections
(LCVE). The Bounded Variable Elimination (BVE) procedure includes both the
so-called resolution rule and gate equivalence reasoning.

In addition to BVIPE, we introduce the following contributions:

⋆ We propose new parallel algorithms for subsumption and blocked clause
eliminations on the GPU. Further, we introduce a new simplification
method called hidden redundancy elimination (HRE) with an optimized
GPU algorithm. To that extent, proofs of correctness are provided for all
parallel algorithms and the new simplification method.

⋆ We present the first multi-GPU support with load balancing for various
SAT simplifications along with a comprehensive evaluation of different
combinations of these simplifications to assess their impact on SAT solving.

The chapter is organised as follows: the main GPU challenges for SAT
simplification are discussed in Section 4.1, and the proposed algorithms are
explained in Section 4.2. Section 4.3 presents our experimental evaluation.
Section 4.4 discusses related work, and Section 4.5 provides a conclusion and
suggests future work.

4.1 GPU Challenges: Memory and Data 39

4.1 GPU Challenges: Memory and Data
In this section, we discuss the main challenges regarding the dynamic allocation
of GPU memory in SAT preprocessing and how nested data structures can be
designed for that purpose. The data structures are designed from scratch to
store the relative CNF information and to facilitate fast access to literals and
clauses during simplifications. Further, we present various optimisations to
potentially reduce the latency of accessing global memory (see Section 3.3.2)
and to maximize the data transfer rates with the CPU or other GPUs.

4.1.1 Memory Management
When small data packets need to be accessed frequently, both on the host (CPU)
and device (GPU) side (which is the case in the current work), unified memory
can play a crucial role in boosting the transfer rates by avoiding excessive
memory copies (see Section 3.3.2 for more details). An important advantage of
unified memory is that it allows the CPU to allocate multidimensional pointers
referencing global memory locations or nested structures. However, if a memory
pool is required to be reallocated (resized), one must maintain memory coherency
between the CPU-side and GPU-side memories. A reallocation procedure is
necessary for our variable elimination algorithm, to make memory available when
producing resolvents and reduce the memory use when removing clauses.

To better explain the coherency problem in reallocation, suppose there is an
array A allocated and loaded with some data X, then X is visible from both the
CPU and GPU memories. When A is reallocated from the host side, the memory
is not physically allocated until it is first accessed, particularly when using an
NVIDIA GPU with the Pascal architecture (see Table 3.1). Once new data Y is
written to A from the device side, both sides will observe a combination of X
and Y , leading to memory corruptions and page faults. To avoid this problem,
A must be reset on the host side directly after memory reallocation to assert
the physical allocation. After that, each kernel may store its own data safely
in the global memory. In the proposed algorithms, we introduce two types of
optimisations addressing memory space and latency.

Regarding memory space optimisation, allocating memory dynamically each
time a clause is added is not practical on a GPU while variables are eliminated
in parallel. To resolve this, we initially launch a GPU kernel to calculate an
upper bound for the number of resolvents to be added before the elimination
procedure starts (Section 4.2). After this, reallocation is applied to store the new
resolvents. Furthermore, a global counter is implemented inside our CNF data

40 Chapter 4 SAT Preprocessing

Figure 4.1: An example of CNF and OT data structures.

structure to keep track of new clauses. This counter is incremented atomically
by each thread when adding a clause.

Concerning memory latency optimisation, we use shared memory to tem-
porarily store the resolvents upon eliminating a variable and fast check for
tautologies. This has the advantage of reducing the number of global memory
accesses. Nevertheless, the size of shared memory in a GPU is very limited
(48 KB per block in Titan Xp GPU as listed in Table 3.2). If the potential
size of a resolvent is larger than the amount pre-allocated for a single clause,
our BVIPE algorithm automatically switches to the global memory and the
resolvent is directly added to the new CNF formula. This mechanism reduces
the global memory latency when applicable and deals with the shared memory
size limitation dynamically.

4.1.2 Data Structures
The efficiency of state-of-the-art sequential SAT solving and preprocessing is to
a large extent due to the meticulously coded data structures. When considering

4.2 Algorithm Design and Implementation 41

SAT simplification on GPUs, new data structures have to be tailored from
scratch. In this work, we need two of them, one for the SAT formula in CNF
form (which we refer to as CNF) and another for the literal occurrence table
(OT), via which one can efficiently iterate over all clauses containing a particular
literal. In CPU implementations, typically, they are created using heaps and
auto-resizable vectors, respectively. However, heaps and vectors are not suitable
for GPU parallelisation, since data is inserted, reallocated and sorted dynamically.
The best GPU alternative is to create a nested data structure with arrays using
unified memory (see Figure 4.1). The CNF contains a raw pointer (linear array)
to store CNF literals and a child structure CLAUSE to store clause info.

Each clause has a head pointer referring to its first literal. The OT structure
has a raw pointer to store the clause occurrences (array pointers) for each literal
in the formula and a child structure OL (occurrence list). The creation of an OL
instance is done in parallel per literal using atomic operations. For each clause C,
a thread is launched to insert the occurrences of C’s literals in the associated OL’s.
One important remark is that two threads storing the occurrences of different
literals do not have to wait for each other. For instance, OT in Figure 4.1 shows
two different atomic insertions executed at the same time for literals 2 and -1
(represented in DIMACS format (Section 2.1)). This minimises the performance
penalty of using atomics.

The main advantage of the proposed data structures is that as mentioned
above, OT instances can be constructed in parallel. Furthermore, coalesced
access is guaranteed since pointers are stored consecutively (the gray arrows in
Figure 4.1), and no explicit memory copying is done (host and device pointers are
identical) making it easier to integrate the data structures with any sequential
or parallel code.

4.2 Algorithm Design and Implementation

4.2.1 Parallelisation Approach
All proposed algorithms in this chapter are implemented in SIGmA9 using
CUDA/C++. The complete workflow including the new simplifications and
multi-GPU support is depicted by Figure 4.2. SIGmA accepts as input a SAT
formula in CNF stored in the DIMACS format. Similarly, the output of SIGmA
is a simplified formula that is written to an output file in the DIMACS format.
Each block in Figure 4.2 is explained in detail in the upcoming subsections.

9The tool can be downloaded here: https://gears.win.tue.nl/software.

https://gears.win.tue.nl/software

42 Chapter 4 SAT Preprocessing

Figure 4.2: Complete workflow of SIGmA with multi-GPU support.

Regarding the proofs of correctness of the upcoming parallel algorithms
implemented in SIGmA, we first try to refute the presence of data racing, then
we affirm the resulting formula is identical to the one obtained by applying
the sequential implementation, i.e., single-threaded execution of the parallel
algorithm. All simplifications introduced in Chapter 2 may cause data racing
due to the strong dependency between clauses, which is undesirable for parallel
computations. For this reason, we restrict the application of the simplification
methods to variables that are mutually independent.

The LCVE algorithm we propose is responsible for electing a subset of
independent variables from a set of authorised candidates. The remaining

4.2 Algorithm Design and Implementation 43

variables relying on the elected ones are frozen.

Definition 4.1 (Authorised candidates). Given a CNF formula S, we call A
the set of authorised candidates: A = {x | 1 ≤ h[x] ≤ µ ∨ 1 ≤ h[¬x] ≤ µ}, where

• h is a histogram array (h[x] is the number of occurrences of x in S).
• µ denotes a given maximum number of occurrences allowed for both x and

its complement, representing the cut-off point for the LCVE algorithm.

Definition 4.2 (Candidate Dependency Relation). We call a relation D: A × A
a candidate dependency relation iff ∀x, y ∈ A, x D y implies that ∃C ∈ S.(x ∈
C ∨ ¬x ∈ C) ∧ (y ∈ C ∨ ¬y ∈ C)

Definition 4.3 (Elected candidates). Given a set of authorised candidates A,
we call a set Φ ⊆ A a set of elected candidates iff ∀x, y ∈ Φ. ¬(x D y)

Definition 4.4 (Frozen candidates). Given the sets A and Φ, the set of frozen
candidates F ⊆ A is defined as F = {x | x ∈ A ∧ ∃y ∈ Φ. x D y}

Algorithm 4.1: Constructing A
Input : global S, µ
Output : global A, scores, h

1 h← histogram(S)
2 A, scores← assignScores(h,A, scores)
3 A ← prune(sort(A, scores), h, µ)
4 kernel assignScores(h,A, scores):
5 for all tid ∈ J 0, |var(L)| K do in parallel
6 x← tid + 1, A[tid]← x
7 if h[x] = 0 ∨ h[¬x] = 0 then
8 scores[x]← max(h[x], h[¬x])
9 else

10 scores[x]← h[x]× h[¬x]
11 end
12 end
13 end

Before LCVE is executed, a sorted list of the variables in S needs to be
created, ordered by the number of occurrences in that formula, in ascending order
(following the same rule as in [EB05]). From this list, the authorised candidates
A can be straightforwardly derived, using µ as a cut-off point. Construction
of this list can be done efficiently on a GPU using Algorithm 4.1. As input, it
requires a SAT formula S and a cut-off point µ. At line 1, a histogram array h,

44 Chapter 4 SAT Preprocessing

Algorithm 4.2: LCVE
Input :S,A, h, T
Output : Φ

1 F ← ∅
2 foreach x ∈ A do
3 if x ̸∈ F then
4 Φ← Φ ∪ x
5 foreach C ∈ S[T [x]] ∪ S[T [¬x]] do
6 foreach ℓ ∈ C do
7 v ← var(ℓ)
8 if v ̸= x then F ← F ∪ v

9 end
10 end
11 end
12 end

providing for each literal the number of occurrences in S, is constructed. This
histogram can be constructed on the GPU using the histogram method offered
by the Thrust library [NVI20b]. Once assignScores kernel execution has
terminated, at line 2, the candidates in A are sorted on the GPU based on their
scores in scores while µ is used to prune candidates with too many occurrences.
We used the radix-sort algorithm as provided in Thrust.

In assignScores, at line 6, the thread index is used as a variable index
(variable indices start at 1). At lines 7-11, a score is computed for the currently
considered variable x. This score should be indicative of the number of resolvents
produced when eliminating x, which depends on the number of occurrences of
both x and ¬x, and can be approximated by the formula h[x] × h[¬x]. To avoid
score zero in case exactly one of the two literals does not occur in S, we consider
that case separately.

Next, Algorithm 4.2 is executed on the host (see Figure 4.2), given S, A, h
and an instance of OT named T . This algorithm accesses 2 · |A| number of OL
instances and parts of S. The use of unified memory significantly improves the
rates of the resulting transfers and avoids explicitly copying entire data structures
to the host side. The output is Φ, implemented as a list. The algorithm considers
all variables x in A (line 2). If x has not yet been frozen (line 3), it adds x to Φ
(line 4). Next, the algorithm needs to identify all variables that depend on x.
For this, the algorithm iterates over all clauses containing either x or ¬x (line
5), and each literal ℓ in those clauses is compared to x (lines 6-8). If ℓ refers to
a different variable v, and v is an authorised candidate, then v must be frozen.

4.2 Algorithm Design and Implementation 45

4.2.2 Parallel Variable Elimination
After Φ has been constructed, a kernel is launched to compute an upper bound
for the number of resolvents (excluding tautologies) that may be produced by
eliminating variables in Φ. This kernel accumulates the number of resolvents of
each variable using parallel reduction in shared memory within thread blocks.
The resulting values (resident in shared memory) of all blocks are added up
by atomic operations, resulting in the final output, stored in global memory
(denoted by |S̃|). Afterwards, the CNF formula S is reallocated according to
the extra memory needed. The parallel BVE kernel (Algorithm 4.3) is now
ready to be performed on the GPU, considering both the resolution rule and
gate-equivalence reasoning. In Algorithm 4.3, first, each thread selects a variable
in Φ, based on tid (lines 1-2). The eliminated array marks the variables that
have been eliminated. It is used to distinguish eliminated and non-eliminated
variables when executing Algorithm 4.4.

Each thread checks the control condition at line 3 to determine whether the
number of resolvents (h[x] × h[¬x]) of x will be less than the number of deleted
clauses (h[x] + h[¬x]). If the condition evaluates to true, a list resolvents
is created in shared memory, which is then added to the simplified formula S̃
in global memory after discarding tautologies (lines 4-6). The markDeleted
routine marks resolved clauses as deleted. They are actually deleted on the host
side, once the algorithm has terminated.

At line 8, definitions of AND and OR gates are deduced by the gateReason-
ing routine, and stored in shared memory in defs. If at least one gate definition
is found, the clauseSubstitution routine substitutes the involved variable
with the underlying definition (line 9), creating the resolvents.

In some situations, even if h[x] and h[¬x] are greater than 1, the number
of resolvents can be less than the number of deleted clauses, when a sufficient
number of resolvents are tautologies which are subsequently discarded. For this
reason, we provide a third alternative to look ahead for tautologies in order to
conclusively decide whether to resolve a variable if the conditions at lines 3 and
8 both evaluate to false. This third option (line 13) has lower priority than gate
equivalence reasoning (line 8), since the latter in practice tends to perform more
reduction than the former.

The sequential running time of Algorithm 4.3 is O(|C| · |Φ|), where |C| is the
length of a resolved clause C in S. In practice, |C| often ranges between 2 and
tenths of literals. Therefore, the worst case is linear w.r.t. |Φ|. Consequently,
the parallel complexity is O(|Φ|/p), where p is the number of threads. Since a
GPU is capable of launching thousands of threads, that is, p ≈ |Φ|, the parallel

46 Chapter 4 SAT Preprocessing

Algorithm 4.3: BVIPE
Input : global S, Φ, h, T
Input : shared resolvents, defs
Output : global S̃, eliminated

1 for all tid ∈ J 0, |Φ| K do in parallel
2 x← Φ[tid], eliminated[x]← false, numTautologies← 0
3 if h[x] = 1 ∨ h[¬x] = 1 then
4 resolvents← resolve(x,S, T [x], T [¬x])
5 markDeleted(S, T [x], T [¬x])
6 S̃ ← S ∪ resolvents
7 eliminated[x]← true
8 else if defs ← gateReasoning(x,S, T [x], T [¬x]) ̸= ∅ then
9 resolvents← clauseSubstitution(x,S, T [x], T [¬x], defs)

10 markDeleted(S, T [x], T [¬x])
11 S̃ ← S ∪ resolvents
12 eliminated[x]← true
13 else
14 numTautologies← tautologyLookahead(x,S, T [x], T [¬x])
15 numResolvents← h[x]× h[¬x], numDeleted← h[x] + h[¬x]
16 if (numResolvents− numTautologies) < numDeleted then
17 resolvents← resolve(x,S, T [x], T [¬x])
18 markDeleted(S, T [x], T [¬x])
19 S̃ ← S ∪ resolvents
20 eliminated[x]← true
21 end
22 end
23 end

complexity is an amortized constant O(1). For Algorithm 4.3, we prove the
following property.

Lemma 4.1. For any given CNF formula S, BVIPE has no data racing and
its results are identical to the ones obtained by the sequential elimination.

Proof. S̃ is produced by threads executing lines 6, 11, and 19 in Algorithm 4.3
when applicable. The resolvents added to S̃ are produced at lines 4, 9, and
17. Clearly, since each thread works on a different x ∈ Φ, the threads produce
different sets of resolvents. Moreover, since the variables in Φ are independent of
each other, it is guaranteed that for each pair of variables x, y ∈ Φ, there exists
no clause C ∈ S with both x ∈ C and y ∈ C. By the definition of Sx and S¬x,
it follows that Sx ∪ S¬x contains no clauses C with y ∈ C. Let thread t be the
thread assigned to x. If applicable, t executes either line 4, 9 or 17, producing

4.2 Algorithm Design and Implementation 47

resolvents, which are derived from Sx and S¬x, hence no clauses are produced
containing y. Therefore, t does not produce any clauses containing variables
that are elected for removal, hence the resolvents added by t to S̃ do not need to
be processed by other threads. By the same reasoning, the clauses marked for
deletion by t at lines 5, 10, and 18 do not need to be processed by other threads.
Hence, the threads work independently, meaning that the sequential execution
of their operations is guaranteed to produce the same result as when they are
executed in parallel.

Proposition 4.1. BVIPE is confluent.

Proof. It follows from Lemma 4.1 that BVIPE is confluent, i.e., the actual order
in which the variables in Φ are eliminated does not influence the resulting S̃.

4.2.3 Parallel Subsumption Elimination
The parallel SUB (PSUB) is executed on elected variables that could not be
eliminated earlier by variable elimination. (Self)-subsumption elimination tends
to reduce the number of occurrences of non-eliminated variables as it usually
removes many literals. After performing PSUB (Algorithm 4.4), the BVIPE
algorithm is executed again, after which PSUB can be executed, and so on, until
no more literals can be removed (the inner loop at the stage 1 of Figure 4.2).

The parallelism in the PSUB kernel is achieved on the variable level. In other
words, each thread is assigned to a variable when executing PSUB. At line 3,
previously eliminated variables are skipped. At line 5, a new clause is loaded,
referenced by T [x], into shared memory (we call it the shared clause, Cs).

The shared clause is then compared in the loop at lines 4-19 to all clauses
referenced by T [¬x] to check whether x is a self-subsuming literal using sig and
selfsub functions. The sig function compares the identifiers of two clauses. The
identifier of a clause is computed by hashing its literals to a 32-bit value [EB05].
It has the property of refuting many non-subsuming clauses, but not all of them
since hashing collisions may occur. The selfsub routine run a set intersection
algorithm in linear time. If the conditions at lines 7 or 9 evaluate to true,
both the original clause C, which resides in the global memory, and Cs must
be strengthened (via the strengthen function). At line 11, the clause C ′ is
marked for deletion because it became subsumed by the strengthened clause C.
The condition |C| > 2 is tested at lines 7 and 9 to avoid producing unit clauses
if C is strengthened. Propagation of these units may cause data racing between
threads; thus, it was not yet implemented in SIGmA. In the next chapter, we

48 Chapter 4 SAT Preprocessing

Algorithm 4.4: Parallel SUB
Input : global S, Φ, eliminated, T
Input : shared Cs

1 for all tid ∈ J 0, |Φ| K do in parallel
2 x← Φ[tid]
3 if ¬eliminated[x] then
4 foreach C ∈ S[T [x]] do
5 Cs ← C
6 foreach C′ ∈ S[T [¬x]] do
7 if |C| > 2 ∧ |C′| < |C| ∧ sig(C′, C) ̸= 0 ∧ selfsub(C′, Cs) then
8 strengthen(C, Cs, x)
9 else if |C| > 2∧ |C′| = |C| ∧ sig(C′, C) ̸= 0 ∧ selfsub(C′, Cs) then

10 strengthen(C, Cs, x)
11 markDeleted(C′)
12 end
13 end
14 foreach C′′ ∈ S[T [x]] do
15 if |C′′| ≤ |C| ∧ sig(C′′, C) ̸= 0 ∧ subsume(C′′, Cs) then
16 markDeleted(C)
17 end
18 end
19 end
20 end
21 end

present a possible solution to propagate these units safely. In the loop at lines
14-18, the strengthened Cs is used for subsumption checking.

Regarding the complexity of Algorithm 4.4, the worst-case is that a variable
x occurs in all clauses of S. However, in practice, the number of occurrences of
x is bounded by the threshold value µ (see Definition 4.1). The same applies
for its complement. Therefore, worst case, a variable and its complement both
occur µ times. As PSUB considers all variables in Φ and worst case has to
traverse each loop µ times, its sequential complexity is O(|Φ| ·µ2) and its parallel
complexity is O(µ2). The SUB mode (second stage in Figure 4.2) allows SUB
to be executed independently of BVE (i.e. applied directly on the input formula
without allocating any extra memory).

Lemma 4.2. For any given CNF formula S, PSUB has no data racing and its
results are identical to the ones obtained by the sequential SUB.

Proof. Suppose we have the elected candidates x, y ∈ Φ and the parallel threads
t1, t2. Let t1 and t2 be responsible for applying the SUB function (depicted by

4.2 Algorithm Design and Implementation 49

lines 4-19) on x and y respectively. It suffices to prove that the threads work on
disjoint sets of clauses Sx, S¬x and Sy, S¬y. Since x, y ∈ Φ, then (T [x]∪T [¬x])∩
(T [y]∪T [¬y]) = ∅ (from lines 4, 6, and 14). As such, (Sx ∪S¬x)∩ (Sy ∪S¬y) = ∅.
Therefore, t1 and t2 do not influence each other’s results.

Proposition 4.2. PSUB is confluent.

Proof. It follows from Lemma 4.2 and Proposition 2.3 that PSUB is confluent,
i.e., the order in which the clauses are checked for (self-)subsumption does not
influence the resulting simplified formula.

4.2.4 Parallel Blocked Clause Elimination
Parallel BCE (PBCE) is executed on an extended list of elected candidates Φ
to increase the possibility of finding blocked clauses in the input formula. The
extended list is obtained by performing the elections again with a large value of
µ (second stage in Figure 4.2). In a similar way to the SUB, we launch a kernel
to scan the occurrence lists of elected candidates in parallel looking for blocked
clauses. Algorithm 4.5 shows how PBCE can be implemented.

The control condition |T [x]| ≤ |T [¬x]| at line 4 maximizes the locality of the
shared clause Cs, as clauses referred by the shorter occurrence list are frequently
shared to others. That is, if the positive occurrence of x (i.e. C that has the
literal x) is loaded to the shared memory, then the number of accesses to Cs

will be |T [¬x]|. The else statement at line 5 handles the opposite of the former
condition.

Each thread at lines 8-18 in the blocked function compares the shared
clauses having an occurrence of ℓ with all clauses that have the complement of ℓ
(opposite occurrence), looking for tautologies. If the number of tautologies is
equal to the number of opposite occurrences, then C is deleted. The parallel
complexity of Algorithm 4.5 is O(µ2).

For Algorithm 4.5, we prove the following property.
Lemma 4.3. For any given CNF formula S, PBCE has no data racing and its
results are identical to the ones obtained by the sequential BCE.

Proof. Suppose we have the elected candidates x, y ∈ Φ and the parallel threads
t1, t2. Let t1 and t2 be responsible for applying the BCE function (depicted by
lines 8-18) on x and y respectively. It suffices to prove that the threads work on
disjoint sets of clauses Sx, S¬x and Sy, S¬y. Since x, y ∈ Φ, then (T [x]∪T [¬x])∩
(T [y] ∪ T [¬y]) = ∅ (from lines 9 and 11). As such, (Sx ∪ S¬x) ∩ (Sy ∪ S¬y) = ∅.
Therefore, t1 and t2 do not influence each other’s results.

50 Chapter 4 SAT Preprocessing

Algorithm 4.5: Parallel BCE
Input : global S, Φ, eliminated, T
Input : shared Cs

1 for all tid ∈ J 0, |Φ| K do in parallel
2 x← Φ[tid]
3 if ¬eliminated[x] then
4 if |T [x]| ≤ |T [¬x]| then blocked(x)
5 else blocked(¬x)
6 end
7 end
8 device function blocked(ℓ):
9 foreach C ∈ S[T [ℓ]] do

10 numTautologies← 0, Cs ← C
11 foreach C′ ∈ S[T [¬ℓ]] do
12 if isTautology(x, Cs, C′) then
13 numTautologies← numTautologies + 1
14 end
15 end
16 if numTautologies = |T [¬ℓ]| then markDeleted(C)
17 end
18 end

Proposition 4.3. PBCE is not confluent.

Proof. It follows from Algorithm 4.5 that a set of clauses is chosen based on a
heuristic (condition at line 4), i.e., the parallel algorithm has no fixpoint. Further,
we have shown by Proposition 2.4 that BCE is not confluent. Thus, PBCP is
not confluent.

4.2.5 Hidden Redundancy Elimination
We propose a new simplification technique called hidden redundancy elimination
(HRE) which repeats the following until fixpoint has been reached: for a given
formula S and clauses C1 ∈ S, C2 ∈ S with ℓ ∈ C1 and ¬ℓ ∈ C2, if there exists
a clause C ∈ S for which C ≡ C1 ⊗ℓ C2 and C is not a tautology, then let
S := S \ {C}. The clause C is called a hidden redundancy and can be removed
without altering the original satisfiability.

Lemma 4.4. For any formula S, HRE(S) is logically equivalent to S.

Proof. Suppose we have the clauses {C, C1, C2} ⊆ S where C1 = C ′1 ∪ {ℓ},
C2 = C ′2 ∪ {¬ℓ}, ℓ ̸∈ C ′1, ¬ℓ ̸∈ C ′2 and C = C ′1 ∪ C ′2. Now, if ℓ is set to ⊤, then

4.2 Algorithm Design and Implementation 51

C1 |= ⊤ and C2 = C ′2, implying C2 ⊆ C. If ℓ |= ⊥, then C2 |= ⊤ and C1 = C ′1,
implying C1 ⊆ C. Therefore, in both cases, clause C is subsumed by either C1
or C2. Hence S \ {C} is logically equivalent to S.

Example 4.1. For example, consider the formula

S = {{a, ¬c}, {c, b}, {¬d, ¬c}, {b, a}, {a, d}}

Resolving the first two clauses gives the resolvent {a, b} which is equivalent to
the fourth clause in S. Also, resolving the third clause with the last clause yields
{a, ¬c} that is equivalent to the first clause in S. HRE can remove either {a, ¬c}
or {a, b} but not both.

Proposition 4.4. HRE is not confluent.

Proof. Example 4.1 shows that the order in which the variables {c, d} are resolved,
influences the resulting simplified formula. Thus, HRE is not confluent.

Parallel Algorithm

Similar to the algorithms explained earlier, parallel HRE is also performed on
an extended version of Φ to increase the chance of finding hidden redundancies.
A 2-dimensional kernel (e.g. each thread is identified by its x- and y-dimension
indices) executes the following operations on the elected candidates:

1. Each thread selects a variable x ∈ Φ based on its y ID (tidy), and checks
for clauses being mergeable w.r.t. x (lines 1-8).

2. Each merged clause (Cm) is inspected for equality against all clauses
referenced by the literals inside Cm (we call this operation, the forward
equality check). This check is done at lines 9-11 by threads using their x
ID (tidx).

3. If a clause is found equal to Cm in the input formula, then the former is
removed (lines 12-14).

Algorithm 4.6 describes in detail how those operations are implemented.
Notice that the resolved clause (Cm) obtained by the function resolve at line 7
is only needed for the equality check and not added to the simplified formula.
The loop at line 9 sweeps all literals in Cm. The threads with x ID search for a
successful match among the clauses referenced (via the occurrence lists) by the

52 Chapter 4 SAT Preprocessing

Algorithm 4.6: Parallel HRE
Input : global S, Φ, eliminated, T
Input : shared Cs, Cm

1 for all tidy ∈ J 0, |Φ| Ky do in parallel
2 x← Φ[tidy]
3 if ¬eliminated[x] then
4 foreach C ∈ S[T [x]] do
5 Cs ← C
6 foreach C′ ∈ S[T [¬x]] do
7 Cm ← resolve(x, Cs, C′)
8 if Cm ̸= ∅ then

/* ∀Ć ∈ S with ℓ ∈ Ć do the forward equality check */
9 foreach ℓ ∈ Cm do

10 for all tidx ∈ J 0, |T [ℓ]| Kx do in parallel
11 Ć ← S[T [ℓ][tidx]]
12 if |Ć| = |Cm| ∧ sig(Ć, Cm) ̸= 0 ∧ Ć ≡ Cm then
13 markDeleted(Ć), break
14 end
15 end
16 if deleted(Ć) then break
17 end
18 end
19 end
20 end
21 end
22 end

literals in the merged clauses. If there is a hit, then the loop is broken assuming
that the same clause cannot appear in the input formula multiple times.

The worst-case parallel complexity of this algorithm is

O(|Φ|
py

(µ2︸︷︷︸
loops at lines 4,6

(

loop at line 9︷︸︸︷
|Cm|(µ

px
))))

where |Cm| is the length of the merged clause and py , px are the number of
threads in dimensions y and x, respectively. By launching sufficient threads
in both dimensions with px ≪ py and assuming that µ is considerably larger
than px , the upper bound of the parallel loop at line 10 cannot be neglected.

4.2 Algorithm Design and Implementation 53

Thus, the parallel complexity will be O(|Cm|(µ3/px)). That is, the parallel
running time is a cubic function of the occurrences upper-bound of x or ¬x.
In fact, the loop at lines 9-17 could be performed in parallel with threads
operating in a third dimension (z-dimension). However, this will impose us
to limit the number of threads in the other two dimensions because the block
dimensionality (i.e. number of threads per block) is constrained by the GPU
compute capability to 1024 threads only (see Table 3.2), which in turn, decreases
the overall performance of a 3-dimensional kernel.

For Algorithm 4.6, we prove the following property.

Lemma 4.5. For any given CNF formula S, PHRE has no data racing and its
results are identical to the ones obtained by the sequential HRE.

Proof. Suppose we have the elected candidates x, y ∈ Φ and the parallel threads
t1, t2 with y IDs. Let t1 and t2 be responsible for applying the HRE function
(depicted by lines 4-20) on x and y respectively. It suffices to prove that the
threads work on disjoint sets of clauses Sx, S¬x and Sy, S¬y. Since x, y ∈ Φ,
then (T [x] ∪ T [¬x]) ∩ (T [y] ∪ T [¬y]) = ∅ (from lines 4 and 6). As such,
(Sx ∪ S¬x) ∩ (Sy ∪ S¬y) = ∅. Moreover, by Definition 4.4, all literals in the
resolvent Cm obtained by line 7 are frozen. That is, if a redundant clause
equivalent to Cm is found and removed by an x thread (lines 10-15), the removed
clause cannot be resolved again by either t1 or t2. Therefore, t1 and t2 do not
influence each other’s results.

4.2.6 Multi-GPU Support
By default SIGmA runs on the first GPU of the computing machine, i.e., the
one installed on the first Peripheral Component Interconnect Express (PCI-
E) bus, which we refer to as GPU0. SIGmA is also capable of running SAT
simplification on n of the same-type GPUs installed in the same machine. When
n > 1, the elected variables in Φ are distributed evenly among the GPUs. The
complexity of processing an elected variable x during simplification depends on
the number of occurrences of literals x and ¬x in the formula. As SIGmA uses
µ as upper-bound to the number of occurrences, the complexity of applying SAT
simplification for a single variable is O(µ2). When distributing SAT simplification
over multiple GPUs, ensuring that the associated work is well balanced is
important. Therefore, we balance the number of variable occurrences each GPU
needs to process. Algorithm 4.7 presents our Shuffle Distribution algorithm.
The sortDescending function sorts the elements in Φ in descending order
based on the number of occurrences, as provided by function h, and the result

54 Chapter 4 SAT Preprocessing

Algorithm 4.7: Shuffle Distribution of Φ
Input : Φ, n, h
Output : Φ0, . . . , Φn-1

1 Φ0, . . . Φn-1 ← ∅
2 forward←true, i← 0
3 L← sortDescending(Φ, h)
4 foreach x ∈ L do
5 Φi ← Φi ∪ {x}
6 if forward then
7 i← i + 1
8 if i = n then
9 forward← false, i← i− 1

10 end
11 else
12 i← i− 1
13 if i = −1 then
14 forward← true, i← i + 1
15 end
16 end
17 end

is stored in the list L. In the loop at lines 4-17, the variables are considered
in that order. Index i always points to the GPU device to which the currently
considered variable needs to be assigned. This index is updated in each iteration
such that it ping-pongs between values 0 and n − 1.

Figure 4.2 shows an example of such a distribution with three GPUs, which is
applied after LCVE in the first stage. The variables are ordered by the number
of literals in the formula; the variable with index 5 is the least constrained
(LCV), i.e., has the smallest number, while the last one with index 2 is the most
constrained variable (MCV), i.e., has the largest number of occurrences. Starting
with the MCV, the first three variables are distributed over the three GPUs,
followed by the next three, which are distributed in reversed order, etc. As the
number of literals is indicative of the computational effort needed to eliminate a
variable, this distribution method achieves good load balancing.

In Figure 4.2, the global barrier acts as a synchronization point for all GPUs,
and in the subsequent merge step, all simplified subformulas of the various GPUs
are communicated to GPU0. HRE cannot be run on multiple GPUs, because
the entire formula must be accessed.

4.3 Benchmarks and Analysis 55

4.3 Benchmarks and Analysis

We evaluated all GPU simplifications on an NVIDIA Titan Xp GPU. See
Table 3.2 for the main specifications. For multi-GPU experiments, we used two
NVIDIA Titan Xp GPUs installed in the same machine. The GPU machine was
running Linux Mint v18.

We selected 344 SAT problems from the application track of the 2013, 2016
and 2017 SAT competitions10. This set consists of all problems from those tracks
that are more than 1 MB in file size. The largest size of problems occurring in
this set is 1.2 GB. These problems have been encoded from 46 different real-world
applications that have a whole range of dissimilar logical properties. Before
applying any simplifications using the experimental tools, any occurring unit
clauses were propagated. The presence of unit clauses immediately leads to
simplification of the formula. By only considering formulas without unit clauses,
the benchmark results directly indicate the true impact of our preprocessing
algorithms.

In the benchmark experiments, besides the implementations of our new
GPU algorithms, we involved a CPU-only version of SIGmA, the SatElite
preprocessor [EB05], the MiniSat and Lingeling [Bie13] SAT solvers for the
solving of problems, and executed these on the compute nodes of the DAS-
5 cluster [BEdL+16]. Each problem was analysed in isolation on a separate
computing node, with a timeout of 24 hours. Each computing node had an
Intel Xeon E5-2630 CPU running at a core clock speed of 2.4 GHz with 128
GB of system memory, and runs on the CentOS 7.4 operating system. We
performed the equivalent of 6 years of uninterrupted processing on a single node
to measure how SIGmA impacts SAT solving in comparison to using sequential
simplification or no simplification.

The benchmarks are categorised according to the following performance
considerations:

• SAT-Simplification Benchmarks evaluate SIGmA against the sequential coun-
terparts, SatElite and Lingeling preprocessors. Moreover, we analysed
the amount of reductions obtained by SIGmA using different number of
phases of the first stage (see Figure 4.2).

• SAT-Solving Benchmarks provide a thorough assessment of the proposed SAT
simplifications with multiple execution orders and combinations on SAT

10http://www.satcompetition.org

http://www.satcompetition.org

56 Chapter 4 SAT Preprocessing

Table 4.1: SIGmA acceleration with single/multi-GPU configuration. The +tc and -tc

notations denote with and without communication tc, respectively.

Configuration SIGmA (GPU vs CPU) SIGmA (2 GPUs vs 1 GPU)

Method ve sub bce hre all(-tc) all(+tc)
ve+

bce all(-tc) all(+tc)
ve sub

Average speedup 37× 5× 29.5× 17× 14× 7.3× 1.7× 2.64× 1.34× 1.96× 0.85×
Simplified faster (%) 330 (95) 79 (22)

Table 4.2: SIGmA performance compared to various simplifiers

SIGmA (mode) Counterpart Speedup Simplified faster (%)

CPU: ve+/sub SatElite 36.96× 339 (98)
GPU: ve+/sub SatElite 69.25× 339 (98)
GPU: all SatElite 49.32× 326 (94)
GPU: all Lingeling 32.19× 315 (91)

solving. The results are compared to MiniSat without simplification,
SatElite + MiniSat, and Lingeling.

4.3.1 SAT-Simplification Benchmarks
For all experiments, we set µ initially to 64, which in practice tends to produce
good results (i.e. balance the workload on the GPU with the amount of reduc-
tions). Table 4.1 summarises the amount of speedup and the number of problems
simplified faster (last row) by running SIGmA on one and two GPUs11. We
compare the one GPU mode with the CPU-only and two GPUs mode. For each
of those options, we list the achieved speedup when running them on a GPU
instead of a CPU. For the comparison of single vs. two GPUs, we disabled hre,
since it is only supported in single GPU mode. Compared to CPU-only SIGmA,
the GPU achieves an acceleration of up to 37×. The average speedup of all
methods with and without communication (tc) is 14× and 7.3×, respectively,
allowing 330 problems to be simplified faster (95%).

If we ignore the time needed for data transfer between the GPUs (tc), SIGmA
scales very well when the number of GPUs is increased. In mode SUB, the
average acceleration is 2.64×, and overall, the average speedup is 1.96×. When

11Tables with all the data are available at http://gears.win.tue.nl/software.

http://gears.win.tue.nl/software

4.3 Benchmarks and Analysis 57

Table 4.3: SIGmA reductions with different phases on the largest 34 cases. The V,
C, and L symbols denote the number of variables, clauses, and literals (in
hundreds), respectively.

CNF
Original

SIGmA (first stage - 1 GPU)

1 phase 3 phases 5 phases

V C L V C L V C L V C L

9dlx_vliw_at_b_iq9 4820 96763 281949 4394 95910 283783 4377 95865 284599 4377 95865 284599
9vliw_m_9stages_iq3_C1_bug1 5211 133786 392048 5054 133470 392417 5052 133464 392452 5052 133464 392452
SAT_dat.k85-24_1_rule_3 11637 45622 114601 6343 34573 97884 5743 33494 98241 5743 33494 98241
ak128modbtbg1btaig 5730 17169 40061 2380 9572 27070 1881 8580 26234 1881 8580 26234
atco_enc3_opt2_18_44 10825 43268 107956 10767 43173 107794 10764 43158 107756 10763 43155 107753
barman-pfile10-038.sas.ex.15 3596 9119 602748 1408 7005 598552 1030 6535 597900 1030 6535 597900
barman-pfile10-040.sas.ex.15 3597 9120 602767 1409 7005 598568 1030 6534 597913 1030 6534 597913
cube-11-h13-unsat 4530 13635 31833 1781 8415 24511 1413 8021 24652 1413 8021 24652
dspam_dump_vc950 1091 3561 9492 639 2764 8252 608 2690 8074 601 2671 8021
esawn_uw3.debugged 122007 480499 1331270 77303 372710 1109428 73686 362234 1084505 memory out
gaussian.c.75.smt2-cvc4 19871 85610 234893 14269 77171 231277 14160 76802 230403 14157 76741 230340
hwmcc15deep-beemfwt4b1-k48 23008 50894 117550 9454 31967 85745 7537 29821 84499 7333 29585 84709
ibm-2002-23r-k90 2094 8646 21760 1154 6726 19177 1059 6506 19055 1057 6491 19002
itox_vc1130 1412 4276 11247 645 2684 8309 523 2410 7755 502 2351 7637
manol-pipe-f10ni 3688 11004 25678 1218 5470 15996 1018 5077 15926 1018 5077 15926
newton.8.3.i.smt2-cvc4 3027 13096 36257 2115 10978 32710 2075 10866 32563 2073 10856 32564
openstacks-sequencedstrips-p30 1039 4042 9511 642 3797 9029 582 3746 8927 582 3746 8926
partial-10-19-s 2691 12824 30338 2072 11244 29028 1996 10911 28484 1982 10882 28426
pipe_16 2664 194700 579431 2534 194437 579343 2531 194428 579517 2531 194428 579517
q_query_3_L200_coli.sat 5428 30037 89433 2624 21372 70007 2415 20191 65940 2414 20186 65927
safe030-h29-unsat 1290 4377 10566 468 2737 8116 449 2705 8074 449 2704 8073
sin2.c.20.smt2-cvc4 19629 79547 216386 12241 62616 186580 11924 61910 185625 11886 61821 185748
sin2.c.75.smt2-cvc4 79169 325919 894196 51467 262387 782177 50280 259743 778584 50134 259410 779003
sncf_model_ixl_bmc_depth_15 18016 59139 146686 10566 43846 121519 9220 40268 114953 8878 39173 112332
sokoban-p20.sas.ex.23 36329 72587 481190 10097 46146 429294 3624 39109 417396 2623 37433 416074
sortnet-8-ipc5-h18-unsat 3382 11868 28847 1271 7672 22769 1216 7612 22815 1216 7612 22815
test_v7_r17_vr5_c1_s25451 5603 25091 70028 4086 22218 66211 4040 22058 66156 4040 22058 66156
transport-1city-35n-50 14694 74791 177446 10441 72889 173784 10293 72791 173587 10292 72789 173585
valves-gates-1-k617-unsat 9704 30623 78421 4737 20299 59043 3712 17215 51362 3629 16874 50414

SIGmA (first stage - 2 GPUs)

T106.2.0 83638 292588 758482 49865 224148 657833 45406 216087 652754 45369 216004 652704
T50.2.0 83638 292589 758484 49865 224148 657834 45406 216088 652755 45369 216004 652704
T96.1.1 89058 323225 861424 59090 261471 767722 56853 257007 762781 56825 256959 762825
qurt.c.20.smt2-cvc4 79564 340538 937006 52842 283754 848135 51877 281596 845438 51760 281327 845760
esawn_uw3.debugged 122007 480499 1331270 77303 372710 1109428 73650 362196 1084465 72624 357793 1072039

we consider data transfer, the latter drops to 0.85×. Still, in two GPUs mode,
SIGmA managed to simplify 79 (22%) problems faster compared to the single
GPU mode, even if the communication overhead is taken into account. Hardware
improvements of inter-GPU communication will make the multi-GPU mode of

58 Chapter 4 SAT Preprocessing

Table 4.4: SIGmA impact on MiniSat solving performance

Solver Total Solved faster (%) Processing
solved (%) (vs. MiniSat) (vs. SatElite + MiniSat) Time (hr.)

MiniSat 192 (56) — — 3989
SatElite + MiniSat 215 (62) 97 (50) — 3474
SIGmA + MiniSat 230 (67) 139 (72) 122 (57) 3214

SIGmA increasingly attractive in the future. Furthermore, the multi-GPU
configuration may allow more reductions to be obtained, where a single GPU
cannot due to limited memory capacity.

Table 4.2 compares SIGmA against the best sequential simplifiers available
(e.g. SatElite and the preprocessing module integrated in Lingeling). Similar
to the multi-GPU experiments, we used the heavy mode (-ve+) in combination
with other simplifications in all of SIGmA benchmarks. On average, SIGmA on
a single GPU, with all simplifications enabled, beats SatElite and Lingeling
by accelerations up to 49× and 32×, respectively.

Table 4.3 provides an evaluation of the achieved simplifications with SIGmA
using varying numbers of phases (up to five). The second part of the table shows
the amount of reductions obtained by two GPUs. The first four problems (T106,
T50, T96, qurt) could not be simplified at all by a single GPU using any number
of phases due to lack of memory. The last problem (esawn) managed to be
simplified by two GPUs up to five phases. In most problems, the reductions on
(V, C, L) get more stable (no more can be obtained) after four or five phases.
Therefore, for solving experiments, we set the number of phases to five while
simplifying the benchmark set with SIGmA.

4.3.2 SAT-Solving Benchmarks
Figures 4.3 and 4.4 show the impact of different modes in SIGmA on SAT solving
by MiniSat and Lingeling. The org line refers to the SAT solver time when
running on the original formulas. The ve+sub mode is executed in several rounds
until no more literals can be removed (ve+ loop in Figure 4.2). It seems that both
ve+sub and ve+bce+hre were competing with each other in solving the problem
set using MiniSat. At the end, the latter mode wins because it solved more
problems (from 228 to 230) as shown by the (plus)-marked line in Figure 4.3.
For Lingeling, the modes ve+bce and ve+bce+hre allowed Lingeling to solve
the same number of problems (283). However, the latter is slightly faster.

4.3 Benchmarks and Analysis 59

Figure 4.3: SIGmA impact on MiniSat for various simplification modes

Figure 4.4: SIGmA impact on Lingeling for various simplification modes

60 Chapter 4 SAT Preprocessing

Table 4.5: SIGmA impact on Lingeling solving performance

Solver Total solved (%) Solved faster (%) Processing
(vs. Lingeling) Time (hr.)

Lingeling 252 (73) — 2566
SIGmA + Lingeling 283 (82) 128 (51) 1854

Tables 4.4 and 4.5 summarize the improvement of SIGmA on MiniSat and
Lingeling using the best simplification mode ve+bce+hre with comparison
to the original solvers and SatElite + MiniSat. In addition, we only show a
summary for SatElite + MiniSat according to the best preprocessing mode ve
that allowed the largest number of problems to be solved. The processing time
(hr.) includes the simplification time if the formula is simplified and the timeout
(24 hours) if the problem ran out of time. The percentages in the total solved
column are based on the total number of problems (344). The percentages in
solved faster columns are based on the minimum number of problems solved by
the counterpart. For instance, SIGmA + MiniSat solved 139 and 122 problems
faster than MiniSat only and SatElite + MiniSat by factors of 139/192 = 72%
and 122/215 = 57% respectively. In Table 4.5, SIGmA allowed Lingeling to
solve 57% of the problems faster than Lingeling only.

4.4 Related Work

Subbarayan et al. [SP04] have provided the first BVE technique based on the
resolution rule of the search algorithm DPLL [DLL62], called NiVER. Eén
et al. [EB05] extended NiVER with subsumption elimination and clause sub-
stitution. However, the subsumption check is only performed on the clauses
resulting from variable elimination, hence no reductions are obtained if there are
no variables to resolve. Zhang et al. [Zha05] presented an algorithm to provide
a subsumption-free formula by detecting and removing subsumed clauses as the
resolvents are being added to the simplified formula.

Gebhardt et al. [GM13] presented the first attempt to parallelise SAT prepro-
cessing on a multi-core CPU using a locking scheme to prevent threads corrupting
the SAT formula. However, they reported only a very limited speedup of on
average 1.88× when running on eight cores. Heule et al. [HJB10] have intro-
duced several approaches for clause elimination that can be effective in SAT
simplifications, e.g. blocked clause, hidden blocked clause, and hidden tautology

4.5 Conclusion 61

eliminations. Most of these methods produce extra reduction in terms of clauses
and literals compared to former methods used in NiVER and SatElite.

All these methods introduce sound simplifications, yet none of them is
implemented to fully utilise SIMT architectures such as GPUs. Because of this,
they may consume considerable time in preprocessing when applied to large
problems.

Finally, BVE as introduced in [SP04, EB05, JBH10], is not confluent, as
noted by the authors Järvisalo et al. [JBH10]. Due to dependency between
variables, altering the elimination order of these variables may result in different
simplified formulas. This drawback is circumvented by our LCVE algorithm,
which makes it possible to perform parallel variable elimination.

4.5 Conclusion
We have shown that SAT simplifications can be performed efficiently on many-
core systems, producing impactful reductions in a fraction of a second, even for
larger problems consisting of millions of variables and tens of millions of clauses.
The proposed BVIPE algorithm provides the first methodology to eliminate
multiple variables in parallel while preserving satisfiability. Furthermore, we
have presented the SIGmA tool, the first simplifier for SAT formulas that
exploits the power of GPUs. It can be configured to apply a combination of
various elimination procedures, among which is a new one (HRE) proposed by us.
Experimentally, we have demonstrated the impact of SIGmA on state-of-the-art
SAT solving. In particular, our new mode, involving BCE and HRE, positively
affects both the solving speed and the ability to solve formulas, when using the
MiniSat and Lingeling solvers. Having multiple GPUs in a single machine
as shown in this chapter, can definitely mitigate the lack of memory of a single
GPU, particularly for extremely large CNF formulas. Balancing the workload of
various simplification methods effectively across the available graphics processors
is feasible, using the proposed work distribution scheme.

Concerning future work, the results of this chapter motivate us to take the
capabilities of GPU SAT simplification further by supporting more simplifica-
tion techniques and apply them frequently within the solving procedure (see
Chapter 5). Regarding the multi-GPU setup, we will consider using a fast data
link such as NVLink to speed up the GPU-to-GPU communication. We will also
investigate the possibility of partitioning the workload in SAT simplifications
across the CPU and all GPUs nodes as presented in [SVL+16] to achieve optimal
performance.

Chapter 5

SAT Inprocessing

"It’s hardware that makes a machine fast. It’s software that makes a
fast machine slow."

– Craig Bruce

Since 2013, simplification techniques [SP04, EB05, GM13, HJB10, BJK21]
are also used periodically during SAT solving, which is known as inprocess-
ing [JHB12, Bie13, BFFH20, BGJ+18]. Applying inprocessing iteratively to
large problems can be a performance bottleneck in the SAT solving proce-
dure, or even increase the size of the formula, negatively impacting the solving
time. Both pre- and inprocessing have been an essential part of state-of-the-
art CDCL SAT solvers [AS09, Bie13, LGPC16, BFFH20], particularly when
applied on real-world applications relevant to software and hardware verifica-
tion [OW21a, HS07, JBH12].

Contributions

In this chapter, we introduce the first SAT solver (ParaFROST) with GPU-
accelerated inprocessing which supports various simplification rules to rewrite
a SAT formula into a compact equisatisfiable one with fewer variables and/or
clauses. Preprocessing is done only once before the solving starts (Chapter 4),
while in inprocessing, this is done periodically during the solving. Embedding

63

64 Chapter 5 SAT Inprocessing

GPU inprocessing in a SAT solver is highly non-trivial and has never been
attempted before, according to the best of our knowledge. Robust data structures
are needed that allow parallel processing, and that support efficient adding and
removing of clauses. Further, we make use of the intra-warp intrinsic functions
such as shuffle and warp voting machine instructions to exploit the GPU hardware
capabilities in our implementations.

For this purpose, we list the following contributions:

⋆ We propose a new dynamically expandable data structure for clauses
supporting both 32-bit [ES03a] and 64-bit references with a minimum of
20 bytes per clause. Further, a new parallel garbage collector is presented,
tailored for GPU inprocessing to maximize locality and reduce memory
consumption.

⋆ The HRE rule (see Section 4.2.5) is further extended in this chapter to
deal with learnt clauses and its parallel implementation is improved. Thus,
it is renamed to eager redundancy elimination or ERE.

⋆ Our new parallel BVE is twice as fast as Algorithm 4.3 and together with
other improvements yields much higher performance and robustness. The
latter algorithm in Chapter 4 could reduce the number of added clauses
by detecting logical gates that are syntactically translated to CNF using
Tseitin encoding (Section 2.1). Such a definition of gate output y is written
as y ↔ f(v1, . . . , vn). The simplest example is the AND gate y ↔ v1 ∧ v2.
To improve the functionality of regular gate detection (also called the
syntactic approach), we reason about equivalence, xor, and if then else
statements. Additionally, we provide a semantic way using function tables
to detect any gate definition in parallel that could not be found by the
syntactic method.

⋆ While the impact of accelerating these procedures is being investigated,
their correctness in refuting a formula has not yet been addressed, especially
if used in critical applications such as BMC (Chapter 7). If the solver
claims that a formula is satisfiable, the generated solution (model) can be
checked linearly in the size of the formula. However, if a solver declares a
formula is unsatisfiable (i.e. has no solutions), there is no guarantee that
the GPU code is sound and correct due to ill logic or data hazards that
could be introduced at the implementation level. Certifying SAT solvers is
becoming crucial to validate the results in tools such as theorem provers
and model checkers. Therefore, we propose an effective parallel approach

5.1 GPU Memory and Data Structures 65

to generate clausal proofs for the GPU-accelerated simplifications in DRAT
(Deletion Resolution Asymmetric Tautology) format [WHH14, HJW13]
with two goals: the proof should be compact and not pose an overhead to
the GPU solver.

The chapter is organised as follows: the GPU data structures are discussed
in Section 5.1. The proposed garbage collector and the memory management of
our proof system are explained in Sections 5.2 and 5.3, respectively. Sections
5.4-5.9 introduce our new inprocessing techniques and a way to auto-tune their
GPU kernels. Section 5.10 presents our experimental evaluation. Section 5.11
discusses related work, and Section 5.12 provides a conclusion and suggests
future work.

5.1 GPU Memory and Data Structures
To efficiently implement inprocessing techniques (i.e., Variable-Clause Elimina-
tions (VCE)) for GPU architectures, we designed a new data structure from
scratch to consider learnt clauses, and store other relevant clause information.
The new structure requires 16 bytes of bookkeeping, compared to 24 bytes
consumed by our initial design for preprocessing in SIGmA excluding literals.
Fig. 5.1 shows the proposed structures to store a clause (denoted by SCLAUSE)
and the SAT formula represented in CNF form (denoted by CNF). The following
information is stored for each clause:

• The state field (1 byte) stores if the state is ORIGINAL, LEARNT or DELETED.
• The used field (1 byte) keeps track of how many search iterations a LEARNT

clause can still be used before it gets deleted during database reduction.
LEARNT clauses are used at most twice [BFFH20].

• The added field (1 byte) is used to mark a clause as resolvent.
• The flag field (1 byte) marks the clause when it contributes to a gate

(when applying substitution).
• The literal block distance (lbd) (4 bytes) stores the number of decision

levels contributing to a conflict, if there is one [AS09]. This field is updated
when the clause is altered. Both used and lbd can be altered via clause
strengthening [BFFH20] in SUB.

• The size (4 bytes) of the clause, i.e., the number of literals.
• A signature sig (4 bytes) is a clause hash, for fast clause comparison [EB05].
In addition, a list of literals is stored, each literal taking 32 bits (1 bit to

indicate whether it is negated or not, and 31 bits to identify the variable). In

66 Chapter 5 SAT Inprocessing

(a) container for a clause (b) container for a formula

Figure 5.1: Data structures to store a SAT formula on a GPU

total, a clause requires 16 + 4t bytes, with t the number of literals in the clause.
Previously, in our tool SIGmA, we stored a pointer in each clause referencing
the first literal, with the literals being in a separate array. This consumes 8
bytes of the clause space. However, SCLAUSE does not require any bytes for the
literals array, resulting in the clause occupying 16 bytes in total, including
the extra information of the learnt clause, compared to 24 bytes in our previous
work.

As implemented in MiniSat, we use the clauses field in CNF (Fig. 5.1b) to
store the raw bytes of SCLAUSE instances with any extra literals in 4-byte buckets
with 64-bit reference support. The cap variable indicates the total memory
capacity available for the storage of clauses, and size reflects the current size
of the list of clauses. We always have size ≤ cap. The references field is
used to directly access the clauses by saving for each clause a reference to their
first bucket. The mechanism for storing references works in the same way as for
clauses.

In a similar way, an occurrence table structure, denoted by OT, is created
which has a raw pointer to a member structure OL. The latter is designed to
record the 64-bit clause references for each literal in the formula. The creation
of an OL instance is done in parallel on the GPU for each literal using atomic
instructions. For each clause C, a thread is launched to insert the occurrences
of C’s literals in the associated lists. More details on this are explained in
Section 4.1.

5.2 Parallel Garbage Collection 67

Initially, we preallocate unified memory for clauses and references which
is in size twice as large as the input formula, to guarantee enough space for
the original and learnt clauses. This amount is assumed to be enough as we
enforce that the number of resolvents never exceeds the number of ORIGINAL
clauses. Later, when applying our solver in BMC, we found that this assumption
is wrong and cannot guarantee the success of the BVE procedure. However, we
propose a solution in Chapter 7 to allow the elimination of variables dynamically
according only to the amount of memory space allocated, no matter how large
it is. The OT memory is reallocated dynamically if needed after each variable
elimination. Furthermore, we check the amount of free available GPU memory
before allocation. If no memory is available, the inprocessing step is skipped and
the solving continues on the CPU.

5.2 Parallel Garbage Collection
Modern sequential SAT solvers implement a garbage collection (GC) algorithm to
reduce memory consumption and maintain data locality [ES03a, AS09, BFFH20].
Since GPU global memory is a scarce resource and coalesced accesses are essential
to hide the latency of global memory (see Section 3.2), we decided to develop an
efficient and parallel GC algorithm for the GPU without adding overhead to the
GPU computations.

Figure 5.2 demonstrates the proposed approach for a simple SAT formula
{{a, ¬b, c}, {a, b, ¬c}, {d, ¬b}, {¬d, b}}, in which {a, b, ¬c} is to be deleted. The
figure shows, in addition, how the references and clauses lists in Figure 5.1b
are updated for the given formula. The reference for each clause C is calculated
based on the sum of the sizes (in buckets) of all clauses preceding C in the
list of clauses. For example, the first clause C1 requires 12 + 4t = 24 bytes or
CB + t buckets, where a bucket consists of four bytes, and the constant CB is
the number of buckets needed to store SCLAUSE, in our case 12 bytes / 4 bytes.
Given the number of buckets needed for C1 is 6, the next clause (C2) must be
stored starting from position 6 in the list of clauses. This position plus the size
of C2 determines in a similar way the starting position for C3, and so on.

The first step towards compacting the CNF instance when C2 is to be deleted is
to compute a stencil and a list of corresponding clause sizes in terms of numbers
of buckets. In this step, each clause Ci is inspected by a different thread that
writes a ‘0’ at position tid of a list named stencil if the clause must be deleted,
and a ‘1’ otherwise. The size of stencil is equal to the number of clauses. In
a list of the same size called buckets, the thread writes at position tid ‘0’ if

68 Chapter 5 SAT Inprocessing

Figure 5.2: An example of parallel GC on a GPU

the clause will be deleted, and otherwise the size of the clause in terms of the
number of buckets.

At step 2, a parallel exclusive-segmented scan operation is applied on the
buckets array to compute the new references. In this scan, the value stored at
buckets[tid], masked by the corresponding stencil, is the sum of the values
stored at positions 0 up to, but not including, tid. An optimised GPU implemen-
tation of this operation is available via the CUDA CUB library [Mer20], which
transforms a list of size n in log(n) iterations. In the example, this results in C3
being assigned reference 6, thereby replacing C2.

At step 3, the stencil list is used to update references in parallel. The
DeviceSelect::Flagged standard function of the CUB library can be deployed
for this, keeping clause references in consecutive positions via stream com-

5.2 Parallel Garbage Collection 69

paction [BOA09]. Finally, the actual clauses are copied to their new locations in
clauses.

Algorithm 5.1 describes in detail the GPU implementation of the parallel GC.
As input, Algorithm 5.1 requires a SAT formula Sin as an instance of CNF. The
constant CB is kept in GPU constant memory for fast access. To begin GC, we
count the number of clauses and literals in the Sin formula after simplification
has been applied (line 1). The counting is done via the parallel reduction kernel
countSurvived, listed at lines 7-33.

The values rCls and rLits at line 8 will hold the current number of clauses
and literals, respectively, counted by the executing thread. The value b is used as
a loop counter and initially holds half of the current block size. These variables
are stored in the thread-local register memory. Within the loop at lines 9-13,
the counters rCls, rLits are updated incrementally if the clause at position tid
in clauses is not deleted. Once a thread has checked all its assigned clauses,
it stores the counter values in the (block-local) shared memory arrays (shCls,
shLits) at line 16.

A non-participating thread simply writes zeros (line 18). Next, all threads in
the block are synchronized by the syncThreads call. The loop at lines 21-27
performs the actual parallel reduction to accumulate the number of non-deleted
clauses and literals in shared memory within thread blocks. In each iteration,
the counter b is divided by 2 until it is equal to 32 (note that blocks always
consist of a power of two number of threads). The last 32 threads assembling a
full warp reduce the data in the shared memory via warp shuffle reduction (line
28). This operation allows all-reduce direct communication between the threads
in a single warp without the need for synchronization.

The total number of clauses and literals is in the end stored by thread 0, and
this thread adds those numbers using atomic instructions to the globally stored
counters numRefs and numLits at lines 30-31, resulting in the final output. In
the procedure described here, we prevent having each thread perform atomic
instructions on the global memory, by which we avoid a potential performance
bottleneck. The computed numbers are used to allocate enough memory for the
output formula at line 2 on the CPU side.

The kernel computeStencil, called at line 3, is responsible for checking
clause states and computing the number of buckets for each clause. The com-
puteStencil kernel is given at lines 34-43. If a clause C is set to DELETED (line
37), the corresponding entries in stencil and cindex are cleared at line 38,
otherwise the stencil entry is set to 1 and the cindex entry is updated with
the number of clause buckets.

The exclusiveScan routine at line 4 calculates the new references to store

70 Chapter 5 SAT Inprocessing

Algorithm 5.1: Parallel Garbage Collection
Input : global Sin, stencil, cindex shared shCls, shLits constant CB
Output :Sout

1 numRefs, numLits ← countSurvived(Sin)
2 Sout ← allocate(numRefs, numLits)
3 stencil, cindex ← computeStencil(Sin)
4 cindex ← exclusiveScan(cindex)
5 references(Sout)← compactRefs(cindex, stencil)
6 copyClauses(Sout, Sin, cindex, stencil)
7 kernel countSurvived(Sin):
8 register rCls← 0, rLits← 0, b← blockDim/2
9 for all tid ∈ J 0, |Sin| K do in parallel

10 register C ← Sin[tid]
11 if state(C) ̸= DELETED then
12 rCls← rCls + 1, rLits← rLits + |C|
13 end
14 end
15 if tx < |Sin| then
16 shCls[tx] = rCls, shLits[tx] = rLits
17 else
18 shCls[tx] = 0, shLits[tx] = 0
19 end
20 syncThreads()
21 for b : b/2→ 32 do // b will be blockDim /2, (blockDim /2)/2, ..., 32
22 if tx < b then
23 shCls[tx]← shCls[tx] + shCls[tx + b]
24 shLits[tx]← shLits[tx] + shLits[tx + b]
25 end
26 syncThreads()
27 end
28 if b = 32 then shuffleReduction(shCls,shLits)
29 if tx = 0 then
30 atomicAdd(numRefs, shCls[tx])
31 atomicAdd(numLits, shLits[tx])
32 end
33 end
34 kernel computeStencil(Sin):
35 for all tid ∈ J 0, |Sin| K do in parallel
36 register C ← Sin[tid]
37 if state(C) = DELETED then
38 stencil[tid]← 0 , cindex[tid]← 0
39 else
40 stencil[tid]← 1 , cindex[tid]← CB + t
41 end
42 end
43 end
44 kernel copyClauses (Sout, Sin, cindex, stencil):
45 for all tid ∈ J 0, |Sin| K do in parallel
46 if stencil[tid] then
47 register & Cdest ← (SCLAUSE &)(clauses(Sout) + cindex[tid])
48 Cdest ← Sin[tid]
49 end
50 end
51 end

5.3 Proof Memory Management 71

the remaining clauses based on the collected buckets. For that, we use the
exclusive scan method offered by the CUB library. The compactRefs routine
called at line 5 groups the valid references, i.e., those flagged by stencil, into
consecutive values and stores them in references(Sout), which refers to the
references field of the output formula Sout. Finally, copying clause contents
(literals, state, etc.) is done in the copyClauses kernel, called at line 6. This
kernel is described at lines 44-51. If a clause in Sin is flagged by stencil via
thread tid, then a new SCLAUSE reference is created in clauses(Sout), which
refers to the clauses field in Sout, offset by cindex[tid].

The GC mechanism described above resulted from experimenting with several
less efficient mechanisms first. In the first attempt, two atomic additions per
thread were performed for each clause, one to move the non-deleted clause
buckets and the other for moving the corresponding reference. However, the
excessive use of atomics resulted in a performance bottleneck and produced a
different simplified formula on each run, that is, the order in which the new
clauses were stored depended on the outcome of the atomic instructions. The
second attempt was to maintain stability by moving the GC to the host side.
However, accessing unified memory on the host side results in a performance
penalty, as it implicitly results in copying data to the host side. The current
GPU approach is faster and always results in the same output formula because
both segmented scan and stream compaction preserve the original data order.

5.3 Proof Memory Management

In this article, we adopt the binary format in generating the DRAT proof to save
memory, particularly on the GPU side. Let l and −l be the positive and negatives
integers to represent the literals ℓ and ¬ℓ respectively in DIMACS format. To
encode l in the binary form, it has to be mapped to an unsigned integer first
using the mapping function: map(l) := (l > 0) ? 2 * l : -2 * l + 1.
The mapped value can then be compressed into a variable-byte sequence of 7-bit
words (wi):

l =
4∑

i=0
wi × 2(7×i) (5.1)

In addition, every sequence has two additional bytes. The first byte acts as a
prefix to express whether a lemma is added (character ‘a’ or 61 in hexadecimal)
or deleted (character ‘d’ or 64 in hexadecimal). The last byte is zero to mark

72 Chapter 5 SAT Inprocessing

Figure 5.3: An example showing the DRAT proof generated by ParaFROST

the end of the lemma. Ideally the binary form can save memory by a factor of 3
as reported in [WHH14].

Example 5.1. Consider the CNF formula in Figure 5.3 (leftmost side). Eliminat-
ing the variables 2 and 4 yields the resolvents {1, 3}, {1, -3}, and {-1, 5}, {-1, -5},
respectively. Finally, eliminating the variables 3 and 5 produces two unit clauses
{1} and {-1}, respectively. Thus, the formula is declared unsatisfiable due to
the contradicting units. In the middle, the DRAT proof is provided by the
ParaFROST solver, revealing all resolvents added after each resolution step. A
binary-equivalent DRAT format is also shown on the rightmost side.

Before applying certified simplifications on the GPU, an upper-bound of
memory space required to store the binary DRAT proof is calculated for all
literals. The idea is to compute, per unsigned literal l, the minimum number
of bytes (see Equation 5.1). To do that efficiently on the GPU, one can count
the number of leading zeros (Z) in the bit string of the integer value using
the intrinsic function clz. By subtracting Z from 32, we get the position of
the most-significant high bit M (i.e., minimum number of bits to represent l).
Dividing the latter by 7 (remember binary DRAT uses 7-bit wording), gives the
lower bound of the number of words W . To get the upper bound, W needs to
be rounded up using the integer division (W + 7 − 1)/7. However, doing this
operation for each literal, particularly in large formulas incurs a performance
penalty. Since the position cannot be higher than 32, a small lookup table is
created for all possible values of roundup(W) and stored in the constant memory.
The table has a fixed length of 31 and its values range between 1 and 5.

Figure 5.4 gives a working example of the parallel computation of the upper-

5.3 Proof Memory Management 73

Figure 5.4: An example of binary DRAT counting on a GPU

bound for the literals 67713, −63, 64, and −67713. Initially, the literals are
mapped to the unsigned integers 135426, 127, 128, and 135427, respectively. Next,
each thread calculates the minimum number of bytes per literal as described
above and the results are rounded up using the lookup table LUP stored in the
constant memory. For example, 135427 would occupy a minimum of 3 bytes
to store. Finally, parallel reduction is applied on the pbytes array to sum up
the contents and obtain the upper bound (9 in this example). Ideally, we need
a memory space equal to the literals upper bound plus 2 times the number
of clauses in a CNF formula (recall that DRAT requires two additional bytes
per clause). However, in practice, 1.5 times this bound is needed to guarantee
enough space for emitting the proof on the GPU side.

Algorithm 5.2 lists in detail the GPU proof memory allocator. It takes as
input the formula S and the lookup table LUP. First, all clauses are flattened
into consecutive literals and stored in the array literals. At line 2, the kernel
countProof is launched (given at lines 4-30) to create both the pbytes array
and the memory bound proofbound. The former is needed as reference to emit
the proof later in VCE using atomic instructions.

The variable rBytes at line 5 will hold the current number of bytes counted
by the executing thread. The value b initially holds half of the current block
size (used later as a loop counter). Within the loop at lines 6-14, the counter

74 Chapter 5 SAT Inprocessing

Algorithm 5.2: GPU Proof Memory Allocator
Input : global Sin, literals, pbytes
Input : shared shBytes
Input : constant LUP
Output : global P

1 literals ← flatten(Sin)
2 proofbound, pbytes ← countProof(literals)
3 P ← allocate(proofbound)
4 kernel countProof(literals):
5 register rBytes← 0, b← blockDim/2
6 for all tid ∈ J 0, |literals| K do in parallel
7 l← literals[tid]
8 if pbytes[l] = 0 then
9 pbytes[l]← LUP[30− clz(l)] // offset position (32− clz(l)) by −2

10 rBytes← rBytes + pbytes[l]
11 else // the more threads taking this path, the better
12 rBytes← rBytes + pbytes[l]
13 end
14 end
15 if tx < |Sin| then
16 shBytes[tx] = rBytes
17 else
18 shBytes[tx] = 0
19 end
20 syncThreads()
21 for b : b/2→ 32 do
22 if tx < b then
23 shBytes[tx]← shBytes[tx] + shBytes[tx + b]
24 end
25 syncThreads()
26 end
27 if b = 32 then shuffleReduction(shBytes)
28 if tx = 0 then
29 atomicAdd(proofbound, shBytes[tx])
30 end
31 end

rBytes is updated incrementally if the value pbytes[l] is zero, i.e., the number
of bytes has not been computed before for the literal l. Notice that we subtract
the bit position clz (l) at line 9 from 30 rather than 32 as the table is indexed
from 0 to 30 (see Figure 5.4). Having a non-zero value at pbytes[l] means the
current literal is a duplicate and its variadic size has already been computed
before. Therefore, in this case, we rely on data racing and thread divergence,

5.4 Variable Scheduling 75

which contradicts the convention of parallel programming. Example 5.2 explains
this phenomenon.

Example 5.2. Suppose we have a set of literals = {3, 3, 5, -5} and four
threads t0, . . . , t3 where ti represents the tid of thread i. In Algorithm 5.2, when
t0 and t1, both inspect literal 3, the following two scenarios are possible:

1. Either one of the threads t0 or t1 is faster than the other and takes the
control path at lines 8-10, updating pbytes[3] to 1. The other thread has
seen the new updated value pbytes[3] = 1; thus, taking the control path
at lines 11-12. In that case, the more threads executing that path, the
better.

2. Both threads t0 and t1 check the condition at line 8 at the exact same time.
Thus, they both do the counting and update pbytes[3] simultaneously.
This is not problematic, as they both write the same value.

Once a thread has checked its literal, it stores the counter value in the
(block-local) shared memory array shBytes at line 16. The values in shBytes
are then reduced in parallel to the global variable proofbound. With this value,
memory is allocated to the proof stream P in bytes at line 3.

5.4 Variable Scheduling
As previously discussed in Chapter 4, each elimination method is applied on
multiple variables simultaneously. Doing so may lead to data hazards, due to the
disjunction between literals in all clauses. That is, if two dependent variables
x and y were to be processed for simplification, two threads might manipulate
clause C containing x and y at the same time. To guarantee soundness of the
parallel simplifications, we proposed our LCVE algorithm (Chapter 4) prior to
simplification which is responsible for electing a set of mutually independent
variables (candidates) from a set of authorised candidates. The remaining
variables relying on the elected ones are frozen. We encourage the reader to
check the Definitions 4.1-4.4 for more details.

In this chapter, we map the frozen variables to the domain {x1, . . . , x12} in
addition to variable elections. For frozen variables that would be mapped to a
value higher than 12, their mappings are set to 0 (i.e., a unique stamp to identify
out-of-range variables). The mapped variables are used later in the next section
to build the function tables (denoted by funTab) with size 212 = 512 bits.
Algorithm 5.3 extends the original (Algorithm 4.2) to support the F-mapping

76 Chapter 5 SAT Inprocessing

Algorithm 5.3: LCVE (updated version to support F-mapping)
Input :S,A, h, T
Output : Φ

1 F ← ∅, Fmap ← {0}, limit← 1
2 foreach x ∈ A do
3 if x ̸∈ F then
4 Φ← Φ ∪ x
5 foreach C ∈ S[T [x]] ∪ S[T [¬x]] do
6 foreach ℓ ∈ C do
7 v ← var(ℓ)
8 if v ̸= x then
9 F ← F ∪ v

10 if limit ≤ 12 then
11 Fmap[v]← limit, limit← limit + 1
12 end
13 end
14 end
15 end
16 end
17 end

functionality. Initially, all elements in Fmap are set to 0 (line 1). Afterwards,
the algorithm considers all variables x in A (line 2). If x has not yet been frozen
(line 3), it adds x to Φ (line 4). Next, the algorithm needs to identify all variables
that depend on x. For this, it iterates over all clauses containing either x or
¬x (line 5), and each literal ℓ in those clauses is compared to x (lines 6-8). If ℓ
refers to a different variable v, then v must be frozen. In addition, we map v to
a value limit in range 1 ≤ limit ≤ 12 and stores it in Fmap (lines 10-12).

5.5 Main Inprocessing Procedure

A top-level description of GPU parallel inprocessing is shown in Algorithm 5.4.
As input, it takes the current formula Sh from the solver (executed on the
host) and copies it to the device global memory as Sd (line 1). Initially, before
simplification, we compute the clause signatures and sort clause literals via
stream 0 at line 2 (prepareFormula procedure). Concurrently, via stream 1,
variables are ordered at line 3. Concurrent execution is discussed at Section 3.4.
The orderVariables routine does the same operations explained earlier for
Algorithm 4.1 to produce an ordered array of authorised candidates A following

5.5 Main Inprocessing Procedure 77

Algorithm 5.4: Certified Parallel Inprocessing
Input :Sh, µ, phases

1 Sd ← copyToDevice(Sh)
2 prepareFormula(Sd, stream0)
3 A ← orderVariables(Sd, stream1)
4 Ph,Pd ← proofAllocator(Sd, stream0)
5 while p : 0→ phases do
6 syncAll() // Synchronize all streams
7 T ← createOT(Sd)
8 BCP(Uh,Sd, T)
9 Φ← LCVE(Sd, T ,A, µ)

10 if p = phases then
11 ere(Sd, T , Φ)
12 break
13 end
14 sortOT(T , Φ, listKey)
15 Ud,Pd ← eliminate(Sd, T , Φ) // Applies SUB then BVE
16 Ph ← copyToHostAsync(Pd, stream1)
17 Uh ← copyToHostAsync(Ud, stream2)
18 collect(Sd, stream3)
19 sync(stream1), writeProof(Ph)
20 µ← µ× 2
21 end
22 device function listKey(a, b):
23 Ca ← Sd[a], Ca ← Sd[b] // Ca = {x1, x2, . . . , xk}, Cb = {y1, y2, . . . , yk}
24 if |Ca| ̸= |Cb| then return |Ca| < |Cb|
25 if x1 ̸= y1 then return x1 < y1
26 if xk ̸= yk then return xk < yk

27 if sig(xk) ̸= sig(yk) then return sig(Ca) < sig(Cb)
28 return a < b

29 end

Definition 4.1. At line 4, Algorithm 5.2 is executed via the proofAllocator
routine on the same stream as prepareFormula. The space allocated for Pd

resides in global memory; whilst Ph gets a pinned memory space (see Section 3.3.2)
on the host side with the same size as Pd.

The while loop at lines 5-21 applies SUB and BVE, for a configured number
of iterations (indicated by phases), with increasingly large values of the threshold
µ. Increasing µ exponentially allows LCVE to elect additional variables in the
next elimination phase since after a phase is executed on the GPU, many elected

78 Chapter 5 SAT Inprocessing

variables are eliminated. In addition, mapping a new set of frozen variables is
essential for the effectiveness of funTab in finding new gate definitions. The
ERE method is computationally expensive. Therefore, it is only executed once
in the final iteration, at line 11. At line 6, syncAll is called to synchronize all
streams being executed. At line 7, the occurrence table T is created. Next, the
LCVE routine produces the set Φ (see Definition 4.3) as explained previously in
Algorithm 5.3.

The parallel creation of the occurrence lists in T results in the order of
these lists being chosen non-deterministically. Directly applying the eliminate
procedure called at line 15, which performs the parallel simplifications, would
produce results non-deterministically as well. To remedy this effect, the lists in
T are sorted according to a unique key in ascending order before eliminate
is called. Besides the benefit of stability, this allows SUB to abort early when
performing subsumption checks.

The sorting key is given as the device function listKey at lines 22-29. It
takes two references a, b and fetches the corresponding clauses Ca, Cb from Sd

(line 23). First, clause sizes are tested at line 24. If they are equal, the first
and the last literal in each clause are checked, respectively, at lines 25-26. If
the literals are equal, clause signatures are tested at line 27. Otherwise, clause
references are compared at line 28. The references are always distinct; thus,
they guarantee sorting stability. However, they should be tested as a last resort.
Experiments have shown that using only clause reference in addition to its size
has a negative impact overall on the CDCL search. CaDiCaL implements
a similar function, but only considers clause sizes [BFFH20]. The sortOT
routine launches a kernel to sort the lists pointed to by the variables in Φ in
parallel. Each thread runs an insertion sort to in-place swap clause references
using listKey.

The eliminate procedure at line 15 applies the SUB method to remove any
subsumed clauses or strengthen clauses if possible, after which BVE is applied.
The SUB and BVE methods call kernels that scan the occurrence lists of all
variables in Φ in parallel. More information on this is in Sections 5.6 and 5.7.
Both the BVE and SUB methods emit the proof to Pd and may add new unit
clauses atomically to a separate array Ud. The propagation of these units cannot
be done immediately on the GPU due to possible data races, as multiple variables
in a clause may occur in unit clauses. For instance, if we have unit clauses {a}
and {b}, and these would be processed by different threads, then a clause {ā, b̄, c}
could be updated by both threads simultaneously. Thus, this propagation is
delayed until the next iteration, and performed by the host at line 8. Note
that T must be recreated first to consider all resolvents added by BVE during

5.6 Three-Phase Parallel Variable Elimination 79

the previous phase. The ERE method at line 11 is executed only once at the
last phase (phases) before the loop is terminated. Section 5.8 explains in detail
how ERE can be effective in simplifying both ORIGINAL and LEARNT clauses in
parallel. Again, clausal proof of ERE correctness is emitted to Pd.

At line 16-17, the proof stream and new units are copied from the device to the
host arrays Ph and Uh, respectively. The data transfers are done asynchronously
via stream1 and stream2 . Similar to Ph, the Uh array is allocated in pinned
host memory. Recall from Section 3.3.2 that asynchronous data transfers to
the host are only allowed if the host memory is page-locked. The collect
procedure does the GC as described by Algorithm 5.1 via stream3 . At line 19,
we synchronize the proof data transfer performed by stream1 and write the byte
stream to the proof output file. Other active streams are synchronized at line 6.

5.6 Three-Phase Parallel Variable Elimination
The BVIPE algorithm in Chapter 4 had a main shortcoming due to the heavy
use of atomic operations to add new resolvents. Per eliminated variable, two
atomic instructions were performed, one for adding new clauses and the other
for adding new literals. Besides performance degradation, this also resulted in
the order of added clauses being chosen non-deterministically, which impacted
reproducibility (even though the produced formula would always at least be
logically the same).

The approach to avoiding the excessive use of atomic instructions when
adding new resolvents is to perform parallel BVE in three phases. The first phase
scans the constructed list Φ to identify the elimination type (e.g., resolution or
gate substitution) of each variable and to calculate the number of resolvents and
their corresponding buckets.

The second phase computes an exclusive scan to determine the new references
for adding resolvents, as is done in our GC mechanism (Section 5.2). At the
last phase, we store the actual resolvents in their new locations in the simplified
formula. For solution reconstruction, we use an atomic addition to count the
resolved literals. The order in which they are resolved is irrelevant. The same is
done for emitting the proof and adding units. For the latter, experiments show
that the number of added units and proof bytes is relatively small compared
to the number of eliminated variables12, hence the penalty for using atomic
instructions is almost negligible. It would be overkill to use a segmented scan
for adding proof bytes or units.

12Deleted clauses in BVE are not added to the proof in order to save GPU memory.

80 Chapter 5 SAT Inprocessing

Algorithm 5.5: Certified 3-Phase Parallel BVE with funTab
Input : global Φ, T , Ud, Pd, Sd, litstack, varinfo, cindex, rindex, pbytes
Input : constant CB

1 varinfo ← VceScan(Φ,Sd, T)
2 cindex ← computeClauseIndices(varinfo, size(clauses))
3 rindex ← computeClauseRefIndices(varinfo, size(references))
4 VceApply(Φ,Sd, T , varinfo, cindex, rindex)
5 kernel VceScan(Φ,Sd, T):
6 for all tid ∈ J 0, |Φ| K do in parallel
7 register x← Φ[tid], Tx = T [x], T¬x = T [¬x]
8 register t← NONE, rCls← 0, rLits← 0
9 varinfo[tid]← 0, cindex[tid]← 0, rindex[tid]← 0

10 if Tx = ∅ ∨ T¬x = ∅ then litstack ← toblivion(x,Sd, Tx, T¬x)
11 else
12 t, rCls, rLits← gateReasoning(x,Sd, Tx, T¬x)
13 if t = NONE then t, rCls, rLits← funReasoning(x,Sd, Tx, T¬x)
14 if t = NONE then t, rCls, rLits← mayResolve(x,Sd, Tx, T¬x)
15 varinfo[tid]← t, rindex[tid]← rCls, cindex[tid]← CB× rCls + rLits
16 end
17 end
18 end
19 kernel VceApply(Φ,Sd, T , varinfo, cindex, rindex):
20 for all tid ∈ J 0, |Φ| K do in parallel
21 register x← Φ[tid]
22 register t← varinfo[tid], cidx← cindex[tid], ridx = rindex[tid]
23 reqSpace← cidx + CB× rCls + rLits
24 reqRefs← ridx + rCls
25 if t ̸= NONE then
26 if t = RES then
27 (Sd,Ud,Pd)← (Sd,Ud,Pd) ∪ resolve(x,Sd, T , ridx, cidx, pbytes)
28 else if t = SUBST then
29 (Sd,Ud,Pd)← (Sd,Ud,Pd) ∪ substitute(x,Sd, T , ridx, cidx, pbytes)
30 else if t = CORE then
31 (Sd,Ud,Pd)← (Sd,Ud,Pd) ∪

coreSubstitute(x,Sd, T , ridx, cidx, pbytes)
32 end
33 litstack ← toblivion(x,Sd, T [x], T [¬x])
34 end
35 end
36 end

At line 1 of Algorithm 5.5, phase 1 is executed by the VceScan kernel (given
at lines 5-18). Every thread scans the clause set of its designated literals x and
¬x (line 7). References to these clauses are stored at Tx and T¬x. Moreover,
register variables t, rCls, rLits are created to hold the current type, number of
added clauses, and number of added literals of x, respectively (line 8). If x is pure
at line 10, then there are no resolvents to add and the clause sets of x and ¬x are
directly marked as DELETED by the routine toblivion. Moreover, this routine
adds the marked literals atomically to litstack. Note that these clauses are

5.6 Three-Phase Parallel Variable Elimination 81

Algorithm 5.6: funTab Reasoning
Input : global Sd, T

1 device function funReasoning(x,Sd, Tx, T¬x):
2 local fp ← {1, ..., 1}, fn ← {1, ..., 1}
3 withinRange← buildFunTab(x,Sd, Tx, fp) ∧ buildFunTab(¬x,Sd, T¬x, fn)
4 if withinRange ∧ and(fp, fn) = {0, ..., 0} then
5 Gℓ ← Sd[T [x]] ∪ Sd[T [¬x]]
6 forall C ∈ Gℓ do
7 if flag(C) = 0 ∧ isFalseFun(Gℓ \ {C}) then flag(C)← 1
8 end
9 end

10 end
11 device function buildFunTab(ℓ,Sd, Tℓ, f):
12 forall C ∈ Sd[Tℓ] do
13 shared fs ← {0}
14 forall ℓ′ ∈ C do
15 if ℓ′ ̸= ℓ then
16 v ← Fmap[var(ℓ′)]
17 if v = 0 then return false
18 fs ← or(fs, magicNum(v))
19 end
20 end
21 f ← and(f, fs)
22 end
23 end

not emitted to the proof. At line 12, we check first if x contributes to a regular
logical gate using the routine gateReasoning, and save the corresponding rCls
and rLits. If this is the case, the type t is set to SUBST, otherwise we try funTab
reasoning at line 13 or resolution at line 14.

The funReasoning procedure is given in Algorithm 5.6 at lines 1-10 and
is responsible for finding irregular gate definitions as explained earlier in the
introduction. At line 2, two function tables fp, fn are created in threads local
memory (see Section 3.3.2). Both tables are bit-vectors of length 512 bits
initialized to ones. The maximum number of variables supported is 12. In the
implementation, frozen variables in F are mapped to values in the domain [1, 12].
At line 3, we encode the clause sets in Tx and T¬x into their bit representations in
fp and fn via buildFunTab, respectively. If all literals are successfully mapped
to the above range, then withinRange is set to true. A gate is found, in case both
tables are built and their bit-wise and is all-zeros (i.e., unsatisfiable). Next, it is
attempted to reduce the clause set Gℓ to a smaller clausal core (not necessarily
minimal, though). The loop at lines 6-8 removes a clause at a time from Gℓ

and tests for all-zero bit string via isFalseFun. If Gℓ \ C is unsatisfiable, C is
marked as a non-gate clause. After the loop terminates, all non-flagged clauses

82 Chapter 5 SAT Inprocessing

in Gℓ together form a clausal core.
The loops at lines 12-22 in the buildFunTab function transform only the

frozen literals (i.e., ℓ is skipped) in each clause C ∈ Sd[Tℓ] to bit-vectors using
magical numbers13. A magical number is unique constant in which a sequence
of bits is repeating itself multiple times. For example, 4,278,255,360 is a magical
number. These numbers can be used to extract and pack integer values into a
single bit string (e.g., the function table). At line 16, the frozen variable var(ℓ′)
is mapped to v. If it has the value 0 (line 17), then we bail out immediately
with a false; otherwise, the literals of C are disjoined using a bit-wise or and
stored in fs (line 18). At line 21, the shared fs is conjoined with the global f
using a bit-wise and.

Back to Algorithm 5.5, the condition rCls ≤ (|Tx| + |T¬x|) is always tested
implicitly by the routines gateReasoning, funReasoning, and mayResolve
(lines 12-14) to limit the number of resolvents per x. The varinfo, rindex,
and cindex arrays are updated at line 15. The total number of buckets needed
to store all added clauses is calculated by the formula (CB × rCls + rLits) and
stored in cindex[tid]. Finally, in phase 3, we use the calculated indices in rindex
and cindex to guide the new resolvents to their locations in Sd. The kernel
is described at lines 19-36. Each thread either calls the procedure resolve or
substitute or coreSubstitute, based on the type stored for the designated
variables. However, a condition for applying an elimination is that t ̸= NONE,
which is checked using line 25. Any produced units are saved into Ud atomically.
The cidx and ridx variables indicate where resolvents should be stored in Sd per
variable x. Similarly, these resolvents are saved in Pd as stream bytes using the
transformation in Equation 5.1. Recall that the number of bytes per literal is
already stored in pbytes and is not required to be computed again.

5.7 Parallel Subsumption Elimination Revisited
The PSUB algorithm in Chapter 4 is revisited in this section to address the
following updates:

• The learnt clauses added during the solving process.

• New unit clauses that may arise from self-subsumption resolution.

• Emitting deleted and strengthened clauses to the proof.

13https://graphics.stanford.edu/~seander/bithacks.html

https://graphics.stanford.edu/~seander/bithacks.html

5.7 Parallel Subsumption Elimination Revisited 83

Algorithm 5.7: Certified Parallel SUB
Input : global Sd, Φ, T ,Ud,Pd

1 kernel PSUB(Φ,Sd, T ,Ud,Pd):
2 for all tid ∈ J 0, |Φ| K do in parallel
3 register x← Φ[tid], Tx = T [x], T¬x = T [¬x]
4 foreach C ∈ Sd[Tx] do
5 shared Cs ← C
6 foreach C′ ∈ Sd[T¬x] do
7 if |C′| ≤ |C| ∧ sig(C′, C) ̸= 0 ∧ selfsub(C′, Cs) then
8 strengthen(C, Cs, x)
9 if |Cs| = 1 then Ud ← Ud ∪ Cs

10 proofAddClause(Pd, Cs)
11 end
12 end
13 foreach C′′ ∈ Sd[Tx] do
14 if |C′′| ≤ |C| ∧ sig(C′′, C) ̸= 0 ∧ subsume(C′′, Cs) then
15 if state(C′′) = LEARNT ∧ state(C) = ORIGINAL then
16 state(C′′)← ORIGINAL
17 end
18 state(C)← DELETED
19 proofDelClause(Pd, Cs)
20 end
21 end
22 end
23 end
24 end

Similar to Algorithm 4.4, Algorithm 5.7 is executed on elected variables
before variable elimination. This time, (Self)-subsumption resolution may reduce
the number of occurrences of these variables by removing many literals through
strengthening or producing unit clauses. Recall that the parallelism in PSUB is
achieved by assigning each thread to a variable x and performing subsumption
checks on all clauses in Ex. At line 5, a new clause is loaded, referenced by T [x],
into shared memory Cs for faster access.

The shared clause is compared in the loop at lines 6-12 to all clauses referenced
by T [¬x] to check whether x is a self-subsuming literal. If so, both the original
clause C, which resides in the global memory, and Cs must be strengthened (via
the strengthen function). If Cs is a unit clause, it is added atomically to Ud

(line 9). At line 10, we write this clause to the proof as an added lemma. Later
on, the propagation of all unit clauses stored in Ud is performed sequentially on
the host side after the current elimination phase is done (line 8 in Algorithm 5.4).

84 Chapter 5 SAT Inprocessing

Algorithm 5.8: Certified Parallel ERE for Inprocessing
Input : global Φ, Sd, T , Pd

1 kernel PERE(Φ,Sd, T ,Pd):
2 for all tidy ∈ J 0, |Φ| Ky do in parallel
3 register x← Φ[tidy], Tx = T [x], T¬x = T [¬x]
4 for C ∈ Sd[Tx] do
5 for C′ ∈ Sd[T¬x] do
6 if (Cm ← resolve(x, C, C′)) ̸= ∅ then
7 if state(C) = LEARNT ∨ state(C′) = LEARNT then
8 st← LEARNT
9 else

10 st← ORIGINAL
11 end
12 forwardEquality(Cm,Sd, T , st)
13 end
14 end
15 end
16 end
17 end
18 device function forwardEquality(Cm,Sd, T , st):
19 Tmin ← findMinList(T , Cm)
20 for all tidx ∈ J 0, |Tmin| Kx do in parallel
21 C ← Sd[Tmin[tidx]]
22 if C = Cm ∧ (state(C) = LEARNT ∨ state(C) = st) then
23 state(C)← DELETED
24 proofDelClause(Pd, C)
25 end
26 end
27 end

Subsequently, the strengthened Cs is used for subsumption checking in the loop
at lines 13-21. In case the subsuming clause C ′′ is LEARNT and C is ORIGINAL,
C ′′ must be turned to ORIGINAL (see Section 2.3.2). This time, the subsumed
clause is written to the proof as a deleted lemma.

5.8 Eager Redundancy Elimination
Algorithm 5.8 describes a two-dimensional kernel similar to Algorithm 4.6, in
which from each thread ID, an x and y coordinate is derived. However, the
sequential loop at line 9 in Algorithm 4.6 is optimised out by finding the literal
with the shortest occurrence list. This significantly minimizes the time spent on

5.9 Kernel Automated Tuning 85

the search for redundant clauses.
Based on the kernel’s y ID (line 2), each thread merges where possible two

clauses of its designated variable x and its complement ¬x (lines 3-6), and writes
the result in shared memory as Cm. This new clause is produced by the routine
resolve at line 6. At lines 7-11, we check if one of the resolved clauses is
LEARNT, and if so, the state st of Cm is set to LEARNT as well, otherwise it is set
to ORIGINAL. This state of Cm will guide the forwardEquality routine called
at line 12 to search for redundant clauses of the same type. In this function
(lines 18-27), the thread’s x ID is used to search the clauses referenced by the
shortest occurrence list Tmin, which is produced by findMinList at line 19. It
has the minimum size among the lists of all literals in Cm. If a clause C is found
that is equal to Cm and is either LEARNT or has a state equal to the one of Cm,
it is set to DELETED (lines 23). Finally, at line 24, the deleted clause is emitted
to the binary proof Pd.

The worst-case parallel complexity of this algorithm is

O(|Φ|
py

(µ2︸︷︷︸
loops at lines 4-5

(

findMinList at line 19︷︸︸︷
|Cm|(|Tmin|

px
))))

The value |Tmin| is usually very small compared to the upper bound µ. Therefore,
the former length can be neglected w.r.t. px , and the parallel complexity in such
case will be O(µ2|Cm|), that is, the parallel running time is dropped from cubic
to quadratic order of magnitude w.r.t. µ.

5.9 Kernel Automated Tuning
A GPU kernel needs to be configured prior to launch. The kernel configuration
sets up the number of threads per block (blockDim) and the total number of blocks
per grid (gridDim). These parameters are calculated intuitively based on the
data size. As a rule of thumb, the total number of threads (blockDim × gridDim)
should cover the data given to the kernel to process and not to exceed the limit (p)
supported by the GPU. If the data size is larger than p, a good practice is to use
the grid-stride loops as discussed in Section 3.3.1. However, the GPU occupancy
is crucial to achieve a near-optimal balance of the kernel workload across the
GPU resources. The occupancy defines how many SMs are busy (occupied) by

86 Chapter 5 SAT Inprocessing

Algorithm 5.9: Kernel Auto Tuner
Input : N , p, SMs, initBlockDim, minBlockDim, minOccupancy
Output : blockDim, gridDim

1 blockDim← initBlockDim
2 gridDim← ceil(N / blockDim)
3 maxBlocks← p / initBlockDim
4 minBlocks← maxBlocks×minOccupancy
5 while blockDim > minBlockDim ∧ gridDim ≤ minBlocks do
6 blockDim← blockDim / 2
7 gridDim← ceil(N / blockDim)
8 end
9 gridDim← min(gridDim, maxBlocks)

the thread blocks. That is, a good occupancy means a fair distribution of the
launched blocks across the available SMs.

Example 5.3. Consider an array of 1,000 data elements to be read in parallel
on a GPU having 64 SMs. If we choose the block size to be 256 threads, then we
need at least ceil(1, 000/256) = 4 blocks to process all the data in parallel. The
occupancy in this case is 4 blocks/64 SMs = 0.0625 or 6.25% which is quite low.
However, if we choose a block size of 16 threads, the occupancy goes significantly
up to 98.4% (63 blocks/64 SMs = 0.984).

Algorithm 5.9 illustrates a way to automate the tuning of the kernel configu-
ration for maximum occupancy. It takes as input: the data size N , maximum
number of supported threads p, number of SMs, and the initial block size init-
BlockDim. The minimum block size minBlockDim and the minimum occupancy
minOccupancy are user-defined lower boundaries. Initially, the blockDim value is
set to initBlockDim at line 1. Next, gridDim is calculated based on the latter and
the data size. This step gives the initial configuration without tuning. At line 3,
the maximum number of blocks that can be launched at once is computed based
on the initial block size. Given this value, and the minimum occupancy desired,
minBlocks is obtained at line 4. The loop at lines 5-8 is triggered iff blockDim
has not gone lower than the boundary minBlockDim and the gridDim has not
reached the limit minBlocks. The goal of this loop is to keep cutting down the
blockDim by 2 until a maximum value of gridDim (within bounds) is reached.
There is still a possibility that gridDim grows beyond minBlocks; therefore,
always the minimum of the most recent value of gridDim and maxBlocks is
targeted (line 9). In this work, we have set the minBlockDim and minOccupancy
to 4 and 0.5, respectively.

5.10 Benchmarks and Analysis 87

We observed that the number of scheduled variables |Φ| in the preceding
kernels VceScan, VceApply, PSUB, and PERE usually goes down as the
solver progresses due to the elimination of many variables in the preceding call
of the inprocessing procedure. Therefore, we applied the tuner in Algorithm 5.9
on the previous kernels to maximally increase the number of blocks that are
scheduled for execution on the available SMs. Turning the auto tuning on in
ParaFROST, led to an overall reduction in the running time of the inprocessing
procedure by 2%.

5.10 Benchmarks and Analysis
We implemented the proposed algorithms in our solver ParaFROST14 with
CUDA C++ version 11.0 [NVI20a]. We evaluated all GPU experiments on
the compute nodes of the Lisa GPU cluster15. Each problem was analysed in
isolation on a separate computing node, with a time-out of 3,600 seconds. Each
computing node has an Intel Xeon Gold 6130 CPU running at a base clock speed
of 2.1 GHz with 96 GB of system memory, is equipped with an NVIDIA Titan
RTX GPU (see Table 3.2), and runs on the Debian Linux operating system.

In the experiments, besides the implementations of our new GPU algo-
rithms, we involved a CPU-only version of ParaFROST (called ParaFROST
(noGPU)) for the solving of problems. Additionally, we compare to the CaDi-
CaL and Kissat [BFFH20] solvers developed by Armin Biere. The sequential
solvers were executed on the compute nodes of the DAS-5 cluster [BEdL+16].
Each node has an Intel Xeon E5-2630 CPU (2.4 GHz) with 64 GB of mem-
ory. The proofs generated by the GPU solver were verified separately by the
drat-trim tool [WHH14] on the DAS-5 cluster, with a timeout of 20,000 sec-
onds. Note that the CPU on DAS-5 is 15% faster than the CPUs on the Lisa
cluster.

To find benchmarks with potential for simplifications on the GPU (i.e. having
sufficient amount of redundant variables and clauses), we have selected all
formulas that are larger than 5 MB from the 2013-2021 SAT competitions,
excluding redundancies (repeated formulas across competitions). That is, a
total of 641 distinct formulas were selected which encode around 80+ different
real-world applications, with various logical properties. For reproducibility, the
benchmark suite can be downloaded from [Osa21a].

14Latest version: https://gears.win.tue.nl/tools/parafrost-v3.0.zip.
15This work was carried out on the Dutch national e-infrastructure with the support of

SURF Cooperative.

https://gears.win.tue.nl/tools/parafrost-v3.0.zip

88 Chapter 5 SAT Inprocessing

With this information, we adhere to four out of five principles laid out in the
SAT manifesto (version 1) [?]:

1. Benchmarks should be available for research purposes.

2. Solvers should be available in binary form for research purposes.

3. A recent generic benchmark set (e.g. competition benchmarks) should be
chosen among those of the last 3 years.

4. Experimental results should include a comparison with the state of the art.

5. Details on the experimental conditions should be provided (e.g. hardware,
OS).

As for the third principle, we refrained from using a single benchmarks set from
a particular year, as most of the included benchmarks are very small in size for
the GPU to work with (i.e. only few variables and clauses can be removed).

5.10.1 SAT-Simplification Speedup
The first part of our experiments discusses the speedup obtained by the GPU
algorithms for applying GC, BVE, funTab, and proof generation compared
to their previous implementations in SIGmA [OW19a, OW19b] or sequential
counterparts in ParaFROST (noGPU). For these experiments, we set µ and
phases initially to 32 and 5, respectively. Preprocessing is only enabled to
measure the speedup. Figure 5.5 gives the speedup of running parallel GC
against a sequential version on the host. For almost all cases, Algorithm 5.1
achieved a high acceleration when executed on the device with a maximum speed
up of 72.6× and an average of 35×. Figure 5.6 reveals how fast the 3-phase
parallel BVE is compared to a version using more atomic instructions. On
average, the new algorithm is twice as fast as the old BVIPE algorithm in
Chapter 4. In addition, we get reproducible results. Figure 5.7 evaluates the
funTab method in Algorithm 5.6 against the sequential counterpart. Cases
with zero runtime are ignored. Clearly, the GPU achieved a remarkable speedup
in finding general gate definitions compared to the CPU with a maximum of
342× and an average of 11.33×. Likewise, the acceleration of proof generation
on the GPU as presented in Figure 5.8 is significant, with a maximum speedup
of 186× and 12× on average.

5.10 Benchmarks and Analysis 89

50 100 150 200 250 300 350 400 450 500 550 600

Formulas

0

20

40

60

80

S
p

e
e
d

u
p

Max: 72.6x

Min: 3.64x

Average: 35x

Figure 5.5: Parallel GC vs. sequential speedup

50 100 150 200 250 300 350 400 450 500 550 600

Formulas

1

2

3

4

5

S
p

e
e
d

u
p

Max: 5x

Min: 1.003x

Average: 1.5x

Figure 5.6: Three-Phase BVE vs. atomic version speedup

90 Chapter 5 SAT Inprocessing

50 100 150 200 250 300 350 400

Formulas

0

50

100

150

200

250

300

350

S
p

e
e
d

u
p

Max: 341.87x

Min: 1.01x

Average: 11.33x

Figure 5.7: Parallel funTab vs. sequential speedup

50 100 150 200 250 300 350 400 450

Formulas

0

50

100

150

200

S
p

e
e
d

u
p

Min: 1.02x

Max: 185.8x

Average: 12x

Figure 5.8: Parallel proof generation vs. sequential speedup

5.10 Benchmarks and Analysis 91

500 1000 1500 2000 2500 3000 3500 4000
Run Time (sec)

150

200

250

300

350

400

450

500

Fo
rm

ul
as

 S
ol

ve
d

Timeout

CaDiCaL
CaDiCaL (Certified)
ParaFROST (noGPU)
ParaFROST (noGPU - Certified)
ParaFROST
ParaFROST (Certified)

Figure 5.9: ParaFROST vs. CaDiCaL with(out) proof emission

5.10.2 SAT-Solving Benchmarks
The second part of experiments provides a thorough assessment of our CPU/GPU
solver, the CPU-only version, CaDiCaL, and Kissat on SAT solving with
inprocessing turned on. The features/options in all solvers are left untouched.
However, unlike CaDiCaL and Kissat solvers, preprocessing is enabled by
default in ParaFROST. The timeout is set to 3,600 seconds for all experiments.

Figure 5.9 demonstrates the runtime results for all solvers with(out) proof
emission over the benchmark suite. The keyword certified means the proof
generation is enabled in the solver instance. Data are sorted w.r.t. the x-
axis. The simplification time accounts for data transfers in ParaFROST.
Overall, ParaFROST (even with proof enabled) dominates over ParaFROST
(noGPU) and CaDiCaL. Keep in mind that ParaFROST and ParaFROST
(noGPU) has the same CDCL engine. Thus, ParaFROST is faster due to the
GPU accelerated inprocessing.

Figure 5.10 compares ParaFROST to Kissat with(out) irregular gate rea-
soning16. As indicated by the green and the blue lines, finding such gates has a
noticeable impact on both ParaFROST and Kissat more than ParaFROST
(noGPU). Recall that the parallel funTab had a considerable speedup com-

16CaDiCaL solver does not have this feature

92 Chapter 5 SAT Inprocessing

500 1000 1500 2000 2500 3000 3500 4000
Run Time (sec)

150

200

250

300

350

400

450

500

Fo
rm

ul
as

 S
ol

ve
d

Timeout

Kissat
Kissat (noDef)
ParaFROST (noGPU)
ParaFROST (noGPU - noFun)
ParaFROST
ParaFROST (noFun)

Figure 5.10: ParaFROST vs. Kissat with(out) irregular-gate reasoning

50 100 150 200 250 300 350 400 450
Formulas Solved

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Si
m

pl
ifi

ca
tio

n
Ti

m
e

(s
ec

)

1e3

CaDiCaL
Kissat
ParaFROST (noGPU)
ParaFROST

Figure 5.11: Time spent on simplifications

5.10 Benchmarks and Analysis 93

20% 40% 60% 80% 100%
Simplification Percentage to Run Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
un

 T
im

e
(s

ec
)

1e3

CaDiCaL
Kissat
ParaFROST (noGPU)
ParaFROST

Figure 5.12: Percentage of simplification time to runtime

0 50 100 150 200 250 300 350 400 450
Formulas Solved

1%

10%

100%

R
ed

uc
tio

ns
 E

ff
ic

ie
nc

y

Removed Variables
Removed Variables (noFun)
Removed Clauses
Removed Clauses (noFun)

Figure 5.13: Reduction efficiency with(out) irregular-gate reasoning

94 Chapter 5 SAT Inprocessing

pared to its sequential counterpart (see Figure 5.7), which explains why funTab
is not as competitive in ParaFROST (noGPU) as for ParaFROST. On
the other hand, Kissat uses a very different method than funTab to find
general definitions. It calls a simple solver called Kitten which is responsible
for solving and extracting the clausal core from variable environments sched-
uled for elimination. Further, as expected, Kissat is more efficient than both
CaDiCaL and ParaFROST. The reason for the solving discrepancies is that
the ParaFROST CDCL heuristics (run on the host) is based on CaDiCaL
which is not as up-to-date as Kissat. We expect ParaFROST to compete with
Kissat if the same heuristics implemented in the latter is used.

Figures 5.11 and 5.12 show simplification time and its percentage of the
total run time, respectively. Clearly, the CPU/GPU solver outperforms the
sequential solvers due to the parallel acceleration. Figure 5.12 tells us that
ParaFROST keeps the workload in the majority of cases in the region between
0 and 20% as the elimination methods are scheduled on a bulk of mutually
independent variables in parallel. In CaDiCaL and Kissat, variables and
clauses are simplified sequentially, which takes more time.

Figure 5.13 reflects the overall efficiency of parallel inprocessing on variables
and clauses with(out) funTab on solved formulas with successful clause reduc-
tions. Data are sorted in descending order. Reductions can remove up to 95%
and 80% of the variables and clauses, respectively.

Figure 5.14 shows the heat-map distribution of the time spent on verification
and the memory consumed by the proofs generated by ParaFROST [Osa21b]
and CaDiCaL. All proofs are successfully verified via the drat-trim tool. The
verification times are represented by the colormap and are sorted in descending
order w.r.t. the number of unsatisfiable instances solved. Plot 5.14a reveals that
drat-trim takes more time to verify ParaFROST proofs which appears by
the hotspot on the left side of x-axis (ranges between 1.5 × 104 and 1.75 × 104

seconds). That is foreseen as the deleted lemmas in Algorithm 5.5 are not saved
to the proof in order to avoid GPU memory exhaustion. On the other hand,
CaDiCaL proofs as demonstrated by Plot 5.14b take less time to verify (e.g.
0.75 × 104 to 1 × 104 seconds) due to the saving of all deleted lemmas in BVE
which helps drat-trim to cut down the resolution steps. Also, proofs generated
by ParaFROST for the formulas 30-40 consume slightly more memory than
CaDiCaL owning to the extra resolvents and deleted lemmas produced by the
funTab method and ERE, respectively. Those methods are not implemented in
CaDiCaL.

Table 5.1 zooms into the impact of applying the funTab method in BVE on
solving a sample of 30 formulas using ParaFROST and ParaFROST (noFun),

5.10 Benchmarks and Analysis 95

40 80 120 160 200 240
Formulas Solved (UNSAT)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
oo

f s
iz

e
(b

yt
es

)

1e10

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V
er

ifi
ca

tio
n

Ti
m

e
(s

ec
)

1e4

(a) Verification of ParaFROST proofs

40 80 120 160 200 240
Formulas Solved (UNSAT)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
oo

f s
iz

e
(b

yt
es

)

1e10

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V
er

ifi
ca

tio
n

Ti
m

e
(s

ec
)

1e4

(b) Verification of CaDiCaL proofs

Figure 5.14: Heatmap showing the time-memory distribution of DRAT proof

96 Chapter 5 SAT Inprocessing

Table 5.1: funTab impact on 30 formulas solved by ParaFROST. The letters V and
C refer to Variables and Clauses, respectively. The keywords org and rem
denote original and removed, respectively.

CNF ParaFROST ParaFROST (noFun)
Formula V (org) C (org) V (rem) C (rem) t (sec) V (rem) C (rem) t (sec)

01-integer-programming-20-30-40 3,518,573 891,394 648,093 1,776,849 1,948.05 Time out (> 3, 600)
hwmcc15deep-beemhanoi4b1-k37 1,070,494 455,572 356,713 734,111 3,576.13 Time out (> 3, 600)
sokoban-p20.sas.cr.27 852,527 101,334 50,858 294,398 3,500.59 Time out (> 3, 600)
T96.1.1 32,322,587 8,905,808 4,682,382 10,522,621 1,314.91 4,672,738 10,486,383 982.60
T97.2.1 14,110,352 4,038,010 2,461,187 5,412,098 2,190.44 2,453,334 5,354,951 1,948.94
newton.2.2.i.smt2-cvc4 843,395 196,151 100,600 446,511 2,174.61 95,467 382,463 2,028.31
vlsat2_30744_3925645.dimacs 3,887,186 30,744 1,926 343,699 320.68 Time out (> 3, 600)
snw_16_9_Encpre 1,641,152 72,327 1,763 28,757 3,120.85 Time out (> 3, 600)
T99.2.1 21,859,028 6,269,521 3,790,028 7,918,822 1,920.36 3,788,312 7,926,209 2,025.92
string_compare_safety_cbmc_940 17,856,438 3,416,996 955,052 3,907,091 3,251.30 953,420 3,857,959 2,849.89
SAT_dat.k80-24_1_rule_1 4,248,961 1,084,904 752,757 2,019,402 1,256.88 751,544 2,008,237 1,292.18
string_compare_safety_cbmc_840 15,657,846 3,062,432 862,597 3,319,353 1,803.59 861,602 3,313,347 1,931.94
9dlx_vliw_at_b_iq5 2,465,696 151,661 49,339 158,940 235.79 48,374 151,153 236.66
hwmcc15deep-beemlifts3b1-k29 3,431,266 1,238,025 888,976 1,830,867 1,826.12 888,134 1,828,131 1,752.91
HCP-446-105 247,619 29,934 7,285 111,534 907.21 6,655 103,789 1,020.07
manol-pipe-f9b 547,070 183,368 155,150 359,780 16.19 154,581 355,075 17.45
string_compare_safety_cbmc_720 13,123,560 2,636,430 729,704 2,793,919 1,615.06 729,161 2,738,158 1,472.11
SAT_dat.k70-24_1_rule_3 3,622,259 927,108 638,741 1,663,433 722.73 638,270 1,664,674 815.90
string_compare_safety_cbmc_760 13,957,146 2,778,972 769,135 2,938,157 1,760.92 768,846 2,946,636 1,556.80
hwmcc15deep-6s188-k44 596,873 202,373 140,408 372,555 1,891.48 140,204 369,277 1,875.26
HCP-470-105 254,981 31,580 3,773 72,682 536.78 3,573 69,922 477.60
T65.2.0 5,233,340 1,504,336 933,201 2,067,246 156.03 933,011 2,063,029 160.73
T124.2.1 10,333,765 2,943,418 1,712,069 3,788,816 538.11 1,711,965 3,805,170 746.29
string_compare_safety_cbmc_900 16,967,922 3,275,344 922,385 3,645,490 2,720.94 922,286 3,641,942 2,684.22
Mickey_out250_known_last147_0 518,695 72,078 2,442 21,009 124.08 2,350 16,664 128.14
sv-comp19_prop-reachsafety.sigma 5,053,926 1,094,922 132,589 497,325 1,031.37 132,506 430,720 1,144.78
HCP-446-60 227,594 27,377 2,981 46,528 532.47 2,951 50,300 627.87
sted1_0x0-637 336,166 13,431 28 10,259 954.43 Time out (> 3, 600)
at-least-two-traffic_b_unsat 1,590,063 78,183 26,119 115,567 292.80 26,115 115,527 295.51
test_v7_r17_vr5_c1_s25451.smt2 2,509,155 560,348 204,239 569,220 2,352.81 204,236 571,675 2,391.08

respectively. Bold entries in the V’s and C’s columns indicate that more variables
and clauses are removed by enabling funTab in ParaFROST. For example,
funTab allowed ParaFROST to remove 4,682,382 variables in the formula
T96.1.1 compared to 4,672,738 by the configuration without funTab. That
is 9,644 extra variables are eliminated as an effect of funTab. Additionally,
ParaFROST solved many cases faster than ParaFROST (noFun) within the
time limit (3,600 seconds). For instance, the formula HCP-446-105 was solved
by ParaFROST with funTab in just 907.21 seconds, while it took 1,020.07
seconds to solve for ParaFROST without funTab.

5.11 Related Work 97

5.11 Related Work
A simple GC monitor for GPU term rewriting has been proposed by van Eerd
et al. [vEGH+21]. The monitor tracks deleted terms and stores their indices
in a list. New terms can be added at those indices. Maas et al. [MRM+12]
and Abhinav et al. [AN16] investigated the challenges for offloading garbage
collectors to an Accelerated Processing Unit (APU). Springer et al. [SM19]
introduced a promising alternative for stream compaction [BOA09] via parallel
defragmentation on GPUs. Our GC, on the other hand, is tailored to SAT
solving, which allows it to be simple yet efficient.

Regarding inprocessing, Järvisalo et al. [JHB12] introduced certain rules
to determine how and when inprocessing techniques can be applied. Biere et
al. [Bie13] presented Lingeling, the first solver with the ability of finding general
gate definitions using a BDD-based approach. Acceleration of the DPLL SAT
solving algorithm on a GPU has been done in [PDFP15], where some parts of
the search were performed on a GPU and the remainder is handled by the CPU.
Incomplete approaches are more amenable to be executed entirely on a GPU,
e.g., an approach using metaheuristic algorithms [YIMO15, YOH+20]. Recently,
Prevot et al. [PSM21] used the GPUs to determine the usefulness of a learnt
clause for parallel Portfolio-based solvers. Nonetheless, we are the first to work
on CDCL solvers with GPU accelerated inprocessing.

5.12 Conclusion
We have presented compact data structures tailored for SAT inprocessing and
various ways to do GPU memory management. Our solver ParaFROST
achieved substantial gains through GPU-accelerated inprocessing compared
to its sequential version and the state-of-the-art solver CaDiCaL. With the
improvements made to the BVE procedure in this chapter, the usage of atomic
operations has been considerably reduced which leads to an average speedup
of 1.6× compared to the atomic version. Owing to funTab reasoning, more
logical gates can be detected and removed with an average speedup of 11.33×
compared to the sequential counterpart.

We proposed the first parallel GC and proof generation on the GPU for
SAT applications with average accelerations of 35× and 11×, respectively. The
garbage collector helped reduce the GPU memory consumption while stimulating
coalesced memory access. The proof generator allowed ParaFROST to validate
all the SAT simplifications running on the GPU besides the CDCL search, giving

98 Chapter 5 SAT Inprocessing

absolute credibility to our solver and its use in critical applications such as model
checkers.

Regarding future work, we aim to adopt the inprocessing techniques and the
memory management concerning the former to a multi-GPU setup with sufficient
load balancing. Another direction is to use ParaFROST in Portfolio-based
parallel SAT solving and exploit the GPU capabilities in managing the shared
clause database as recently introduced by [PSM21].

Chapter 6

Multiple Decision Making

"An embarrassing fact that nobody has ever been able to come up with
an efficient algorithm to solve the general satisfiability problem, in
the sense that the satisfiability of any given formula of size n could be
decided in nO(1) steps."

– Donald Knuth

Most modern and successful SAT solvers are based on the Conflict-Driven
Clause-Learning (CDCL) algorithm [SS99, OW20]. CDCL learns from previous
assignments whenever a conflict occurs, and based on this, prunes the search
space to make better decisions in the future.

Many solvers have been introduced that employ CDCL, such as Grasp [SS99],
Chaff [MMZ+01], BerkMin [GN07], MiniSat [ES03a], Glucose [AS09], and
CaDiCaL [BFFH20]. Grasp was the first tool applying CDCL, after which
Chaff introduced the so-called two watched literals optimisation and the Variable
State Independent Decaying Sum (VSIDS) decision heuristic (more on these in
Section 2.2.2). BerkMin and MiniSat introduced further implementation and
heuristics optimisations. The authors behind Glucose presented robust clause
deletion and restart heuristics. The CaDiCaL solver introduced the effective
use of SAT simplifications [EB05, BJK21, OW19a, OW19b] as an in-processing
technique during the solving process [JHB12, OWB21b] and the Variable Move
To Front (VMTF) decision queue [BF15].

99

100 Chapter 6 Multiple Decision Making

Contributions

One aspect of CDCL that has always remained the same is that to explore
all possible assignments, a single decision is made at a time. In this chapter,
we implement MDM in our solver ParaFROST (see Chapter 5) to extend
CDCL with the ability to make and propagate multiple decisions at once. Our
motivation for this is to further improve the runtime performance of CDCL. To
ensure effective selection of non-singleton sets of decisions, we require that the
decisions in such a set do not lead to implications. To that extend, we introduce
the following contributions:

⋆ Local search is becoming more attractive to guide the solver in finding
solutions for satisfiable formulas. In this work, we implement a minimal
version of WalkSAT [SK93] and run it occasionally to find better truth
values to the selected multiple decisions.

⋆ ParaFROST restart is extended with interleaved policies as implemented
in CaDiCaL which combines both MiniSat and Glucose heuristics and
we show how that can be effective in MDM. Moreover, the MDM decision
heuristic is extended with the VMTF queue.

⋆ We provide a comprehensive evaluation of different MDM configurations.
Furthermore, ParaFROST with MDM heuristic is compared to different
solvers without MDM including the latest version of Kissat.

The chapter is organised as follows: Section 6.1 presents the preliminaries
in SAT solving and our generalisation of CDCL. In Section 6.2, it is explained
how MDM can be implemented, focusing on heuristics and optimisations. In
Section 6.3, we integrate MDM into CDCL and address its correctness. Finally,
benchmark results are given and discussed in Section 6.4, and conclusions are
drawn in Section 6.6.

6.1 SAT Solving with CDCL
In this section, we will focus on SAT solving with CDCL approach which is used
by most contemporary and successful SAT solvers. CDCL learns from previous
assignments, and based on this, prunes the search space to make better decisions
in the future (Section 2.2).

During SAT solving, we keep track of a set σ consisting of all literals that
have been assigned ⊤. When applying an assignment ℓ, σ is updated to σ ∪ {ℓ}.

6.1 SAT Solving with CDCL 101

With ℓ |=σ ⊤, we express that literal ℓ evaluates to true w.r.t. σ. This is defined
as ℓ |=σ ⊤ ≜ ℓ ∈ σ. With ℓ |=σ ⊥, we refer to ¬ℓ ∈ σ. The evaluation of ℓ is
undetermined, denoted by ℓ |=σ↑, in case neither ℓ ∈ σ nor ¬ℓ ∈ σ. We refer
to the set of variables in σ as var(σ) = {x | x ∈ σ ∨ ¬x ∈ σ}. The set of all
variables in the formula S is denoted by var(S) = {x | ∃C ∈ S.x ∈ C ∨ ¬x ∈ C}.

For a clause C ∈ S, C |=σ ⊤ expresses that C is satisfiable w.r.t. σ. We have
C |=σ ⊤ iff ∃ℓ ∈ C.ℓ |=σ ⊤. If for all ℓ ∈ C, we have ℓ |=σ ⊥, then C |=σ ⊥.
If neither C |=σ ⊤ nor C |=σ ⊥, we have C |=σ↑. Formula S is satisfiable
w.r.t. σ, i.e., S |=σ ⊤, iff ∀C ∈ S.C |=σ ⊤. In that case, σ is a model for S.
With Freeσ(C), we refer to the set of free, unassigned literals in C w.r.t. σ, i.e.,
Freeσ(C) = {ℓ ∈ C | ℓ ̸∈ σ ∧ ¬ℓ ̸∈ σ}. A clause C becomes an implication iff
C |=σ↑ and |Freeσ(C)| = 1.

6.1.1 The CDCL procedure
Given a CNF formula S, a CDCL-based SAT solver tries to find a model for S.
The search is performed in three main steps: decision making, propagating the
effects of assignments, and analysing in case so-called conflicts arise. The CDCL
procedure is described by Algorithm 6.1. This description generalises the one
given in [SS99] without recursion to support MDM. The extension we propose
in this manuscript affects the operations at lines 9-10. In the extension, decide
(line 9) may not just make a single decision when called, as in standard CDCL,
but it may make a set of decisions. How and when decide makes multiple
decisions should be ignored for now. This is covered in Sections 6.2 and 6.3.

The global variables of the CDCL procedure are S, σ, and a set ρ of truth
values (phases) that were previously assigned to the literals in σ, but have been
removed due to backtracking (the purpose of the latter is to apply progress
saving, as proposed in [PD07]). In addition, the procedure takes a decision level
function δ, which records at which decision/search level (d) each literal has
been assigned a value. The function source is also used to keep track of which
implications are caused by which clauses. More on this later.

At lines 1-15 of Algorithm 6.1, the CDCL procedure is given, which first
calls the procedure BCP (Definition 2.1) at the initial search level (d = 0). After
that, if no conflicting clause is found, we start searching for a σ that models S.
The procedure decide at line 9 implements the decision making step; it decides
which decisions to make next, i.e., to which literals ⊤ should be assigned. The
level d is subsequently increased by the number of decisions made (for instance,
d is incremented if one decision is made).

If no decisions could be made, then S is satisfied by the current σ, and the

102 Chapter 6 Multiple Decision Making

Algorithm 6.1: CDCL, generalised to support MDM
Input : formula S, assignments σ, saved-phases ρ, level function δ, implication function

source
Output : sat

1 procedure CDCL():
2 while sat = UNSOLVED do
3 C′ = BCP()
4 if C′ ̸= ∅ then
5 if d = 0 then sat← UNSAT, break
6 (Ĉ, ⃗d)← analyse(C′, d), S ← S ∪ Ĉ

7 backjump(⃗d), d← ⃗d

8 else
9 L← decide()

10 d← d + |L|
11 if L = ∅ then sat← SAT
12 σ ← σ ∪ L

13 end
14 end
15 end
16 procedure BCP():
17 source ← ∅
18 while {C ∈ S | |Freeσ(C)| = 1} ̸= ∅ do
19 pick a clause C ∈ S for which |Freeσ(C)| = 1
20 σ ← σ ∪ Freeσ(C)
21 source ← source ∪ {(Freeσ(C), C)}
22 if (∃C′ ∈ S).C′ |=σ ⊥ then return C′

23 end
24 return ∅
25 end
26 procedure backjump(d):
27 ρ← {(var(ℓ), ρ(var(ℓ))) | δ(ℓ) < d} ∪ {(var(ℓ), (ℓ ∈ σ)) | δ(ℓ) ≥ d}
28 σ ← σ \ {ℓ | δ(ℓ) ≥ d}
29 δ ← δ \ {(ℓ, d) | δ(ℓ) ≥ d}
30 end
31 procedure analyse(C′, d):
32 Ĉ ← learnCClause (C′, d)
33 ⃗d← max({0} ∪ ({δ(ℓ̂) | ℓ̂ ∈ Ĉ} \ {d}))
34 return (Ĉ, ⃗d)
35 end
36 procedure learnCClause(C′, d):
37 Ĉ ← C′

38 while |{ℓ ∈ Ĉ | δ(ℓ) = d}| > 1 do
39 pick a literal ℓ ∈ Ĉ for which ∃C.(¬ℓ, C) ∈ source
40 Ĉ ← Ĉ ⊗ℓ source(¬ℓ)
41 end
42 return Ĉ

43 end

6.1 SAT Solving with CDCL 103

search loop terminates by setting sat to SAT at line 11. Otherwise, at line 12,
the new decisions in L are added to σ.

The propagation of a decision and all its resulting implications is done by
the BCP procedure, called repeatedly at line 3. The description of BCP is
given at lines 16-25. As long as there are unit clauses (line 18), a unit clause
C is picked (line 19), and its unassigned literal is added to σ (line 20). If the
update does not make S unsatisfied (line 22), the procedure is repeated. After
every update of σ, the function source is updated to record the source of the
implication (i.e. the fact that C caused Freeσ(C) to be added to σ). This is
relevant when clause learning needs to be applied, which is discussed later. The
BCP procedure identifies all implications, unless a conflict is detected in some
clause C ′.

Definition 6.1 (Conflict). Given a formula S and a set of assignments σ, there
is a conflict iff ∃C ′ ∈ S such that C ′ |=σ ⊥.

Recall that at the start of CDCL, BCP is called. The purpose of this call
is to propagate implications initially present in S or decisions made recently
by previous calls to decide. In case BCP returns a non-empty clause at line
3, there is a conflict, and this must be analysed (line 6). First of all, if the
current level is 0 (i.e. top level), then the formula is unsatisfied and the loop is
terminated at line 5. Otherwise, the analyse procedure, given at lines 31-35,
tries to identify all assignments causing the conflict and the backtrack level ⃗d
required to undo those assignments.

The backtrack step is done in the backjump procedure at line 7, described
by lines 26-30. All assignments made at the current level up to the backtracking
level are removed from σ and δ, and their phases are saved to ρ (old phases are
overwritten). In this way, ρ can be used to recall the last value assigned to a
variable (phase). This is relevant in decide; in Section 6.2, we specify how ρ
is used in decision making. After that the current decision level d is set to the
backtracking level ⃗d at line 7.

The negations of the backtracked assignments can be recorded by in a
new clause, called the learnt clause (Ĉ), to avoid making that combination of
assignments in the future. This clause can be constructed by a sequence of
resolution steps [SS99], starting with the clause that caused the conflict, where
each step produces an intermediate new clause (resolvent). A resolvent is the
result of applying the resolution rule [DLL62] w.r.t. some implication ℓ at level d
(see Definition 2.3). For this, we use the resolving operator ⊗ℓ on clauses C1 and
C2 with ℓ ∈ C1, ¬ℓ ∈ C2. The procedure stops once a fix-point has been reached.

104 Chapter 6 Multiple Decision Making

At resolution step i (0 ≤ i < |var(S)|), resolvent Ĉd
i is defined as follows.

Ĉd
i =


C ′ , if i = 0 ∧ C ′ ∈ S ∧ C ′ |=σ ⊥
Ĉd

i−1 ⊗ℓ source(¬ℓ) , if i > 0 ∧ ℓ ∈ Ĉd
i−1 ∧ source(¬ℓ) ̸= ∅

Ĉd
i−1 , if i > 0 ∧ |{ℓ ∈ Ĉd

i−1 | δ(ℓ) = d}| = 1
(6.1)

In the initial case (i = 0) the conflicting clause is selected, while the second
and following cases give the intermediate resolvent at resolution step i. Note
that if there are multiple assignments at d, all but one of them have a source.
The final case defines the fix-point, resulting in the learnt clause. The fix-point
is reached when only one assignment remains in Ĉd

i−1 at the conflict level d.
This assignment is called the first unique implication point (1-UIP) which is the
closest node in the implication graph to the conflict within the same decision
level [ZMMM01].

Equation 6.1 is implemented by the learnCClause procedure given at lines
36-43. As long as more than one literal in Ĉ was assigned a value at conflict level
d (line 38), Ĉ is rewritten. This is done by selecting a literal ℓ that obtained
a value due to an implication at d (i.e. source(¬ℓ) is defined) at line 39, and
combining the clause that caused that implication (source(¬ℓ)) with Ĉ using
the resolving operator, resulting in a new clause in which ℓ no longer appears
(line 40).

Given Ĉ, the backtrack level ⃗d is defined as max({0} ∪ ({δ(ℓ) | ℓ ∈ Ĉ} \ {d}))
(line 33): the highest level involved in Ĉ that is smaller than d is selected. In
case no such level exists (Ĉ contains a single literal at d), 0 is selected. Both Ĉ

and ⃗d are returned at line 6. Next, Ĉ is added to the input formula, and the
backtracking to ⃗d is initiated by backjump as explained above.

Example 6.1. A small example of applying single-decision CDCL is illustrated
in Figure 6.1 by an implication graph [SS99]. Consider a formula S containing,
among others, the following clauses:

S = {{¬x8, x2, ¬x7}, {¬x8, ¬x2, x3}, {¬x3, ¬x7}, {x7, x5, x6},

{¬x5, x4}, {¬x6, x4, ¬x1}, {x9, ¬x10}, {¬x9, ¬x10, x11}, . . .}

In addition, consider x8, x1, x9 and ¬x4 as the decisions made so far. The
decisions and their levels are indicated in Figure 6.1 by the green ovals and
blue numbers, respectively. Once these decisions are made, BCP identifies
implications. Each implication (white ovals in Figure 6.1) takes the highest level
among its parents. The procedure first sets ¬x5, ¬x6 and x7 to ⊤, before there

6.1 SAT Solving with CDCL 105

Figure 6.1: A visualization of CDCL solving on a small example

are a number of possible scenarios that all lead to a conflict. The order in which
unit clauses are analysed by BCP determines which scenario occurs. In the
figure, both x2 and ¬x3 are set to ⊤, before C2 causes a conflict.

At this point, learnCClause can produce the clause Ĉ = {¬x7, ¬x8}, as
the result of (C2 ⊗x2 C1) ⊗x3 C3. Finally, the backtrack level ⃗d is determined
by the highest decision level other than the conflict level in Ĉ; in this example,

⃗d = 1.

6.1.2 Multiple Decision Making
Next, we reason about making multiple decisions simultaneously with decide.
Making a decision can always lead to conflicts, and making more than one decision
at once increases the likelihood of a conflict occurring. To avoid repeatedly
selecting sets of decisions that cause conflicts, we wish to construct multiple
decisions sets, i.e., non-singleton sets of decisions, in such a way that it is
guaranteed that no conflicts will occur. For this, we define multiple decisions set
as follows.

Definition 6.2 (Multiple decisions set). Given a formula S and a set of assign-
ments σ, we call a set M ⊆ L \ {ℓ, ¬ℓ | ℓ ∈ σ} with |M| > 1 a set of multiple
decisions iff {C ∈ S | |Freeσ∪M(C)| = 1} = ∅.

In words, a set of multiple decisions M can be selected, i.e., is valid, iff
M does not result in unit clauses. Note that M only contains new decisions,
and not previously selected literals or ones that contradict σ. Definition 6.2
cannot be efficiently used to construct a set of multiple decisions, since it refers
to M as a whole. The basic approach to construct M is to iteratively select a

106 Chapter 6 Multiple Decision Making

Figure 6.2: An example of (non)-valid multiple decisions sets

decision ℓ and add it to M iff it does not lead to a violation of the condition in
Definition 6.2.

Example 6.2. By Definition 6.2, the set of literals {x3, x7, ¬x9} for the formula
in Figure 6.2 is initially, with σ = ∅, not a valid multiple decisions set, as it
results in C3 being unsatisfied and C7 being a unit clause. On the other hand,
{x1, x8, x9} is valid.

Since a valid multiple decisions set does not produce any unit clauses, decide
should not always, but periodically select multiple decisions. In the next section,
we discuss a possible mechanism to achieve this.

6.2 MDM with Decision Heuristics
So far, we have presented MDM mathematically. In this section, we discuss how
to make it efficient in practice, and we address the correctness of CDCL with
MDM.

6.2.1 Decision Heuristics
Recall that the decision-making step via the decide routine in Algorithm 6.1 de-
termines which literals should be selected and assigned true for the next decisions
(Section 2.2). In this article we use the decision heuristics VSIDS [MMZ+01]

6.2 MDM with Decision Heuristics 107

Algorithm 6.2: Variable ranking of different MDM decision queues
Input :S, restart mode, VSIDS score α, VMTF score γ

1 procedure mdmrank(Q):
2 h← histogram(S)
3 freevars← { x | x ∈ Q ∧ x |=σ↑ }
4 forall x ∈ freevars do
5 β(x)← h(x)× h(¬x)
6 end
7 if mode = STABLE then
8 return sort(freevars, vsidsKey)
9 else

10 return sort(freevars, vmtfKey)
11 end
12 end
13 procedure vsidsKey(x, y):
14 if α(x) ̸= α(y) then return α(x) > α(y)
15 if β(x) ̸= β(y) then return β(x) > β(y)
16 return x > y

17 end
18 procedure vmtfKey(x, y):
19 return γ(x) > γ(y)
20 end

and VMTF [BF15] to improve the quality of the multiple decisions made. In
contrast to VSIDS, the variable score in VMTF queue (denoted as γ) is the
number of conflicts at which it was last bumped. VMTF is implemented in
CaDiCaL and our solver with a doubly-linked list. In CDCL, in the decide
step in Algorithm 6.1, one can alternate between VSIDS and VMTF queues
based on the restart mode in a ping-pong manner. More on restart modes in
Section 6.3.

Initially, a sorted list of the unassigned variables in S is created and returned
by the mdmrank procedure in Algorithm 6.2. As input, it requires the formula S,
the restart mode, the variable scores α, γ, and the decision queue Q. This queue
includes all variables in S ranked w.r.t. α and γ in ascending order (i.e. first
variable has always the highest score). At line 2, the histogram h is calculated for
all literals in S where h(ℓ) = |Sℓ|. Next, a list of unassigned variables freevars is
constructed from Q (line 3). Then, at line 4, we iterate over freevars to calculate
the histogram score β. Finally, based on the restart mode, the sort procedure

108 Chapter 6 Multiple Decision Making

ranks all variables in freevars w.r.t. vsidsKey (lines 13-17) or vmtfKey (lines
18-20). It is important to remark that the comparison at line 19 is sufficient to
obtain stable sorting, as all variables have a distinct γ value.

6.2.2 2-WL Optimisation
When constructing a multiple decisions set, checking whether the condition
of Definition 6.2 (i.e. multiple decisions cannot produce unit clauses) still
holds every time a literal ℓ is selected can be optimised by using the 2-WL
optimisation [MMZ+01]. We refer the reader to Section 2.2.1 for more details.
This optimisation is particularly suitable to check for violations of the condition
of Definition 6.2, as it allows us to only consider the clauses in S¬ℓ in which
¬ℓ is watched. If ¬ℓ is not watched in some clause C ∈ S¬ℓ, then there are at
least two other, unassigned literals in C, hence C cannot become unit when ¬ℓ
is assigned ⊥. If there are no more than two watched literals in C, then ¬ℓ has
to be watched, since it was unassigned before being selected. We formalise the
predicate that a literal ℓ is watched in a clause C with WC(ℓ).

6.2.3 Decision Freezing
During the construction of a multiple decisions set, we need to avoid the repeated
selection of literals that cause the condition of Definition 6.2 to be violated.
Consider the scenario in Figure 6.3 where the decisions {x2, x8, x9} are selected.
By doing so, C2 will become a unit clause as a consequence of assigning ⊤ to
both x2, x8. One way to resolve this is to drop all variables that exist in the same
watched clauses (i.e. that are dependent) of a previously selected decision. For
this reason, we introduce the notion of freezing. With it, we over-approximate
the potential to produce unit clauses. If we add a valid literal ℓ to M, the clauses
in S¬ℓ have ⊥ assigned to ¬ℓ, and thereby have more potential to become unit.
Subsequently selecting a literal ℓ′ that also appears in any of those clauses in
S¬ℓ can possibly produce a unit clause. To avoid this, we freeze all unassigned
literals in S¬ℓ after the selection of ℓ, thus not allowing them to be selected for
the multiple decisions set.

Checking whether a literal is frozen or not is straightforward than repeatedly
checking for a violation of the condition in Definition 6.2. A literal ℓ′ is frozen if
either ℓ′ or ¬ℓ′ depends on a previously selected decision:
Definition 6.3 (Decision dependency relation). We call a relation D: L× L a
decision dependency relation iff for all ℓ, ℓ′ ∈ L, we have ℓ′ D ℓ iff there exists a
C ∈ S¬ℓ such that ℓ′ ∈ C ∨ ¬ℓ′ ∈ C.

6.2 MDM with Decision Heuristics 109

Figure 6.3: An example of decision dependency

Given a multiple decisions set M, the set of frozen decisions is defined as
follows.

Definition 6.4 (Frozen decisions). Given a formula S, a set of assignments
σ, and a multiple decisions set M, the set of frozen decisions F is defined as
F = {var(ℓ′) | ℓ′ ∈ L \ {ℓ′′, ¬ℓ′′ | ℓ′′ ∈ σ} ∧ ∃ℓ ∈ M.ℓ′ D ℓ}.

In fact, we freeze variables, to exclude their corresponding positive and
negative literals in the formula.

6.2.4 The MDM Procedure with Optimisations
Next, we explain how the MDM procedure can be implemented. As input,
Algorithm 6.3 requires the current decision level d, the saved phases ρ, and the
level function δ. The MDM main routine, given by lines 1-15, takes the decision
queue Q and produces a set of multiple decisions M. At line 2, the current level
is stored in d′, which is used to assign consecutive levels to the decisions selected
by MDM. Sets M and F are initially empty. At line 3, we create a ranked list
of free variables rankedvars using the mdmrank procedure. Next, we iterate
over rankedvars (line 4).

For each unfrozen variable (line 5), a value is picked to select a literal. The
lit function at line 6 takes a variable x and the saved phase ρ(x) and returns
an assignment ℓ. At line 7, it is checked whether the selected literal ℓ is valid,

110 Chapter 6 Multiple Decision Making

Algorithm 6.3: Multiple Decision Maker
Input : saved-phases ρ, decision level d, level function δ

1 procedure MDM(Q):
2 d′ ← d, M← ∅, F ← ∅
3 rankedvars← mdmrank(Q)
4 forall x ∈ rankedvars do
5 if x ̸∈ F then
6 ℓ← lit(x, ρ(x))
7 if isvalid(ℓ) ∧ depFreeze(ℓ) then
8 M←M∪ {ℓ}
9 δ(x)← d′, δ(¬x)← d′

10 d′ ← d′ + 1
11 end
12 end
13 end
14 return M
15 end
16 procedure isvalid(ℓ):
17 forall C ∈ S¬ℓ do
18 if WC(¬ℓ) ∧ |Freeσ(C)| = 1 then return false
19 end
20 return true
21 end
22 procedure depFreeze(ℓ):
23 forall C ∈ S¬ℓ do
24 if WC(¬ℓ) then
25 forall ℓ′ ∈ C do
26 if ℓ′ ∈M then return false
27 if var(ℓ′) ̸= var(ℓ) ∧ var(ℓ′) ∈ rankedvars then
28 F ← F ∪ var(ℓ′)
29 end
30 end
31 end
32 end
33 return true
34 end

according to Definition 6.2. If ℓ is valid, it is attempted to freeze dependent
variables. If successful, ℓ is added to M and recorded with δ at level d′ (lines

6.2 MDM with Decision Heuristics 111

Figure 6.4: A working example of multiple decision making procedure

8-9). Finally, the level d′ is incremented at line 10.
The procedure isvalid (given at lines 16-21) restricts the proof of a literal ℓ

validity to clauses in S¬ℓ in which ¬ℓ is watched. The procedure depFreeze
(given at lines 22-34) tries to freeze all variables dependent on ℓ, according to
Defs. 6.3 and 6.4. We apply the 2-WL optimisation to speed up iterating over
clauses in S¬ℓ. This has the drawback that some literals that have to be frozen
may be ignored, if they do not appear in a clause in which ¬ℓ is watched. To
remedy this, we check whether a literal has already been added to M before
freezing it (line 26). If it was added, then clearly, ℓ should not have been added,
and the latter’s selection is canceled.

Example 6.3. Figure 6.4 shows a working example of Algorithm 6.3. For
simplicity, we assume that the α- and γ-scores are all 0. As a first step, the
histogram scores β are computed for all variables in the formula. Next, we rank
variables using the mdmrank procedure in Algorithm 6.2. Finally, we start
from the highest ranked variable, trying to select valid decisions. Variables are
assigned to their assumed saved phases. Obviously, x7 is invalid due to the
implication in C3. Thereby, x9 is selected instead and all dependent variables

112 Chapter 6 Multiple Decision Making

on ¬x9 are frozen. At the end of the procedure, the decisions set {x9, x6, x2} is
successfully constructed.

6.3 MDM Integration in CDCL
As already noted in Section 6.1.1, decide cannot always select multiple decisions,
as the production of implications cannot indefinitely be avoided if there are
still variables left to assign. The main question is therefore when MDM should
be applied. In [OW20], MDM was integrated into MiniSat and Glucose,
and since multiple decisions should be selected periodically, a mechanism was
proposed that decides when to make multiple decisions based on the solver
restart policy and rate. However, since solvers can differ greatly in this policy,
we wanted to create an alternative mechanism not depending on this.

ParaFROST is based on CaDiCaL, which has a very different restart
policy compared to MiniSat and Glucose. The policy is to interleave different
restart sequences together to remedy the shortcomings of one another and play
to the strengths of all. The idea is to start with geometric [ES03a] style with
less frequent restarts (i.e. called in CaDiCaL as STABLE mode) then switch to
a more aggressive style using dynamic restarts [AS12, BF18] after some interval
scaled up by a quadratic function based on the number of conflicts [BFFH20].

In Algorithm 6.4, at lines 1-20, an extended version of the decide procedure
is proposed. Initially, the variable lastRounds is set to the constant rounds.
The WalkSAT procedure is called at line 4 per first round at the top level
(line 3) to improve the saved phases as discussed in Sec. 6.2. If we are in the
process of calling MDM lastRounds times, then MDM is called again at line
6 and lastRounds is decremented. To select decisions, the queue Q is needed.
The alternative is the standard decision making at line 14 (i.e. single decision
selection). This queue prioritises a variable based on α if the restart mode mode
is STABLE otherwise γ is used (see Algorithm 6.2). Only after the first MDM call
(mdmCalls = 1), the pumpFrozen procedure is called at line 10, to mitigate
what we call the overjump effect. More on this in the next section. If we have
stopped calling MDM, and enough unassigned variables are present, method
periodicFuse is called, which either sets lastRounds back to rounds or to 0,
depending on the total number of conflicts numConflicts, the number of MDM
calls mdmCalls, and the MDM conflicts limit mdmLimit. There are enough
unassigned variables if there are more free variables compared to the most recent
multiple decisions selected.

In periodicFuse, numConflicts is compared to mdmLimit, which is initially

6.3 MDM Integration in CDCL 113

Algorithm 6.4: decide, with integrated MDM
Input : decision queue Q, assignments σ, saved-phases ρ, MDM rounds, nr.

last selected decisions lastMDs, nr. conflicts numConflicts, MDM
conflicts limit mdmLimit, MDM conflicts step mdmStep, nr. MDM
calls mdmCalls, decision level d

1 procedure decide():
2 if lastRounds > 0 then
3 if d = 0 ∧ lastRounds = rounds then
4 WalkSAT(ρ)
5 end
6 L← MDM(Q), mdmCalls← mdmCalls + 1
7 lastRounds← lastRounds− 1
8 lastMDs← |M|
9 if mdmCalls = 1 then

10 pumpFrozen(mode,M)
11 end
12 end
13 else
14 L← singleDecision(Q)
15 if lastMDs ≤ |Q \ var(σ)| then
16 lastRounds← periodicFuse()
17 end
18 end
19 return L

20 end
21 procedure periodicFuse():
22 if (numConflicts ≥ mdmLimit) then
23 increaseLimit(scaleFunction, mdmCalls, mdmLimit)
24 return rounds
25 else
26 return 0
27 end
28 end

set to a configurable value (default 2,000). The mdmLimit parameter is mono-
tonically increased using a function increaseLimit. This makes mdmLimit
grow linearly, quadratically, or logarithmically based on the configurable scaling
function scaleFunction and the current value of mdmCalls, to achieve a
suitable balance between mdmLimit and numConflicts as the solving progresses.

114 Chapter 6 Multiple Decision Making

6.3.1 The Overjump Effect

Consider the multiple decisions set {x1, x8, x9} selected in Example 6.2. Assume
that after MDM has made this set, singleDecision is called by decide, and
that this procedure selects ¬x4, as Figure 6.1 shows. Since this leads to a conflict,
assume that the binary clause {¬x7, ¬x8} is learned. Thus, all assignments up
to level 1 must be undone, including the decision x9 at level 3 (see Figure 6.1),
even though it is not related to the conflict at all (in other words, x9 is jumped
over). Unnecessarily undoing decisions can in general negatively affect the
solving procedure, killing any potential to explore large parts of the search tree.
Although this can occur in standard CDCL as well, suitable heuristics, such as
VSIDS, mitigate this effect. They tend to favour sequences of decisions that
are closely related, due to how α evolves over time, making it unlikely that a
sequence such as the one in Example 6.2, with x9 not being related to the other
decisions at all, is made.

Moreover, in standard CDCL, sequences of decisions without implications
are not specifically stimulated, making it more likely that conflicts occur earlier,
which in turn influences the variable scores. On the other hand, when MDM
makes a set of decisions, the variable activity (α, γ) can only evolve after the
complete set has been selected, hence they have much less influence on the
subsequent selection of the decisions when that set is constructed. A subsequent
call of singleDecision may then select a decision that is (possibly transitively)
dependent on any of the previously made multiple decisions.

To remedy the overjump effect, we therefore have to stimulate at the start
of solving (initial MDM call, see line 10 in Algorithm 6.4) that after making
multiple decisions, the subsequent standard single decisions are dependent on
the most recently made multiple decision, i.e., the one with the highest decision
level. If no such decisions can be made, the ones dependent on the decision with
the second highest level must be stimulated, and so on.

The prioritisation algorithm in Algorithm 6.5 plays a vital role in this. Recall
that it is called by decide after the initial selection of decisions (line 10 in
Algorithm 6.4). It gives priority to the single decisions implied by the most
recent multiple decisions, taking into account the type of the variable activity.
If the current mode is STABLE (line 2), then the decisions in M are ordered by
≥δ, which is defined as ℓ ≥δ ℓ′ ≜ δ(ℓ) ≥ δ(ℓ′). Next, at line 4, the VSIDS factor
factorα is computed in terms of the number of decisions made. We ensure that
this value does not exceed 1, to prevent this prioritisation from interfering with
the standard VSIDS activity α. Alternatively, the VMTF factor factorγ is
calculated as the maximum score in VMTF activity. Recall that VMTF scores

6.3 MDM Integration in CDCL 115

Algorithm 6.5: Single decisions prioritisation, with variable activity
Input : VSIDS score α, VMTF score γ, decision level function δ

1 procedure pumpFrozen(mode,M):
2 if mode = STABLE then
3 sort(M,≥δ)
4 factorα ← 1 / |M|
5 else
6 factorγ ← max(γ) + 1
7 end
8 for ℓ ∈M do
9 forall C ∈ S¬ℓ with WC(¬ℓ) do

10 forall ℓ′ ∈ C with var(ℓ′) ∈ F do
11 if mode = STABLE then
12 α(var(ℓ′))← δ(ℓ)× factorα
13 else
14 γ(var(ℓ′))← factorγ , factorγ ← factorγ + 1
15 end
16 F ← F \ var(ℓ′)
17 end
18 end
19 end
20 end

are always monotonically bumped with an integer value, thereby, prioritising
single decisions based on VMTF activity can only be achieved by bumping their
scores with a value higher than the local maximum.

The for loop at lines 8-19 iterates over the decisions in M. In the nested
for loops at lines 9-18, the variable activity of every frozen variable referred to
by a literal in a clause in which ¬ℓ is watched is increased (pumped) by the
corresponding factor only once (notice that a frozen variable once updated is
removed from the F set at line 16). For VSIDS, at line 12, a normalised value
(δ(ℓ) × factorα) is computed such that 0 < α(var(ℓ′)) < 1, based on the decision
level δ(ℓ). For VMTF, the factor factorγ is only incremented such that, the last
decision ℓ in M, with the highest level, pumps the largest score to γ(var(ℓ′)).

6.3.2 Correctness of Applying MDM in CDCL
Finally, we can reason about the correctness of applying MDM in CDCL, i.e., as
in Algorithm 6.1 returns SAT iff S is satisfiable, and returns UNSAT otherwise. We
argue that this is the case, by showing that each execution of CDCL with MDM,
which, for clarity, we refer to as mdcl (Multiple Decision Clause Learning),

116 Chapter 6 Multiple Decision Making

can be matched by an execution of CDCL without MDM, or CDCL for short.
mdcl and CDCL only differ in the fact that mdcl sometimes calls MDM,
leading to a forward jump to a level higher than the current level. Clearly, every
time decide executes singleDecision in mdcl, CDCL can match the decision
made. When decide executes MDM in mdcl, multiple decisions ℓ1, . . . , ℓn are
made, each decision not leading to any implications, by Definition 6.2. Note in
Algorithm 6.3 that each time a decision ℓi (1 ≤ i ≤ n) is added to M at line
8, the validity constraint at line 7 is satisfied, which implies that there are no
unit clauses, but also that there is no clause C for which C |=σ∪{ℓi} ⊥. Selecting
n decisions in Algorithm 6.1 results at line 10 in d possibly being increased
to some value higher than d + 1, which directly leads to one call of BCP to
check for conflicts at line 3 of Algorithm 6.1. In CDCL, this can be matched by
successively making the same decisions ℓ1, . . . , ℓn in n calls of decide at line 9
of Algorithm 6.1. After each of the first n decisions, BCP is called at line 3, and
since no clause is unsatisfied and no unit clauses exist, BCP returns true. After
the next decision ℓn+1 has been made, BCP detects conflicts iff mdcl does as
well, and if no conflicts occur, decide is called again.

6.4 Benchmarks and Analysis

We implemented the proposed algorithms in C++ in our solver ParaFROST17.
We evaluated the experiments on the full benchmark suite of the SAT competition
2020 main track which contains 400 formulas. The time-out per formula is set
to 5,000 seconds. The experiments involve different configurations of MDM
in ParaFROST to find the most impactful one on SAT solving. Moreover,
we compare ParaFROST with(out) MDM with the state-of-the-art solvers,
MiniSat v2.2, Glucose v3.0 (the MDM version in [OW20] is also included),
CaDiCaL v1.4, and Kissat (pulled from GitHub as of April 12, 2021).

The default settings are used in all solvers. The MiniSat and Glucose
versions with simplifications are used in the experiments. As in CaDiCaL and
Kissat, all inprocessing features such as vivification, autarky and probing are
implemented in ParaFROST with various optimisations and better scheduling.
More information on this is available through the solver repository 17.

All experiments were conducted using the compute nodes of the DAS-5
cluster [BEdL+16]. Each problem was analysed in isolation on a separate node.
Each node has an Intel Xeon E5-2630 CPU running at 2.4 GHz with 128 GB

17https://github.com/muhos/ParaFROST

https://github.com/muhos/ParaFROST

6.4 Benchmarks and Analysis 117

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Formulas Solved

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

R
un

 T
im

e
(s

ec
)

linear
quadratic
logn
nlogn
nlognlogn

Figure 6.5: MDM scaling functions (rounds = 3)

of system memory, and runs on the CentOS 7.4 operating system. With this
information, we adhere to all of the five principles laid out in the SAT manifesto
(version 1) available at [BJLB+20].

Figures 6.5-6.10 presents the results of evaluating different MDM configura-
tions in ParaFROST and their impact on solving. Data are sorted w.r.t. the
y-axis. For all figures, we change only one function or parameter while keeping
the others fixed. These include the following: scaleFunction, rounds, mdm-
Step, pumpFrozen, mdmrank, WalkSAT. For example, Figure 6.5 compares
different scaling functions while keeping the rounds and other settings to the
same values. In Figure 6.9, we compare sorting the variables in ascending and de-
scending order w.r.t. the histogram score β. Variables occurring the most in the
formula are called the most constrained. Judging from these experiments, the fol-
lowing optimal configuration is concluded: scaleFunction(nlogn), rounds(3),
mdmStep(2,000), pumpFrozen(VMTF-only), mdmrank(most-constrained),
WalkSAT(enabled).

Figure 6.11 provides an assessment of our solver ParaFROST with(out)
MDM compared to others. Clearly, our solver with MDM enabled was the
fastest among all, solving 6 more problems than the version with MDM disabled.
The main reason of MDM outperforming the others is that it tries to assign
and propagate as many decisions with better phases improved by WalkSAT.
We expect that, given more time, MDM will allow ParaFROST to solve even

118 Chapter 6 Multiple Decision Making

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Formulas Solved

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

R
un

 T
im

e
(s

ec
)

1 round
2 rounds
3 rounds
4 rounds
5 rounds

Figure 6.6: Number of MDM rounds (scaleFunction = nlogn)

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Formulas Solved

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

R
un

 T
im

e
(s

ec
)

step1000
step2000
step3000

Figure 6.7: MDM steps (scaleFunction = nlogn)

6.4 Benchmarks and Analysis 119

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Formulas Solved

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

R
un

 T
im

e
(s

ec
)

all-disabled
vmtf-only
vsids-only
all-enabled

Figure 6.8: MDM prioritisation (mdmStep = 2,000)

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Formulas Solved

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

R
un

 T
im

e
(s

ec
)

least constrained
most constrained

Figure 6.9: MDM ranking with histogram score β

120 Chapter 6 Multiple Decision Making

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Formulas Solved

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

R
un

 T
im

e
(s

ec
)

disabled
enabled

Figure 6.10: MDM with local search WalkSAT

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Formulas Solved

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

R
un

 T
im

e
(s

ec
)

MiniSat
Glucose (No MDM)
Glucose (MDM)
CaDiCaL
Kissat
ParaFROST (No-MDM)
ParaFROST (MDM)

Figure 6.11: Different solvers comparison

harder problems that cannot be solved with ParaFROST without MDM or
other solvers.

To get better verdict on the performance of these solvers, we report in

6.4 Benchmarks and Analysis 121

Table 6.1: Solvability evaluation of all solvers

Solver SAT UNSAT All Solved PAR-2 Score
MiniSat 79 73 152 6,742.04
Glucose (No-MDM) 80 98 178 6,078.43
Glucose (MDM) 79 103 182 5,919.35
CaDiCaL 143 126 269 3,897.14
Kissat 144 127 271 3,757.83
ParaFROST (No-MDM) 151 125 276 3,531.95
ParaFROST (MDM) 157 124 281 3,473.7

Table 6.1, the number of solved formulas and the Penalized Average Runtime-2
(PAR-2) metric used by the SAT competitions to determine the winners. PAR-2
score accumulates the running times of all solved instances with 2× the time-out
of unsolved ones, divided by the total number of formulas. The solver with the
lowest score is the winner. The SAT and UNSAT columns give the number
of satisfiable and unsatisfiable instances per solver respectively. As expected,
ParaFROST (MDM) is the winner achieving a minimum score of 3,473.7,
solving more SAT instances in less time, while being competitive with the
UNSAT ones. The impact of MDM on Glucose can be also noticed from the
third row, outperforming Glucose (No-MDM) with 182 cases solved in total
and a score of 5,919.35.

Tables 6.2 and 6.3 show the performance of the MDM procedure on solving a
sample of 50 formulas using ParaFROST and Glucose, respectively. SDs and
MDs denote the Single and Multiple Decisions issued by the singleDecision
and MDM procedures, respectively. The first 40 entries in Table 6.2 give a
sample of 40 formulas that are solved the fastest when MDM is enabled. For
instance, the formula 170222843 was solved by ParaFROST with MDM in
just 0.24 seconds; while it took 16 seconds to solve for ParaFROST without
MDM. The last 10 rows show some cases solved slower when MDM is applied.
In general, the running times of these cases were slightly increased, concluding
that, applying MDM can further strengthen the solver and hardly weaken it
(see also Fig. 6.11). Similarly, the effect of MDM on Glucose was noticeable as
concluded in [OW20]. For example, the mp1-9_49 case was solved by Glucose
with MDM in 101.63 seconds while it took 3,548.35 seconds to solve by Glucose
without MDM.

122 Chapter 6 Multiple Decision Making

Table 6.2: MDM impact on 50 formulas solved by ParaFROST

CNF ParaFROST (No MDM) ParaFROST (MDM)
Conflicts SDs time (s) Conflicts SDs MDs Calls time (s)

170222843 504,662 1,035,854 16.64 6,009 11,324 173 3 0.24
vlsat2_16676_1598591.dimacs 1,968,342 2,624,200 342.19 33,981 75,105 23,206 3 9.05
preimage_80r_494m_160h_seed_378 380,526 855,725 625.81 30,120 121,938 11,281 3 20.55
170223547 8,897,575 16,292,047 557.69 749,466 1,475,447 391 18 27.64
combined-crypto1-wff-seed-102 2,125,451 4,221,042 90.78 163,410 355,941 3,076 9 4.66
DLTM_twitter774_83_17 3,493,705 9,319,802 838.25 196,632 660,229 14,356 6 43.96
abw-N-bcsstk07.mtx-w35 11,888,924 152,967,705 5,194.31 655,083 7,659,099 1,072,953 9 338.69
4g_6color_366_060_06.cnf.xz Time out (> 5, 000) 6,344,930 14,810,896 113,486 24 566.88
ps_300_312_20 18,907 181,632 16.68 463 13,915 173,439 3 2.01
combined-crypto1-wff-seed-8 1,811,923 3,447,883 77.81 291,283 603,515 3,435 9 10.58
TT7F-33-24E.cnf.xz Time out (> 5, 000) 30,123,269 238,106,877 16,619 63 792.57
8-5-6.cnf.xz Time out (> 5, 000) 3,536,204 13,729,557 1,076 1 811.77
DLTM_twitter249_74_11.cnf.xz Time out (> 5, 000) 13,062,732 27,277,182 16,385 6 855.54
Steiner-135-32-bce.cnf.xz Time out (> 5, 000) 12,909,251 25,522,252 32,849 4 857.69
combined-crypto1-wff-seed-132 1,727,806 3,402,736 70.23 410,368 864,398 3,782 12 13.45
apn-sbox6-cut4-helpbox26.cnf.xz Time out (> 5, 000) 73,263,705 107,014,205 279,896 12 1,013.66
sgp_5-6-8.sat05-2669.reshuffled-07 9,606,270 67,109,899 1,479.77 2,032,331 15,159,460 70,825 18 302.65
combined-crypto1-wff-seed-110 15,335,966 28,521,515 1,327.54 5,387,541 10,490,932 8,355 33 282.33
size_5_5_5_i235_r12 21,841,588 57,667,581 1,748.71 5,674,577 16,266,784 5,491 33 378.46
fsf-300-354-2-2-3-2.23.opt 3,750,521 11,571,976 206.26 889,192 4,546,579 15,769 18 44.99
6g_6color_366_050_04 1,798,311 4,736,005 2,132.61 3,390,465 8,806,040 183,404 18 475.77
4g_6color_182_100_02.cnf.xz Time out (> 5, 000) 89,112 333,289 162,951 3 1,127.60
DLTM_twitter454_70_12 3,987,396 8,262,208 765.74 1,030,136 2,498,033 19,661 15 183.58
ps_300_301_30 820,773 4,434,767 334.68 185,951 648,581 337,853 6 82.33
mp1-9_49 655,455 1,295,215 38.16 218,926 532,416 557 4 9.54
4g_5color_170_050_05 806,173 1,729,731 427.79 218,454 470,960 16,144 6 107.88
170153306 2,289,868 4,309,014 96.63 705,674 1,341,365 383 18 25.51
abw-N-bcsstk07.mtx-w44 478,203 14,327,127 284.35 168,483 169,987 544,104 6 75.10
homer17.shuffled 52,948,584 62,009,273 1,916.45 87,372,177 101,586,730 1,267 111 519.14
size_5_5_5_i041_r12 10,723,084 29,850,870 907.04 4,119,234 12,636,126 4,899 30 255.36
combined-crypto1-wff-seed-18 11,408,381 20,680,350 864.15 4,962,583 9,220,805 9,379 33 254.20
dislog_a11_x11_n21 728,565 1,169,711 64.01 318,324 495,495 10,125 9 18.97
abw-X-can__715.mtx-w103 1,763,005 68,653,155 2,210.29 405,495 16,424,401 1,944,167 6 735.30
170105432 4,536,129 8,210,612 221.23 1,778,501 3,432,729 507 27 73.92
abw-R-dwt__503.mtx-w64.cnf.xz Time out (> 5, 000) 3,010,055 29,229,440 3,025,747 18 1,736.13
ps_300_314_20 20,833 241,507 17.91 3,965 29,012 173,662 3 6.30
full-bg-gb-9-ce 27,533,241 75,377,997 989.50 4,096,329 12,207,019 2,094 3 357.07
ssAES_4-4-8_round_8-10_faultAt_8 Time out (> 5, 000) 12,467,042 24,828,849 140,698 21 1,957.68
6g_5color_164_100_01 76,411 267,237 1,336.40 10,692 50,231 92,638 3 542.04
schur-triples-7-90 3,952,462 25,553,268 454.16 1,808,727 13,343,916 179,483 18 186.84
01-integer-programming-20-30-40 1,110,522 1,891,914 911.89 2,185,080 3,839,021 199,215 2 1,689.43
22930-0426-195.smt2 12,070,787 20,344,613 1,100.91 9,385,868 16,272,702 12,314 45 1,896.79
4g_5color_166_100_02 10,189 40,701 114.90 24,574 75,796 96,059 3 552.62
abw-K-dwt__234.mtx-w51 27,387,989 110,582,547 810.18 Time out (> 5, 000)
beempgsol5b1 1,449,242 4,232,973 176.75 1,883,976 5,161,022 4,089 4 222.83
bv-term-small-rw_503.smt2 33,022,570 73,858,349 327.41 Time out (> 5, 000)
DLTM_twitter454_70_11 2,307,948 4,761,784 419.65 2,458,861 4,837,849 28,167 24 462.19
combined-crypto1-wff-seed-3 2,407,675 4,473,036 107.34 3,351,731 6,493,030 4,820 16 173.29
fermat-33106286870663 666,993 1,583,875 108.15 737,781 1,688,943 4,761 3 123.71
grain-53-80-0s0-seed-125-8-init-35 5,313,551 5,902,105 286.31 5,336,097 5,984,423 12,193 33 288.23

6.4 Benchmarks and Analysis 123

Table 6.3: MDM impact on 50 formulas solved by Glucose

CNF Glucose (No MDM) Glucose (MDM)
Conflicts SDs time (s) Conflicts SDs MDs Calls time (s)

newpol4-6.cnf.xz Time out (> 5, 000) 1,259,963 1,591,006 16,979 5 96.50
newpol6-6.cnf.xz Time out (> 5, 000) 1,366,550 1,780,307 40,177 3 105.58
baseballcover11with25_and5positions Time out (> 5, 000) 745,842 1,283,439 532,773 10 142.80
mp1-9_49 15,419,564 19,624,955 3,548.35 1,305,557 1,799,351 187 9 101.63
baseballcover11with22_and2positions Time out (> 5, 000) 943,260 1,530,188 555,938 8 175.97
ssp-0.497665446947731 1,163,493 2,421,665 264.06 98,357 474,306 31,514 3 13.19
Kakuro-easy-052-ext.xml.hg_4 2,206,749 6,157,186 319.35 215,421 768,129 15,080 3 33.09
fermat-907547022132073 2,594,852 3,522,728 664.42 601,075 1,005,121 7,206 16 71.45
preimage_80r_493m_160h_seed_457 1,762,301 2,485,535 2,907.10 290,727 358,608 29,534 2 445.75
Kakuro-easy-132-ext.xml.hg_9 5,022,043 26,392,224 2,830.91 791,792 5,420,750 352,154 27 446.46
w19-20.1 20,434,684 23,034,212 3,006.32 5,251,487 6,081,254 7,400 7 598.97
170059722.cnf.xz Time out (> 5, 000) 5,243,784 6,042,354 166 3 1,037.43
newpol36-4 310,606 680,820 795.88 102,548 117,399 3,599,907 3 166.56
DLTM_twitter799_70_13 7,918,249 9,867,058 1,705.96 1,929,147 2,492,989 74,079 41 377.23
baseballcover14with25_and2positions 344,776 744,357 3,597.29 3,892,792 5,163,659 556,382 31 852.59
sqrt_ineq_3.c 10,396,356 18,764,704 1,323.30 3,085,685 6,038,651 210,889 7 333.17
vlsat2_24450_2770239.dimacs 13,896,440 64,984,350 3,059.61 4,670,224 8,835,839 38,195 3 814.65
abw-N-bcsstk07.mtx-w44 2,846,905 3,308,703 448.87 907,753 967,175 186,638 1 123.77
ps_300_311_20 3,421,138 13,786,770 770.84 1,383,693 7,468,990 1,196,205 17 251.23
preimage_80r_493m_160h_seed_249 907,686 1,190,677 1,462.66 473,571 835,079 30,266 2 483.56
DLTM_twitter690_74_16 819,321 1,240,615 185.21 242,076 381,312 19,075 5 65.56
Kakuro-easy-127-ext.xml.hg_6 Time out (> 5, 000) 6,201,935 21,931,146 225,415 21 2,128.16
Steiner-15-7-bce 240 265 0.005 259 291 115 2 0.002
baseballcover13with25_and1positions 1,981,777 2,980,432 316.99 738,214 1,185,580 170,291 6 129.07
bivium-40-200 12,884,734 13,397,611 2,573.73 6,291,734 6,654,291 237 1 1,070.25
baseballcover15with25 4,258,361 5,378,094 1,015.38 2,187,129 2,813,194 167,495 17 425.45
mod2c-rand3bip-sat-220-2.sat05-2489 4,394,710 4,574,944 630.81 2,557,081 2,692,069 160 3 299.13
sted5_0x0-157 11,016,120 13,617,051 2,829.15 6,296,215 7,761,100 3,477 16 1,356.66
Kakuro-easy-148-ext.xml.hg_8 764,142 4,891,733 395.99 325,877 2,553,440 95,255 5 200.30
dislog_a09_x11_n20 2,367,916 2,641,651 346.47 1,541,199 1,770,551 4,364 2 179.81
fclqcolor-20-15-12.cnf.gz.CP3-cnfmiter 649,787 91,921,398 384.54 327,439 69,204,636 132,960 3 199.57
Timetable_C_392_E_62_Cl_26_S_28 27,513 7,781,777 13.68 9,276 3,876,955 335,922 3 7.10
DLTM_twitter845_79_19 930,074 1,411,441 195.76 440,274 665,285 12,433 3 103.78
preimage_80r_492m_160h_seed_136 840,880 1,218,805 1,327.08 487,572 695,584 27,313 2 747.17
vlsat2_16676_1598591.dimacs 8,257,673 33,496,638 1,493.49 5,166,854 9,215,253 22,364 3 860.52
baseballcover12with23_and2positions Time out (> 5, 000) 13,881,635 18,851,965 555,008 14 2,925.81
ncc_none_2_19_5_3_1_0_435991723 517,246 90,231,345 4,686.26 286,245 69,519,894 7,074,352 3 2,772.90
filter_iir_true-unreach-call.c 1,762,715 8,479,414 638.63 962,585 5,519,255 3,375,440 39 398.00
Kittell-k7 1,511,139 3,791,884 176.26 1,155,773 3,143,522 25,295 11 131.19
009-80-8 11,711,355 189,837,650 586.23 8,702,483 136,478,414 129,700 109 527.10
Timetable_C_392_E_50_Cl_26_S_28 1,586,245 62,875,574 157.97 819,385 49,976,239 6,050,393 87 106.48
g2-T83.2.1 481,489 5,619,601 1,163.91 449,183 4,377,464 8,163,020 19 786.87
3bitadd_32.cnf.gz.CP3-cnfmiter 3,783,742 405,135,211 1,219.83 3,438,441 392,086,335 2,748,120 71 1,099.77
sgen4-unsat-89-1 3,721,064 4,250,647 224.49 9,493,297 10,798,826 73 13 1,030.22
ncc_none_2_18_9_3_0_0_435991723 811,274 24,585,680 1,516.02 653,181 22,520,190 3,105,523 5 1,378.37
course0.2_2018_3-sc2018 6,536,769 45,951,875 5,015.21 4,888,468 35,868,009 2,572,504 24 4,284.58
stable-300-0.1-20-98765432130020 1,987,350 2,584,178 343.80 1,846,085 2,549,574 8 3 323.50
velev-pipe-uns-1.0-9 1,544,644 13,856,479 131.82 1,178,028 10,135,640 568,213 19 109.90
simon03:sat02bis:k2fix_gr_2pinvar 16,738,745 61,867,126 1,526.77 Time out (> 5, 000)
simon-mixed-s02bis-05 1,385,046 1,755,488 125.58 1,384,373 1,793,524 9,468 4 136.25

124 Chapter 6 Multiple Decision Making

6.5 Related Work
The SAT competition has a major influence on SAT technology. Every year,
new SAT solvers come to light, offering novel heuristics to the CDCL and
simplifications. With this rapid advancement, it is almost impossible to cover
every related work to ours. However, we will try to zoom into some of the
most impactful research (relative point of view) in this field. Audemard et
al. [AS09, AS12] have devised one of the most successful heuristics in CDCL
history. The Glucose-level metric learnt clauses reduction and dynamic restarts
are now essential in all state-of-the-art SAT solvers including ParaFROST,
CaDiCaL, CryptoMiniSat, and more. Later on, Biere et al. [BF18] performed
a complete evaluation of all restart mechanisms, paving the way for a hybrid
method combining both the dynamic and geometric restarts.

Regarding the decision heuristics, Moskewicz et al. [MMZ+01] introduced
VSIDS which was considered the first heuristic for variable selection based on its
frequency in conflict analysis. Biere et al. [BF15] proposed the VMTF queue and
a way to alternate between VMTF and VSIDS queues based on restarts. Habet
et al. [HT19] proposed a new branching heuristic called Conflict-History Search
(CHS) which is adopted to the history of search failures. Cherif et al. [CHT20]
extended the former with the Multi-Arm Bandit (MAB) refinement. Similar
to the work in [BF15], MAB tries to find a balance between VSIDS and CHB
depending on the restarts.

6.6 Conclusion
We have extended the CDCL search with the ability to make multiple decisions
at once with different decision queues and restart policies. Moreover, we have
proposed a minimal local search via WalkSAT strategy to be combined with
MDM, which proved to be effective, in particular, when solving satisfiable
formulas compared to the state of the art. We have shown in-depth analysis of
different MDM configurations and its impact on solving real-world SAT problems
and have compared its performance through our new solver ParaFROST to
the state of the art.

Concerning future work, we are motivated to implement and study the
impact of more decision queues on MDM quality. Furthermore, the positive
effect of WalkSAT on MDM opens the door to further investigate alternative
evolutionary algorithms such as ant colony optimisation.

Chapter 7

Bounded Model Checking

"SAT solving is a key technology for 21st century computer science."

– Edmund Clarke

Bounded Model Checking (BMC) [BCCZ99] determines whether a model M
satisfies a certain property φ expressed in temporal logic, by translating the model
checking problem to a SAT or SMT problem. The term bounded refers to the fact
that the BMC procedure searches for a counterexample to the property, i.e., an
execution trace, which is bounded in length by an integer k. If no counterexample
up to this length exists, k can be increased and BMC can be applied again.
This process can continue until a counterexample has been found, a user-defined
threshold has been reached, or it can be concluded (via k-induction [SSS00]) that
increasing k further will not result in finding a counterexample. CBMC [CKL04]
is an example of a successful BMC model checker that uses SAT solving. CBMC
can check ANSI-C programs. The verification is performed by unwinding the
loops in the program under verification a finite number of times, and checking
whether the bounded executions of the program satisfy a particular safety
property [KS16]. These properties may address common program errors, such
as null-pointer exceptions and array out-of-bound accesses, and user-provided
assertions.

The performance of BMC heavily relies on the performance of the solver.
Over the last decade, efficient SAT solvers [SS99, ES03a, AS09, BFFH20] have

125

126 Chapter 7 Bounded Model Checking

been developed and applied for BMC [BCCZ99, BCMD90, Bro13, Bra11, SG99].
Nonetheless, effectively parallelising BMC through SAT solving is a challenging
task. Parallel SAT solving often involves running several solvers, each exploring
the problem in its own way [HJS09]. For BMC, multiple solvers can be used
to solve the problem for different values of the bound k in parallel [ÁSB+11,
IT20, KT11]. However, in these approaches, the individual solvers are still
single-threaded.

Recently, Leiserson et al. [LTE+20] concluded that in the future, advances in
computational performance will come from many-threaded algorithms that can
employ hardware with a massive number of processors. As previously discussed
in Section 3.2, GPUs are an example of such hardware. Multi-threaded bounded
model checkers have been proposed, such as in [IT20, CRDL20], but these address
tens of threads running different tasks in parallel.

In this chapter, we propose the application of GPUs to accelerate SAT-based
BMC. To the best of our knowledge, this is the first time this is being addressed.
Recently, GPUs have been applied for explicit-state model checking and graph
analysis [WB14, BESW10]. In SAT solving, we used GPUs to accelerate test
pattern generation [OGHM18], metaheuristic search [YIMO15], preprocessing
(Chapter 4) and inprocessing (Chapter 5). In preprocessing, this is only done
once before the solving starts, while in inprocessing, this is done periodically
during the solving. Although, the impact of accelerating these procedures has
been demonstrated in Chapters 4 and 5, its impact on BMC has not yet been
addressed.

The structure of BMC SAT formulas having millions of redundant variables
and clauses suggests that GPU pre- and inprocessing will be effective. Fig-
ure 7.1a shows for a BMC benchmark set taken from the Core C99 package
of AWS [Ama21], consisting of 168 problems of various data structures, that
propositional formulas produced by CBMC tend to have a substantial amount of
redundant variables that can be removed using simplification procedures. For ap-
proximately 50% of the cases, 40% of the variables can be removed. Furthermore,
Figure 7.1b presents the amount of redundancy in relation to the total number
of variables in the formula. It indicates that when a formula contains one million
variables or more, at least 25% of those are redundant, and often many more.
In the benchmark set, the maximum number of variables in one formula is 13
million (encoding the verification of the priority-queue shift-down routine),
of which 65% is redundant. In contrast, the largest formula we encountered in
the application track of the 2013-2020 SAT competitions that is not encoding a
verification problem only has 0.2 million variables (it encodes a graph coloring
problem [OMH20]).

127

0 20 40 60 80 100 120 140 160
CBMC Formulas

20%

40%

60%

80%

100%

Re
du

ct
io

n
ef

fic
ie

nc
y

(a) The amount of reductions in CBMC formulas

0 2 4 6 8 10 12 14
Original Variables (in millions) 1e6

20%

40%

60%

80%

100%

Re
du

ct
io

n
ef

fic
ie

nc
y

(b) The amount of reductions w.r.t. the number of variables

Figure 7.1: Variable redundancy in CBMC SAT formulas

128 Chapter 7 Bounded Model Checking

Contributions

We present the SAT solver ParaFROST that applies Conflict Driven Clause
Learning (CDCL) [SS99] with GPU acceleration of pre- and inprocessing [OW19a,
OW19b, OWB21b], tuned for BMC. It has been implemented in CUDA C++
v11 [NVI20a], is based on CaDiCaL [BFFH20], and interfaces with CBMC.

Having to deal on a GPU with large formulas with a lot of redundancy offers
particular challenges. The elimination of variables typically leads to actually
adding new clauses, and since the amount of memory on a GPU is limited, this
cannot be done carelessly. Therefore, first of all, we have worked on compacting
the data structure used to store formula clauses in ParaFROST as much as
possible, while still allowing for the application of effective solving optimisations.
Second of all, we introduce memory-aware variable elimination, to avoid running
out of memory due to adding too many new clauses. In practice, we experienced
this problem when applying the original procedure of Chapter 5 for BMC.

Additionally, to support BMC, ParaFROST must be an incremental solver,
i.e., it must exploit that a number of very similar SAT problems are solved in
sequence [ES03b]. The procedure in Chapter 5 does not support this, so we
extended it.

Finally, because of the many variables in BMC SAT formulas, ParaFROST
supports MDM in the solving procedure, as presented in Chapter 6. With
MDM, multiple decisions can be made at once, periodically during the solving.
In case there are many variables, there is more potential to make many decisions
simultaneously. The effectiveness of MDM in BMC has never been investigated
before, nor MDM has been combined with GPU pre- and inprocessing.

7.1 Incremental Bounded Model Checking

Since 2001, incremental BMC has been applied to hardware and software ver-
ification [Str01, ES03b, JS05, SKB+17]. It relies on incremental SAT solv-
ing [ES03b, WKS01]. In CDCL, clauses are learnt during the solving each time
a wrong decision has been made, to avoid making those decisions again in the
future. Incremental SAT solving builds on this: when multiple SAT formulas
with similar characteristics are solved sequentially, then in each iteration, the
clauses learnt in previous iterations are reused. The same idea can be applied
on a single large formula by incremental decomposition into smaller subformulae
where the next in line is monotonically increased in size. To disable the influence
of subsuming clauses in smaller subformulae on the solving outcome of the

7.1 Incremental Bounded Model Checking 129

current subformula, these clauses should be removed. An efficient approach
to add (enable) and remove (disable) clauses is by using assumptions [ES03b],
which are initial assignments.

Given a transition relation M representing the system design, a temporal
logic formula φ to verify, and an upper-bound k, the bounded model checker
generates the SAT formula JM, φKk. This formula is satisfiable iff the property
φ is true for some finite trace π = s0, s1, . . . , sk in M . Every state si in that
path represents a vector of Boolean variables. Before the model is verified in
BMC, the SAT formula JMKk is constructed such that π is a valid trace in M .

Definition 7.1 (Transition relation in SAT). Given the transition relation M
and the bound k, the SAT formula encoding M is given as follows:

JMKk = I(s0) ∧
k−1∧
i=0

τ(si, si+1)

where the parameter:
• I(s0) is a predicate identifying the set of initial states.
• τ(si, si+1) encodes the transition relation at trace depth i.

In practice, the conjunction of JMKk and J¬φKk (the negation of the property)
is actually checked in BMC. If the outcome is satisfiable, a counterexample π is
generated, pointing to the states violating the property. Let E(i) =

∨
0≤j≤i e(sj)

be the predicate encoding the error states at trace depth i. The predicate e(sj)
is true iff sj is an error state.

For incremental BMC, additional unit clauses θi are used. These predicates
are combined to define the following series of SAT formulas S(i) that must be
solved incrementally:

S(0) = JM, ¬φK0 = I(s0) ∧ (E(0) ∨ θ0)
S(i + 1) = JM, ¬φKi+1 = S(i) ∧ τ(si, si+1) ∧ θi ∧ (E(i + 1) ∨ θi+1)

(7.1)

where S(0) and S(i + 1) are under the assumptions ¬θ0 and ¬θi+1 respectively.
Formula S(i) is satisfiable iff an error state is reachable via a trace with a length
up to i [Str01, ES03b]. At iteration i + 1, we know that E(i), included via S(i),
cannot be satisfied (otherwise iteration i + 1 would not have been started). This
means that E(i) must be removed to avoid that S(i + 1) is unsatisfiable. To
effectively remove E(i), θi is assigned true, resulting in E(i) ∨ θi being satisfied.
In general, at iteration i, θi is assigned false, while in iterations i′ > i, it is
assigned true.

130 Chapter 7 Bounded Model Checking

Figure 7.2: A 2-bit counter transition system

Example 7.1. Consider the 2-bit counter given by the transition system in
Figure 7.2. Assume the least and most significant bits are being represented by
the Boolean variables a and b respectively. The transition relation (si → si+1)
can then be expressed as (with ⊗ being the xor operator)

τ(si, si+1) = (ai+1 ↔ ¬ai) ∧ (bi+1 ↔ ai ⊗ bi)

Let the initial state be I(s0) = (¬a0 ∧ ¬b0). Suppose we wish to check the
safety property denoted by the CTL formula AGφ (i.e. φ is satisfiable by every
reachable state) where φ is the state 11 (i.e. a ∧ b) being reachable from the
initial state up to time step 3. According to Definition 7.1, the reachability check
is achieved by unfolding both τ and E up to depth k = 3 as follows

S(0) = (¬a0 ∧ ¬b0)︸ ︷︷ ︸
I(s0)

∧ ¬(a0 ∧ b0)︸ ︷︷ ︸
e(s0):¬φ(s0)

= ¬a0 ∧ ¬b0 ∧ (¬a0 ∨ ¬b0) = true

S(1) = S(0) ∧ ((a1 ↔ ¬a0) ∧ (b1 ↔ a0 ⊗ b0))︸ ︷︷ ︸
τ(s0,s1)

∧ (¬a0 ∨ ¬b0 ∨ ¬a1 ∨ ¬b1)︸ ︷︷ ︸
(e(s0) ∨ e(s1))

∧ a0 ∧ b0︸ ︷︷ ︸
θ0 = ¬e(s0)

= true

7.1 Incremental Bounded Model Checking 131

S(2) = S(1) ∧ τ(s0, s1) ∧ τ(s1, s2) ∧ (¬a0 ∨ ¬b0 ∨ ¬a1 ∨ ¬b1 ∨ ¬a2 ∨ ¬b2)︸ ︷︷ ︸
(e(s0) ∨ e(s1) ∨ e(s2))

∧ a0 ∧ b0 ∧ a1 ∧ b1︸ ︷︷ ︸
θ1 = ¬e(s1)

= true

S(3) = S(2) ∧ τ(s0, s1) ∧ τ(s1, s2) ∧ τ(s2, s3) ∧ a0 ∧ b0 ∧ a1 ∧ b1 ∧ a2 ∧ b2︸ ︷︷ ︸
θ2 = ¬e(s2)

∧ (¬a0 ∨ ¬b0 ∨ ¬a1 ∨ ¬b1 ∨ ¬a2 ∨ ¬b2 ∨ ¬a3 ∨ ¬b3)︸ ︷︷ ︸
(e(s0) ∨ e(s1) ∨ e(s2) ∨ e(s3))

= false

Clearly, for formulas up to and including S(2), the state s3 is not reachable as
they are satisfiable by the error states

∨
0≤j≤2 e(sj). Therefore, the assumptions∧

0≤j≤2 ¬e(sj) were added incrementally to S(3). At depth 3, this formula
becomes unsatisfiable due to e3 is being falsified which implies that s3 is indeed
reachable.

7.1.1 Incremental SAT Solving
Algorithm 7.1 extends the generalised CDCL search in Algorithm 6.1 with
incremental solving. This extension takes, in addition, the assumption θ encoded
as a set of literals. Before the CDCL procedure attempts to select a new decision,
first it checks if at least one assignment in θ is available to pick in the loop at
lines 11-22. In case ℓ is unassigned (line 12), it is added to L as a new decision
with a new level. If it is already satisfied (assigned ⊤), only the current level is
advanced (line 16) so that if a conflict occurs, the analyse procedures can use
the correct conflict level. Otherwise, ℓ is conflicting and the ianalyse procedure
is called. The only difference compared to analyse (see Algorithm 6.1) is that
ianalyse tries to find all the antecedents of ℓ that are assigned as decisions.
The negations of these assignments are added to Ĉ at line 18 and all assignments
are backtracked to the initial decision level (line 19). The current search is
terminated by returning the learnt clause Ĉ. This clause is particularly useful
for bounded model checkers to avoid augmenting the next incremental solving
with the failed assumption [ES03b].

The ianalyse procedure, given at lines 29-41, takes the current failing
assignment ℓ as input. Initially, at line 30, the negation of ℓ is added to Ĉ and
the antecedents set. The loop at lines 31-39 iterates over all assignments in
antecedents . At lines 32-33, the first literal ℓ′ ∈ antecedents is picked and
then removed from antecedents . If that literal is an implication (line 34), then

132 Chapter 7 Bounded Model Checking

Algorithm 7.1: Incremental CDCL Solving
Input : assumption θ, assignments σ, level function δ, implication function source

1 procedure CDCL():
2 d← 0, σ ← ∅, σ′ ← ∅, δ ← ∅, sat← UNSOLVED
3 while sat = UNSOLVED do
4 C′ = BCP()
5 if C′ ̸= ∅ then
6 if d = 0 then sat← UNSAT, break
7 (Ĉ, ⃗d)← analyse(C′, d), S ← S ∪ Ĉ

8 backjump(⃗d), d← ⃗d

9 end
10 else
11 forall ℓ ∈ θ do
12 if ℓ |=σ↑ then
13 L← L ∪ {ℓ}, d← d + 1
14 δ(ℓ)← d, δ(¬ℓ)← d
15 break
16 else if ℓ |=σ ⊤ then d← d + 1
17 else
18 Ĉ ← ianalyse(ℓ)
19 backjump(0), d← 0
20 return Ĉ

21 end
22 end
23 if L = ∅ then L← decide(), d← d + |L|
24 if L = ∅ then sat← SAT
25 σ ← σ ∪ L

26 end
27 end
28 end
29 procedure ianalyse(ℓ):
30 antecedents← ¬ℓ, Ĉ ← Ĉ ∪ {¬ℓ}
31 while antecedents ̸= ∅ do
32 pick first literal ℓ′ ∈ antecedents
33 antecedents← antecedents \ {ℓ′}
34 if ∃(C ∈ S).(ℓ′, C) ∈ source then
35 antecedents← antecedents ∪ {ℓ′′ ∈ C | ℓ′′ ̸= ℓ′}
36 else
37 Ĉ ← Ĉ ∪ {ℓ′}
38 end
39 end
40 return Ĉ

41 end

7.2 GPU-Accelerated Bounded Model Checking 133

all literals in its source except ℓ′ itself are added to antecedents . Otherwise,
ℓ′ must be a decision, hence it is added to Ĉ (line 37). The loop terminates if
there are no more assignments to analyse in antecedents .

7.1.2 MDM in Incremental Solving
Given the fact that BMC SAT formulas often have many variables, MDM
has much potential to speed up BMC. Recall that MDM periodically assigns
and propagates multiple decisions at the same time. In the same spirit during
incremental solving, a set of multiple assumed-decisions can be defined as follows:

Definition 7.2 (Multiple assumed-decisions set). Given a formula S, a set of
assumptions θ, and a set of assignments σ, we call a set Mθ = {ℓ ∈ θ | ℓ |=σ↑}
with |Mθ| > 1 a set of multiple assumed-decisions iff {C ∈ S | |Freeσ∪Mθ

(C)| =
1} = ∅.

When the MDM method is called, the set of multiple decisions M defined
in Chapter 6 can be extended to include Mθ such that M = Mθ ∪ ML, where
ML = {ℓ ∈ (L\θ) | ℓ |=σ↑} is the set of multiple decisions excluding assumptions.

7.2 GPU-Accelerated Bounded Model Checking
The proposed extensions in this chapter are implemented in ParaFROST with
CUDA C++ v11. It is a hybrid CPU-GPU tool, with (sequential) solving done
on the host side, and (parallel) VCE done on the device side. An interface with
CBMC is implemented in C++. CBMC is patched to read a configuration file
before ParaFROST is instantiated. This file contains all options supported by
ParaFROST. The framework GPU4BMC18 offers both the interface and the
former patches as an open source.

7.2.1 The Workflow
Figure 7.3 presents the general workflow of ParaFROST in the form of an
activity diagram with host and device lanes. The diagram is focused on inpro-
cessing; preprocessing works similarly on the device. First, the host performs
a predetermined number of solving iterations. Once those have finished, and
(un)satisfiability has not yet been proven, relevant clause data is copied to
the global memory. To hide the latency of this operation as much as possible,

18The framework is available at https://gears.win.tue.nl/software/gpu4bmc.

https://gears.win.tue.nl/software/gpu4bmc

134 Chapter 7 Bounded Model Checking

C
alculate sigs &

sort clauses for
VC

E
Apply VC

E
(m

em
ory aw

are)

D
elete clauses
m

arked for
deletion

DEVICE

C
onstruct

histogram
 and

sort variables

Perform
 C

D
C

L
iterations (and
learn clauses)

Async. copy
clauses to device

Schedule variables
for VC

E
(via unified
m

em
ory)

Async. copy
clauses to host

HOST

[solved]

Prepare clauses
for copying to

device

[not
solved]

[VCE finished]

[continue VC
E]

U
nit propagation
(via unified
m

em
ory)

D
elete clauses
m

arked for
deletion

Figure
7.3:

A
n

activity
diagram

for
the

w
orkflow

of
ParaF

R
O

ST

7.2 GPU-Accelerated Bounded Model Checking 135

clauses are copied asynchronously in batches. One batch is copied while the
next is formatted for the GPU, as not all clause information on the host side
is relevant for the device (see the next paragraph on data structures). On the
device, signatures are computed for fast clause comparison, and the clauses are
sorted for variable-clause eliminations (more on VCE later). Next, the device
constructs a histogram, for fast lookup of clauses, and sorts the variables. The
Thrust library is used for sorting.19 After that, the host schedules variables for
VCE, marking those variables in the global memory using unified memory. Next,
the device applies VCE, marking clauses to be removed as DELETED. The host
propagates units (literals in unit clauses are assigned true), which directly has
an effect on the formula in the global memory. The VCE procedure is repeated
until it has been performed a predetermined number of times. After each time,
DELETED clauses are removed, and after the last iteration, this is done while
the new clauses are copied to the host. Once this has been done, the overall
procedure is repeated.

7.2.2 Data Structures and Memory Management
We have worked on making the storage of each clause in the GPU global memory
as efficient as possible. However, we also wanted to annotate each clause with
sufficient information for effective optimisations. In ParaFROST, the following
information is stored for each clause:

• The state field (2 bits) stores if the state is ORIGINAL, LEARNT or DELETED.
• The used field (2 bits) keeps track of how many search iterations a LEARNT

clause can still be used. LEARNT clauses are used at most twice [BFFH20].
• Two fields (1 bit each) are used for VCE bookmarking.
• The literal block distance (lbd) (26 bits) stores the number of decision

levels contributing to a conflict, if there is one [AS09]. A maximum value
of 226 turns out to be sufficient. This field is updated when the clause is
altered.

• The size (32 bits) of the clause, i.e., the number of literals.
• A signature sig (32 bits) is a clause hash, for fast clause comparison [EB05].
In addition, a list of literals is stored, each literal taking 32 bits (1 bit to

indicate whether it is negated or not, and 31 bits to identify the variable). In
total, a clause requires 12 + 4t bytes, with t the number of literals in the clause.
For comparison, MiniSat only requires 4 + 4t bytes, but it does not involve the
used, lbd and sig fields, thereby not supporting the associated optimisations.

19https://docs.nvidia.com/cuda/thrust.

https://docs.nvidia.com/cuda/thrust

136 Chapter 7 Bounded Model Checking

RES: {x} ∪ C1, {x̄} ∪ C2 → C1 ∪ C2 ({x} ∪ C1 ̸∈ L ∧ {x̄} ∪ C2 ̸∈ L)
SUB1: {x} ∪ C1 ∪ C2, {x̄} ∪ C2 → C1 ∪ C2, {x̄} ∪ C2

SUB2: C1 ∪ C2, C2 → C2 (C2 ∈ L → L′ = L \ {C2})
ERE: {x} ∪ C1, {x̄} ∪ C2, C1 ∪ C2 → {x} ∪ C1, {x̄} ∪ C2 ({{x} ∪ C1, {x̄} ∪ C2} ∩

L ̸= ∅ → C1 ∪ C2 ∈ L)

Figure 7.4: VCE rules in ParaFROST

CaDiCaL [BFFH20] uses 28 + 4t bytes, since it applies solving and VCE on
the same structures. In ParaFROST, the GPU is only used for VCE, in which
information for probing [LS03] and vivification [PHS08], for instance, is irrelevant.
Finally, in [OWB21b], 20 + 4t bytes are used, storing the same information as
ParaFROST.

To store a formula S, a clause array is preallocated in the global memory,
and filled with the clauses of S. More space is allocated than the size of S, to
allow the addition of clauses that result from VCE. As the amount of allocated
space is the limiting factor for the addition of new clauses, we have developed a
memory-aware VCE mechanism, which we explain later in the current section.

7.2.3 Parallel VCE
As previously mentioned in Chapters 4 and 5, ParaFROST supports the VCE
rules: substitution (i.e., gate equivalence reasoning), resolution (RES), subsump-
tion elimination (SUB) and eager redundancy elimination (ERE) [EB05, JHB12].
Substitution applies to patterns representing logical gates, and substitutes the
involved variables with their gate definitions. ParaFROST supports AND/OR,
Inverter, If Then Else and XOR.

In Figure 7.4, we provide simple rewrite rules for SUB, RES and ERE. The
reader can find more information on these rules with formal proofs in Chapters 4
and 5. If clauses exist of the form expressed by the left hand side of a rule, then
the rule is applicable, and the involved clauses are replaced by the clauses (called
resolvents) on the right hand side. Both clauses C1 and C2 are non-empty sets
of literals. RES is applicable if there are two clauses of the form x ∪ C1 and
x̄ ∪ C2, and applying it results in replacing those with a clause C1 ∪ C2. SUB
consists of two rules; the second is applied once the first is no longer applicable.

Conditions are given between parentheses. For RES, only ORIGINAL clauses
are considered. Besides that, if C1 ∪ C2 evaluates to true, it is actually not

7.2 GPU-Accelerated Bounded Model Checking 137

created. As LEARNT clauses are sometimes deleted during solving, SUB2 should
only produce ORIGINAL clauses; if C2 is LEARNT before applying the rule, it will
become ORIGINAL (L′ refers to the set of LEARNT clauses after the application).
For ERE, LEARNT clauses cannot cause the deletion of an ORIGINAL clause.

VCE is applied in parallel by ParaFROST by scheduling sets of mutually-
independent variables for analysis. Recall that two variables x and y are inde-
pendent in a formula S iff S does not contain a clause containing literals that
refer to both variables, i.e., Sx ∪ Sx̄ and Sy ∪ Sȳ are disjoint. This ensures that
two threads focusing on x and y, respectively, does not lead to data races. In
incremental solving, variables referred to by assumptions must be excluded from
VCE. Thus, Definition 4.1 is modified to allow the exclusion of θ from the set of
authorised candidates as follows.

Definition 7.3 (Authorised candidates excl. θ). Given a CNF formula S, and
a set of assumed variables var(θ), the set of authorised candidates excluding
assumptions is defined as: A = {x | x ̸∈ var(θ)∧(1 ≤ h[x] ≤ µ∨1 ≤ h[¬x] ≤ µ)}.

As a consequence of the above definition, the set Φ is produced free of
assumptions and hence all variables x ∈ Φ are eligible for simplifications. In
each VCE iteration, a different set Φ is selected. This is achieved by using an
upper-bound µ for the number of occurrences of a variable in S (see Section 4.2.2).
After each iteration, µ is increased, allowing the selection of more variables.
ParaFROST supports configuring µ and the number of VCE iterations.

As already mentioned, clauses that can be removed are marked DELETED
before they are removed. The removal of clauses is done once VCE has finished
(see Figure 7.3) to avoid data races. However, because of this, VCE may at first
require more memory to store clauses. The clauses added during VCE must fit
in the memory, otherwise the procedure fails. To ensure this, we have developed
a memory-aware mechanism for VCE. Next, we explain this mechanism for
the RES rule and substitution, as the application of those rules results in new
clauses.

Algorithm 7.2 presents how RES and substitution are applied in
ParaFROST. It requires S, stored in a clause array clauses. As clauses
are of varying sizes, we need an array references that provides a reference to
each clause. In addition, arrays varinfo, cindex and rindex are given, which
are filled in the first lines.

At line 1, the kernel VceScan is called in which a different thread is assigned
to each variable x ∈ Φ. Each thread checks the applicability of VCE rules
on its variable and computes the number of clauses and literals that will be
produced by the first applicable rule. A thread with ID tid stores the type τ

138 Chapter 7 Bounded Model Checking

Algorithm 7.2: Parallel memory-aware application of RES and substi-
tution

Input : global Φ, clauses, references, varinfo, cindex, rindex

1 varinfo ← VceScan(Φ,Sd)
2 cindex ← computeClauseIndices(varinfo, size(clauses))
3 rindex ← computeClauseRefIndices(varinfo, size(references))
4 VceApply(Φ, clauses, references, varinfo, cindex, rindex)
5 kernel VceApply(Φ, clauses, references, varinfo, cindex, rindex):
6 for all tid ∈ J [0, |Φ|⟩ K do in parallel
7 register cidx← cindex[tid], ridx = rindex[tid]
8 register τ, rCls, rLits← varinfo[tid]
9 if τ = RES ∧ memorySafe(ridx, cidx, rCls, rLits) then

10 resolve(clauses, references, x, ridx, cidx)
11 else if τ = SUBST ∧ memorySafe(ridx, cidx, rCls, rLits) then
12 substitute(clauses, references, x, ridx, cidx)
13 end
14 end
15 end
16 device function memorySafe(ridx, cidx, rCls, rLits):
17 reqSpace← cidx + CB× rCls + rLits // number of buckets
18 if reqSpace > cap(clauses) then return false
19 reqRefs← ridx + rCls // number of clause references
20 if reqRefs > cap(references) then return false
21 return true
22 end

of the applicable rule (NONE, RES, or SUBST) and the number of clauses β and
literals γ produced by that rule in one integer at varinfo[i]. At lines 2-3, kernels
computeClauseIndices and computeClauseRefIndices are called to add
up the β’s and γ’s to obtain offsets into the arrays references and clauses (the
method size(A) refers to the amount of data in array A). Both methods apply
a parallel exclusive prefix sum [SHGO10], involving the β’s and γ’s. The result
is that thread i, assigned to x, is instructed to start writing clause references
at references[rindex[i]] and clauses at clauses[cindex[i]] when applying the
next VCE rule for x. Whether the data actually fits is checked later.

Next, the kernel VceApply is called (lines 5-15). To each variable in Φ,
a thread is assigned. It retrieves the precomputed data (lines 7-8) and either
applies the RES rule (lines 9-10), substitution (lines 11-12), or nothing, in case
τ = NONE. However, a condition for applying a rule is that there is enough space,
which is checked using the device function memorySafe (lines 16-22).

The amount of allocated space for A in buckets is reflected by cap(A), and

7.3 Benchmarks and Analysis 139

memorySafe checks if there is enough space in clauses, starting at cidx (lines
17-18). If there is, it is checked if the references can be stored in references
(lines 19-20). Recall from Section 5.2, the constant CB is the number of buckets
needed to store SCLAUSE which is 12 bytes / 4 bytes. Note that Algorithm 7.2
does not reason about function tables as it was developed and published before
Algorithm 5.5.

7.3 Benchmarks and Analysis
We conducted experiments with CBMC in combination with MiniSat (the
default), Glucose, CaDiCaL, ParaFROST, ParaFROST with MDM, and
a CPU-only version, referred to as ParaFROST (noGPU).20 We used the
AWS benchmarks in which the data structures hash table, array list, array
buff, linked list, priority queue, byte cursor and string were analysed.
The loop unwinding upper-bounds 8, 16, 64, 128 and 1,000 were used, resulting
in 168 different verification problems.

All experiments were executed on the DAS-5 cluster [BEdL+16]. Each
program was verified in isolation on a separate node, with a time-out of 3,600
seconds. Each node had an Intel Xeon E5-2630 CPU (2.4 GHz) with 64 GB of
memory, and an NVIDIA RTX 2080 Ti (specifications are listed in Table 3.2).

Figures 7.5 and 7.6 present the decision procedure runtime and how much
time was spent on VCE, respectively. As seen by the former, ParaFROST out-
performs all sequential solvers including CaDiCaL. Even though ParaFROST
is based on CaDiCaL, its different data structures, simplification mechanism
and parameters tuned for large formulas makes ParaFROST more effective in
these experiments. Further, MDM improves ParaFROST on most test cases.
Figure 7.6 emphasizes that CBMC with MiniSat often spends most of the time
on VCE. ParaFROST, on the other hand, significantly reduces the time spent
on VCE compared to other solvers.

In Table 7.1, the Verified column lists per solver the number of verified
programs, and PAR-2 gives the penalized average runtime-2 metric. The PAR-2
score accumulates the running times of all solved instances with 2× the time-out
of unsolved ones, divided by the total number of formulas. The solver with
the lowest score is the winner. The MiniSat column lists how many programs
were verified faster with the other solvers compared to MiniSat. Between
parentheses, it is given how many of those programs were not solved by MiniSat

20We also tried to use CBMC with Z3, but were not able to correctly configure this
combination at the time of writing.

140 Chapter 7 Bounded Model Checking

95 100 105 110 115 120 125 130 135 140 145 150 155
Programs Verified

0

400

800

1,200

1,600

2,000

2,400

2,800

3,200

3,600

V
er

ifi
ca

tio
n

tim
e

(s
ec

)

CBMC + MiniSat
CBMC + Glucose
CBMC + CaDiCaL
CBMC + ParaFROST (noGPU)
CBMC + ParaFROST
CBMC + ParaFROST (MDM)

Figure 7.5: Verification time (timeout: 3,600 seconds)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Simplifications

0

400

800

1,200

1,600

2,000

2,400

2,800

3,200

3,600

V
er

ifi
ca

tio
n

tim
e

(s
ec

)

CBMC + MiniSat
CBMC + CaDiCaL
CBMC + ParaFROST (noGPU)
CBMC + ParaFROST

Figure 7.6: Percentage of verification time used for VCE

7.4 Related Work 141

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Programs Verified

100

101

102

Sp
ee

du
p

Figure 7.7: ParaFROST vs. ParaFROST (noGPU) speedup

at all. The final four columns serve the same purpose for the other solvers. For
example, ParaFROST-MDM verified 123 programs faster than CaDiCaL,
of which 12 could not be verified by the latter. The last two rows provide a
similar comparison. Clearly, ParaFROST-MDM verified the largest number of
programs, with the lowest score.

Figures 7.7-7.12 presents the speedups of the ParaFROST configurations
for the individual cases. In Figure 7.7, the GPU solver without MDM is
compared against the CPU-only version. The maximum and the geometric
average accelerations are 18× and 1.3×, respectively. In Figures 7.8 and 7.9,
ParaFROST-MDM achieved higher accelerations up to around 27× and 21×
against ParaFROST (noGPU) and ParaFROST versions, respectively. Last,
in Figures 7.10-7.12, the impact of ParaFROST-MDM is measured against the
state-of-the-art sequential solvers MiniSat, Glucose, and CaDiCaL. Compared
to the latter, the GPU solver with MDM enabled achieved a significant speed
up to 85×, with a geometric mean of 1.8×.

7.4 Related Work

Wieringa et al. [WNH09] presented a framework called tarmo for parallelized
BMC on a multi-core architecture or a distributed system such as a cluster

142 Chapter 7 Bounded Model Checking

Table
7.1:

C
B

M
C

perform
ance

analysisusing
the

varioussolvers.
T

he
triangles

▲
and

▼
m

ean
significantly

betterand
w

orse,respectively.
P

FG
P

U
and

P
FC

P
U

are
shorthands

for
ParaF

R
O

ST
and

ParaF
R

O
ST

(noG
P

U
),

respectively.

C
onfiguration

V
erified

PA
R

-2
M

iniSat
G

lucose
C

aD
iC

aL
P

FC
P

U
P

FG
P

U
C

B
M

C
+

M
iniSat

143
1219

n/a
n/a

n/a
n/a

n/a
C

B
M

C
+

G
lucose

139
▼

1388
▼

49
(-4)

n/a
n/a

n/a
n/a

C
B

M
C

+
C

aD
iC

aL
143

1226
43

53
(+4)

n/a
n/a

n/a
C

B
M

C
+

PFC
PU

154
824

51
(+11)

62
(+15)

83
(+11)

n/a
n/a

C
B

M
C

+
PFG

PU
155

▲
765

▲
66

(+12)
▲

83
(+16)

▲
96

(+12)
120

(+1)
n/a

C
B

M
C

+
PFG

PU
-M

D
M

155
▲

743
▲

84
(+12)

▲
102

(+16)
▲

123
(+12)

133
(+1)

121

7.4 Related Work 143

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Programs Verified

10 1

100

101

102

Sp
ee

du
p

Figure 7.8: ParaFROST (MDM) vs. ParaFROST (noGPU) speedup

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Programs Verified

10 1

100

101

102

Sp
ee

du
p

Figure 7.9: ParaFROST (MDM) vs. ParaFROST speedup

144 Chapter 7 Bounded Model Checking

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Programs Verified

10 1

100

101

102

Sp
ee

du
p

Figure 7.10: ParaFROST (MDM) vs. MiniSat speedup

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Programs Verified

10 1

100

101

102

Sp
ee

du
p

Figure 7.11: ParaFROST (MDM) vs. Glucose speedup

7.5 Conclusion 145

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Programs Verified

10 1

100

101

102

Sp
ee

du
p

Figure 7.12: ParaFROST (MDM) vs. CaDiCaL speedup

of computing nodes. The tool runs multiple incremental SAT problems in
parallel allowing efficient clause sharing between the launched workers. Likewise,
Ábrahám et al. [ÁSB+11] applied parallel SAT solvers to check the satisfiability of
a BMC problem. Their approach works on formulas for different counterexample
lengths. Chatterjee et al. [CRDL20] introduced a dynamic technique to split
a BMC program into sub-tasks that can be verified in parallel with an SMT
solver.

On the other hand, Inverso et al. [IT20] presented a structure-aware parallel
technique for bounded analysis of concurrent programs. A set of concurrent
traces are decomposed into symbolic subsets that are simultaneously explored by
multiple instances of the same decision procedure running in parallel. Unlike the
related work above, the decision procedures work on different parts of the search
space without any sharing involved. Nevertheless, none of these techniques
investigate the GPU acceleration of BMC. To the best of our knowledge, we are
the first to investigate this.

7.5 Conclusion

We have presented ParaFROST, the first tool to accelerate BMC using GPUs.
Given that BMC formulas tend to have much redundancy, ParaFROST ef-

146 Chapter 7 Bounded Model Checking

fectively reduces solving times with GPU pre- and inprocessing, and by using
MDM, which is particularly effective when many variables are present.

In the future, we will combine our approach with (existing) multi-threaded
BMC. We expect these techniques to strengthen each other. As an alternative to
BMC, the IC3 algorithm is parallelisable as reported in [Bra11]. IC3 is currently
the state-of-the-art in symbolic MC which is capable of generating many small
lemmas (SAT formulas) independent of each other. This could be attractive for
SIMT architectures such as the GPU.

Chapter 8

Conclusions

"That your book has been delayed I am glad, since you have gained
an opportunity of being more exact."

– Samuel Johnson

In this chapter, first, we reflect on the main contributions of this thesis in
the context of the research questions stated in Chapter 1. For each of these,
we recall a summary of the experimental results and draw conclusions. Second,
directions of future work are discussed.

8.1 Contributions
We have conducted research on the acceleration of symbolic model checking
through SAT-based bounded checking on many-core architectures. Due to the
complexity of the control flow and data dependency, we have not yet ported
the CDCL search entirely to the GPU. However, we have shown that SAT
simplifications via pre- and inprocessing, which form almost 50% of the solver
workload, can be accelerated effectively on the GPU, yielding massive gains in
the solver performance. Further, we have made the sequential CDCL search
faster by the MDM procedure even when it runs sequentially. To this extend,

147

148 Chapter 8 Conclusions

seven research questions were formulated. Next, we discuss how the research
questions relate to the chapters presented in this thesis.

SAT Preprocessing. The current main challenges in parallel SAT solving
were discussed by the authors of [HW12, BS18]. A major challenge concerns the
parallelisation of SAT simplification in modern SAT solvers. Massively parallel
platforms such as GPUs offer great potentiality to speed up computations. The
following research question addresses how to accomplish this by designing new
parallel algorithms and data structures from scratch to make optimal use of
those platforms.

RQ1: How can GPUs be employed to perform scalable parallel SAT simpli-
fications?

We addressed this question in Chapter 4. The main challenge we tackled in
applying simplification techniques in parallel is the strong dependency between
variables in a SAT formula. Hence, we proposed the LCVE algorithm which is
responsible for scheduling a set of mutually independent variables that are eligible
for parallel simplification. Consequently, we introduced the first GPU algorithms
for variable and subsumption eliminations, which are essential nowadays in any
SAT solver. In addition, we presented the HRE method and its GPU implemen-
tation to further remove redundant clauses from SAT problems. Correctness of
the proposed parallel algorithms is discussed with formal proofs. Building on
our work for RQ1, we ask ourselves if the proposed parallel simplifications scale
up as well on multiple GPUs:

RQ2: Can we run parallel simplifications on a multi-GPU environment,
with or without sharing information?

We proposed in Chapter 4 a generalisation of all developed algorithms to dis-
tribute simplification work over single or multiple GPUs, if these are available
in a single machine. Having multiple GPUs, can definitely mitigate the lack
of memory of a single GPU, particularly for extremely large CNF formulas.
Balancing the workload of various simplification methods effectively across the
available graphics processors is feasible, using the proposed balancing scheme
labeled ping-pong distribution.

As a result of the above contributions, a new tool came to light called
SIGmA. It takes a SAT formula in DIMACS format, applies variable-clause

8.1 Contributions 149

eliminations on one or multiple GPUs, and outputs a simplified formula with less
variables and/or clauses. The tool was evaluated on a large set of benchmarks
and compared to SatElite. Further, SIGmA impact on solving was tested by
supplying the produced formulas as input to MiniSat and Lingeling (the state
of the art 4 years ago) solvers.

Overall, our preprocessor SIGmA achieved considerable speedups compared
to the sequential counterparts. For example, SIGmA outperformed SatElite
and Lingeling by accelerations up to 49× and 32×, respectively. With two
GPUs, if we ignore the time needed for data transfer between them, SIGmA
scales very well when the number of GPUs is increased. In mode SUB, the
average acceleration was 2.64×, and overall, the average speedup was 1.96×.
When we considered data transfer, the latter dropped to 0.85×. Still, SIGmA
managed to simplify 22% of the problems faster compared to the single GPU
mode, even if the communication overhead is taken into account. The major
advantage of the multi-GPU configuration is that it may allow more reductions
to be obtained, where a single GPU cannot due to limited memory capacity. On
the other hand, the hardware limitation of inter-GPU communication makes
the data transfers slow. We expect the multi-GPU mode to be increasingly
attractive in the future as the hardware advances (see a related discussion in
the next section). Regarding the impact of SIGmA on SAT solving, SIGmA
+ MiniSat solved 139 and 122 problems faster than MiniSat only and SatElite
+ MiniSat, respectively. As for Lingeling, 128 problems were solved faster by
applying SIGmA preprocessing.

SAT Inprocessing. Since 2013, simplification techniques [SP04, EB05, HJB10]
are used periodically during SAT solving, which is known as inprocess-
ing [JHB12, BGJ+18]. Applying inprocessing iteratively to large problems
can be a performance bottleneck in the solving routine, or even increase the size
of the formula, negatively impacting the solving time. The next research question
addresses the feasibility of running inprocessing frequently in SAT solving.

RQ3: Is it possible to run parallel simplifications regularly during CDCL
SAT solving, considering the growing size of the formula by learning new
clauses and transferring data back and forth to the CPU?

To do this efficiently, as discussed in Chapter 5, we crafted a new space-efficient
data structure for keeping the formula in the GPU memory, and a parallel
garbage collector to maintain the GPU memory and achieve maximum data
locality. A new parallel algorithm for BVE was presented which is twice as fast

150 Chapter 8 Conclusions

as the one previously presented in Chapter 4. Further, BVE was strengthened
by parallel function-table reasoning to find irregular gates that could not been
found by the syntactic approach.

The algorithms introduced in Chapter 5 were the seed of our hybrid SAT
solver: ParaFROST. The solver runs the inprocessing part on the GPU side,
making full use of its hardware capabilities, while the solving itself runs on the
CPU side. The CDCL engine was devised from scratch based on CaDiCaL
heuristics. Nonetheless, correctness (non-formal) of the GPU implementations
is crucial for the soundness of our tools, especially if they are used in critical
applications such as model checkers [OW21a]. This imposes the next two research
questions:

RQ4: Can we harness the intrinsic CUDA capabilities such as intra-warp
communications and concurrent streams for pushing ParaFROST perfor-
mance beyond its limits?

RQ5: Can we generate a clausal proof for the GPU code implemented in
our solver ParaFROST?

The compute capabilities of modern GPUs rapidly evolve, and some of the
ideas suggested in Chapter 4 algorithms should be reconsidered for today’s
GPUs. Thereby, we are continuously improving ParaFROST by leveraging
these capabilities. We already discussed some of these features in Chapter 5.
For instance, shuffle instructions are used in Algorithms 5.1, 5.2, and 5.5 to
do parallel reduction and exclusive scan per warp. Another example is the
usage of concurrent streams to overlap kernel executions and memory transfers
(Algorithm 5.4). To address RQ5, first, we explained how the proof memory can
be managed efficiently on the GPU using binary DRAT format [WHH14]. Second,
we developed a strategy to emit clausal proofs for the GPU simplifications without
causing any degradation to the solver’s overall performance. The generated
proofs can be then verified off-the-shelf via drat-trim to validate the behavior
of ParaFROST. Again, warp-intrinsic functions are exploited to do the DRAT
proof counting in Algorithm 5.2.

Empirically speaking, our solver (ParaFROST) accomplished massive gains
through GPU-accelerated inprocessing compared to its sequential version and
the state-of-the-art solver CaDiCaL. With the improvements made to the BVE
procedure in Chapter 5, the usage of atomic operations has been considerably
reduced which lead to an average speedup of 1.6× compared to the atomic version.

8.1 Contributions 151

Owing to funTab reasoning, more logical gates can be detected and removed
with an average speedup of 11.33× compared to the sequential counterpart.
We proposed the first parallel GC and proof generation on the GPU for SAT
applications with average accelerations of 35× and 11×, respectively. The
garbage collector helped reduce the GPU memory consumption while stimulating
coalesced memory access. The proof generator allowed ParaFROST to validate
all the SAT simplifications running on the GPU besides the CDCL search, giving
absolute credibility to our solver and its use in critical applications such as model
checkers.

Multiple Decision Making. Most papers in the existing literature are focused
on portfolio-based parallel SAT solving [ABK+13] where multiple SAT solvers
run concurrently to solve the same problem. On the other hand, the cube-and-
conquer solver [HKWB11] tries to decompose the original formula into many
smaller subformulas then explore all of them in parallel via multiple solvers.
Thus, the next research question is:

RQ6: Can CDCL search be partially or entirely parallelizable?

In Chapter 6, we introduced the MDM procedure in CDCL which is capable
of making thousands, even millions of decisions that are independent of each other
and hence can be assigned and propagated in parallel. The goal was to prune the
search space and hence reduce the solving time. However, doing so in parallel
turned to be slower than the sequential propagation. Later, we observed that
applying MDM sequentially has a positive impact on large formulas, particularly
stemming from verification problems. To make such decisions, MDM requires
that they do not lead to implications or conflicts. Doing this may lessen the
number of conflicts that arise from making bad assignments, which in turn
prunes the search space.

Several optimizations have been made to MDM including the VSIDS and
VMTF decision heuristics which were used to improve the quality of the picked
decisions. Further, ParaFROST restart was extended with interleaved policies
as implemented in CaDiCaL which combines both MiniSat and Glucose
heuristics and we showed how that can be effective in MDM. Based on restarts
and the total number of conflicts encountered, the MDM procedure can alternate
between the VSIDS and VMTF decision queues. As local search is more
attractive to guide the solver in finding solutions for satisfiable formulas, we
implemented a minimal version of the WalkSAT strategy to improve the truth
values when selecting multiple decisions. Interleaving local search with CDCL

152 Chapter 8 Conclusions

has been adopted before and proved its efficacy on satisfiable problems in modern
SAT solvers such as CaDiCaL and CryptoMiniSat.

Overall, a sequential version of ParaFROST with MDM enabled outper-
formed Kissat solver (2020 release) with a minimum PAR-2 score of 3,473.7
against 3,757.83 attained by the latter, solving more SAT instances in less time,
while being competitive with the UNSAT ones.

Bounded Model Checking. Through our last research question, we address
the integration and the impact of a GPU-accelerated solver on existing BMC
tools:

RQ7: How can GPUs be employed effectively to speed up BMC?

To address this question, we combined all the above achievements to accelerate
BMC with our solver ParaFROST. We found that SAT formulas stemming
from bounded model checkers such as CBMC have enormous redundancies in
variables and clauses. This amount of redundancy takes a lot of memory space on
the GPU. Thus, we compacted further the data structure that was first proposed
in Chapter 5 in order to reduce the memory consumption of SAT simplification.

In BMC problems, the number of resolvents added by the BVE procedure
is significant. Therefore, we introduced a memory guard to protect the space
pre-allocated for BVE from access violations. In other words, the guard gives
GPU threads the freedom of deciding whether a variable can be eliminated or
not. Additionally, the feature of incremental SAT solving has been added to
ParaFROST in order to support SAT-based k-induction BMC. To this end,
ParaFROST was integrated into the CBMC model checker using a configurable
interface called GPU4BMC.

Based on empirical results, first, we concluded that incremental solving has
not affected the effectiveness of the GPU-accelerated simplifications, as the
number of assumptions that have to be disabled during the incremental search
is a small fraction of the amount of redundancy resulting from BMC problems.
Second, we observed that program verification via CBMC can be accelerated
effectively with the GPU solvers ParaFROST and ParaFROST-MDM (a
configuration with MDM enabled). For example, compared to ParaFROST
(noGPU) (both simplifications and the search run on the CPU), ParaFROST
(and ParaFROST-MDM), accelerated multiple program verification tasks by
up to 18× (and 27×), and the geometric average speedup for all programs was
1.3× (and 1.6×).

8.2 Future Work 153

8.2 Future Work
The main drawback of distributing the workload of SAT simplifications across
multiple GPUs was the communication between them. In Chapter 4, we have
demonstrated how this can be done using a single machine with two GPUs
installed. However, the data bandwidth offered by the PCI-E version 3 (i.e. the
bus connecting the GPU with the CPU and the system memory) is very limited
with a peak of 16 GB/s. Now with the release of versions 4 and 5, the bandwidths
are doubled to 32 and 64 GB/s, respectively, which is a massive leap since SIGmA
was developed and benchmarked. To make the data transfer even faster, NVIDIA
announced the NVLink bridge (a GPU-to-GPU interconnect)21, that can add
another 50 GB/s to the PCI-E bandwidth. Testing these technologies on pre-
and inprocessing is yet to be done. Further, Shen et al. [SVL+16] have presented
effective strategies to dynamically partition and balance the workload of several
case studies on heterogeneous systems consisting of CPU and GPU nodes. This
presents an opportunity to investigate the application of these techniques on
optimally partitioning SAT simplifications across the available processing nodes.

As discussed in Chapter 6, parallel SAT solving is challenging because of the
heavy dependency between literal assignments and random memory accesses in
BCP. The MDM procedure was presented to tackle the former by issuing a
mutually-independent set of multiple decisions ready for propagation simulta-
neously. A multithreaded prototype for propagating these decisions has been
already developed; however, initial experimentation has revealed that a single-
threaded execution is actually faster. The main reason for the slowdown was
sharing the same formula between all threads and accessing independent parts
randomly, not taking advantage of the available cache and causing a contention
to the system memory. A potential solution is to group all clauses that belong
to one or more assigned variables to be accessed by the same responsible thread
together. Another solution is to replicate heavily-accessed small arrays into
separate buffers to avoid contention to the same data locations.

An entirely different approach to accelerate SAT solving is to run multi-
ple instances of the same or different solvers concurrently to process a SAT
formula. Whichever finds a solution first or declares the formula is unsatisfi-
able, is the winner and terminates the other working solvers. This approach
is called portfolio and has been investigated by the research community over
a decade [HJS09, ABK+13]. In our case, multiple instances of ParaFROST
with different configurations and heuristics can be launched on a single machine

21https://www.nvidia.com/en-us/data-center/nvlink

https://www.nvidia.com/en-us/data-center/nvlink

154 Chapter 8 Conclusions

using multiple CPU threads or a cluster of machines. This has the advantage of
analysing SAT formulas generated by bounded model checkers across different
CPU threads or machines [CRDL20, IT20].

In Chapter 7, we discussed how BMC can benefit from parallel eliminations
on the GPU while running the MDM procedure within the search, particularly
optimised for BMC problems. Alternatively, the IC3 algorithm is parallelisable
as reported in [Bra11]. IC3 is currently revolutionary in symbolic MC which is
capable of generating many small lemmas (SAT formulas) independent of each
other. This could be attractive for SIMT architectures such as the GPU.

Another direction is to harness the massive GPU capabilities in accelerating
probabilistic MC [dAKN+00]. The goal of this technique is to prove the cor-
rectness of stochastic systems that exhibit probabilistic behavior. Several tools
are developed to automate the checking process such as PRISM [KNP02] and
Storm [DJKV17]. A parallel implementation of the former has been developed
in CUDA by Bošnački et al. [BESW10]. Later on, Wijs et al. [WB12] improved
sparse matrix-vector (SpMV) multiplication. Recently, Khan et al. [KHK21]
proposed an acceleration of SpMV multiplication in Storm by hiding the mem-
ory latency involved in these operations via asynchronous memory copies. This
leads us to the possibility of using the NVIDIA tensor cores22 to further optimise
SpMV operations. Tensor cores are specially devised to speed up mixed integer
and floating-point operations while preserving accuracy. Further step to the
future is moving SpMV computations closer to the memory which is known as
Computation in Memory (CIM) [YNH+16]. This paradigm helps the researchers
reduce the communication overhead when it comes to processing huge chunks of
data as in Big Data problems.

22https://www.nvidia.com/en-us/data-center/tensor-cores

https://www.nvidia.com/en-us/data-center/tensor-cores

Bibliography

[ABK+13] M. Aigner, A. Biere, C. M. Kirsch, A. Niemetz, and M. Preiner.
Analysis of Portfolio-Style Parallel SAT Solving on Current Multi-
Core Architectures. In Proc. of POS (Jul. 2013), Helsinki, Finland,
volume 29 of EPiC Series in Computing, pages 28–40. EasyChair.
doi:10.29007/73n4.

[Ama21] Amazon. The Amazon Web Services Core C99 Package Benchmark
Set, 2021. URL https://github.com/awslabs/aws-c-common/
tree/main/verification/cbmc/proofs.

[AN16] Abhinav and R. Nasre. FastCollect: offloading generational garbage
collection to integrated GPUs. In Proc. of CASES (Oct. 2016), Pitts-
burgh, USA, pages 21:1–21:10. ACM. doi:10.1145/2968455.2968520.

[APT79] B. Aspvall, M. F. Plass, and R. E. Tarjan. A Linear-Time Algorithm
for Testing the Truth of Certain Quantified Boolean Formulas. In-
formation Processing Letters, 8(3):121–123, 1979. doi:10.1016/0020-
0190(79)90002-4.

[AS09] G. Audemard and L. Simon. Predicting Learnt Clauses Quality in
Modern SAT Solvers. In Proc. of IJCAI (Jul. 2009), California,
USA, pages 399–404. doi:10.5555/1661445.1661509.

[AS12] G. Audemard and L. Simon. Refining Restarts Strategies for SAT
and UNSAT. In Proc. of CP (Oct. 2012), Québec, Canada, volume
7514 of LNCS, pages 118–126. Springer. doi:10.1007/978-3-642-
33558-7_11.

155

https://doi.org/10.29007/73n4
https://github.com/awslabs/aws-c-common/tree/main/verification/cbmc/proofs
https://github.com/awslabs/aws-c-common/tree/main/verification/cbmc/proofs
https://doi.org/10.1145/2968455.2968520
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.5555/1661445.1661509
https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.1007/978-3-642-33558-7_11

156 Bibliography

[ÁSB+11] E. Ábrahám, T. Schubert, B. Becker, M. Fränzle, and C. Herde.
Parallel SAT Solving in Bounded Model Checking. Journal of Logic
and Computation, 21(1):5–21, 2011. doi:10.1093/logcom/exp002.

[BBC+20] F. B. Buonamici, G. Belmonte, V. Ciancia, D. Latella, and
M. Massink. Spatial logics and model checking for medical imaging.
International Journal on Software Tools for Technology Transfer,
22(2):195–217, 2020. doi:10.1007/s10009-019-00511-9.

[BCC+03] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu.
Bounded model checking. Advances in Computers, 58:117–148,
2003. doi:10.1016/S0065-2458(03)58003-2.

[BCCZ99] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In Proc. of TACAS (Mar. 1999), Am-
sterdam, The Netherlands, volume 1579 of LNCS, pages 193–207.
Springer. doi:10.1007/3-540-49059-0_14.

[BCLR04] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and Static
Driver Verifier: Technology Transfer of Formal Methods inside
Microsoft. In Proc. of iFM (Apr. 2004), Canterbury, UK, volume
2999 of LNCS, pages 1–20. Springer. doi:10.1007/978-3-540-24756-
2_1.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic Model Checking: 1020 States and Beyond. Infor-
mation and Computation, 98(2):142–170, 1992. doi:10.1016/0890-
5401(92)90017-A.

[BCMD90] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Se-
quential Circuit Verification Using Symbolic Model Checking. In
Proc. of DAC (Jun. 1990), Florida, USA, pages 46–51. IEEE Press.
doi:10.1145/123186.123223.

[BCRZ99] A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu. Verifiying Safety
Properties of a Power PC Microprocessor Using Symbolic Model
Checking without BDDs. In Proc. of CAV (Jul. 1999), Trento,
Italy, volume 1633 of LNCS, pages 60–71. Springer. doi:10.1007/3-
540-48683-6_8.

[BEdL+16] H. E. Bal, D. H. J. Epema, C. de Laat, R. van Nieuwpoort, J. W.
Romein, F. J. Seinstra, C. Snoek, and H. A. G. Wijshoff. A

https://doi.org/10.1093/logcom/exp002
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1145/123186.123223
https://doi.org/10.1007/3-540-48683-6_8
https://doi.org/10.1007/3-540-48683-6_8

Bibliography 157

Medium-Scale Distributed System for Computer Science Research:
Infrastructure for the Long Term. Computer, 49(5):54–63, 2016.
doi:10.1109/MC.2016.127.

[BESW10] D. Bošnački, S. Edelkamp, D. Sulewski, and A. Wijs. GPU-PRISM:
An Extension of PRISM for General Purpose Graphics Processing
Units. In PDMC-HiBi (2010), pages 17–19. doi:10.1109/PDMC-
HiBi.2010.11.

[BF15] A. Biere and A. Fröhlich. Evaluating CDCL Variable Scoring
Schemes. In Proc. of SAT (Sept. 2015), Austin, USA, volume 9340
of LNCS, pages 405–422. Springer. doi:10.1007/978-3-319-24318-
4_29.

[BF18] A. Biere and A. Fröhlich. Evaluating CDCL Restart Schemes. In
Proc. of POS (Sept. 2015), Austin, USA, volume 59 of EPiC Series
in Computing, pages 1–17. EasyChair. doi:10.29007/89dw.

[BFFH20] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL,
Kissat, Paracooba, Plingeling and Treengeling entering the SAT
Competition 2020. In Proc. of SC (2020), volume B-2020-1 of
Report Series B, pages 51–53. University of Helsinki. URL http:
//hdl.handle.net/10138/318450.

[BGJ+18] F. S. Bao, C. E. Gutierrez, J. Jn-Charles, Y. Yan, and Y. Zhang.
Accelerating Boolean Satisfiability (SAT) solving by common sub-
clause elimination. Artificial Intelligence Review, 49(3):439–453,
2018. doi:10.1007/s10462-016-9530-6.

[Bie13] A. Biere. Lingeling, Plingeling and Treengeling Entering the Sat
Competition 2013. In Proc. of SC (2013), volume B-2013-1 of
Report Series B, pages 51–52. University of Helsinki. URL http:
//hdl.handle.net/10138/40026.

[BJK21] A. Biere, M. Järvisalo, and B. Kiesl. Preprocessing in SAT Solv-
ing. In Proc. of Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications. IOS Press, 2nd edition, 2021.

[BJLB+20] A. Biere, M. Järvisalo, D. Le Berre, K. S. Meel, and S. Men-
gel. The SAT Practitioner’s Manifesto. In Zenodo (Sept. 2020).
doi:10.5281/zenodo.4500928.

https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1109/PDMC-HiBi.2010.11
https://doi.org/10.1109/PDMC-HiBi.2010.11
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.29007/89dw
http://hdl.handle.net/10138/318450
http://hdl.handle.net/10138/318450
https://doi.org/10.1007/s10462-016-9530-6
http://hdl.handle.net/10138/40026
http://hdl.handle.net/10138/40026
https://doi.org/10.5281/zenodo.4500928

158 Bibliography

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT
Press, 2008.

[BOA09] M. Billeter, O. Olsson, and U. Assarsson. Efficient Stream Com-
paction on Wide SIMD Many-Core Architectures. In Proc. of
HPG (Aug. 2009), New Orleans, USA, pages 159–166. ACM.
doi:10.2312/EGGH/HPG09/159-166.

[Bra11] A. R. Bradley. SAT-Based Model Checking without Unrolling. In
Proc. of VMCAI (Jan. 2011), Austin, USA, volume 6538 of LNCS,
pages 70–87. Springer. doi:10.1007/978-3-642-18275-4_7.

[Bro13] C. E. Brown. Reducing Higher-Order Theorem Proving to a Se-
quence of SAT Problems. Journal of Automated Reasoning, 51(1):57–
77, 2013. doi:10.1007/s10817-013-9283-8.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Transactions on Computers, 35(8):677–691, 1986.
doi:10.1109/TC.1986.1676819.

[BS18] T. Balyo and C. Sinz. Parallel Satisfiability. In Proc. of Hand-
book of Parallel Constraint Reasoning, pages 3–29. Springer, 2018.
doi:10.1007/978-3-319-63516-3_1.

[BSST09] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfia-
bility Modulo Theories. In Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pages 825–885.
IOS Press, 2009. doi:10.3233/978-1-58603-929-5-825.

[CCGR99] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A
New Symbolic Model Verifier. In Proc. of CAV (Jul. 1999), Trento,
Italy, volume 1633 of LNCS, pages 495–499. Springer. doi:10.1007/3-
540-48683-6_44.

[CE81] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchro-
nization Skeletons Using Branching-Time Temporal Logic. In Proc.
of LP Workshop (May 1981), New york, USA, volume 131 of LNCS,
pages 52–71. Springer. doi:10.1007/BFb0025774.

[CG87] E. M. Clarke and O. Grumberg. Avoiding The State Explo-
sion Problem in Temporal Logic Model Checking. In Proc. of
PODC (Aug. 1987), Vancouver, Canada, pages 294–303. ACM.
doi:10.1145/41840.41865.

https://doi.org/10.2312/EGGH/HPG09/159-166
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/s10817-013-9283-8
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-319-63516-3_1
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/41840.41865

Bibliography 159

[CHT20] M. S. Cherif, D. Habet, and C. Terrioux. On the Refinement of
Conflict History Search Through Multi-Armed Bandit. In Proc.
of ICTAI (Nov. 2020), Baltimore, USA, pages 264–271. IEEE.
doi:10.1109/ICTAI50040.2020.00050.

[CKK+18] B. Cook, K. Khazem, D. Kroening, S. Tasiran, M. Tautschnig, and
M. R. Tuttle. Model Checking Boot Code from AWS Data Centers.
In Proc. of CAV (Jul. 2018), Oxford, UK, volume 10982 of LNCS,
pages 467–486. Springer. doi:10.1007/978-3-319-96142-2_28.

[CKL04] E. M. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-
C Programs. In Proc. of TACAS (Mar. 2004), Barcelona, Spain,
volume 2988 of LNCS, pages 168–176. Springer. doi:10.1007/978-3-
540-24730-2_15.

[CRDL20] P. Chatterjee, S. Roy, B. P. Diep, and A. Lal. Distributed Bounded
Model Checking. In Proc. of FMCAD (Sept. 2020), Haifa, Israel,
pages 47–56. IEEE. doi:10.34727/2020/isbn.978-3-85448-042-6_11.

[dAKN+00] L. de Alfaro, M. Z. Kwiatkowska, G. Norman, D. Parker, and
R. Segala. Symbolic Model Checking of Probabilistic Processes
Using MTBDDs and the Kronecker Representation. In Proc. of
TACAS 2000, Berlin, Germany, volume 1785 of LNCS, pages 395–
410. Springer. doi:10.1007/3-540-46419-0_27.

[DFLO19] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn. Scaling
Static Analyses at Facebook. Communication of the ACM, 62(8):62–
70, 2019. doi:10.1145/3338112.

[Dij72] E. W. Dijkstra. The Humble Programmer. Communication of the
ACM, 15(10):859–866, oct 1972. doi:10.1145/355604.361591.

[DJKV17] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. A Storm is
Coming: A Modern Probabilistic Model Checker. In Proc. of CAV
(Jul. 2017), Heidelberg, Germany, volume 10427 of LNCS, pages
592–600. Springer. doi:10.1007/978-3-319-63390-9_31.

[DKW08] V. D’Silva, D. Kroening, and G. Weissenbacher. A Survey of
Automated Techniques for Formal Software Verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 27(7):1165–1178, 2008. doi:10.1109/TCAD.2008.923410.

https://doi.org/10.1109/ICTAI50040.2020.00050
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_11
https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1145/3338112
https://doi.org/10.1145/355604.361591
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1109/TCAD.2008.923410

160 Bibliography

[DLL62] M. Davis, G. Logemann, and D. W. Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397,
1962. doi:10.1145/368273.368557.

[EB05] N. Eén and A. Biere. Effective Preprocessing in SAT Through
Variable and Clause Elimination. In Proc. of SAT (Jun. 2005),
St. Andrews, UK, volume 3569 of LNCS, pages 61–75. Springer.
doi:10.1007/11499107_5.

[EH83] E. A. Emerson and J. Y. Halpern. "Sometimes" and "Not Never"
Revisited: On Branching Versus Linear Time. In Proc. of
POPL (Jan. 1983), Austin, USA, pages 127–140. ACM Press.
doi:10.1145/567067.567081.

[ES03a] N. Eén and N. Sörensson. An Extensible SAT-solver. In Proc. of
SAT (May 2003) Santa Margherita Ligure, Italy, volume 2919 of
LNCS, pages 502–518. Springer. doi:10.1007/978-3-540-24605-3_37.

[ES03b] N. Eén and N. Sörensson. Temporal induction by incremental
SAT solving. Electronic Notes in Theoretical Computer Science,
89(4):543–560, 2003. doi:10.1016/S1571-0661(05)82542-3.

[FM09] J. Franco and J. Martin. A History of Satisfiability. In Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, pages 3–74. IOS Press, 2009. doi:10.3233/978-1-
58603-929-5-3.

[FVS11] J. Fang, A. L. Varbanescu, and H. Sips. A Comprehensive
Performance Comparison of CUDA and OpenCL. In 2011 In-
ternational Conference on Parallel Processing, pages 216–225.
doi:10.1109/ICPP.2011.45.

[GH21] S. Geisler and A. E. Haxthausen. Stepwise development and model
checking of a distributed interlocking system using RAISE. Formal
Aspects of Computing, 33(1):87–125, 2021. doi:10.1007/s00165-020-
00507-2.

[GM13] K. Gebhardt and N. Manthey. Parallel Variable Elimination on
CNF Formulas. In Proc. of KI (Sept. 2013), Koblenz, Germany,
volume 8077 of LNCS, pages 61–73. Springer. doi:10.1007/978-3-
642-40942-4_6.

https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/11499107_5
https://doi.org/10.1145/567067.567081
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.3233/978-1-58603-929-5-3
https://doi.org/10.3233/978-1-58603-929-5-3
https://doi.org/10.1109/ICPP.2011.45
https://doi.org/10.1007/s00165-020-00507-2
https://doi.org/10.1007/s00165-020-00507-2
https://doi.org/10.1007/978-3-642-40942-4_6
https://doi.org/10.1007/978-3-642-40942-4_6

Bibliography 161

[GN07] E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust Sat-
solver. Discrete Applied Mathematics, 155(12):1549–1561, 2007.
doi:10.1016/j.dam.2006.10.007.

[GSK98] C. P. Gomes, B. Selman, and H. A. Kautz. Boosting Combinatorial
Search Through Randomization. In Proc. of AAAI (Jul. 1998),
Wisconsin, USA, pages 431–437. AAAI Press / The MIT Press.

[HJB10] M. Heule, M. Järvisalo, and A. Biere. Clause Elimination Pro-
cedures for CNF Formulas. In Proc. of LPAR (Oct. 2010), Yo-
gyakarta, Indonesia, volume 6397 of LNCS, pages 357–371. Springer.
doi:10.1007/978-3-642-16242-8_26.

[HJS09] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: a Parallel SAT
Solver. Journal on Satisfiability, Boolean Modeling and Computation,
6(4):245–262, 2009. doi:10.3233/sat190070.

[HJW13] M. Heule, W. A. H. Jr., and N. Wetzler. Verifying Refuta-
tions with Extended Resolution. In Proc. of CADE (Jun. 2013),
New York, USA, volume 7898 of LNCS, pages 345–359. Springer.
doi:10.1007/978-3-642-38574-2_24.

[HKWB11] M. Heule, O. Kullmann, S. Wieringa, and A. Biere. Cube
and conquer: Guiding CDCL SAT solvers by lookaheads. In
K. Eder, J. Lourenço, and O. Shehory, editors, Proc. of HVC (Dec.
2011), Haifa, Israel, volume 7261 of LNCS, pages 50–65. Springer.
doi:10.1007/978-3-642-34188-5_8.

[Hol97] G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997. doi:10.1109/32.588521.

[HS07] H. Han and F. Somenzi. Alembic: An Efficient Algorithm for CNF
Preprocessing. In Proc. of DAC (Jun 2007), San Diego, USA, pages
582–587. IEEE. doi:10.1145/1278480.1278628.

[HT19] D. Habet and C. Terrioux. Conflict history based search for con-
straint satisfaction problem. In Proc. of SAC (Apr. 2019), Limassol,
Cyprus, pages 1117–1122. ACM. doi:10.1145/3297280.3297389.

[HW12] Y. Hamadi and C. M. Wintersteiger. Seven Challenges in Parallel
SAT Solving. In Proc. of AAAI (Jul. 2012), Toronto, Canada.
AAAI Press.

https://doi.org/10.1016/j.dam.2006.10.007
https://doi.org/10.1007/978-3-642-16242-8_26
https://doi.org/10.3233/sat190070
https://doi.org/10.1007/978-3-642-38574-2_24
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1109/32.588521
https://doi.org/10.1145/1278480.1278628
https://doi.org/10.1145/3297280.3297389

162 Bibliography

[IT20] O. Inverso and C. Trubiani. Parallel and Distributed Bounded
Model Checking of Multi-threaded Programs. In Proc. of
PPoPP (Feb. 2020), California, USA, pages 202–216. ACM.
doi:10.1145/3332466.3374529.

[JBH10] M. Järvisalo, A. Biere, and M. Heule. Blocked Clause Elimination.
In Proc. of TACAS (Mar. 2010), Paphos, Cyprus, volume 6015 of
LNCS, pages 129–144. Springer. doi:10.1007/978-3-642-12002-2_10.

[JBH12] M. Järvisalo, A. Biere, and M. Heule. Simulating Circuit-Level
Simplifications on CNF. Journal of Automated Reasoning, 49(4):583–
619, 2012. doi:10.1007/s10817-011-9239-9.

[JHB12] M. Järvisalo, M. Heule, and A. Biere. Inprocessing Rules. In Proc.
of IJCAR (Jun. 2012), Manchester, UK, volume 7364 of LNCS,
pages 355–370. Springer. doi:10.1007/978-3-642-31365-3_28.

[JS05] H. Jin and F. Somenzi. An Incremental Algorithm to
Check Satisfiability for Bounded Model Checking. Electronic
Notes in Theoretical Computer Science, 119(2):51–65, 2005.
doi:10.1016/j.entcs.2004.06.062.

[JT96] D. S. Johnson and M. A. Trick. Cliques, Coloring, and Satisfiability.
In Proc. of DIMACS Workshop (Oct. 1996), New Jersey, USA,
volume 26. DIMACS/AMS. doi:10.1090/dimacs/026.

[KHK21] M. H. Khan, O. Hassan, and S. Khan. Accelerating spmv multi-
plication in probabilistic model checkers using gpus. In Proc. of
ICTAC (Sept. 2021), Nur-Sultan, Kazakhstan, volume 12819 of
LNCS, pages 86–104. Springer. doi:10.1007/978-3-030-85315-0_6.

[KNP02] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Proba-
bilistic Symbolic Model Checker. In Proc. of TOOLS (Apr. 2002),
London, UK, volume 2324 of LNCS, pages 200–204. Springer.
doi:10.1007/3-540-46029-2_13.

[KS16] D. Kroening and O. Strichman. Decision Procedures - An Algorith-
mic Point of View, Second Edition. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2016. doi:10.1007/978-3-662-
50497-0.

https://doi.org/10.1145/3332466.3374529
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.org/10.1007/s10817-011-9239-9
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1016/j.entcs.2004.06.062
https://doi.org/10.1090/dimacs/026
https://doi.org/10.1007/978-3-030-85315-0_6
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0

Bibliography 163

[KT11] T. Kahsai and C. Tinelli. PKind: A Parallel k-Induction Based
Model Checker. In Proc. of PDMC (Jul. 2011), Snowbird, Utah,
USA, volume 72 of EPTCS, pages 55–62. doi:10.4204/EPTCS.72.6.

[KT14] D. Kroening and M. Tautschnig. CBMC - C Bounded Model
Checker - (Competition Contribution). In Proc. of TACAS (Apr.
2014), Grenoble, France, volume 8413 of LNCS, pages 389–391.
Springer. doi:10.1007/978-3-642-54862-8_26.

[Kul99] O. Kullmann. On a Generalization of Extended Resolution. Dis-
crete Applied Mathematics, 96-97:149–176, 1999. doi:10.1016/S0166-
218X(99)00037-2.

[LGPC16] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. Learning
rate based branching heuristic for SAT solvers. In Proc. of SAT
(Jul. 2016), Bordeaux, France, volume 9710 of LNCS, pages 123–140.
Springer. doi:10.1007/978-3-319-40970-2_9.

[Li00] C. M. Li. Integrating Equivalency Reasoning into Davis-Putnam
Procedure. In Proc. of AAAI (Aug. 2000), Austin, USA, pages
291–296. AAAI Press / The MIT Press.

[LS03] I. Lynce and J. P. M. Silva. Probing-Based Preprocessing Techniques
for Propositional Satisfiability. In Proc. of ICTAI (Nov. 2003),
California, USA, page 105. IEEE. doi:10.1109/TAI.2003.1250177.

[LSZ93] M. Luby, A. Sinclair, and D. Zuckerman. Optimal Speedup of Las
Vegas Algorithms. Information Processing Letters, 47(4):173–180,
1993. doi:10.1016/0020-0190(93)90029-9.

[LTE+20] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl. There’s plenty of room
at the Top: What will drive computer performance after Moore’s
law? Science, 368(6495), 2020. doi:10.1126/science.aam9744.

[Mer20] D. Merrill. CUB: A Parallel Primitives Library. NVLabs, 2020.
URL https://nvlabs.github.io/cub/.

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an Efficient SAT Solver. In Proc.
of DAC (Jun. 2001), Las Vegas, USA, pages 530–535. ACM.
doi:10.1145/378239.379017.

https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1016/S0166-218X(99)00037-2
https://doi.org/10.1016/S0166-218X(99)00037-2
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1109/TAI.2003.1250177
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1126/science.aam9744
https://nvlabs.github.io/cub/
https://doi.org/10.1145/378239.379017

164 Bibliography

[Moo65] G. E. Moore. Cramming More Components onto Integrated Circuits.
Electronics, 38(8):114, 1965. doi:10.1109/N-SSC.2006.4785860.

[MRM+12] M. Maas, P. Reames, J. Morlan, K. Asanovic, A. D. Joseph, and
J. Kubiatowicz. GPUs as an opportunity for offloading garbage
collection. In Proc. of ISMM (Jun. 2012), Beijing, China, pages
25–36. ACM. doi:10.1145/2258996.2259002.

[NVI20a] NVIDIA. CUDA C Programming Guide, 2020. URL https://
docs.nvidia.com/cuda/cuda-c-programming-guide.

[NVI20b] NVIDIA. The Thrust library, 2020. URL https://docs.nvidia.
com/cuda/thrust.

[OGHM18] M. Osama, L. Gaber, A. I. Hussein, and H. Mahmoud. An Efficient
SAT-Based Test Generation Algorithm with GPU Accelerator. Jour-
nal of Electronic Testing, 34(5):511–527, 2018. doi:10.1007/s10836-
018-5747-4.

[OGMS02] R. Ostrowski, É. Grégoire, B. Mazure, and L. Sais. Recovering and
Exploiting Structural Knowledge from CNF Formulas. In Proc. of
CP (Sept. 2002), New York, USA, volume 2470 of LNCS, pages
185–199. Springer. doi:10.1007/3-540-46135-3_13.

[OMH20] P. Oostema, R. Martins, and M. Heule. Coloring Unit-Distance
Strips using SAT. In Proc. of LPAR (May 2020), Alicante, Spain,
volume 73 of EPiC Series in Computing, pages 373–389. EasyChair.
doi:10.29007/btmj.

[Osa21a] M. Osama. Large SAT Benchmark Suite for Certified SAT Solving
with GPU Accelerated Inprocessing, July 2021.

[Osa21b] M. Osama. ParaFROST Proofs for Certified SAT Solving with
GPU Accelerated Inprocessing, July 2021. URL https://doi.org/
10.5281/zenodo.5137887.

[OW19a] M. Osama and A. Wijs. Parallel SAT Simplification on GPU Archi-
tectures. In Proc. of TACAS (Apr. 2019), Prague, Czech Republic,
volume 11427 of LNCS, pages 21–40. Springer. doi:10.1007/978-3-
030-17462-0_2.

https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1145/2258996.2259002
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/thrust
https://docs.nvidia.com/cuda/thrust
https://doi.org/10.1007/s10836-018-5747-4
https://doi.org/10.1007/s10836-018-5747-4
https://doi.org/10.1007/3-540-46135-3_13
https://doi.org/10.29007/btmj
https://doi.org/10.5281/zenodo.5137887
https://doi.org/10.5281/zenodo.5137887
https://doi.org/10.1007/978-3-030-17462-0_2
https://doi.org/10.1007/978-3-030-17462-0_2

Bibliography 165

[OW19b] M. Osama and A. Wijs. SIGmA: GPU Accelerated Simplification
of SAT Formulas. In Proc. of IFM (Dec. 2019), Bergen, Norway,
volume 11918 of LNCS, pages 514–522. Springer. doi:10.1007/978-
3-030-34968-4_29.

[OW20] M. Osama and A. Wijs. Multiple Decision Making in Conflict-
Driven Clause Learning. In Proc. of ICTAI (Nov. 2020), Baltimore,
USA, pages 161–169. IEEE. doi:10.1109/ICTAI50040.2020.00035.

[OW21a] M. Osama and A. Wijs. GPU Acceleration of Bounded Model
Checking with ParaFROST. In Proc. of CAV (Jul. 2021), USA,
volume 12760 of LNCS, pages 447–460. Springer. doi:10.1007/978-
3-030-81688-9_21.

[OW21b] M. Osama and A. Wijs. Multiple Decision Making in CDCL SAT
Solvers. 2021. To be submitted.

[OW21c] M. Osama and A. Wijs. ParaFROST at the SAT Race 2021. In
Proc. of SC (2021), volume B-2021-1 of Report Series B, pages 32–
34. University of Helsinki. URL http://hdl.handle.net/10138/
333647.

[OWB21a] M. Osama, A. Wijs, and A. Biere. Certified SAT Solving with GPU
Accelerated Inprocessing. 2021. To be submitted.

[OWB21b] M. Osama, A. Wijs, and A. Biere. SAT Solving with GPU Acceler-
ated Inprocessing. In Proc. of TACAS (Mar. 2021), Luxembourg,
volume 12651 of LNCS, pages 133–151. Springer. doi:10.1007/978-
3-030-72016-2_8.

[PBB21] A. Pakonen, I. Buzhinsky, and K. Björkman. Model Checking
Reveals Design Issues Leading to Spurious Actuation of Nuclear
Instrumentation and Control Systems. Reliability Engineering and
System Safety, 205:107237, 2021. doi:10.1016/j.ress.2020.107237.

[PD07] K. Pipatsrisawat and A. Darwiche. A Lightweight Component
Caching Scheme for Satisfiability Solvers. In Proc. of SAT (May
2007), Lisbon, Portugal, volume 4501 of LNCS, pages 294–299.
Springer. doi:10.1007/978-3-540-72788-0_28.

https://doi.org/10.1007/978-3-030-34968-4_29
https://doi.org/10.1007/978-3-030-34968-4_29
https://doi.org/10.1109/ICTAI50040.2020.00035
https://doi.org/10.1007/978-3-030-81688-9_21
https://doi.org/10.1007/978-3-030-81688-9_21
http://hdl.handle.net/10138/333647
http://hdl.handle.net/10138/333647
https://doi.org/10.1007/978-3-030-72016-2_8
https://doi.org/10.1007/978-3-030-72016-2_8
https://doi.org/10.1016/j.ress.2020.107237
https://doi.org/10.1007/978-3-540-72788-0_28

166 Bibliography

[PDFP15] A. D. Palù, A. Dovier, A. Formisano, and E. Pontelli.
CUD@SAT: SAT solving on GPUs. Journal of Experimen-
tal and Theoretical Artificial Intelligence, 27(3):293–316, 2015.
doi:10.1080/0952813X.2014.954274.

[PHS08] C. Piette, Y. Hamadi, and L. Sais. Vivifying Propositional Clausal
Formulae. In Proc. of ECAI (Jul. 2008), Patras, Greece, volume
178 of Frontiers in Artificial Intelligence and Applications, pages
525–529. IOS Press. doi:10.3233/978-1-58603-891-5-525.

[PMP15] Q. Phan, P. Malacaria, and C. S. Pasareanu. Concurrent Bounded
Model Checking. ACM SIGSOFT Software Engineering Notes,
40(1):1–5, 2015. doi:10.1145/2693208.2693240.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In Proc.
of FOCS (1977), Rhode Island, USA, pages 46–57. IEEE.
doi:10.1109/SFCS.1977.32.

[PSM21] N. Prevot, M. Soos, and K. S. Meel. Leveraging GPUs for Effective
Clause Sharing in Parallel SAT Solving. In Theory and Applications
of Satisfiability Testing – SAT 2021, pages 471–487, Cham. Springer
International Publishing. doi:10.1007/978-3-030-80223-3_32.

[SBS96] P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Combinational test generation using satisfiability. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
15(9):1167–1176, 1996. doi:10.1109/43.536723.

[SG99] J. P. M. Silva and T. Glass. Combinational Equivalence Checking
Using Satisfiability and Recursive Learning. In Proc. of DATE
(Mar. 1999), Munich, Germany, pages 145–149. IEEE / ACM.
doi:10.1109/DATE.1999.761110.

[SHGO10] S. Sengupta, M. J. Harris, M. Garland, and J. D. Owens. Efficient
Parallel Scan Algorithms for Manycore GPUs. In Proc. of Scientific
Computing with Multicore and Accelerators, CRC Computational
Science Series, pages 413–442. CRC Press, 2010. doi:10.1201/b10376-
29.

[SK93] B. Selman and H. A. Kautz. An Empirical Study of Greedy Local
Search for Satisfiability Testing. In Proc. of AAAI (Jul. 1993),
Washington, USA, pages 46–51. AAAI Press / The MIT Press.

https://doi.org/10.1080/0952813X.2014.954274
https://doi.org/10.3233/978-1-58603-891-5-525
https://doi.org/10.1145/2693208.2693240
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-030-80223-3_32
https://doi.org/10.1109/43.536723
https://doi.org/10.1109/DATE.1999.761110
https://doi.org/10.1201/b10376-29
https://doi.org/10.1201/b10376-29

Bibliography 167

[SKB+17] P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and
T. Bienmüller. Incremental bounded model checking for embed-
ded software. Formal Aspects of Computing, 29(5):911–931, 2017.
doi:10.1007/s00165-017-0419-1.

[SM19] M. Springer and H. Masuhara. Massively parallel GPU memory
compaction. In Proc. of ISMM (Jun. 2019), Phoenix, USA, pages
14–26. ACM. doi:10.1145/3315573.3329979.

[SP04] S. Subbarayan and D. K. Pradhan. NiVER: Non Increas-
ing Variable Elimination Resolution for Preprocessing SAT in-
stances. In Proc. of SAT (May 2004), Vancouver, Canada.
doi:https://doi.org/10.1007/11527695_22.

[SS99] J. P. M. Silva and K. A. Sakallah. GRASP: A Search Algorithm
for Propositional Satisfiability. IEEE Transactions on Computers,
48(5):506–521, 1999. doi:10.1109/12.769433.

[SSS00] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Properties
Using Induction and a SAT-Solver. In Proc. of FMCAD (Nov.
2000), Austin, USA, volume 1954 of LNCS, pages 108–125. Springer.
doi:10.1007/3-540-40922-X_8.

[Str01] O. Strichman. Pruning Techniques for the SAT-Based Bounded
Model Checking Problem. In Proc. of CHARME (Sept. 2001),
Scotland, UK, volume 2144 of LNCS, pages 58–70. Springer.
doi:10.1007/3-540-44798-9_4.

[SVL+16] J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips. Workload
Partitioning for Accelerating Applications on Heterogeneous Plat-
forms. IEEE Transactions on Parallel and Distributed Systems,
27(9):2766–2780, 2016. doi:10.1109/TPDS.2015.2509972.

[Tse83] G. S. Tseitin. On the Complexity of Derivation in Propositional Cal-
culus, pages 466–483. Springer Berlin Heidelberg, Berlin, Heidelberg,
1983. doi:10.1007/978-3-642-81955-1_28.

[VB01] M. N. Velev and R. E. Bryant. Effective Use of Boolean Satisfiability
Procedures in the Formal Verification of Superscalar and VLIW
Microprocessors. In Proc. of DAC (Jun. 2001), Las Vegas, USA,
pages 226–231. ACM. doi:10.1145/378239.378469.

https://doi.org/10.1007/s00165-017-0419-1
https://doi.org/10.1145/3315573.3329979
https://doi.org/https://doi.org/10.1007/11527695_22
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-44798-9_4
https://doi.org/10.1109/TPDS.2015.2509972
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1145/378239.378469

168 Bibliography

[vdTRH11] P. van der Tak, A. Ramos, and M. Heule. Reusing the Assignment
Trail in CDCL Solvers. Journal on Satisfiability, Boolean Modeling
and Computation, 7(4):133–138, 2011. doi:10.3233/sat190082.

[vEGH+21] J. van Eerd, J. F. Groote, P. Hijma, J. Martens, and A. Wijs. Term
Rewriting on GPUs. In Proc. of FSEN (May 2021), Virtual Event,
Revised Selected Papers, volume 12818 of LNCS, pages 175–189.
Springer. doi:10.1007/978-3-030-89247-0_12.

[Wal99] T. Walsh. Search in a Small World. In Proc. of IJCAI (Aug. 1999),
Stockholm, Sweden, pages 1172–1177. Morgan Kaufmann.

[WB12] A. Wijs and D. Bosnacki. Improving GPU sparse matrix-vector
multiplication for probabilistic model checking. In Proc. of SPIN
(Jul. 2012), Oxford, UK, volume 7385 of LNCS, pages 98–116.
Springer. doi:10.1007/978-3-642-31759-0_9.

[WB14] A. Wijs and D. Bosnacki. GPUexplore: Many-Core On-the-Fly
State Space Exploration Using GPUs. In Proc. of TACAS (Apr.
2014), Grenoble, France, volume 8413 of LNCS, pages 233–247.
Springer. doi:10.1007/978-3-642-54862-8_16.

[WHH14] N. Wetzler, M. Heule, and W. A. Hunt. DRAT-trim: Efficient
Checking and Trimming Using Expressive Clausal Proofs. In Proc.
of SAT (Jul. 2014), Vienna, Austria, volume 8561 of LNCS, pages
422–429. Springer. doi:10.1007/978-3-319-09284-3_31.

[Wij15] A. Wijs. GPU Accelerated Strong and Branching Bisimilarity
Checking. In Proc. of TACAS (Apr. 2015), London, UK, volume
9035 of LNCS, pages 368–383. Springer. doi:10.1007/978-3-662-
46681-0_29.

[WKS01] J. Whittemore, J. Kim, and K. A. Sakallah. SATIRE: A New
Incremental Satisfiability Engine. In Proc. of DAC (Jun. 2001),
Las Vegas, USA, pages 542–545. ACM. doi:10.1145/378239.379019.

[WNH09] S. Wieringa, M. Niemenmaa, and K. Heljanko. Tarmo: A Framework
for Parallelized Bounded Model Checking. In Proc. of PDMC (Nov.
2009), Eindhoven, The Netherlands, volume 14 of EPTCS, pages
62–76. doi:10.4204/EPTCS.14.5.

https://doi.org/10.3233/sat190082
https://doi.org/10.1007/978-3-030-89247-0_12
https://doi.org/10.1007/978-3-642-31759-0_9
https://doi.org/10.1007/978-3-642-54862-8_16
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-662-46681-0_29
https://doi.org/10.1007/978-3-662-46681-0_29
https://doi.org/10.1145/378239.379019
https://doi.org/10.4204/EPTCS.14.5

Bibliography 169

[YIMO15] H. A. Youness, A. Ibraheim, M. Moness, and M. Osama. An
Efficient Implementation of Ant Colony Optimization on GPU for
the Satisfiability Problem. In Proc. of PDP (Mar. 2015), Turku,
Finland, pages 230–235. IEEE. doi:10.1109/PDP.2015.59.

[YNH+16] J. Yu, R. Nane, A. Haron, S. Hamdioui, H. Corporaal, and K. Ber-
tels. Skeleton-based design and simulation flow for computation-
in-memory architectures. In Proc. of NANOARCH (Jul. 2016),
Beijing, China, pages 165–170. ACM. doi:10.1145/2950067.2950071.

[YOH+20] H. Youness, M. Osama, A. Hussein, M. Moness, and A. M.
Hassan. An Effective SAT Solver Utilizing ACO Based on
Heterogenous Systems. IEEE Access, 8:102920–102934, 2020.
doi:10.1109/ACCESS.2020.2999382.

[Zha05] L. Zhang. On Subsumption Removal and On-the-Fly CNF Simpli-
fication. In Proc. of SAT (Jun. 2005), St. Andrews, UK, volume
3569 of LNCS, pages 482–489. Springer. doi:10.1007/11499107_42.

[ZMMM01] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient
Conflict Driven Learning in a Boolean Satisfiability Solver. In Proc.
of ICCAD (Nov. 2001). IEEE/ACM Digest of Technical Papers,
pages 279–285. doi:10.1109/ICCAD.2001.968634.

https://doi.org/10.1109/PDP.2015.59
https://doi.org/10.1145/2950067.2950071
https://doi.org/10.1109/ACCESS.2020.2999382
https://doi.org/10.1007/11499107_42
https://doi.org/10.1109/ICCAD.2001.968634

Summary

GPU Enabled Automated Reasoning

Testing can be effective to detect the presence of bugs in system designs,
but it cannot prove their absence. One technique that can provide worthful
feedback on the correctness of system designs is Model Checking (MC). It involves
exhaustively analysing a system design to determine whether it satisfies desirable
functional specifications. Common examples are verifying autonomous vehicles,
medical imaging, microprocessor designs, and many more. For these applications,
it is vital to make sure they are bug free, and always behave (correctly) w.r.t the
functional properties. MC is used in automated fashion to catch any potential
bugs as early as possible–preferably at the design phase–to make the necessary
modifications quickly and cost-effectively. However, it is computationally very
demanding. Bounded Model Checking (BMC) is currently a contemporary
symbolic technique that can analyse large designs in reasonable time. BMC
determines whether a model satisfies a certain property expressed in temporal
logic, by translating the model checking problem to a propositional Satisfiability
(SAT) problem, for instance.

In this thesis, we investigate how GPUs can be employed effectively for
reasoning on Satisfiability and its direct application on BMC. GPUs offer great
potential for parallel computation, while keeping power consumption low. How-
ever, not all types of computation can trivially be performed on GPUs. In most
applications, the algorithms need to be entirely redesigned.

The first part focuses on the simplifications of SAT formulas prior to the
solving process (preprocessing) and how they can applied vigorously within SAT
solving (inprocessing). Simplification is a strategy that leads to a drastic prune
of the formula size, and the search space. The parallelisation of simplifications
has been always a major challenge due to the strong dependency between

171

172 Summary

variables in a SAT formula. Hence, we proposed the Least Constrained Variable
Elections (LCVE) algorithm, which is responsible for scheduling a set of mutually
independent variables that are eligible for parallel simplification. Consequently,
we introduced the first GPU algorithms for various eliminations, which are
essential in any SAT solver. In addition, we presented a new elimination method
called Eager Redundancy Elimination (ERE) and its GPU implementation
to further remove redundant clauses from SAT problems. All preprocessing
techniques were implemented in a tool called SIGmA. Next, we presented a new
SAT solver (ParaFROST) which interleaves the search with simplifications.
Inprocessing has proven to be powerful in modern SAT solvers, particularly
when applied on formulas encoding software and hardware verification problems.
The new solver is hybrid, capable of running the parallel part on the GPU while
the actual solving will run sequentially on the CPU. We discussed the design
aspects of the data structures and the memory management of our parallel
implementations, leading to substantial improvements in execution performance.

The second part concerns the solving part. The standard decision making step
in the Conflict-Driven Clause Learning (CDCL) algorithm, selects one decision
at a time to explore the search space. We extended this step in CDCL with
Multiple Decision Making (MDM) strategy. It has the ability to make thousands,
even millions of multiple decisions that can be propagated at once. Doing so may
lessen the number of conflicts that arise from making bad assignments, which in
turn prunes the search space. Several optimizations have been augmented to
MDM including local search, VSIDS, and VMTF decision heuristics to improve
the quality of the picked decisions. Overall, MDM allowed ParaFROST to
solve a significant number of SAT problems in less time compared to the state
of the art.

Finally, in the third part, we combined all the above achievements to accelerate
BMC with our solver ParaFROST. We found that SAT formulas stemming from
bounded model checkers such as CBMC have enormous redundancies in variables
and clauses. This amount of redundancy takes huge memory space on the GPU.
Thus, we compacted further the data structure in ParaFROST to reduce the
memory consumption. Additionally, the feature of incremental SAT solving
has been added to ParaFROST in order to support SAT-based k-induction
BMC. To this end, ParaFROST was integrated into CBMC model checker
using a configurable interface called GPU4BMC. We observed that program
verification via CBMC can be accelerated effectively with ParaFROST. For
example, compared to ParaFROST (noGPU) (both simplifications and the
search run on the CPU), ParaFROST accelerated multiple program verification
tasks up to 27× faster.

Samenvatting

Automatisch Redeneren met GPUs

Testen kan effectief zijn om de aanwezigheid van bugs in systeemontwer-
pen te detecteren, maar het kan hun afwezigheid niet bewijzen. Een techniek
die waardevolle feedback kan geven over de juistheid van systeemontwerpen
is modelverificatie (MC). Het omvat een grondige analyse van een systeemont-
werp om te bepalen of het voldoet aan de gewenste functionele specificaties.
Veelvoorkomende voorbeelden zijn het verifiëren van autonome voertuigen, me-
dische beeldvorming, microprocessorontwerpen en nog veel meer. Voor deze
toepassingen is het essentieel om ervoor te zorgen dat ze vrij zijn van bugs en
zich altijd (correct) gedragen met betrekking tot de functionele eigenschappen.
MC wordt geautomatiseerd gebruikt om mogelijke bugs zo vroeg mogelijk op
te sporen–bij voorkeur in de ontwerpfase–om de noodzakelijke wijzigingen snel
en kosteneffectief door te voeren. Het is echter rekenkundig zeer veeleisend.
Begrensde modelverificatie (BMC) is momenteel een hedendaagse symbolische
techniek waarmee grote ontwerpen binnen een redelijke tijd kunnen worden
geanalyseerd. BMC bepaalt of een model voldoet aan een bepaalde eigenschap
uitgedrukt in temporele logica, bijvoorbeeld door het modelcontroleprobleem te
vertalen naar een propositioneel vervulbaarheidsprobleem (SAT).

In dit proefschrift onderzoeken we hoe GPU’s effectief kunnen worden gebruikt
om te redeneren over vervulbaarheid en de directe toepassing ervan op BMC.
GPU’s bieden een groot potentieel voor parallelle berekeningen, terwijl het
stroomverbruik laag blijft. Niet alle soorten berekeningen kunnen echter triviaal
worden uitgevoerd op GPU’s. In de meeste toepassingen moeten de algoritmen
volledig opnieuw worden ontworpen.

Het eerste deel richt zich op het vereenvoudigen van SAT formules voor-
afgaand aan het oplossingsproces (preprocessing) en hoe vereenvoudigingen

173

174 Samenvatting

krachtig kunnen worden toegepast binnen het SAT oplossingsproces (inproces-
sing). Vereenvoudiging is een strategie die kan leiden tot een drastische reductie
in de formuleomvang en de zoekruimte. De parallellisatie van vereenvoudigingen
is altijd een grote uitdaging geweest vanwege de sterke afhankelijkheid tussen
variabelen in een SAT formule. Daarom hebben we het minst beperkte variabele
selectie (LCVE)-algoritme voorgesteld, dat verantwoordelijk is voor het iden-
tificeren van een reeks onderling onafhankelijke variabelen die in aanmerking
komen voor parallelle vereenvoudiging. Op basis daarvan hebben we de eerste
GPU algoritmen geïntroduceerd voor verschillende eliminaties, die essentieel zijn
in elke SAT oplosser. Daarnaast presenteerden we een nieuwe eliminatiemethode
genaamd eager redundantie eliminatie (ERE) en de GPU implementatie ervan om
overtollige clausules van SAT problemen verder te verwijderen. Alle voorbewer-
kingstechnieken zijn geïmplementeerd in een tool genaamd SIGmA. Vervolgens
presenteerden we een nieuwe SAT oplosser (ParaFROST) die vereenvoudigingen
toepast tijdens de zoekopdracht. Inprocessing heeft bewezen krachtig te zijn in
moderne SAT oplossers, vooral wanneer toegepast op formules die software- en
hardwareverificatieproblemen coderen. De nieuwe oplosser is hybride, en is in
staat om het parallelle deel op de GPU uit te voeren terwijl het daadwerkelijke
oplossen op de CPU plaatsvindt. We bespraken de ontwerpaspecten van de
datastructuren en het geheugenbeheer van onze parallelle implementaties, wat
leidde tot substantiële verbeteringen in de uitvoeringsprestaties.

Het tweede deel adresseert het oplossen. De standaard besluitvormingsstap
in het conflictgestuurd leren van clausules (CDCL) algoritme, selecteert één
beslissing tegelijk om de zoekruimte te verkennen. We hebben deze stap in
CDCL uitgebreid met de meervoudige besluitvorming (MDM) strategie. Het
heeft de mogelijkheid om duizenden, zelfs miljoenen beslissingen te nemen
die tegelijkertijd kunnen worden doorgevoerd. Dit kan het aantal conflicten
verminderen dat voortkomt uit het maken van slechte beslissingen, wat op zijn
beurt de zoekruimte inperkt. Er zijn verschillende optimalisaties toegevoegd
aan MDM, waaronder lokaal zoeken, VSIDS en VMTF beslissingsheuristieken
om de kwaliteit van de gekozen beslissingen te verbeteren. Over het algemeen
stelde MDM ParaFROST in staat om een aanzienlijk aantal SAT problemen
in minder tijd op te lossen in vergelijking met de state of the art.

Tenslotte hebben we in het derde deel alle bovenstaande prestaties gecombi-
neerd om BMC te versnellen met onze oplosser ParaFROST. We ontdekten dat
SAT formules die voortkomen uit begrensde modelverificatie tools zoals CBMC
enorme redundantie in variabelen en clausules hebben. Deze hoeveelheid redun-
dantie neemt enorm veel geheugenruimte in beslag op de GPU. Daarom hebben
we de datastructuur in ParaFROST verder gecomprimeerd om het geheugen-

175

verbruik te verminderen. Bovendien is incremental SAT oplossen toegevoegd aan
ParaFROST om op SAT gebaseerde k-inductie BMC te ondersteunen. Hiervoor
werd ParaFROST geïntegreerd in de CBMC model checker met behulp van
een configureerbare interface genaamd GPU4BMC. We hebben geconstateerd
dat programmaverificatie via CBMC effectief versneld kan worden met Pa-
raFROST. In vergelijking met bijvoorbeeld ParaFROST (noGPU) (waarin
zowel het vereenvoudigingen als het zoeken op de CPU gebeurt), versnelde
ParaFROST meerdere programmaverificatietaken tot wel 27×.

Curriculum Vitae

Muhammad Osama Mahmoud received the B.Sc. degree with distinction and
honors in Computers and Systems Engineering from the Faculty of Engineering,
Minia University, Minia, Egypt, in 2011. Shortly after, he joined the Depart-
ment of Computers and Systems Engineering, Minia university, as a Teaching
Assistant. He received his M.Sc. degree from the same university in Computer
Engineering field. His Master’s topic was about implementing an efficient GPU
implementation of Ant Colony Optimization for solving Satisfiability problem.

He received several awards from NVIDIA corporation for his contributions in
CUDA education and research including a GPU lab that is worth of $10,000 value.
From 2014, he was also the Principal Investigator of the NVIDIA educational
GPU-computing Lab, Minia University. Before working on his current Ph.D.
project, he has developed a real-time wind turbine emulator on a heterogeneous
embedded system and an efficient SAT-based test generator on a GPU accelerator.

Muhammad started as a Ph.D. candidate in 2017, at the Eindhoven University
of Technology in the group Software Engineering Technology. His work in GEARS
project was funded by NWO and supervised by Anton Wijs and Mark van den
Brand. His research focused on the development of GPU-accelerated algorithms
for automated reasoning on Satisfiability and how can they be effectively deployed
in bounded model checking.

Since 2012, Muhammad published over 10 articles and his interests include
formal verification, parallel programming, high-performance computing, and
cyber-physical systems.

Titles in the IPA Dissertation Series since 2019

S.M.J. de Putter. Verification
of Concurrent Systems in a Model-
Driven Engineering Workflow. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2019-01

S.M. Thaler. Automation for Infor-
mation Security using Machine Learn-
ing. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-02

Ö. Babur. Model Analytics and Man-
agement. Faculty of Mathematics and
Computer Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova.
Practical General Top-down Parsers.
Faculty of Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algo-
rithms for Geometric Network Prob-
lems. Faculty of Mathematics and
Computer Science, TU/e. 2019-05

J. Moerman. Nominal Tech-
niques and Black Box Testing for Au-
tomata Learning. Faculty of Science,
Mathematics and Computer Science,
RU. 2019-06

V. Bloemen. Strong Connectivity
and Shortest Paths for Checking Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2019-07

T.H.A. Castermans. Algorithms
for Visualization in Digital Humani-
ties. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-08

W.M. Sonke. Algorithms for
River Network Analysis. Faculty of
Mathematics and Computer Science,
TU/e. 2019-09

J.J.G. Meijer. Efficient Learn-
ing and Analysis of System Behav-
ior. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2019-10

P.R. Griffioen. A Unit-Aware Ma-
trix Language and its Application in
Control and Auditing. Faculty of Sci-
ence, UvA. 2019-11

A.A. Sawant. The impact of API
evolution on API consumers and how
this can be affected by API producers
and language designers. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2019-12

W.H.M. Oortwijn. Deductive Tech-
niques for Model-Based Concurrency
Verification. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2019-13

M.A. Cano Grijalba. Session-
Based Concurrency: Between Oper-
ational and Declarative Views. Fac-
ulty of Science and Engineering,
RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of
Science, Mathematics and Computer
Science, RU. 2020-02

R.A. van Rozen. Languages of
Games and Play: Automating Game
Design & Enabling Live Programming.
Faculty of Science, UvA. 2020-03
B. Changizi. Constraint-Based Anal-
ysis of Business Process Models. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2020-04
N. Naus. Assisting End Users in
Workflow Systems. Faculty of Science,
UU. 2020-05
J.J.H.M. Wulms. Stability of
Geometric Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2020-06
T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2020-07
P. van den Bos. Coverage and
Games in Model-Based Testing. Fac-
ulty of Science, RU. 2020-08
M.F.M. Sondag. Algorithms for
Coherent Rectangular Visualizations.
Faculty of Mathematics and Computer
Science, TU/e. 2020-09
D.Frumin. Concurrent Separa-
tion Logics for Safety, Refinement,

and Security. Faculty of Science,
Mathematics and Computer Science,
RU. 2021-01

A. Bentkamp. Superposition for
Higher-Order Logic. Faculty of Sci-
ences, Department of Computer Sci-
ence, VUA. 2021-02

P. Derakhshanfar. Carving Infor-
mation Sources to Drive Search-based
Crash Reproduction and Test Case
Generation. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2021-03

K. Aslam. Deriving Behavioral Spec-
ifications of Industrial Software Com-
ponents. Faculty of Mathematics and
Computer Science, TU/e. 2021-04

W. Silva Torres. Supporting Multi-
Domain Model Management. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2021-05

A. Fedotov. Verification Techniques
for xMAS. Faculty of Mathematics
and Computer Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled
Automated Reasoning. Faculty of
Mathematics and Computer Science,
TU/e. 2022-02

	Preface
	Introduction
	Model Checking
	SAT-based Bounded Model Checking
	SAT Solving
	Contributions and Thesis Hierarchy
	How to Read the Thesis
	Origin of the Chapters

	Preliminaries
	SAT Encoding
	SAT Solving
	Optimisations
	Heuristics

	SAT Simplifications
	Bounded Variable Elimination
	Subsumption Elimination
	Blocked Clause Elimination

	Graphics Processing Units
	50 Years of Microprocessors
	GPU Architecture
	CUDA Programming Model
	GPU Kernel
	Memory Hierarchy

	Streams and Concurrent Execution
	Specifications of our GPUs

	SAT Preprocessing
	GPU Challenges: Memory and Data
	Memory Management
	Data Structures

	Algorithm Design and Implementation
	Parallelisation Approach
	Parallel Variable Elimination
	Parallel Subsumption Elimination
	Parallel Blocked Clause Elimination
	Hidden Redundancy Elimination
	Multi-GPU Support

	Benchmarks and Analysis
	SAT-Simplification Benchmarks
	SAT-Solving Benchmarks

	Related Work
	Conclusion

	SAT Inprocessing
	GPU Memory and Data Structures
	Parallel Garbage Collection
	Proof Memory Management
	Variable Scheduling
	Main Inprocessing Procedure
	Three-Phase Parallel Variable Elimination
	Parallel Subsumption Elimination Revisited
	Eager Redundancy Elimination
	Kernel Automated Tuning
	Benchmarks and Analysis
	SAT-Simplification Speedup
	SAT-Solving Benchmarks

	Related Work
	Conclusion

	Multiple Decision Making
	SAT Solving with CDCL
	The CDCL procedure
	Multiple Decision Making

	MDM with Decision Heuristics
	Decision Heuristics
	2-WL Optimisation
	Decision Freezing
	The MDM Procedure with Optimisations

	MDM Integration in CDCL
	The Overjump Effect
	Correctness of Applying MDM in CDCL

	Benchmarks and Analysis
	Related Work
	Conclusion

	Bounded Model Checking
	Incremental Bounded Model Checking
	Incremental SAT Solving
	MDM in Incremental Solving

	GPU-Accelerated Bounded Model Checking
	The Workflow
	Data Structures and Memory Management
	Parallel VCE

	Benchmarks and Analysis
	Related Work
	Conclusion

	Conclusions
	Contributions
	Future Work

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

