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Chapter 1. Introduction.

1.1. Algorithms for diophantine equations.

This monograph deals with certaln types of diophantine equations. An equation
is a mathematical formula, expressing equality of two expressions that
involve one or more unknowns (variables). Solving an equation means finding
all solutions, i.e. the values that can be substituted for the unknowns such
that the equation becomes a true statement. An equation 1is called a
diophantine equation if the solutions are restricted to be integers in some
sense, usually the ordinary rational integers (elements of Z ) or some

subset of that.

Examples of diophantine equations that will be studied in this book are

(the Ramanujan-Nagell equation, having only the solutions given by

(*x,n) = (1,3), (3,4), (5,5), (11,7), (181,15) , see Chapter 4);

2% =3 + 5%
(a purely exponential equation, having only the solutions (x,y,z) = (1,0,0),

(2,1,0), (3,1,1), (5,3,1), (7,1,3) , see Chapter 6);

y2 = X3 - 4-x +1
(an elliptic curve equation, having only 22 solutions, of which the largest
are (x,y) = (1274,*45473) , see Chapter 8). The three examples mentioned
here are only some examples; we will study much wider classes of equations.
We also study (in Chapter 5) a diophantine inequality (a formula expressing
that one expression 1s larger than another, where solutions are again
restricted to integers). In the following discussion the statements about

diophantine equations also hold for this inequality.

What the equations treated in this book have in common is that they can all

be solved by the same method. This method consists essentlally of three



parts: a transformation step, an application of the Gelfond-Baker theory, and

a diophantine approximation step. We explain these steps briefly.

To start with, one transforms the equation into a purely exponential equation
or inequality, 1.e. a diophantine equation or inequality where the unknowns
are all in the exponents, such as in the second example given above. Each
type of diophantine equation needs a particular kind of transformation, so
that it is difficult to be more specific at this point. In some instances,
such as in the second example above, this transformation is easy, if not
trivial. In other instances, as in the first example above, it uses some
arguments from algebraic number theory, or, as in the third example above, a

lot of them.

In general, such a purely exponential equation has the form

. s
i nij .
1“ij = ¢y E o, (1.1)

I~
0
n= w

1

t in, . in 3
‘ Y c;- il ai.J < minjc,- il ai.J (1.2)
i=1 =1 J 1 le J
where t, Si’ Ci’ “ij’ 8 are constants with ¢, si €N, 0 <38 <1, and
. “ij belong to some algebraic extension of @ , and where the nij are

the unknowns in Z . We now suppose that the number of terms t on the left
hand side of (1.1) or (1.2) is equal to 2 . This restriction is essential
for the second step, in which we use results from the so-called theory of
linear forms in logarithms, also known as the Gelfond-Baker theory. (Some
special exponential equations of type (1.1) with t > 2 can also be treated
by the Gelfond-Baker method, since they can be reduced to exponential
inequalities of type (1.2) with t = 2 , cf. Stroeker and Tijdeman [1982],
Alex [19857], [1985b], Tijdeman and Wang [1988].)

An exponential equation or inequality such as (1.1) or (1.2) with t = 2

gives rise to a linear form in logarithms

A = log BO +

. n,-log B, ,

1

ne-~1s

where the Bi are algebraic constants, and the n, are integral unknowns.

Here, the logarithms are real or complex in some instances, or p-adic in



other cases. This relation between equation and linear form in logarithms is
such that for a large solution of the equation the linear form is extremely
close to zero (in the real or complex sense, or in the p-adic sense). The
Gelfond-Baker theory provides effectively computable lower bounds for the
absolute values (respectively p-adic wvalues) of such linear forms in
logarithms of algebraic numbers. In many cases these bounds have been
explicitly computed. Comparing the so-found upper and lower bounds it is
possible to obtain explicit upper bounds for the solutions of the exponential
diophantine equation or inequality, leading to upper bounds for the solutions
of the original equation. This second step, unlike the first (transformation)

step, 1s of a rather general nature.

We remark that many authors have given effectively computable upper bounds
for the solutions of a wide variety of diophantine equations, by applying the
method sketched above. For a survey, see Shorey and Tijdeman [1986]. Often
these authors were satisfied with the knowledge of the existence of such
bounds, and they did not actually compute them. If they computed bounds, they
did not always determine all the solutions. In this book, solving an equation

will always mean: explicitly finding all the solutions.

After the second step, the problem of solving the diophantine equation is
reduced to a finite problem, which is treated in the third part of the
method. Namely, since we have found explicit upper bounds for the absolute
values of the (integral) unknowns, we have to check only finitely many
possibilities for the unknowns. However, the word finite does not mean the
same as small or trivial. In fact, the constants appearing in the Ilower
bounds that the Gelfond-Baker theory provides for linear forms in logarithms
are rather large. Therefore, in practice the upper bounds that can be
obtained in this way for the solutions of purely exponential equations can be
for instance as large as 1040 . This is far too large to admit simple

enumeration of all the possibilities, even with the fastest of computers

today.

Proving the existence of an absolute upper bound for the solutions reduces
the determination of all the solutions from an infinite task to a finite one.
Thus, the application of the Gelfond-Baker theory (the second step) is in a
sense Iinfinitely many times as difficult a task than the only finite amount
of checking that remains to be done (in the third step). Furthermore, this

checking seems to be a technical problem only, not a mathematical one.



Nevertheless, it 1s the author’s opinion that solving this comparatively
small technical problem 1s not only nontrivial, but involves some serious and

interesting mathematics. This book hopefully illustrates this opinion.

Notwithstanding the fact that the application of the Gelfond-Baker theory in
the second step yields very large upper bounds, 1t is generally assumed that
these upper bounds are far from the actual largest solution. Therefore, it is
worthwile to search for methods to reduce these upper bounds to a size that
can be more easily handled. Often it 1s possible to devise such a method
using directly certain properties of the original diophantine equation, for
example that large solutions must satisfy certaln congruences modulo many or
large numbers (Grinstead [1978], Brown [1985], Pinch [1988]), or some
reciprocity condition (Pethd [1983]). The disadvantage of such methods is
that they work only for that particular type of diophantine equation, so that
in general for each type of equation a new reduction method must be devised.
It would therefore be interesting to have methods for reducing upper bounds
for the solutions of inequalities for linear forms in logarithms. They would
be useful for solving any type of diophantine problem that leads to such

inequalities.

Such methods are searched for in the third step of our method of solving
diophantine equations. It is malinly in this third part that new developments
can be reported. The arguments we use in the first and second parts are
mainly classical, and we apply them to types of equations that have been

studied before, and also to new types of equations.

The methods that are needed in the third step are provided by that part of
the theory of diophantine approximation that 1is concerned with studying how
close to zero a linear form can be for given values of the variables.
Recently important progress has been made in this field, the breakthrough
being the invention in 1981 by L. Lovasz of the so-called L3—laticce basis
reduction algorithm. We will show how this L3—a1gorithm leads to practically
efficient diophantine approximation algorithms, which can be employed for

many diophantine equations to show that in a certain interval [Xl’XO] no
1 is of the order of magnitude of log XO . When

for XO the theoretical upper bound for the solutions is substituted, a new,

and usually much better upper bound X1 is found. For many equations the

initial upper bound XO is well within reach of practical application of

these algorithms, within only a few minutes of computer time. This thus leads

solutions exist. Usually X



in practice to methods for finding all the solutions of many types of
diophantine equations, for which alternative methods have not yet been found

or employed with success.

The method outlined above, and used in this book to solve many examples of

various diophantine equations, is of an “algorithmic” nature. In a sense it

lies between ”ad hoc” methods and ”“theoretical” methods. This we shall

explain below. Let a set of diophantine equations with an unspecified

parameter in it be given. As an example of such a set, consider the
n

generalized Ramanujan-Nagell equation X2 + D = 2 , Wwhere D is a

parameter, and x, n are the unknowns.

An ad hoc method is a method for solving the equation for specific values of
the parameters only. It may not work at all for other than these particular
values. The first example of solving an equation of the type X2 +D = 2"
occurring in the literature is that by Nagell [1948] of D = 7 . The method
he used is of an ad hoc nature, since it depends heavily on the specilal

choice of 7 for the parameter D .

A theoretical method 1is capable of proving results that hold for some large
set of values of the parameters. The Gelfond-Baker theory is of a theoretical
nature, since 1t yields upper bounds for the solutions of many equations in
terms of their parameters. Other examples are application of the theory of

quadratic reciprocity, that shows that X2 + D = 2" has no solutions at all

if D is odd, at least 5 , and not congruent to 7 (mod 8) , and
application of the theory of hypergeometric functions, which Beukers [1981]
used to show that the solutions (x,n) of X2 + D = 2" satistfy

n < 435 + 10-210g|D| , and if [D]| < 296 then moreover n < 18 + 2-210g|D|

Theoretical methods are often too general to be able to produce all the

solutions of a given equation.

An algorithmic method is a method that is guaranteed to work for any set of
values of the parameters, but has to be applied separately to each particular
set of parameter values, 1n order to produce all the solutions. The methods
used in this book are mainly of such an algorithmic nature. For the equation
X2 + D = 2" (and actually for a more general equation) we will give an
algorithmic method in Chapter 4. In fact, since Beukers’ above-mentioned

result provides a small upper bound for the solutions, it can be made

algorithmic by providing a simple method of enumerating all the solutions



below the upper bound. However, the algorithmic part of this method is
trivial, and therefore we still prefer to classify Beukers’ method as
theoretical. In order to make the Gelfond-Baker theory algorithmic,
enumeration of all possibilities 1s impractical. Therefore more ingenious

ways of determining all the solutions below a large upper bound have to be
found. We remark that Beukers’ method for the more general equation
2

n . . .
x + D =0p also has an ad hoc aspect, since 1t works for some special

values of p only. Our method of Chapter 4 does not have this disadvantage.

An ideal towards which one might strive in solving diophantine equations is
to devise a computer algorithm, a kind of ’diophantine machine’, which only
has to be fed with the parameters of the equation, and after a short time
gives as output a list of all the solutions. One should have a guarantee (in

the strictest mathematical sense of proof) that no solutions are missing.

At first sight the method outlined above, and described in this monograph,
seems to be a good candidate to be developed into such a general applicable
algorithm. Namely, the second step is of a quite general nature, providing
upper bounds for exponential diophantine equations that are explicit in the
parameters of the equation. Also the third step, the algorithmic diophantine
approximation part, works in principle for any set of values substituted for
the parameters. However, the computations have to be performed separately for

each particular set of values.

The main difficulties in devising such a ’diophantine machine’ are in the
first part of the method outlined above, especially if some algebraic number
theory 1s used. Developments taking place in the theory of algorithmic
algebraic number theory on computing fundamental wunits and on finding
factorizations of prime numbers in algebraic extensions, are of importance
here. We believe that when suitable algorithms of this kind are available, it
will be possible in principle to make such a ’diophantine machine’ (but
technical difficulties in the third step should not be underestimated). The
generality of such an algorithm is restricted by the generality of the first
step, the transformation to the linear form in logarithms. In this book we
use computer algorithms only if the magnitude of the computational tasks
makes this necessary, and keep to "manual” work otherwise. In this way we

also try to keep the presentation of the methods lucid.

The reader should be aware of the fact that the computer programs and their



results are part of the proofs of many of our theorems on specific
diophantine equations. It is however impossible to publish all details of
these programs and computations. The interested reader may obtain the details

from the author by request, and is invited to check the computations himself.

The book by Shorey and Tijdeman [1986] gives a good survey of the diophantine
equations for which computable upper bounds for the solutions can be found
using the Gelfond-Baker method (see also Shorey, van der Poorten, Tijdeman
and Schinzel [1977], and Stroeker and Tijdeman [1982]). Some of these
equations can be completely solved by the methods described in this book,
among which there are purely exponential equations, equations involving
binary recurrence sequences, and Thue equations and Thue-Mahler equations.
Especially the latter two are of importance in various other parts of number
theory. For example, they are the key to solving Mordell equations and
various equations arising in algebraic number theory and arithmetic algebraic
geometry. The Gelfond-Baker method was used to actually solve a diophantine
equation for the first time in the work of Baker and Davenport [1969] in

solving the system of diophantine equations

Other equations occuring in the literature for which upper bounds for the
solutions can be computed, cannot be treated as easily by our algorithmic
methods, because the application of the theory of linear forms in logarithms
is more complicated for these equations, and moreover the upper bounds are
essentially too large. An example of this kind is the Catalan equation
aX - by =1 in integers a, b, x, y, all 2> 2 . Catalan conjectured in 1844
that this equation has only the solution (a,b,x,y) = (3,2,2,3) . Tijdeman
[1976] proved that the solutions of the Catalan equation are bounded by a
computable number. This number can be taken to be exp(exp(exp(exp(730)))) ,
according to Langevin [1976]. However, we fail to see how the methods that we
describe in the forthcoming chapters can be applied for completely solving

the Catalan equation, and we believe that Grosswald’s remarks on this topic

are too optimistic (Grosswald [1984], p. 259, in particular the footnote).

Another diophantine equation, that for centurles has attracted the attention
of many mathematicians, is the Fermat equation X+ yn = z" in integers x,
y, 2, n , with n > 3 and x-y-z # 0 . It is conjectured to have no

gsolutions. Faltings [1983] proved that for fixed n the number of solutions



is finite. His proof is ineffective. The Gelfond-Baker theory seems not to be
strong enough to deal with the Fermat equation in its full generality, not
even if n 1is fixed. For a survey of partial results on the Fermat equation
that have been obtained using this theory, see Tijdeman [1985] and Chapter 11
of Shorey and Ti jdeman [1986].

We remark that for many diophantine equations recently important progress has
been made in determining upper bounds for the number of solutions. See e.g.
Evertse [1983], Evertse, Gydry, Stewart and Tijdeman [1988] and Schmidt
[1988] for a survey. These results are often remarkably sharp, but

ineffective, so that they cannot be used for actually finding the solutions.

To conclude this section we give an overview of the contents of this
monograph. It 1is divided into three parts: Chapter 1 1is introductory,
Chapters 2 and 3 give the necessary preliminaries, and Chapters 4 to 8 deal

with various types of diophantine equations.

Sections 1.2 to 1.5 give a short introduction for the non-specialist to
respectively the Gelfond-Baker theory, diophantine approximation theory, the
algorithmic aspects of diophantine approximation, and the procedure for
reducing upper bounds. Chapter 2 contains the preliminary results that we
need from algebralic number theory and from the theory of p-adic numbers and
functions, and quotes in full detail the theorems from the Gelfond-Baker
theory which we use. It concludes with some remarks on numerical methods.
Chapter 3 gives 1in detail the algorithms in the field of diophantine
approximation theory that we apply in the subsequent chapters. In a sense

this chapter is the heart of the book.

Chapters 4 to 8 are each devoted to a certain type of diophantine equation.
Let Pyr oo Pg be a fixed set of distinct primes. Let S ©be the set of

positive integers composed of primes Py o--os Py only.

Chapter 4 deals with elements of binary recurrence sequences (”generalized
Fibonacci sequences”) that are in S , and gives applications to mixed
quadratic-exponential equations, such as the generalized Ramanujan-Nagell
equation X2 +keS (k fixed). The diophantine approximation part of this
chapter is interesting for two reasons: the p-adic approximation is very
simple, and in the case of the recurrence having negative discriminant, a

nice interplay of p-adic and real/complex approximation arguments occurs. The



research for Chapter 4 was done partly in cooperation with A. Pethd from
Debrecen. The results have been published in Pethd and de Weger [1986] and de
Weger [1986b].

Chapter 5 deals with the diophantine inequality O < x - y < y8 , Where
x, y €S, and & € (0,1) 1is fixed. Chapter 6 deals with x + y = z , where
X, Y, zZ € S , which can be considered as the p-adic analogue of the
inequality of Chapter 5. These two equations are the simplest examples of
diophantine equations that can be treated by our method. Since they are
already purely exponential equations of the form (1.1) or (1.2) with t = 2 ,
the first step is trivial: the linear forms in logarithms are directly
related to the equations. Therefore they serve as good examples to get a
clear understanding of the diophantine approximation part of our method. The

results of these chapters have been published in de Weger [1987].

Chapter 7 studies the equation x + y = 22 , where x, y €S, and z € Z
This equation is a further generalization of the generalized Ramanujan-Nagell

equation, studied in Chapter 4.

In Chapter 8 a procedure 1is given to solve Thue equations, that works in
principle for Thue equations of any degree. It 1is applied to find all
integral points on the elliptic curve y2 = X3 - 4-x + 1 . We also mention
briefly how Thue-Mahler equations can be dealt with. This chapter has been
written Jointly with N. Tzanakis from Iraklion. The results have been

published in Tzanakis and de Weger [1989%1, and in de Weger [1989°].

1.2. The Gelfond-Baker method.

In Section 1.1 we have explained that before applying the Gelfond-Baker
method to some diophantine equation, the equation should be transformed into
a purely exponential diophantine equation or inequality with not too many
terms (cf. (1.1), (1.2)). In this section we sketch the arguments from the
Gelfond-Baker theory that lead to upper bounds for the variables of this

exponential equation/inequality.

Let us first treat the case of the inequality (1.2). Since t = 2 we may

assume that it has the form



s
a. Tl @, - 1] < Co-exp(—S-N) ,

, and CO, 8 are
positive constants. In the examples we study, we encounter one of the

where the “i are fixed algebraic numbers, N = maxlnil

following two cases: either all a, are real, or Iail =1 for all 1 . In

the real case, if N 1is large enough, the linear form in logarithms

A= loglaol +

n.-logle, |
i i o8y

1

I o~n

must satisfy
Al < Cb-exp(—é-N) (1.3)

for some Cb . In the complex case, the same inequality (1.3) follows for the

linear form

s
A =1LlLog a, + » n,-Log «, + k-Log(-1)
0 joqp L i

S

= i-( Arg ay * . ni-Arg a, * k-m ) ,
i=1

where the Log and Arg functions take thelir principal values. Now we can

apply one of the many results from the Gelfond-Baker theory, giving an

explicit lower bound for |Al in terms of N , e.g. the following theorem.

THEOREM 1.1. (Baker [1972]). Let A be as above. There exist computable

constants Cl’ C2 , depending on the o, only, such that if A # 0 then

Al > exp(—(C1+C2-log N)) .

We usually know that A # O . Combining (1.3) and Theorem 1.1 we then obtain

N<—C1+logco+c—2-1o N
5 5 o8 N -

It follows that N is bounded from above.

Next, consider the exponential equation (1.1). By t = 2 we can write it as

10



where the o, Bj are fixed algebraic numbers. Let Hp be the maximum of
the |ni|, |mj| where i, j run through the set of indices for which o,
resp. Bj are non-units. Let H be the maximum of the Inil, |mj| where
i, J run through the set of all indices. Suppose that p 1is a rational

prime lying above Bj for some j . There are constants c c such that

1 72
s n;
. - P .
ordp(ocO .U o, 1) c, *t o mj
i=1
Assuming that ordp(ai) =0 for all i , we may write down a p-adic linear

form in logarithms

I o~n

A= logpocO + ni-logpoci ,

i=1

for which, if mj is large enough, it follows that

ord (A) > c, + c.m. . (1.4)
p 1 2]

We are now in a position to apply the following result from the p-adic

Gelfond-Baker theory. Here, N = maxlnil

THEOREM 1.2. (van der Poorten [1977], Yu [1987]). Let A, ©p be as above.

There exist computable constants C3, C4 , depending only on the o, and on

p ., such that if A # 0 then

ordp(A) < C3 + C4-log N .

Applying (1.4) and Theorem 1.2 for all possible p we obtain constants C!

3’
CA with
< C > .
Hp C3 + C4 log H
If H < CS-Hp for some constant C5 , then this immediately ylelds an upper
bound for H . If H > CS-Hp , then it can be shown that there exists a

conjugate of the o, Bj , denoted with a prime sign, for which

gy

m,
Bij‘ < exp(-C_-H)
j=1 9 6

1

for a constant C6 (cf. the proof of Theorem 1.4, pp. 45-49, of Shorey and

Tijdeman [1986]). Now we can apply Theorem 1.1. This yields
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s n,
s, ’l_ - .
oy iglai 1‘ > exp( (C7+C8 log H)) .

It follows that H is bounded from above.

If it happens that none of the o, Bj are units, then of course the

application of Theorem 1.2 suffices.

We remark that, in order to be able to completely solve a diophantine
equation, it 1s crucial that all constants can be computed explicitly.
Therefore we can only use the bounds from the Gelfond-Baker theory that are

completely explicit. We give detalls of such theorems in Section 2.4.

1.3. Theoretical diophantine approximation.

In this section we Dbriefly mention some results from diophantine
approximation theory, thus giving a background to the next section. We refer
to Koksma [1937], Cassels [1957] (Chapters I and III) and to Hardy and Wright
[1979] (Chapters XI and XXIII), for further details.

The simplest form of diophantine approximation in the real case is that of
approximation of a real number ¢ Dby rational numbers p/q . It is well
known that if & 1is irrational, then there exist infinitely many solutions

(p,q) € ZxN with (p,q) =1 of the diophantine inequality

-2
o -2 < .
q q
All convergents from the continued fraction expansion of ¢ are such

solutions. The convergents are simple to compute for any particular ¢ € R .

One way of generalizing this is to study simultaneous approximations to a set

of real numbers 01, e, ﬁn , 1.e. rational approximations to ﬁi all

having the same denominator. It is well known that the system of inequalities

p. -
1o, - & | < ™) e i 21, L n
1 q
has infinitely many solutions (pl,...,pn,q) if at least one of the ﬁi is

irrational. But it is much harder to find solutions of such inequalities than

in the case n = 1 . Some multi-dimensional continued fraction algorithms

12



have been devised (cf. Brentjes [1981] for a survey), but they seem not to
have the desired simplicity and generality. We shall see later how we can

apply the so-called L3—a1gorithm to this problem.

Another way of generalizing the simplest case of diophantine approximation is

to study linear forms, such as

where 01,

unknowns in Z . Put Q = nwxlqil . A classical theorem guarantees the

[S2)
=

are given real numbers, and S PRI are the

existence of a solution (p,ql,...,qm) of the inequality

| L-pl < Q™"
Note that the case m =1 becomes our first inequality on dividing by
q=9q; - Also in this case the L3—a1gorithm is very useful, as we shall see

below.

We can incorporate the two generalizations above in a further generalization,
that of simultaneous approximation of linear forms. Let real numbers ﬁi. be

given for i=1, ..., n, j=1, ..., m . Put

=
1

o~

e}
h
]
]
I
1
—
B

A celebrated theorem of Minkowski states that there exists a solution

(pl,...,pn,ql,...,qm) of the system of inequalities

| Li - p; | < Q—m/n for i=1, ..., n.

As we shall show in Section 1.4, the L3—a1gorithm may be applied to this
general form. We actually compute solutions of systems of inequalities that
are slightly weaker in the sense that the right hand side 1s multiplied by a

small constant larger than 1.

We now consider inhomogeneous approximation. This means that for all i

there is an inhomogeneous term Bi in the linear form Li , viz.

Again, there exists a constant c¢ such that the system

13



| -m/n

| L, - P; < c-Q for i=1, ..., n,

1

under some independence condition on the . and ﬁi. , has a solution. This

i
is Kronecker’s theorem. The simplest case m = n =1 comes down to

-1
l g% - p+B | <cq

The upper bounds given above, that tell us that the order of magnitude of
| Li - Py | can be at least as small as Q—m/n , are not only theoretical

upper bounds, but they predict the heuristically expected order of magnitude
as well. By this we mean that in a generic situation (i.e. when there are no
almost-linear relations between the ﬁij (and the Bi ), it is indeed the

case that for a given QO the minimal maXILi—pil , taken over all Q < Q
i
has the order of magnitude of the upper bound Q

O b
-m/n

To conclude this section, we remark that there is a p-adic analogue of this

theory of diophantine approximation, founded by Mahler and Lutz. If we

replace in the above considerations R by @p , the absolute value |-| by
the p-adic wvalue [ -1 , and the measure Q for an approximation
( ) bF)an convex norm ®( ) on RM

Ppoe P Ay dy Yy any Ppoe P Ay dy ;

then the p-adic analogues of the theorems of Minkowski and Kronecker are
essentially analogous to the above mentioned results in the real case. See
Koksma [1937] for references to Mahler’s work, and Lutz [1951], and for a

detailed analysis of the case n =1, m=2 see de Weger [1986a].

1.4. Computational diophantine approximation.

In this section we give some idea of practically solving the diophantine
approximation problems that we encounter in solving diophantine equations. In
this section we give no rigorous treatment. We neglect worst cases, and
concentrate on how things are expected to work (according to the heuristics
of Section 1.3), and appear to work in practice. In the subsequent chapters
many examples are given, showing that our methods are indeed useful in
practice. Applying the method in practice may be the best way of acquiring

the necessary Fingerspitzengefuhl for the method.

We shall deal with the following computational diophantine approximation

14



problem. Let ﬁij’ Bi € R be given, and let Py oooos Py A --s d be

m
integral unknowns with Q = maxlqjl . Let Li be as above. Let a positive
constant QO , assumed to be a rather large number, 1050 say, be given.

Find a lower bound for the value of

max | L, - p. |
i pl ’

where (pl,...,pn,ql,...,qm) runs through the set of values with Q < QO

From the heuristics outlined in Section 1.3 it follows that one will be
satisfled if this lower bound is of the size Qam/n . For the p-adic case an

analogous problem may be formulated.

Related problems in diophantine approximation theory are those of actually

finding a good or the best solution of maXILi—pil < g for a fixed € > 0
i
As we shall see, the L3—a1gorithm is a very useful tool for finding good

solutions. The problem of finding the best solution however seems to be
essentially more difficult. We note that in most of our applications of
solving diophantine equations it suffices to have a suitable lower bound for

maXlLi—pil for a given QO , while it is unnecessary to know explicitly how
i
sharp this bound is.

The computational tool that we use to solve the afore-mentioned problems is
the so-called L3—lattice basis reduction algorithm, described in Lenstra,
Lenstra and Lovasz [1982]. We shall give details of this algorithm in
Sections 3.4 and 3.5. Below we briefly indicate how it can be used to solve

diophantine approximation problems.

Let I be a lattice in R" . The L3—a1gorithm accepts as input an arbitrary
basis 91, ce s bn of T . As output it gives another basis Cr oo S of
the same lattice TI' , that is a so-called reduced basis. The concept reduced
means something like nearly orthogonal. From a reduced basis it is possible

to compute lower bounds for the following two quantities:

— the length of the non-zero lattice point that is nearest to the origin:

£T) = min Ix] ,
0#xel

(see Lenstra, Lenstra and Lovasz [1982], Prop. (1.11), and our Lemma 3.4),
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— for any given point y € R , the distance from y to the nearest lattice

point:

L(T,y) = min Ix-yl ,
xe€l

(see Babai [1986], and our Lemmas 3.5 and 3.6).

The L3—a1gorithm enjoys the property that these lower bounds are usually near
to the actual minimal solutions. In a generic situation, where the lattice is
not too distorted, the vectors c; of the reduced basis all have about the

same length, which is of the order of magnitude of
det ()™

The value of £(I') as well as the lower bounds computed for it, are about as
large as that. If y 1is not too close to a lattice point, the same holds for
£(T',y) . Moreover, the running time of the algorithm is good, both in the
theoretical sense (it is polynomial-time in the length of the input-

parameters), and in practice (cf. Lenstra [1984], p. 7).

To solve the problem of finding a lower bounds for maXILi—pil as formulated
i
above, we take the lattice T as follows. Let C be an integer, at least as

large as Qé+m/n . The lattice T , of dimension n + m , is defined by
specifying a basis, namely the column vectors 91, ce s 9n+m of the matrix
1
&
? 1
B = [C 011] . [C & I -C
&
[C-8 .1 [C-9_ ] -C
1 nm

(The symbol @& means that all not explicitly given entries in that area are
zero). Applying the L3—a1gorithm to this lattice we find a reduced basils, of
which the basis vectors will have lengths of about Cn/(m+n) , which 1is
roughly the size of QO . Generally speaking, the larger C 1is, the larger
the lengths of the basis vectors of a reduced basis will be (and the larger

the lower bounds for £(T') and £(T,y) will be).

Let us first treat the homogeneous case, 1i.e. Bi = 0 for all i . Consider
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the lattice point x = @-(ql,...,qm,pl,...pn)T . It is equal to

g ~ T
x = (a,-..,a,0,-Cp,...,L -Cp) .
where
. m
L, = [C-¢..] for i =1, , D
i jzlqj ij

From the application of the L3—a1gorithm we find a lower bound for £(T) , of
size QO . We assume it to be large enough (if this3is not the case, we try a
somewhat larger value for C , and perform the L -algorithm again for the
lattice defined for this C ). So we may assume that there is a small

constant c¢ such that

1
n
~ 2 2 2 2
- . 2 _ . . .
.Z (L,-C-p,) 2(T) m-Qy > c Qg
i=1
We have |Ei—C-Li| < m-QO , SO0 we may assume that for small constants 02, 03

_1 ~
mgxILi—piI > ¢c.-C -maXILi—C-pil > 03'QO/C .

1

2

By the choice of (C this last bound has the required size.

Next, we study the inhomogeneous case, where not all Bi are zero. We take
the same lattice r as in the homogeneous case (note that the lattice

definition depends only on the ﬁij and the C ). Consider the point
y=0(0,...,0,-1CB1,...,-1cpNT .
b » M 1’ b n

From the reduced basis found by the L3—a1gorithm we have a lower bound for

£(T,y) . Assume that it is large enough, and of size QO . We take the same

lattice point x = @-(ql,...,qm,pl,...pn)T as in the homogeneous case. Then
- N o~ T
X -y = (ql,...,qm,Ll—C-pl,...,Ln—C-pn) ,
where
N m
Li = [C-Bi] + jzlqj-[c-ﬁij] for i=1, ..., n.

The same reasoning as in the homogeneous case now yields the desired result.
Note that if we have performed the L3—a1gorithm once for given ﬁij , We may
use the result to treat the homogeneous case, and many inhomogeneous cases

>

with different Bi ’s as well, as long as the ﬁij s are the same.

17



The above process describes how to find lower bounds for systems of
diophantine 1inequalities. It will be clear from the above that it 1is not

difficult to find good solutions, i.e. (ql,...,qm, pl,...,pn) with Q < QO
and maXlLi—pil near to the best possible value. In particular, the basis
i

vectors of a reduced basis are adequate for the homogeneous case, and for the
inhomogeneous case the lattice points near to y will be such solutions. The
lattice points near to y are not difficult to find once a reduced basis is

available. Specifically, if s - 8 € R are the coordinates of y with

1’
respect to a reduced basls, then one may take the lattice points with

coordinates (with respect to the reduced basis) ti € 7 that are near to s,

for i=1, ..., n.
In the definition of the matrix above the expressions [C-ﬁij] occur. Using
these expressions we have constructed a lattice r that 1s completely

integral, i.e. T < Zm+n . The L3—a1gorithm can be adapted to work exact for
those lattices, so that rounding-off errors are avoided (cf. Section 3.5).
The "errors” occur only in the difference between the Ei and the C-Li ,
and are thus Kkept wunder control by choosing the proper constants
Cl’ 02, 03 . Of course one should take care to have the numerical values of
the ﬁij and the Bi correct to sufficient precision. We shall discuss such

numerical problems briefly in Section 2.5.

A possible variation of the above diophantine approximation problem is to

give weights to the linear forms Li , 1.e. to look for a lower bound for

max w,:| L, - p. |
i i i pl ’

where the w, are fixed positive numbers. This situation can be dealt with

easily by replacing every C in the (n+i) th row of the matrix by C-wi

Another variation is the problem where not all the variables qj have the

same upper bound QO . To illustrate this, assume that n =1 , and that

Now suppose that for some Q, > Q, (it will be handy to have Q, | Q ) we

are interested in the solutions with
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m1+1 m-m

Next, let C be of the size of Q1 -Q2 , and take the matrix
1
1 1]
1] Ql/QZ
Ql/QZ
[C-9,] ... [C-® ] I[C-¢ 1 ... [C-8 ] -C
1 m m, +1 m
1 1
. . . m+1 . .
Its determinant 1is of the size of Q1 . For a lattice point
(q,,...,q ,f—C-p)T we therefore expect that max(lq, |,...,lq 1)
1 m 1 m1
(Ql/QZ)-maX(lqm1+1|,...,|qm|) and |L-C-pl are all of the size of Q, - It
-m, —(m—ml)
follows that |L-pl is of the size of Q1 -Q2 , in accordance with

the heuristics. This variant is useful when a combination of real and p-adic

techniques is used, such as for the Thue-Mahler equation (see Section 8.6).

We conclude this section by giving the analogous method of p-adic diophantine
approximation. We assume that the ﬁij’ Bi are in @p , and, moreover, that
they are p-adic integers. Let N, = N U {0} . For any p-adic integer % and

(w) ©

any d € N we denote by ¥y the unique rational integer such that

0
7= 7™ moa p) , o<y <t

[ A . 1+m/n
Let p € N be such that p is roughly the same size as QO , and

assume that pu is large enough (it is the analogue of the constant C in
the real case above). Take for [ the lattice of which a basis is given by

the column vectors of the matrix

1
&
? 1
_ (u) (W) u

B = 611 e ﬁlm p

. . . .

(u) (u) u

ﬁnl ce ﬁnm P
Consider the lattice point
T _ T

@-(ql,...,qm,zl,...,zn) = (ql,...,qm,pl,...,pn) .

Then it is obvious that
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m

p. = ) q
1 le

.-ﬁgg) + z.-p“ .
J 1J 1

Hence the lattice I' can be described as the set

m+n

T
r =< (ql,...,qm,pl,...,pn) € |

m
Y q.'9,. = p, (mod p“) for i=1, ..., n>.
j=p J 1 i

The L3—a1gorithm provides a lower bound for the length of the nonzero vectors
in this set, which is of the same size as pp-n/(n+m) , and that of QO

This yields the desired result, if p 1is taken large enough.

For the inhomogeneous case, put
_ (W) NN
y=(0,...,0,-B ... ,B )T,
and consider the set

m+n

T
= ¢ (ql,,,.,qm,pl,...,pn) e Z |

m
B. + qj-ﬁ.. =p; (mod p“) for i=1, ..., n>.

Then x € F* if and only if x +y €T , so F* is a translated lattice. A

lower bound for Z£(I,y) now yields the desired result.

Again variations are possible, as in the real case, e.g. by replacing on the
(n+i) th row the u Dby different vy o It 1s even possible in this way to

treat more than one prime p at the same time, by replacing on the (n+i) th

2 "1
row the p by different p;

We indicate one more variation for the p-adic case. Suppose we have only one

m
linear form A = z q.'¢. , and one variable p € Z , and we want to study
21
’ ty ty
when A 1s congruent to 0 modulo different prime powers I

Thus we are interested in the set

m u.
T +1
r' = <l ... q,pl < ™ Yq.-e. h
j=1

1l
T
=]
o]
Q.
T
[
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Then we take 0? € 7 with

9, =9, (mod p,”) for i=1, ..., n, 0<9, < [[p. ,
J J 1 J =1
for all j . The 0? can be computed by the Chinese Remainder Theorem. Now

I’ 1s the lattice generated by the column vectors of

1

and we proceed with this lattice as described above.

We conclude this section with three remarks. Firstly, in the case that the
dimension of the lattice under consideration is only 2, the L3—a1gorithm is
essentially the continued fraction algorithm, and so yields nothing new. For
the p-adic continued fraction algorithm, see de Weger [1986a]. Secondly, the
inhomogeneous case of diophantine approximation of one linear form of real
numbers can also be treated by what 1s known as Davenport’s lemma, cf. Baker
and Davenport [1969] (and its multi-dimensional generalization, cf. Ellison
[1971a]). We will return to this in Chapter 3, and explain there why we

prefer our method.

Finally, one of the nice features of the above method of practical
diophantine approximation is that 1f an extreme solution exists, then in the
homogeneous case the lattice (with proper constant C or g ) will be
distorted. This means that the reduced basis will not be as nice as expected,
for example there might be a basis vector in it that is substantially shorter
than the other ones. In the Iinhomogeneous case the existence of an extreme
solution means that there 1s a lattice point extremely near to y . The
algorithm detects such an extraordinary situation at once, and in most cases
the extremal solution is presented explicitly (e.g. in the homogeneous case
as one of the vectors of the reduced basis). One can check whether this
extremal solution actually satisfies the original equation, and then proceed
by replacing in the above reasoning {&(I') or £(I',y) Dby lower bounds for
all vectors in the lattice except the extremal one. These new lower bounds
will in general be of the expected size. However, when we solved diophantine

equations 1in practice, we have never met such an extraordinary situation.
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1.5. The procedure for reducing upper bounds.

We have seen in Section 1.2 how upper bounds for the solutions of the
exponential inequalities and equations occuring there can be found. In
Section 1.4 we have studied some diophantine approximation theory from a

practical point of view. Now these two things come together.

From the application of the Gelfond-Baker theory we are left with the

following problem. We have a linear form

where the B and ﬁj are constants (that they are logarithms of algebraic
numbers is now of no importance anymore), and the nj are integral unknowns.

We know that A 1is extremely close to 0 , namely
[A] < c-exp(-8-N) ,

where ¢, 8 are (small) constants, and N = maxlnjl . Finally, we have an
50

explicit upper bound NO for N . This NO is very large, 10 say.

It will be clear from Section 1.4 that the methods outlined there are of use

for solving this problem. For QO we take NO . We have n =1 . In the real
case we expect, by choosing C at least of size Ng+1 , that
-m
> c’-
[A] c NO ,
for a small constant ¢’ . It follows by combining the two inequalities for
[Al  that

N < log(c/c’)/8 + (m/8)-log NO .

So the upper bound N for N 1is reduced to an upper bound N of the size

0 1
of 1log N which is a considerable improvement indeed. We now may apply the

procedureowith N1 instead of NO , and repeat until no further improvement
is obtained. In practice it appears almost always to be the case that in that
situation the reduced upper bound is near to the actual largest solution,
anyway so small that simple methods of finding all the solutions below that

bound suffice.

In the p-adic case an analogous reduction of upper bounds can be reached,
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following a similar argument. We have for the linear form A (cf. (1.4)),

ordp(A) >c, +c,m, ,

1 2 ]
where Cl’ 02 are small constants, and mj is one of the variables.
Moreover, the variables are bounded by a large constant N. , that is
explicitly known. We take u such that p“ is at least of size Ng+1 , SO

that the lower bound for the shortest nonzero vector in T (or F* ) is

larger than Vm-NO . Then it follows that the elements of the lattice T (or
of the translated lattice F* ) cannot be solutions of (1.2). Therefore,

so that we find a new upper bound for mj , that is of the size of pu , which

is about log N, / log p . We repeat this procedure for all the mj , in

order to obtain g reduced upper bound for Hp . If this is not yet sufficient
to derive at once a reduced upper bound for H , then we can do so by
applying a reduction step for real linear forms, where we may take advantage
of the fact that for some of the variables a much better upper bound has just

been found (cf. the second variation in Section 1.4). Again we repeat the

whole procedure as far as possible.
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Chapter 2. Preliminaries.

2.1. Algebraic number theory.

In this section we quote results from algebraic number theory that we use
throughout the remaining chapters. We refer to Borevich and Shafarevich

[1966] or any other textbook on algebraic number theory for full details.

Let K be a finite algebraic extension of @ , of degree D = [K:Q] . There
are D embeddings o : K> C . Let « € K be an element of degree d , and
let a, > 0O be the leading coefficient of its minimal polynomial over Z

0
We define the (logarithmic) height h(«) by

D/d

h(a) = %-log(aO Tmax (1, lo () 1))
o

where the product is taken over all embeddings o . Note that this definition

does not depend on the field K . Hence, if the conjugates of o« are
o= 0y, e, g then the above definition applied for K = Q(a) yields
d
1
h(a) = =-log(a, - T] max(1, l«, |))
d 0 i=1 i

In particular, if o« € @ , then with o« = p/q for p, gq€ Z with (p,q) =1
we have h(a) = log max(lpl,Iql) , and if « € Z then hl(a) = loglal

Let there be s real and 2-t non-real embeddings (with D = s + 2-t ).

Then Dirichlet’s Unit Theorem states that there exists a system of

r =s +t -1 Iindependent units €15 -os Bl such that the group of units
of K 1s given by
&1 &r
< C-sl el E | T a root of unity, a; € Z for i=1,...,r > .
There are only finitely many roots of unity in K . Any set of independent

units that generate the torsion-free part of the unit group is called a

system of fundamental units.

The number « 1is called an algebraic integer if ay = 1 . Let the norm of an
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element o € K be defined by

d
_ _ D/d
Ny g(@) = Tlo(a) = (. ;) .
o i=1
For algebraic integers, NK/Q(Q) € 7 . The units are precisely the elements
of norm *1 . Two elements «, B of K are called associates if there is a

unit € such that « = €8 . Let (a) denote the ideal generated by «
Assocliated elements generate the same ideal, and distinct generators of an
ideal are associated. There exist only finitely many non-associated algebraic

integers in K with given norm. The ring of algebraic integers is denoted by

OK . Let @y --s O be elements of OK that are @Q-linearly independent.
Then Z-al X ... X Z-aD is called an order of K 1f it is a subring of the
’maximal order’ O

K

In KX any algebraic integer can be written as a product of irreducible
elements. Here an irreducible element (prime element) is an element that has
no integral divisors but its own associates. However, this decomposition into
primes need not be unique. Ideals can also be decomposed into prime ideals,
and this decomposition is unique. A principal ideal is an ideal generated by
a single element o« . Two fractional ideals are called equivalent if their
quotient 1is principal. It is well known that there are only finitely many
equivalence classes. Their number if called the class number hK . For an
ideal a 1t is always true that a K is a principal ideal. The norm of the

(integral) ideal a is defined by NK/Q(Q) = #(OK/Q)

For a prime ideal p there is always a rational prime number p such that
p 1is a divisor of (p) . We say that p lies above ©p . The ramification
index ep is the largest power to which p divides (p) . The residue class

degree fp is the integer such that

f
- P
NK/Q(p) =p * .

We denote by ordp(a) the exact power to which the prime ideal §p divides
the 1ideal a . For fractional ideals Q this number can of course be

negative. For numbers o« we write ordp(a) for ordp((a)) . Note that
ord_(a) = ord_(a«)/e
p P P

can be defined for all « € K . We will return to this in Section 2.3, which

deals with p-adic number theory.
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2.2. Some auxiliary lemmas.

In this section we give a few simple auxiliary lemmas. The first one enables
us to find an upper bound in closed form for some real number x > 1 that is

bounded by a polynomial in log x . See Pethd and de Weger [1986], Lemma 2.3.

LEMMA 2.1. Let a >0, h2>1, b>0, and let x € R, x > 1 satisfy
x < a+ b-(log X)h .
If b > (ez/h)h then

% < 2h-(a1/h+ 1/h

b -log(hh-b))h ,
and if Db < (ez/h)h then

2-e

x < 2 (V0

Z)h
Proof. We may assume that x 1is the largest solution of

x = a + b-(log X)h .

/h 1/h 1/h
+ z

1
< .
By (21+22) z) > we infer
NP c-log(xl/h) ,
where c¢ = h-bl/h . Define y by Xl/h = (1+y)-c-log c . From

log ¢ < log(c-log c)
it follows that
ch-(log c)h < b-(log(ch-(log c)h))h ,
. . . h h
which implies x > ¢ -(log c) . Hence y > O . Now,

(1+y)-c-log c = Xl/h < al/h + c-log(l+y) + c-log c + c-loglog c

< al/h + cy + c-log c + c-loglog c .
Hence
y-c-(log c - 1) < al/h + c-loglog c .

If c 2 e it follows that
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Xl/h = c-log c + y-c-log c < c-log c + log—c (al/h+c-loglog c)

log ¢ - 1
< 2-(a1/h+c-log c)
2 2 h h
If ¢ € e, then note that x < a + (e"/h) -(log x) . So we may assume
c = e2 in this case. The result follows. ]
The next lemmas make explicit that x and 1log(l+x) are near if |[x| 1is

small in the real and complex case, respectively.

LEMMA 2.2. Let a € R . If a <1 and |x| < a then

|log(1+x) | < :l9§é1:21.|x| ,
and
x| <« —2—-1e"-1]
1-e

Proof. Note that log(l+x)/x 1is a strictly positive and strictly decreasing
function for |[x| < 1 . Hence it is for |[x| < a always less than its value

at x = -a . The same is true for the function X/(eX—l) . O

LEMMA 2.3. Let O < a <mn . If |x| < a then

a

2-sin(a/2) -1

x| le

i-x

If a <2, le -1| < a and Ix| < m then

Ix| < 2-ar051n(a/2)‘|el-x_1|
a
i-x .1 .1 .
Proof. Note that e -11 = 2-|51n(5-x)| . and that 2-51n(;-x)/x is a

positive and even function, that decreases on 0 € x < a . Hence it takes its

minimal value at x = a . The first inequality now follows. The second one

can be proved in a similar way. u]

2.3. p-adic numbers and functions.

In this section we mention the facts about p-adic numbers and functions that

we use. For details we refer to Bachman [1964] and Koblitz [1977], [1980].
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We assume that the reader is familiar with the field of p-adic numbers @

and the p-adic valuation ordp . Note that the ordinary ordp as defined in
@p coincides with the definition given in Section 2.1. We denote by Qp the
completion of the algebraic closure of @p , 1.e. the field to which all

p-adic theory is applied.

Every nonzero number a« € @p has a p-adic expansion

where k = ordp(a) and the p-adic digits u, are in {0, 1, ..., p-1 1},
with Uy # 0 . The number 0 can be represented in this way by taking k =0
and all digits equal to 0 , and ordp(O) = ® by definition. If ordp(a) >0
then o« 1is called a p-adic integer. The set of p-adic integers is denoted by

Zp . A p-adic unit 1s an « € @p with ordp(a) = 0 . For any p-adic integer

p-1
o« and any M € NO there exists a unique rational integer a(“) = z ui-pl
i=0
satisfying
ordp(a—a(“)) >up, 0K a(“) < p“ -1
For ordp(a) > k we also write « = 0 (mod pk) . The p-adic norm is defined
by
—ordp(a)
lal =
D p

In Section 2.1 we have seen how to define ordJp and ordp on algebraic
extensions of @ . For any « € Qp with ordp(a) > 1/(p-1) we can define

the p-adic logarithm logp(1+a) by the Taylor series
logp(1+a) = o - a2/2 + a3/3 - ..

This logarithmic function has the well known properties of a logarithm, such
as logp(El'EZ) = logp(El) + logp(EZ) for all &,, §, for which it is
defined. Further, logp(E) = 0 1if and only if & 1is a root of unity. In @p
the only roots of unity are the (p-1) th roots of unity (if p is odd).
Using these properties, this logarithmic function can be extended to all
£ € Qp with ordp(E) = 0 , as follows. By Fermst’s theorem for algebraic
number fields there is a k € N such that ordp(E -1) > 1/(p-1) . Then
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_ 1, k_
logp(E) = X logp(1+(E 1)) .

An equivalent definition is logp(E) = logp(E/C) , where € is a root of
unity such that ordp(E—C) > 0 . In this way the p-adic logarithm is a well
defined function. Note that logp(E) lies in the subfield of Qp generated
by & . Finally we note that if ordp(E) > 1/(p-1) then

ordp(E) = ordp(logp(l+§))

2.4. Lower bounds for linear forms in logarithms.

In this section we quote in detail the results from the Gelfond-Baker theory
that we use. They yield lower bounds for linear forms in logarithms of
algebraic numbers. We do not always give the theorems in their full
generality, since in this book only linear forms with rational unknowns
occur, whereas most Gelfond-Baker theorems are formulated for linear forms
with algebraic unknowns. We selected bounds with fully explicit constants,

because only such completely explicit results can be used for our purposes.

The first result in this field for a linear form in logarithms with at least
three terms is due to Baker [1966], and in the p-adic case to Coates [1969],
[1970]. For a survey of this theory, see Baker [1977] and van der Poorten
[1977]. We will use more recent, sharper results, due to Waldschmidt [1980]
and Yu [1987]. Further improvements of the constants have been reached (see
the references after Lemma 2.4 below), but too recently to be taken into

account here.

First we deal with real/complex linear forms 1n logarithms. We quote the

result of Waldschmidt [1980].

LEMMA 2.4 (Waldschmidt). Let K be a number field with [K:Q] = D . Let
«,, ..., «. €K, and b,, ..., b €7Z (n2>2 ). Let V,, ..., V be
1 n 1 n 1 n
positive real numbers satisfying 1/D < V1 < ... < Vn and
V. > max ( h(e.), llog «,|/D ) for j=1, ..., n.
J J J
where log “j for j=1, ..., n 1is an arbitrary but fixed determination of

the logarithm of “j . Let V; = maX(Vj,l) for j =n, n-1, and put
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b.-log «a,
o1 J
Put B = max |b,| . If A # 0 then
1<i<n
e(n) 2'n _n+2 +
> — . . . LR . . . .
[A] exp ( -2 n D v, vy log(e-D Vn—l)

-( log B + log(e-D-V;) ) ),

where e(n) = min ( 8n + 51, 10-n + 33, 9-n + 39 ) . If, moreover, it is
known that [@(Val,...,Van):Q] = 2" , then we can take e(n) = 9n + 26 and

2:n . n+4
replace the factor n in the above bound for |A|l by n

Waldschmidt’s main theorem does not give the constant e(n) as detailed as
we do, but he does so in his proof, cf. p. 283. We remark that improvements
of the above bounds have recently been found by Blass, Glass, Manski, Meronk
and Steiner [1988a], [1988b], Loxton, Mignotte, van der Poorten and
Waldschmidt [1987], Philippon and Waldschmidt [1988], and Wiistholz [1988].

For the case n = 2 , the sharpest bound has been given by Mignotte and

Waldschmidt [1978], improved again by Mignotte and Waldschmidt [1988].

In the p-adic case we quote two results: one due to Schinzel [1967] (Theorem
1) for the case of a linear form in logarithms with two terms, and another
for the general case, due to Yu [1987] (Theorem 1, see also Yu [1988]). We
note that Yu’s bounds improve much upon the results of van der Poorten
[1977]. Moreover, van der Poorten’s proofs seem to contain some errors. We

give Schinzel’s result for quadratic fields only.

LEMMA 2.5 (Schinzel). Let p be prime. Let A be a squarefree integer, and

let D be the discriminant of K = Q(VA) . Let € =&"/8 and x = x"/%

be elements of X , where &, &7, x’, x” are algebraic integers. Put
L = ]_og max ( |eD|1/4, ”E’ .X’”, ”E’ ,Xn”, ”En,x’”, ”E”,X”” ) ,

where Iyl denotes the maximal absolute value of the conjugates of ¢y € K .
Let p be a prime ideal of K with norm Np = pp . Put ¢y = 2/p-log p ,
o = ordp(p) . If & or x 1is a p-adic unit and En # xm , then

ordp(En—xm) < 106-w7-@_2-L4-p4'p+4-(log max(|m|,|n|)+<p-L-pp+2/L)3 .

30



LEMMA 2.6 (Yu). Let Wps wes O (n > 2 ) be nonzero algebraic numbers.

Put L = @(al,...,an) , d=[L:Q] . Let bl’ e, bn be rational integers.

Let p be a prime ideal of L , lying above the rational prime p . Let e

P

be the ramification index, and fp the residue class degree of p . Write
Lp for the completion of L with respect to ordJp (then for all B € Lp
we have ordp(B) = ep-ordp(B) ). Let q be a rational prime such that

f
qtppF-1)

Let
V. > max ( h(e,), £ _-(log pl/d ) for j=1, ..., n,
J J P
+
< ... < =
such that V1 Vn—l , Vn—l max(l,Vn_l),
BO > min b.l , Bn > lbnl , B > max Ib.l ,
1<), b #0 J 1<j<n-1 9
2 ..
B> max ( Ib,l, b 1 2)
3
> = . . )
W > max ( log(1+4‘n B, log BO’ fp (log p)/d )
Suppose that ordp(aj) =0 for j=1, ..., n, that
[L(ai/q,...,al/q):L] =q", (2.1)
n
bl bn
that ord (b ) < ord (b,) for j=1, ..., n, and «, ...« # 1 . Then
p n pJ 1 n
bl n n _n+5/2 2-n 2
ordp(oc1 R -1) < Cl(p,n)-al-n -q -(g-1)-log (n-q)-
fp 1 ,n -(n+2)
(p —1)'W2+E:Tﬂ 'Wfp-(log p)/dll VoV
-(—E—+log(4-d))-(log(4-d-V+ )+f - (log p)/8-n)
6-n n-1 P ’
where

a1 =56-e/15 if n <7, a1 =8e/3 if n 2> 8,
and Cl(p,n) is given by the table on the next page, with for p > 5

_ 241 72
Cl(p,n) = Cl(p,n) W2+p_1ﬂ .
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n 2 3 4 5 6 7 > 8

C1(2,n) 768523 476217 373024 318871 284931 261379 2770008
C1(3,n) 167881 104028 81486 69657 62243 57098 116055
Ci(p,n) 87055 53944 42255 36121 32276 24584 311077

Remark. Yu [1989] gives a result in which ’independence condition’ (2.1)
has been removed, with more or less the same constants. This result will be

easier to apply if d 2 1

2.5. Numerical methods.

In solving diophantine equations using computational methods from diophantine
approximation theory, as we will do in Chapters 4 to 8, it is necessary to
have logarithms (real, complex or p-adic) of algebraic numbers available to a
large enough precision (maybe several hundreds of digits). We will not go
deeply into the problems of computing such approximations, but make only a

few remarks on it in this section.

To start with, the precision with which most computers (mainframes as well as
personal computers) work, is insufficient for our purposes. Usually at most
double precision (52 bits, equivalent to 15 decimal digits), or at best
quadruple precision (112 bits, equivalent to 33 decimal digits) is standard
available. This 1s not sufficient for our purposes, not only because we may
require larger precision, but also because we want to have the rounding off
errors under control, to be sure that no solution of a diophantine equation

is missed by unexpected consequences of rounding off errors.

Packages for computations with arbitrary precision are available and very
useful, e.g. the MP package of R.P. Brent (cf. Brent [1978]). It is not
difficult, as we did, to write one’s own package for simple manipulations on
multi-precision numbers, such as addition, multiplication and division (cf.
Knuth [1981] for efficient algorithms). To the author’s knowledge, no such
packages are available publicly for manipulations on p-adic numbers, but the
programs are similar to those for real numbers, and thus relatively easy

(though maybe laborious) to write yourself.

Computing roots of polynomials with integral coefficients can be done by
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Newton’s method, both in the real and the p-adic case. One should make sure
that the result obtained is correct to the desired precision, not (only) by
substituting the found approximation of the root into the polynomial and
checking that the result is 0 within the desired precision, but (also) by
theoretical error estimates for the Newton method, or by using ’interval

arithmetic’ (see below).

Computing logarithms can be done by the Newton method too. However, we found

it easier to use the Taylor series

log(l+x) = x - x2/2 + x3/3 - .,

or the more rapidly converging series

log%ZZ-(X+X3/3+X5/5 f.00)
For Ix| wvery small this method works fast, whereas for larger |[x| the

following idea works well. Compute approximations to the desired precision of

log 1.1 , log 1.0001 , log 1.00000001 , say, and store them. Now compute
x, € [1,1.1) and k1 € NO such that
k
x =x,-1.1 1 ,

which is a matter of a few divisions of a multi-precision number with a
rational number with small numerator and denominator (11 and 10) only, that

can be done fast. Next, compute x. € [1,1.0001) and k, € N such that

2 2 0
X, = X.-1 0001k2
1~ T2 ’
and Xy € [1,1.00000001) and k3 € NO such that
k3
X2 = X3'1.00000001 .

Then compute log x by the Taylor series, which converges very fast, and

3
compute log x by

log x = log X4 + k3-log 1.00000001 + k_ -log 1.0001 + kl-log 1.1

2

When computing all this, one should take care of having the rounding off
errors at each addition/multiplication under control. This can e.g. be done
by using ’interval arithmetic’, 1.e. doing all computations twice with a few

more digits than actually needed, rounding off in different directions at
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each step. Then a sufficiently small interval 1s found in which the exact

number lies (with mathematical certainty).

Computation of arctan x 1is done by the Taylor series

arctan x = x - X3/3 + XS/S - ...
The number =@ = 3.14159... can be computed rapidly by this series for the

arctan function, by the identity
n = 16-arctan 1/5 - 4-arctan 1/239 .

Doing p-adic arithmetic has the advantage above real arithmetic that rounding
off errors do not tend to become larger, as long as one is not dividing by a
number with positive p-adic order. If ordp(x) > 0 then logp(1+x) can be

computed by the Taylor series
logp(1+x) =x - x2/2 + x3/3 o,

and also it may be useful to compute it by

logp%ZZ-(X+x3/3+X5/5 f.00)

If x #0 (mod p) and x # 1 (mod p) then logp x can be computed, since

there exists a k € N such that Xk = 1 (mod p) , and then

1 k
lo x = =-lo 1+(x -1)
g, x = i log,( )

and the above given Taylor series can be used to compute logp X . Note that
in computing the above mentioned Taylor seriles there will be factors p in
the denominators of the terms. Hence, to find the first p p-adic digits of
logp(1+x) , 1t is not enough to compute only the first u/ordp(x) terms of
the Taylor series, but the first k terms must be taken into account, where

k 1is the smallest integer satisfying
k-ordp(x) - log k/log p > {4 .

For rapid convergence of Taylor series it is desirable to apply them only for

numbers x with large p-adic order. For example,
log3 4 =3 - 32/2 + 33/3 - ...

converges not as fast as
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- 1 Ll 752 24254 3.56,5 _
log, 4 = 3-log, 64 = 3 (73 7737 /2 + 77-3/3 - ... ),
or as
1+3/5 3 3 5 5
log, 4 = logy 7o37¢ = 2-(3/5 +37/35 +3/55 + ...),
or as
1 1+7:3%/65 _ 2 2 3 .6 3
log, 4 = 3-log, ———— = 5-( 7-3°/65 + 7°-3°/3-65
1-7-37/65
+ 70310565 + . )

The above considerations are sufficient for efficiently performing exact
computations with the L3—algorithm, as we present it in Section 3.5. We also
use the simple continued fraction algorithm in some instances. This we do as
follows. Suppose we want to compute the continued fraction expansion of a
real number ¢ , that we have approximated by rational numbers ¢ ¢ such

1 "2
that

g, <9 <9, <9, + €

1 2 1
for some small € . We can compute the continued fraction expansions of 61
and 02 exactly. As far as they coincide, they coincide also with the
continued fraction expansion of ¢ . If the continued fraction expansion of

¢ 1is needed so far that the k th convergent with denominator e > XO be
known exactly, for a given (large) constant XO , then € should be at least
-2

as small as XO

Most of the computer calculations done for the research on which this book
reports were performed on an IBM 3083 computer at the Centraal Rekeninstituut
of the University of Leiden, using the Fortran-77 language. Whenever we give
computation times, actual CPU-time on this machine is meant. Also some
computations were done at a VAX 11/750 computer at the Rekencentrum of the

University of Twente.
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Chapter 3. Algorithms for diophantine approximation.

3.1. Introduction.

In this section we give details of the computational methods we use to reduce
upper bounds for the solutions of diophantine equations. Our starting point
will always be a linear form A that is close to 0 (in the real or p-adic
sense, with the word ”close” defined explicitly in terms of an inequality
involving the unknowns), together with a large but explicitly known upper
bound for the absolute values of the coefficients of A . Our aim is to
reduce the upper bound by showing that there are no solutions between the new

and the old upper bound.

Let 01, e, ﬁn, B be given numbers, in R , or in Qp , for a fixed prime
p . Let Xl, , Xn be unknowns in Z . Put
n
A=pB+ .Z X,
i=1

We classify such linear forms according to three criteria:

— homogeneous if S = 0 , inhomogeneous if B # 0 ;

\g

one-dimensional if n =2 , multi-dimensional if n 2> 3 ;

— real if ﬁi € R for all i , p-adic if ﬁi € Qp for all 1

The reason that the case n = 2 is called one-dimensional is that in the

homogeneous case the linear form

leads to studying the simple, one-dimensional continued fraction expansion of
—61/62 . The inhomogeneous case with n =1, viz.

A=pB+x9
is not of any interest in the real case, but it is of interest in the p-adic

case. We call this the zero-dimensional case.
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In the p-adic case we require that the quotients ﬁi/ﬁj and {3/19j are in
@p itself, whereas the numbers ﬁi, B are allowed to be in some larger

subfield of Qp

Let ¢, 8 be positive constants. Put X = maXIXil . Let XO be a (large)

positive constant. In the real case we shall always assume that

Al < crexp(-8-X) , (3.1)
< . .
X XO (3.2)
Let Cl’ 02 be real constants, with 02 > 0 . In the p-adic case we shall
assume that Xj > 0 for some index j € {1,...,n} , and
ord (A) > c, + c.-%x. , (3.3)
P 1 2]
< . .
X XO (3.4)
Our aim is to find a constant X1 , of the size of log XO , such that in the
real case (3.2) can be replaced by X < X1 , and in the p-adic case the bound
Xj < XO (a consequence of (3.4)) can be improved to Xj < X1

In the forthcoming sections we will treat all cases, according to the
classification given above. We insert Sections 3.4, 3.5 on the L3—algorithm,
which will be our mailin computational tool, Section 3.6 on finding short
vectors in lattices, and Section 3.13 on certain sublattices that are useful

for our applications.
3.2. Homogeneous one-dimensional approximation in the real case: continued
fractions.

We first study the case

Put 9 = —61/62 . We assume that 9 is irrational. Let the continued

fraction expansion of ¥ be given by

and let the convergents pn/qn for n=0, 1, 2, ... be defined by
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Pop =1 Pg T3 Ppyp T APyt P

94 =0, 9y= 1, a4 =219, * 94

It is well known that the convergents satisfy the inequalities

p
S S <le -2« - — , (3.5)
(a +2)-q2 Iy a -q2
n+1l n n+l "n

and that if p/q satisfies the inequality

(3.6)

then p/q must be one of the convergents (cf. Hardy and Wright [1979],
Theorems 163, 171 and 184).

We may assume without loss of generality that |01| < |02| , that X, > 0,
and that (Xl’XZ) =1 . From (3.1) it follows that there exists a number X
such that X > X implies X = x4 and (3.6) for (p,q) = (—XZ,Xl) . We now

have the following criteria.

LEMMA 3.1. (1). If (3.1) and (3.2) hold for X %X, with X 2 X* , then

(—XZ,Xl) = (pk,qk) for an index k that satisfies

k < -1 + log(V5-X,+1)/1og (Z(1+V5)) . (3.7)
Moreover, the partial quotient a1 satisfies
-1
a . > T2 Iﬁzl-c -exp(é-qk)/qk . (3.8)
*

(ii). If for some k with q > X

-1
a g > Iﬁzl-c -exp(é-qk)/qk , (3.9)

then (3.1) holds for (—XZ,Xl) = (pk,qk)

Proof. (i). By X > X* and (3.6) it follows that (—XZ,Xl) = (pk’qk) for
an index Kk . Since q, is at least the (k+1) th Fibonacci number, (3.7)

follows from q = ¥ = X <X To prove (3.8), apply (3.1) and the first

0
inequality of (3.5).

(ii). Combine (3.9) with the second inequality of (3.5). O
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We may apply Lemma 3.1(i) directly, or as follows.

LEMMA 3.2. Let

A= max(ak+1) ,

where the maximum is taken over all indices k satisfying (3.7). If (3.1)

and (3.2) hold for x X with X » X, , then

1’ 72 1
X < L.1og(c- (A+2)/19,1) + L-1og X .
3 2 3
Remark. From Lemma 3.2 an upper bound for X follows. We can apply Lemma

2.1 here, but Lemma 2.1 is sharp for large b only.

Proof. (3.1) and (3.5) yield

2 -1

2

The result follows by applying Lemma 3.1(i). o

In practice it does not often occur that A is large. Therefore this lemma

is useful indeed.

Summarizing, this case comes down to computing the continued fraction of a
real number to a certain precision, and establishing that it has no extremely
large partial quotients. This idea has been applied in practice by Ellison
[1971b], by Cijsouw, Korlaar and Tijdeman (appendix to Stroeker and Ti jdeman
[1982]), and by Hunt and van der Poorten (unpublished) for solving
diophantine equations, by Steiner [1977] in connection with the Syracuse
(”3:N+1”) problem, and by Cherubini and Walliser [1987] (using a small home
computer only) for determining all imaginary quadratic number fields with

class number 1. We shall use it in Chapters 4 and 5.

3.3. Inhomogeneous one-dimensional approximation in the real case: the
Davenport lemma.

The next case is when A has the form

A=B+ Xl-ﬁl + Xz-ﬁz ,
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where B # 0 . We then may use the so-called Davenport lemma, which was
introduced by Baker and Davenport [1969]. It is, like the homogeneous case,

based on the continued fraction algorithm.

Put again ¢ = —61/62 , and put ¢ = 3/02 . Then we have

A
9

v - Xl-ﬁ + X
2

5

Let p/q be a convergent of ¥ with q > X We have the following result.

0

LEMMA 3.3. (Davenport). Suppose that, in the above notation,

lg-yil > 2-X /q , (3.10)

(by II-lll we denote the distance to the nearest integer). Then the solutions

of (3.1), (3.2) satisfy

1 2
X < g-log(q -c/lazl-xo) : (3.11)

Proof. From (3.5) and (3.10) we infer
2-X0/q < Hq-(w—xl-0+x2)+x1-(q-ﬁ—p)n < q-IA/ﬁZI + lel/q .
By (3.1), (3.2), and

X < q2-c-|0£1|-exp(—8-X) ,

0
this leads to (3.11). o
If (3.10) is not true for the first convergent with denominator > XO , then

one should try some further convergents. If q 1is not essentially larger
than XO , then (3.11) yields a reduced upper bound for X of size log XO ,
as desired. If no q of the size of XO can be found that also satisfies
(3.10) (a situation which is very unlikely to occur, as experiments show),
then not all is lost, since then only very few exceptional possible solutions

have to be checked. See Baker and Davenport [1969] for details.

Summarizing, we see that in this case the essential idea is that an extremely
large solution of (3.1) and (3.2) leads to a large range of convergents p/q
of 9 for which the values of llg-yll are all extremely small. In practice

it appears to be the case that q-¢ 1s always far enough from the nearest
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integer (the values of g -yl seem to be distributed randomly over the
interval [0,0.5] ). This method has been used in practice by Baker and
Davenport [1969] as we already mentioned, by Ellison, Ellison, Pesek, Stahl
and Stall [1972], by Steiner [1986], and by Gaal [1988]. We shall use it in
Chapter 4. Note that the method that we develop 1in Section 3.8 for the
multi-dimensional inhomogeneous case, can be used in the one-dimensional case

as well, as has been demonstrated in de Weger [1989b].

3.4. The L3—1attice basis reduction algorithm, theory.

To deal with linear forms with n > 3 , a stralghtforward generalization of
the case n = 2 would be to study multi-dimensional continued fractions. For
a good survey of this field, see Brentjes [1981]. However, the available
algorithms 1in this field seem not to have the desired efficlency and
generality. Fortunately, since 1981 there is a useful alternative, which in a
sense is also a generalization of the one-dimensional continued fraction

algorithm.

In 1981, L. Lovasz invented an algorithm, that has since then become known as
the L3—algorithm. It has been published in Lenstra, Lenstra and Lovasz
[1982], Fig. 1, p. 521. Throughout this and the next section we refer to this
paper as “££¥”. The algorithm computes from an arbitrary basis of a lattice
in Rn another basis of this lattice, a so-called reduced basis, which has

certain nice properties (its vectors are nearly orthogonal).

The algorithm has many important applications in a varlety of mathematical
fields, such as the factorization of polynomials (££%, Lenstra [1984]),
public-key cryptography (Lagarias and Odlyzko [1985]), and the disproof of
the Mertens Conjecture (Odlyzko and te Riele [1985]). Of interest to us are
its applications to diophantine approximation, which already had been noticed
in #22, p. 525. The algorithm has a very good theoretical complexity
(polynomial-time in the length of the input parameters), and performs also

very well in practical computations.

let T ¢ R be a lattice, that is given by the basis 91, ce s bn . We
introduce the concept of a reduced basis of T , according to £££, p. 5l6.
The vectors Q? (for 1 =1, ..., n ) and the real numbers My j (for

1< j<i<n) are inductively defined by
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i-1
* * * * %
b. = b, - . .'b., . .= (b.,b.) 7 (b.,b.)
%17 P jzlul,J SRS B B SN IRV
* * o, . n . .
Then 91, ce s bn is an orthogonal basis of R . We call the lattice basis
b,, ..., b of T' reduced if
=1 -n
1
< = < < <
l“i,jl > for 1 J i<n,
* 2 3 * 2
° Z <
|Qi+“i,i—1 Qi—ll " |bl_1| for 1 <i<n
Hence a reduced baslis is nearly orthogonal. For a reduced basis 91, ce s bn
we have, by ££% (1.7),
152720 for 121, ..., 0. (3.12)

b, | 1

We remark that a lattice may have more than one reduced basis, and that the
ordering of the basis vectors is not arbitrary. The L3—a1gorithm accepts as
input any basis 91, ce s bn of I' ', and it computes a reduced basis
Cpr oes S of that lattice. The properties of reduced bases that are of
most interest to us are the following. Let y € R" be a given point, that is

not a lattice point. We denote by {&(I') the length of the shortest non-zero

vector in the lattice, viz.

£T) = min Ix] ,
0#xel

and by £(I,y) the distance from y to the nearest lattice point, viz.

LT,y) = minlx-yl
xe€l
From a reduced basis lower bounds for both  £(T) and L(T,y) can be
computed, according to the following results. Lemma 3.4 is Proposition (1.11)
from ££2%. We recall its proof here, to show the similarity of the proofs of

Lemma’s 3.4 and 3.5.

LEMMA 3.4. (Lenstra, Lenstra and Lovasz [1982]). Let Cps ees S be a
reduced basis of the lattice T . Then

Lry > 2'(n_1)/2-|91|
Proof. Let 0 # x € T be the lattice point with minimal length

x| = &(T') . Write
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with r. € Z , r% € R . Let 1 be the largest index such that r. #Z0

i 0 0
Then, since Cq , C; span the same linear space as QT, ce s Q? for all
i, and Q?+1 is the projection of Ciyq OM the orthogonal complement of
this linear space, it follows that ri — Hence, by (3.12),
0 0
‘o
2 2 *2 * 2 *2 * 2 2 * 2
LU = IxI1c = ) r; b 1T > T b, 1T = b, |
i=1 0 0 0 0
> pt 125 27 2 o
=i -1
0
LEMMA 3.5. Let Cpr woes C be a reduced basis of the lattice T , and let
n
y = izlsi-gi for Sl’ e, Sn € R, with not all si in Z . Let 1O be
the largest index such that S. € Z . Then
0
or,y) > 2 @2 g e
i, -1

Proof. Let x € ' be the lattice point nearest to y . So Ix-yl|l = &(T,y)
Write

n no.o. n no.o.

x= y)r.,c.,= )r.b,, y= )s,c,= )s,.Db,,

= . i~1 i~1 i~-i i~i

i=1 i=1 i=1 i=1
with ri € 7 , r?, Si’ s? € R . Let i1 be the largest index such that
r. # s, - Then, reasoning as in the proof of Lemma 3.4, we find
1 1
* *
P10 7% TN T8
1 1 1 1

Using (3.12) it follows that

ur,y?® > (r, -s )% pf 12> (ry s, 0527 T e )2
1 1 1 1 1
. N Lo s ‘ . .

Obviously, i i, If i i, the result follows at once. If i > i
then s, €Z, s, #r. , hence |r, -s, | 2 1, and the result follows. O

i i i i i

1 1 1 1 1
The above lemma is rather weak in the extraordinary situation that S. is

0
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extremely close to an integer. If one of the other S. is not close to an

integer, we can apply the following variant.

cn be a reduced basis of the lattice T , and let

1, > ~
n
y = z s,c, for s,, ..., s € R, with not all s, 1In Z . Suppose that
i=1 i—i 1 n i
there is an index iO and constants 81 , 0K 82 < é such that
< i =i .
HsiH 81 for 1 1O+1, , n,
s, I 2 &, .
1O 2
Then
pr,y) > 2 205 e - (i), max g, |
’ 2 -1 0 1 i>i =i

0

Proof. With notation as in the proof of Lemma 3.5, let ti be the integer

nearest to s. , for 1 2 i +1, and t. =s. for i < i_. . Put
i 0 i i 0
n no.o.
z= ) t.cc.= ) t.b,
= . i~i . i~i
i=1 i=1
with t? € R . Let i1 be the largest index such that r. # ti . Then
1 1
*
rl - tl = ri - tl
1 1 1 1
We have
UT,y) = Ix-yl > Ix-z| - |z-yl
Now,
n
- < - . < -5 )-8 -
| z-y| i—iZ+1|S' tol-le, | < (n-ig)-8, Ti? lc. |,
) 0
and, using (3.12),
2 2 * % .2 * 2 * * 2 * 2
Ix-z1" = ) (ri-t)7-IpT17 > (] -t7 )7+ Ibl |
i=1 1 1 1
> (r, ~t, )72 e 2
1 1
. S co— s ‘ . .
Obviously, i i, If i i, the result follows. If i > i, then
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t, €Z, t, #r, , hence |r, -t., | > 1 > 8, , and the result follows. o
i i i i i 2

Remark. Babai [1986] showed that the L3—a1gorithm can be used to find a
lattice point x with Ix-yl € c-&(I,y) for a constant c¢ depending on the
dimension of the lattice only. This result can also be used instead of Lemma

3.5 or 3.6.

3.5. The L3—1attice basis reduction algorithm, practice.

Below (in Fig. 1) we describe the variant of the L3—a1gorithm that we use in
this monograph to solve diophantine equations. This variant has been designed
to work with integers only, so that rounding-off errors are avoided
completely. In the algorithm as stated in £££, Fig. 1, p. 521, non-integral

rational numbers may occur, even 1f the input parameters are all integers.

Let I ¢ Z" be a lattice with basis vectors 91, ce s bn . Define Q?, “ij’
di as in 22%2 (1.2), (1.3), (1.24), respectively. The di can be used as
denominators for all numbers that appear in the original algorithm (££%, p.

523). Thus, put for all relevant indices i, j

*
ey T dj_ gk
(3.13)
A, . =d.u. .
1,9 J “l,J
They are integral, by ££% (1.28), (1.29). Notice that, with Bi = |Q?|2 ,
d, =d, ,-B. . (3.14)
i i-1 71
We can now rewrite the algorithm in terms of 91’ di’ Ai j in stead of Q?,
B., u, . , thus eliminating all non-integral rationals. We give this variant

i i, ]
of the L3—a1gorithm in Fig. 1. All the lines in this variant are evident from
applying (3.13) and (3.14) to the corresponding lines in the original
algorithm, except the lines (A), (B) and (C), which will be explained below.

We added a few lines to the algorithm, in order to compute the matrix of the
transformation from the initial to the reduced basis. Let B be the matrix
with column vectors 91, e, bn , the initial basis of the lattice r,
which is the input for the algorithm. We say: B 1is the matrix associated to

the basis 91, ce s bn . Let © Dbe the matrix associated to the reduced
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dO =1
c., := Db, ;
=i =i
Ai , 1= (Qi,g.) ;
> J J for j=1,...,i-1; ¢ for i=l,...,n
(A) c, := (d.-c,-Aa, .-c.l/d,
-1 J~-1 1,3 7] -1
d, := (c.,c.)/d,
i -i’-i i-1
k :=2 ;
(1) perform (%) for £ = k-1 ;
if 4-d -d, < 3-d2 - 4-%2 o to (2)
k-2 %k k-1 k, k-1 & ’
perform (%) for ¢ = k-2, , 1
if k =n terminate ;
k := k+1 ; go to (1) ;
Qk—l Pk
(2) b = ;
~k k-1
u u V’T V’T
k-1 Ol %k k-1 Ol
u Tl u ’ T - T ’
k k-1 i Yi-1
A A
i LI .= \ k. J for j =1, , k-2 ;
k,]j k-1,]
Al A d
(B) Sl N AL k-1 kék i ALk A AR A1
i,k ’ k ’ k,k-1
for i = k+1, n ;
() 4. = (d_-d + A ) / d
k-1 "~ k-2 "k k,k-1 k-1~
if k>2 then k := k-1 ;
go to (1) ;
(%) if 2-|Ak,£| > d, then
r := integer nearest to Ak,g/d£ ;
e . — _ . . 4 — ’T . ’ .
) bk - bk r 91)/ ’ Ek - Ek r El)/ ’ Yl)/ - Yl)] +r !k ’
Ak,J = Ak,J - r-Ag,j for j=1, , -1 ;
Ak,ﬂ = Ak,ﬂ - r-d£ .
Figure 1. Variant of the L3—algorithm.
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basis Cpr woes S which the algorithm delivers as output. Then we define

this transformation matrix V by

€ =8BV.
More generally, let U Dbe the matrix of a transformation from some BO to
B, so B = BO-U . Denote the column vectors of U by Uy oo U and the
row vectors of U_l by yiT, ce yhT . We feed the algorithm with U and

U ! as well. All manipulations in the algorithm done on the bi are also
done on the u. and the yiT are adjusted accordingly. This does not
affect the computation time seriously. The algorithm now gives as output
matrices € , U and U’_l , such that © 1is associated to a reduced basis,
G =8BV, and W = U-V . Note that V 1is not computed explicitly, unless
U

¥ (the unit matrix), in which case U’ = V¥ . It follows that
-1
€ =3B-U W = @O-U’ ,

so W is the matrix of the transformation from BO to © . Note that if

B ! is known, then it is not much extra effort to compute €& ! as well.
We now explain why lines (A), (B) and (C) are correct.

(A): From ££%2 (1.2) it follows that

i-1 d,_,
€y =ik T kZldk_l-dk Mok Sk
Define for j=0, 1, ..., i-1
c.(j) =d,'b, - i ———fi——-h ‘c
i 3T Ad o Tk

Then gi(O) = b, , and gi(i—l) =c; - The ¢ (j) is exactly the vector
computed in (A) at the Jj th step, since

d,-c.(j-1) = A, .-c.
J 71 1,J —J
dj—l
j-1 dj dj
=d, b, - y—L—A ,c, -——a .c,=c. (j)
j i k:1dk—1 dk i,k 7k d. d. i,j 7] i

This explains the recursive formula in line (A). It remains to show that the

occurring vectors gi(j) are integral. This follows from
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% L i )
d.- — A, . rc. =4d,- M. . b,
J k:1dk—1 dk i,k 7k - i,k 7k

which is integral by ££2% p. 523, £. 11.

(B), (C): Notice that the third and fourth line, starting from label (2), in
the original algorithm, are independent of the first, second and fifth line.
Thus a permutation of these lines is allowed. We rewrite the first, second
and fifth line as follows (where we indicate variables that have been changed

with a prime sign):

’ = 2 . .
Bk—l T Bk * “k,k—1 Bk-1 ’ (3.15)
B += B BB (3.16)
Beok-1 ¢7 Meok-1 Br-17Br-1 (3.17)
T Tl T R T By AV LI ) LR (3.18)
“i,k = “i,k—l - “k,k—1'“i,k ; (3.19)
where (3.18) and (3.19) hold for i = k+1, ..., n . The di remain unchanged
for i =0, 1, ..., k-2 , and by (3.16) also for i = k . Now, (3.15) is
equivalent to
> 2
dk—l dk Ak,k—l dk—l
- * ' ; (3.20)
A dk—l d2 -
k-1

which explains (C). From (3.17) we find

AL A d d’

k,k-1 _ "k,k-1 k-1 = "k-2

dk—l dk—l dk—2 dk—l
hence Ak k-1 remains unchanged. From (3.18) we obtain

Mok-1_ Mekel ' M ok-1 .\ [ - Mk, k-1 ' Mk, k-1 ] ' Mok

dk—l dk—l dk—l dk—l dk—l dk
whence, by multiplying by dk_l-dl’<_1 and using (3.20),

A
) — , N i,k
dk—l Al,k—l Ak,k—l Ai,k—l + dk—l dk—l Ak,k—l ) dk
= A A + d A
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Finally, from (3.19) we see

Ai,k _ Ai,k—l _ Ak,k—l ] Ai,k
dk dk—l dk—l dk

and (B) follows.

In our applications we often have a lattice T , of which a basis 1s given

such that the associated matrix, « say, has the special form

where the ®i are large integers, that may have several hundreds of decimal
digits. We can compute a reduced basis of this lattice directly, using the
matrix 4 itself as input for the L3—algorithm. But it may save time and
space to split wup the computation Iinto several steps with increasing

accuracy, as follows.

Let k be a natural number (the number of steps), and let £ be a natural

number such that the ®i have about k-2 (decimal) digits. For

i=1, ..., n and j=1, ..., k put
0l = e 10t K3y
i i
and define Wij) by
o™ = qot.eld) 4 o)
i i i

Thus, the Wij) are blocks of ¢ consecutive digits of ®i . Define for the

relevant j the n X n matrices

1
@
@
d. = g 1 . D, = ,
J - - - J - -
olJ) . gld) W) g3V W)
1 n-1 n 1 n
1 @
€ = .
& )
10
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Then it follows at once that

A, =&-4, +D
J+1 J J
Notice that &k = 4 , since @ik) = ®i . Put UO =3, @1 = ﬂl . For some
Jz 1 let Bj and uj—l be known matrices. Then we apply the L3—a1gorithm
to B = Bj , U = uj—l , and U_l . We thus find matrices €j , Uj , and
Uj_l such that
-1
Gg = B.-U, U
J J i1 3
Now put
B. =&-€, +D.-U
J+l J J
By induction Bj , €j and Uj are defined for j =1, ..., k . Note that
B, UL =€eBUL +D
J*l ) J J-1 J’
so the 3.-U3E1 satisfy the same recursive relation as the ﬂj . Since
-1 _ -1 _ .
gl-uo = ﬂl , we have Bj uj—l = ﬂj for all j . Hence
€. =B, Ul ug=d.U, ,
J J i1 73 J J
and it follows that @k and &k are associated to bases of the same
lattice, which is I . Moreover, since & is output of the L3—algorithm, it

k
is associated to a reduced basis of T .

Let us now analyse the computation time. For a matrix M we denote by L(M)
the maximal number of (decimal) digits of its entries. If the L3—a1gorithm is
applied to a matrix B , with as output a matrix € , then according to the
experiences of Lenstra, Odlyzko (cf. Lenstra [1984], p. 7) and ourselves, the
computation time is proportional to L(iB)3 in practice. Since G is

associated to a reduced basis, we assume that

L(€) = Plog(det Ti/n .

In our situation, L(ﬂj) 2L, L(Dj) 2 ¢, and by det €j = det ﬂj = @éj)
(3) (3)

we have L(€j) 2 2-j/n . Put €j = (Cl,h) , 1{j = (ul,h) . Then by
. = 4.-U, and the special shape of 4, we have CFJ) = uFJ) for
J J J J i,h i,h
i=1, ..., n-1 and h=1, ..., n, and
3y _ ¢ _ (3 o03) _ _ )y 403 (j) (j)
uy = (- ey 8 T el R %ttt On )78,

50



It follows that L(Uj) & L(€j) . So

L(B,) 2max ( L(E-€, ), LD, .-U, ) ) 2L+ L (j-1)/n .
J J- J-1 ~J-1

1 1

Instead of applying the L3—a1gorithm once with « as input, we apply it k

times, with Bl, ce s Bk as input. Thus we reduce the computation time by a
factor
L)® UB S N S
k Tk T k-1 )
3 3 ji—1y 3 13
Y L(B,) Y (10 Y (n+j)
j:]_ J le J:O
2

For k between 2.5-n and 3'n this expression is maximal, about 0.4-n

So the reduction in computation time is considerable (a factor 10 already for
n = 5 ). The storage space that is required is also reduced, since the
largest numbers that appear in the input have E-(1+(k—1)/n) instead of {-k
digits.

3.6. Finding all short lattice points: the Fincke and Pohst algorithm.

Sometimes it is not sufficient to have only a lower bound for L(T) or
£(T',y) . It may be useful to know exactly all vectors x € T such that
x| € C or |Ix-yl < C for a given constant C . There exists an efficient
algorithm for finding all the solutions to these problems. This algorithm was
devised by Fincke and Pohst [1985], cf. their (2.8) and (2.12). We give a

description of this algorithm below.

The input of the algorithm is a matrix B whose column vectors span the
lattice T , and a constant C > O . The output is a list of all lattice
points x € T with |[x| € C, apart from x = 0 . We give the algorithm in
Figure 2. We use the notation X = (Xij) for matrices X =4, B, R, ¥, U,

and Xs for the column vectors of X .

The algorithm can also be used for finding all vectors x € I' of which the
distance to a given non-lattice point y 1is at most a given constant C

Namely, let

and let r. be the integer nearest to S. for all i . Put
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T

4 := B -B ;
1= <1 < J<
qij' aij for 1 i J n ;
= 1= < i <
qji : qij , qij : qij/qii r 1 i <] n ;
= - . i < < < < <
Ay dy g S ) for i+l k L n for 1 i n ;
r.. ::\/q.. for 1< i <n;
ii ii
r..:=r..‘qd. . , r.. := 0 for 1< J< 1<n;
ij i1 i ji

compute R ;

that ¢ 1 = u 'ty
compute ¥ = R-U4;
determine a permutation m such that |Is > ... > |
=u(1) ~m(n)
let $’ be the matrix with columns s 1 for 1 =1,...
T T (i)
d:= 9" -9
: = <1 € J<
qij : aij for 1 i J n ;
.= .= < j <
qji : qij , qij : qij/qii or 1 i <] n ;
.= - : i+1 < k < £ < < i«
Aep = Ay ;" 94y for i+l k L n for 1 i n ;
i:=n ;
T, := C ;
i
U, := 0 ;
i
(1) Zz :=V(T./q..) ;
i” tii
UB(x,) := LZ—UiJ ;
Xg 1= [—Z—Ui] -1
(2) x. := x, + 1 ;
i i
if X4 < UB(Xi) , go to (4) ;
(3) i:=1 + 1 ;
go to (2) ;
(4) if i =1, go to (5) ;
i:=1i-1;
m
U, := z d. . "X. ;
1 j:j_+]_ J J >
Ty o= Tieg =~ 950501 KU s
go to (1) ;
(5) if X5 = 0 for 1 < i < n, terminate ;
compute and print x = U-(x s, X )T ;
-1 -1
T (1) T (n)
go to (2).

compute a row-reduced version y’_l of ﬁ_l , and U, U_l such

Figure 2. The Fincke and Pohst Algorithm.
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Then |y-z| < C° for some constant C’ (C = %-Zlbil will do). Since
z € ' it suffices to search for all lattice points u with J|ul < C + C’ ,

and compute for each such u also x =2z + u, since |[x-yl < C implies

lul <€ Ix-yl + ly-z| < C + C

3.7. Homogeneous multi-dimensional approximation in the real case: real

approximation lattices.

Let the linear form A have the form

n
A = .Z X,
i=1
We assume that n > 2 . The case n = 2 has already been discussed in
Section 3.2, but the method of this section works also for n =2 . In fact,

it is in this case essentially the same method.

n
0 -
Let ¥y € N Dbe a constant (we will explain its use later). We define the

Let C Dbe a large enough integer, that is of the order of magnitude of X

approximation lattice T by the matrix

v
&
B = . ;
v
[7-C-01] e [7-C-0n_1] [7-C-ﬁn]
of which the column vectors 91, ce s bn are a basis of the lattice. Then T
is a sublattice of Z  of determinant 7n_1-[7-C-0n] , which is of size C .
A lattice point x has the form
< ~ T
x = Z x;by = (Crxgs T M)

where the X, are integers, and

N n
A=) x, - ly-C-o,]
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Clearly, A is close to ¥-C-A . The length of the vector x now measures

both XO and |Al , which are exactly the two numbers we want to balance

with each other. Heuristics (cf. Section 1.3) tell us that in a generic case
we expect [A] & Xan . We now can prove easily the following useful lemma.

LEMMA 3.7. Let X1 be a positive number such that

Lr) > V((n+1)2+(n—1)-72)-X1 : (3.21)
Then (3.1) has no solutions with

1
1 .C- <X < ) :
5 log(y-C C/Xl) X <Xy (3.22)

Remark. We apply this lemma for X1 = XO . If condition (3.21) then fails,

we must take a larger constant C . If it holds for a constant C of the

size Xg , then (3.22) yields a reduced lower bound for X of size log XO .

Proof. Let Xps wees X be a solution of (3.1) with 0 < X < X1 . Consider

the lattice point

2 ~ \T
x= Yxgbo= (ox, oo wx s A)T
i=1
with X as above. Then
2 R S 2 2 2
Ix19 = ¢ Y %0 + A < (n-1)-97-X] + A,
. i 1
i=1
and
N n n
|A-y-C-Al < ) Ix 11 Ty-C-0.1-y-C-8, | < Y 1%, 1, (3.23)

i=1 i=1

which is < n-X1 . By (3.1), (3.21) and the definition of £(I') we have

y-C-crexp(=8-X) > ly-C-Al > IAl - |A-y-C-Al
> V(E(F)Z—(n—l)-yz-xi) - X, > X,

and (3.22) follows at once. O
Condition (3.21) can be checked by computing a reduced basis of the lattice

I' by the L3—algorithm, and applying Lemma 3.4. The parameter §y 1is used to

keep the ”rounding-off error”
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I[y-C-ﬁi]—y-C-ﬁiI

relatively small. This 1s of importance only if C is not very large,
usually only if one wants to make a further reduction step after the first

step has already been made. For large C , simply take ¢y =1

It may be necessary, if C 1s not very large, to use a more refined method
of reducing the upper bound. To do so, we use the following lemma, which is a
slight refinement of Lemma 3.7, together with the algorithm of Fincke and
Pohst (cf. Section 3.6). It is particularly useful in the situation that one

has different upper bounds for the |Xi| for different 1
LEMMA 3.8. Suppose that for a solution of (3.1)

n

Al > ) Ix, | (3.24)

. i
i=1

holds. Then

n
X < 1-1og[7-c-c/(|X|— ) |x.|)] : (3.25)
1) 101 i

Proof. Define the lattice point x as in the proof of Lemma 3.7. By (3.23)
and (3.24)

n
IAl > (1A= ) Ixil)/y-C >0 .
i=1
The result follows at once by (3.1). O
We proceed as follows. Choose a constant CO such that if |A] > CO then
the upper bounds for |Xi| imply (3.24). In that case we have a new upper

bound for X from (3.25). In case |A| < CO we have an upper bound for the
length of the vector x . We compute all lattice points satisfying this bound

by the algorithm of Fincke and Pohst, and check them for (3.1).

Summarizing, the reduction method presented above is based on the fact that a
large solution of (3.1) corresponds to an extremely short vector in an
appropriate approximation lattice. Since we can actually prove by
computations that such short vectors do not exist, it follows that such large

solutions do not exist. We will apply these techniques in Chapter 5.
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3.8. Inhomogeneous multi-dimensional approximation in the real case: an

alternative for the generalized Davenport lemma.

Let A Dbe the most general linear form that we will study, viz.

where n > 2 (the case n = 2 has been dealt with in Section 3.3, but can
be incorporated here also). To deal with this inhomogeneous case, two methods
are available. The first method is a generalization of the method of
Davenport that we discussed in Section 3.3. The second method is closer to

the homogeneous case of the previous section.

First we explain briefly the generalized Davenport method. See Ellison

[1971%] (where only the case n = 3 is treated). Put

9, =0./0 for i=1, ..., n1, B =B/,
n-1
o= A =R .Z X 0 X
i=1
Let (pl,...,pn_l,q) be a simultaneous approximation to ﬁi, ce 65_1 with
q of the size of Xg_l , such that, for 1 =1, ..., n-1,
1+1/(n-1)

|ﬁi—pi/q| < c’/q

>

for a small constant c

LEMMA 3.9. (Davenport, Ellison). Suppose that

g-g> 1l > 2'(n_1)'XO'C’/q1/(n_1)

Then the solutions of (3.1), (3.2) satisfy

( 1+1/(n-1)

X < loglqg -c/Iﬁnl-c -(n—l)-XO) .

1
s

Proof. The result follows at once from

n-1
. > < . > . Y. > <
lg-p 1l lq-A +i§1xi (p;=q-9}) |

q.|ﬁn|-1.c.exp(_5.x) + (n—l)-xo-c’/ql/(n'l)
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To apply this generalized Davenport method in practice, it is necessary to

compute the simultaneous approximations (pl,...,pn_l,q) . We indicated in

Section 1.4 how this can be done with the L3—algorithm. As lattice we take

the one associated to the following matrix:

1
, &
[C-8;1 -C ,
co 1 7
n-1
where C 1is a constant of size Xg . Then Cq the first basis vector of a
reduced basis, will have length of the size of C(n—l)/n = Xg_l . But S
can be written as
c, = (q, g lc91-Cp q-[C-9 ,1-C.p )T
=1 ’ 1 1 n-1 n-1
for some TN T It is expected that g 1is of size Xg_l , and
q-C-Iﬁi—pi/qI ~ Iq-[C-ﬁi]—C-piI
are of the size Xg_l , so that |0;—pi/q| are of the size
n-1 n-1 _ -1 . ,n . -(1+1/(n-1))
XO /C XO =C = XO g ,

as desired.

The above method has been applied in practice to solve Thue and Thue-Mahler
equations by Agrawal, Coates, Hunt and van der Poorten [1980] (using multi-
dimensional continued fractions instead of the L3—algorithm), Petho and
Schulenberg [1987], and Blass, Glass, Meronk and Steiner [1987a], [1987b]. So
it has proved to be useful. However, we prefer another method, for several
reasons. Firstly, it is close to the homogeneous case as described in the
previous section, whereas the generalized Davenport method has no obvious
counterpart for the homogeneous case. Secondly, 1t actually produces
solutions for which the linear form A 1is almost as near to zero as possible
under the condition X < XO . Specifically, if a linear relation between the
ﬁi exists, but had not been noticed before (a situation that may occur in
practice, cf. Agrawal, Coates, Hunt and van der Poorten [1980]), the method
detects these relations, by finding explicitly an extremely short lattice
vector (resp. a lattice vector extremely near to a given point) giving the
coefficients of the relation. Thirdly, an analogous method for the p-adic

case can be given (see Section 3.11). Finally, variations as indicated in

Section 1.4 are possible. Concerning computation time we think that the two
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methods are about equally fast.

The method works as follows. We take the approximation lattice TI' exactly as
in the homogeneous case (cf. the previous section), with constants ¥, C

chosen properly, i.e. C 1is of the size o Compute with the L3—a1gorithm

0
a reduced basis Ciyr oo S of ' . Let © be the matrix associated to
this basis, and compute also the transformation matrix U with © = B-U ,
and its inverse U_l . Note that B_l , and hence also €_1 , are easy to

compute, namely by

1/ p
3! = é 1/y
] [y-C9,] ] [y-Co__,] 1
7-[7-C-6n] 7-[7-C-6n] [7-C-0n]

and our version of the L3—a1gorithm (Fig. 1). Let y € Z" be defined by

y=1(0, ..., 0, -[y-CB] )T =
i

s,-C, ,
1

e~

where the coefficients S. € R can be computed by

T
(sl,...,s ) =86 -y .

To be more precise, if U has u as n th column, then €_1 has

g/[y-C-ﬁn] as n th column, so

T —_ —_— . . . . .
(Sl""’sn) = -u-[y-C-g1/[y-C-o]

Now we apply Lemma 3.5 or 3.6, that provide a lower bound for £(T,y) . Then

we can apply the following lemma.

LEMMA 3.10. Let X1 be a positive constant such that

Lr,y) > V((n+2)2+(n—1)72)-X1 . (3.26)

Then (3.1) has no solutions with

1

5 log(y-C C/Xl) X <Xy (3.27)
Remark. We apply this lemma for X1 = XO . If condition (3.26) then fails,
we must take a larger constant C . If it holds for a constant C of the
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size X- , then (3.27) yields a reduced lower bound for X of size log XO .

0
Proof. Let Xps wees X be a solution of (3.1) with 0 < X < X1 . Consider
the lattice point
= ~ \T
x = )Lxby = (ox, C X Ry )
i=1
with
N n
A, = .Z x, - ly-C-o,]
i=1

o -
2 28t o o 2 2 =2
Ix-y1° = 47+ ) x; o+ AT < (n-1) -y -X1 + AT,
i=1

and

o n

|A=y-C-Al < I[7-C-Bl-y-C:Bl + ¥ Ix |-1[y-C-9 I-y-C-o0, |

i=1
n
<1+ Y Ix. | €1+ n'X, < (n+l) X,

By (3.1), (3.26) and the definition of &(I',y) the result follows, since
y-C-crexp(=8-X) > ly-C-Al > IAl - |A-y-C-Al

> V(E(F,y)z—(n—l)-yz-xi) - (n+1)-X > X . O

Again we may prove refinements of the above lemma, similar to Lemma 3.8 in
the homogeneous case. We explained in Section 3.5. how to apply the Fincke

and Pohst algorithm in the inhomogeneous case. We do not work that out here.

Summarizing, the method described above is based on the fact that a large
golution of (3.1) in the inhomogeneous case leads to a lattice point
extremely near to a fixed point in Z" . We can actually prove by some
computations that such lattice points do not exist, so that such extreme
solutions do not exist. The method outlined in this section is used in

Chapter 8. Note that in the case n = 2 the method is essentially the same

as the Davenport lemma.
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3.9. Inhomogeneous zero-dimensional approximation in the p-adic case.

In the p-adic case we start with a very simple linear form A , to which also

a very simple reduction method applies. Let A Dbe
A=pB+x9,

for B, ¢ € Qp such that pg/9 € @p , and x € Z , x > 0 . It is obvious
that in the real case with such a simple linear form A inequality (3.1) has
only finitely many solutions (we even don’t need (3.2)), that are easy to
compute. In the p-adic case however, inequality (3.3) may have infinitely

many solutions, so we do need a bound like (3.4), and a reduction method.

Put & = -/ . Then & € @p . Inequality (3.3) now becomes

r e -x (3.28)

s _ > ’
ordp(ﬁ X) c} » ,

Y, C are constants with c¢. > 0 . We assume that

where Cl’ > >

> -c! .
X 01/02

Then (3.28) has no solutions if ordp(ﬁ’) < 0 . Hence we may assume that ¢’

is a p-adic integer. Let the p-adic expansion of ¢ be

where u, € {0, 1, ..., p-1 } for all 1 e NO . Compute the p-adic digits

u; far enough to be able to apply the following reduction lemma.

LEMMA 3.11. Let X1 be a positive constant. Let r be the minimal index

such that

p>X ., u #0. (3.29)

Then (3.28) has no solutions with

(r—c’l)/c2 < x < X1 . (3.30)

Remark. We apply the lemma with X1 = XO . The assumption behind the lemma
is that in the p-adic expansion of ¢ no long sequences of zeroes appear.
In fact, it seems that in our applications the numbers u, are distributed

randomly over { 0, 1, ..., p-1 } . Then the minimal r satisfying (3.29)
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will not be much larger than log Xo/log p , and then (3.30) yields a reduced
upper bound of size log XO , as desired.

Proof. Let x < X1 satisfy (3.28). Suppose that ordp(ﬁ’—x) >r + 1 . Then

X
n

d i r+1
Yu,-p (mod p )
. 1

i=0

By x > 0 it follows from (3.29) that

ico L r 1
which contradicts the assumption x < X1 Hence ordp(ﬁ’—x) < r, and (3.30)
follows from (3.28). o
Remark. In the above proof it 1s essential that x > 0 . It is however not

difficult to formulate a similar result that holds for all X € Z , by
looking, 1f p # 2 for p-adic digits u; that are not only # 0 but also
#Zp-1, and if p = 2 for p-adic digits U, Uoy with u; # Us g
A method very similar to the one described above was used by Wagstaff [1979],
[1981], a.o. for solving 5" = 2 (mod 3™) . We apply the method in Chapter 4.

3.10. Homogeneous one-dimensional approximation in the p-adic case: p-adic

continued fractions and approximation lattices of p-adic numbers.

Let A have the form

where 01, 02 € Qp such that ¢ = —61/62 € @p , and Xl, X2 € Z We may
assume that ordp(ﬁ) > 0 . Now

No= A/ﬁ1 = - Xl-ﬁ + X5 -
So (3.3) now means that the rational number x_r/x is p-adically close to

271
the p-adic number ¢ .

In analogy of the real case it seems reasonable to study p-adic continued

fraction algorithms. However, a p-adic continued fraction algorithm that

provides all best approximations to a p-adic number seems not to exist.
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Therefore we introduce the concept of p-adic approximation lattices, as was
done in de Weger [1986a]. From this paper we adopt the best approximation
algorithm, which is a generalization of the algorithm of Mahler [1961],
Chapter IV. This algorithm goes back also on the euclidean algorithm, and
thus 1s close to a continued fraction algorithm. But it is not a p-adic
continued fraction algorithm in the sense that a p-adic number 1is expanded
into a continued fraction, and that the approximations are then found by
truncating the continued fraction.

ﬁ(u)

Recall that for u € NO the rational integer is defined by

ordp(ﬁ—ﬁ(“)) 2 4 and O < 0(“) < p“ . We define for any pu € N the p-adic

0
approximation lattice F“ by a matrix to which a basis of r is

associated, namely the matrix

Then it is easy to see that

T 2
= - . >
F“ < (Xl’XZ) SV/AN ordp(x2 %4 4) > u

(cf. Lemma 3.13 in the next section, where we prove a more general result).

The following algorithm computes a point of minimal length in F“

x = (1,05 y = (0T
if Ix| > |yl , interchange x and vy ;
(1) compute K € Z such that |y-K-x| is minimal ;
y =y - Kx;
if Ixl > lyl , interchange x and y , and go to (1) ;

print x .

Figure 3. p-adic approximation algorithm.

With this algorithm it is possible to compute E(F“) explicitly. Then we can
apply the following lemma.

LEMMA 3.12. Let X1 be a constant such that

our ) > vV2-x, . (3.31)
u 1
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Then (3.3) has no solutions with

-1- <X < . :
(u-1 cl+ordp(02))/02 <Cxy XK (3.32)
Remark. We take u such that p“ is of the size of Xg , and apply the
lemma for X1 = XO . Then we expect that E(F“) is of the size of XO , SO

that (3.31) is a reasonable condition.
Proof. Apply the proof of Lemma 3.14 (in the next section) for n = 2 . o

A method like the one described above has been applied by Agrawal, Coates,
Hunt and van der Poorten [1980]. We use it in Chapters 6 and 7.

3.11. Homogeneous multi-dimensional approximation in the p-adic case: p-adic

approximation lattices.

We now study the case

where ¢, € Q such that ¢./79. € Q@ , X, € Z for all i, j , and with
1 p 1] p 1

n > 2 . We may assume that ordp(ﬁi) is minimal for 1 =n . Put
Y. = =94,/ for i=1, ..., n-1
i i’ 'n

Then 0; € Zp for all 1 . Put

n-1
N = A8 = - ) x ¥ + X
. i1 n
i=1
The definition of the p-adic approximation lattices can be generalized
directly from the one-dimensional case. Namely, for any pn € N we define

0
F“ as the lattice associated to the matrix

B = g 1

, () ()
61 ce ﬁn—l P

Then we have the following result.
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LEMMA 3.13. The lattice F“ , associated to the above defined matrix B“ ,

is equal to the set

T n
—_— b 2 .
F“ < (Xl, "Xn) €7 | ordp(A ) 2 U2
Proof. For any x = (X o X )T €T there exists a z = (z o, Z )T e 7"
= 1’ "n M = 1’ *n
such that x = B“-z Then Xi = zi for i=1, ..., n-1, and
n-1 () n-1
x = Yz oo oz pt= V9. (mod pt
n . i1 . i i
i=1 i=1
Hence ordp(A’) > u . Conversely, for any x = (Xl,.. .,Xn)T such that
ordp(A’) > 1 there obviously exists a 2z € Z" such that X = B“-g . u]
Using the L3—a1gorithm we can compute a lower bound for E(F“) . Then we can

apply the following lemma, which is a direct generalization of Lemma 3.12.

LEMMA 3.14. Let X1 be a constant such that

6r ) > ¥n-X, . (3.33)
u 1

Then (3.3) has no solutions with

—1- <X < . :
(u-1 cl+ordp(0n))/02 < X X <X, (3.34)
Remark. We take u such that p“ is of the size of Xg , and apply the
lemma for X1 = XO . Then we expect that E(F“) is of the size of XO , SO

that (3.33) 1s a reasonable condition.

Proof. Let Xio oo X be a solution of (3.3) with X < X1 . Then (3.33)
prohibits the point (Xl""’Xn)T from being a lattice point in F“ . Hence,
by Lemma 3.13, ordp(A’) < p-1, and (3.34) follows from (3.3). O

We will apply the results of this section in Chapters 6 and 7.

3.12. Inhomogeneous one- and multi-dimensional approximation in the p-adic

case.

Finally we study an inhomogeneous p-adic form
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where S, ﬁi € Qp such that B/ﬁj, ﬁi/ﬁj € @p and Xi € Z for all i, j,
and n > 2 . We assume that ordp(ﬁi) is minimal for i = n , and that

ord (B) > ord (& ) . Put
p p n

9, = -0./8 for i=1, ..., n1, B =p/2 ,
n-1
o= A =R - izlxi-ﬁi %

Then fB’, 0; € Zp for all 1 . As p-adic approximation lattices we take the
lattices F“ that were defined for the homogeneous case, i.e. for any
u €N the lattice F“ that is associated to the matrix B“ (see Section

0
3.11). Further put

() T d n
y=1(0, ..., 0, B H ) = Ys.c, e ,
. i~1
i=1
where Cr oo S is a reduced basis of F“ , and S. € R . By Lemma 3.5 or
3.6 we can compute a lower bound for {&(I,y) . This is useful in view of the

following lemma.

LEMMA 3.15. The set F“(y) = F“ +y 1is equal to the set

T n
= ) 2 .
F“(y) < (Xl,...,xn) €7 | ordp(A ) > ou >
Proof. Let x = (Xl""’Xn)T satisfy x -y € F“ . Note that
-y = o (W) T
X y = ( Xl’ e, Xn—l’ Xn B ) .

By Lemma 3.13 we have
nl () v
-9, - -B’ > .
ordp(.z X9y (Xn B ) p

i=1
The left hand side is just ordp(A’) , which proves the lemma. O
Obviously, the length of the shortest vector in F“(y) (a translated

lattice) is equal to E(F“,y) (unless in the case y € F“ , i.e. s; € z

for all 1 ). We have the following useful lemma.
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LEMMA 3.16. Let X be a constant such that

1
E(F“,y) > 1/n-x1 (3.35)
Then (3.3) has no solutions with
—1- <X < . :
(u-1 cl+ordp(0n))/02 < X X <X, (3.36)

Remark. We take u such that p“ is of the size of Xg , and apply the
lemma for XO = X1 . Then we expect that E(F“,y) is of the size of XO , S0
that (3.35) is a reasonable condition.

Proof. Let Xio oo X be a solution of (3.3) with X < X1 . Then (3.35)
prohibits the point (Xl""’Xn)T from being in F“(y) . Hence, by Lemma
3.15, ordp(A’) < pu-1, and (3.36) follows from (3.3). o

We will not apply the above lemma in this book. It is included here only for
the sake of completeness. However, when solving Thue-Mahler equations (see

Section 8.6), it will be of use.

3.13. Useful sublattices of p-adic approximation lattices.

In our p-adic applications of solving diophantine equations via linear forms,

we always have linear forms in logarithms of algebraic numbers, i.e. in

the B and ﬁi’s are p-adic logarithms of algebraic numbers, say
B = logp(ao) , ﬁi = logp(ai) for 1i=1, ..., n.

In Section 2.3 we have seen that for a & € @p if ordp(liE) > 1/(p-1) then
ordp(logp(E)) = ordp(liE) . In our applications we apply this to

X.
1
) b

n
£= oy Ta;

i=1
for which ordp(E—l) is large. This implies that ordp(logp(E)) is large
too, on which we based the definition of our approximation lattices. However,
the converse is not necessarily true: ordp(logp(E)) being large does not

imply that ordp(E—l) is large. This is due to the fact that the p-adic
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logarithm is a multi-branched function. To be more precise, for any root of
unity € e @p we have logp(C) = 0 (cf. Section 2.3). In @p there exist
only the (p-1) th roots of unity if p 1is odd, and only *1 as roots of
unity if p =2 . Let T be a primitive (p-1) th root of unity if p is
odd, and T = -1 if p = 2 . It follows that ordp(logp(E)) being large
implies that for some ke {0, 1, ..., p-2 } (or ke {0, 1 }if p=2)

ordp(logp(E)) = ordp(E—Ck)

The set of Xl, e,

X such that ord (8-1) (or ordp(Eil) if one wishes)
is large, turns out to be a sublattice F: (or Ft respectively) of F“

In the following lemma we shall prove this fact, and indicate how a basis of
such a sublattice can be found. Then we can work with this sublattice instead
of T itself. Of course, in Lemmas 3.12, 3.14 and 3.16 we can replace F“
by these sublattices F:, Ft . For simplicity we assume that o, € @p for
all 1 . We take «, = 1 (corresponding to B = 0 , thus to the homogeneous

0
case), and leave it to the reader to define appropriate translated lattices

* # .
F“(y), F“(y) for the case @ # 1 (the inhomogeneous case).

LEMMA 3.17. (i). Let @ps vnvs @ € @p be given numbers with ordp(ai) =0

for all i , and ordp(logp(ai)) minimal for 1 =n . Let x

Put

10 n

n
E = E L ordp(logp(an))

For any u € NO put

n
= >
r“ < (Xl’ "Xn) e 7 | ordp(logp(E)) Bty >,
I = < ) € 7" | ord (E+1) > p + p, >
w s Xpooe s X or b g Z 0t »
F# =< (% ,x ) eZ" | ord (E-1) > u + . > .
u© 1’ " o 0
Then Ft < F: < F“ are lattices. If p = 2 they are all equal. If p = 3
then T =T . If p > 3 then #(T /F*) = (p-1)/2 , ¥(T /F#) = p-1 ,
x #H K R R
¥ ,/r°) =2.
b
(i1). Let b, ..., b be a basis of T . Define k(x) for any
X = (X o X )T €T by ¢
= 1’ "n M
bty
€ = Ck(g) (mod p 9 , k(x)e{o0, 1, ..., p=2}
Let b, ..., Qh be a basis of F“ such that
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k(Qn) = gcd(k(hl),...,k(gn)) .
Put for i =1, ..., n-1 and p 2> 5

k(b})/k(b) (mod (p-1)/2) , nyl < (p-1)/4 ,

<
1]l

b, = bl - 7 b’
21 T2 T B

and for p > 3 also

<
1]l

#
k(Qi)/k(Qh) (mod (p-1)) , Iyil < (p-1)/2

b# =Db. - 7#-b’ .
-1 -1 1 ™n

Further put for p 2> 5

* * *
v, = lcm(k(Qn),(p—l)/Z)/k(Qn) , b =y b,
and for p > 3 also
¥ _ , B , ¥ _ %,
Ty = lcm(k(Qn),p 1)/k(9n) , b =y b
*® * . * # S . #
Then b,, ..., b is a basis of T , and b,, ..., b is a basis of T
=1 ~n u =1 ~n

Proof. (i). It is trivial that Ft cTr < F“ , and that they are lattices.
The equalities of the lattices for p = 2, 3 follow from the fact that =1
are the only roots of unity in @p for p =2, 3 . The values of #(F“/F:) ,
etc., follow from (ii).

(ii). Note that k(x) is (mod (p-1)) a linear function on F“ . The points

x of F: are characterized by (p-1)/2 | k(x) , and the points x of Fi
are characterized by (p-1) | k(x) . It follows from the definitions in the
lemma that for 1 =1, ..., n-1
* *
k(b.,) = k(b)) - . k(b>) =0 (mod (p-1)/2) ,
=i =i i 7 n
LN , # vy =
k(b,) = k(b2) - 7. k(b)) =0 (mod (p-1))
i i i n
* * # #
Note that b,, ..., b , b and b,, ..., Db , b’ are both bases of I' .
=1 “n-1" ~n =1 “n-1" ~n u
Write x €T as
- M
n-1 n-1
_ ¥ % * o, #‘ # #‘ ,
x = izlyi b, +y_ b = izlyi by + y_ b’

for integers y?, y? . Then it follows that
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k(x)

yr k(b)) (mod (p-1)/2) ,

k(x)

Yy

S5 HF B x

k(b)) (mod (p-1))

So x €T if and only if 3 |y, and x € T" if and only if g@ | y"
o X y fendonly if o |y . and x y ifendonly if gy |y

This proves the result.

69

n "



Chapter 4. S-integral elements of binary recurrence sequences.

Acknowledgements. The research for this chapter has been done partly in
cooperation with A. Pethd from Debrecen. The results have been published in

Petht and de Weger [1986] and de Weger [1986b].

4.1. Introduction.

In this chapter we present a reduction algorithm for the following problem.
Let A, B, GO’ G1 be integers, and let the recurrence sequence {Gn}i_O be
defined by

Assume that A = A~ - 4-B 1s not a square, and that the sequence 1is not

degenerate (this will be explained below). Let w be a nonzero integer, and

let Py o--os Py be distinct primes. We study the diophantine equation
s m,
n - i
i=1
in nonnegative integers n, My, «.., M . We will study both the cases of
positive and negative discriminant A (the ’hyperbolic’ and ’elliptic’

cases). It was shown by Mahler [1934] that (4.1) has only finitely many
solutions. For the case A > 0 Schinzel [1967] has given an effectively

computable upper bound for the solutions.

Mignotte [1984%], [1984b] indicated how in some instances (4.1) with s = 1
can be solved by congruence techniques. It is however not clear that his
method will work for any equation (4.1) with s = 1 . Moreover, his method
seems not to be generalizable for s > 1 . Pethd [1985] has given a reduction
algorithm, based on the Gelfond-Baker method, to treat (4.1) in the case

A>0, w=s=1

Our reduction algorithms are based on a simple case of p-adic diophantine

approximation, namely the =zero-dimensional case, c¢f. Section 3.9. In the
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hyperbolic case this suffices to be able to find all solutions of (4.1). This
is based on a trivial observation on the exponential growth of IGnl in this
case. In the elliptic case the situation 1s essentially more complicated.
Then information on the growth of lGnl can be obtained from the complex
Gelfond-Baker theory. Therefore in this case we have to combine the p-adic
arguments with the one-dimensional homogeneous or 1inhomogeneous real

diophantine approximation method, cf. Sections 3.2 and 3.3.

We shall give explicit upper bounds for the solutions of (4.1) which are
small enough to admit the practical application of the reduction algorithms,
if the parameters of the equation are not too large. Pethd [1985] pointed out
that essentially better upper bounds hold for all but possibly one solutions.

His reasoning is essentially the same as our reduction technique.
The generalized Ramanujan-Nagell equation
=
x +k= T p. , (4.2)

where k € Z 1is fixed, and X, 21, e, zS € NO are the unknowns, can be
reduced to a finite number of equations of type (4.1) with A > O . Equation
(4.2) with s =1 has a long history (cf. Hasse [1966], Beukers [1981] for a
survey), and interesting applications in coding theory (cf. Bremner,
Calderbank, Hanlon, Morton and Wolfskill [1983], MacWilliams and Sloane
[1977], and Tzanakis and Wolfskill [1986], [1987]). Examples of (4.2) have
been solved using the Gelfond-Baker theory by Hunt and van der Poorten
(unpublished). They wused real or complex, not p-adic linear forms in
logarithms. As far as we know, none of the proposed methods to treat (4.2)

gives rise to an algorithm which works for arbitrary values of k and the

pi’s , whereas Tzanakis’ elementary method (cf. Tzanakis [1983]) seems to be

the only one that can be generalized to s > 1 . Our method has both
properties.
This chapter 1is organized as follows. In Section 4.2 we give some

preliminaries on binary recurrence sequences. In Section 4.3 we study the
growth of lGnl , both in the hyperbolic and the elliptic case. The
hyperbolic case 1s trivial, and in the elliptic case we give a method for
solving lGnl < v for a fixed v € R, by proving an upper bound for n
that has particularly good dependence on v , and by showing how to reduce

such a bound. Section 4.4 gives upper bounds for the solutions of (4.1).
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Section 4.5 gives a lemma on which the p-adic part of the reduction procedure
is based. Then Section 4.6 treats some special cases, a.o. the ’symmetric’
recurrences. For this special type of recurrence sequences our reduction
algorithms fail, but elementary arguments will always work for solving (4.1)
in these cases. In Section 4.7 we give the algorithm for reducing upper
bounds for the solutions of (4.1) in the case A > 0 , with some elaborated

examples. The same is done for the case A < 0 in Section 4.8.

Section 4.9 shows how to treat the generalized Ramanujan-Nagell equation
(4.2), as an application of the hyperbolic case of (4.1). As an example we
determine all integers x such that X2 + 7 has no prime factors larger
than 20, thus extending the result of Nagell [1948] on the equation
X2 + 7 = 2" (the original Ramanujan-Nagell equation). Finally in Section
4.10 we give an application of the elliptic case of (4.1) to a certain type
of mixed quadratic-exponential diophantine equation, analogous to the
application of the hyperbolic case to solving (4.2). As an example, we

determine the solutions X, m,, m n of

1 2’

2 ml m2 m m

x> -31.72%x+2 (31732 20

4.2. Binary recurrence sequences.

Let A, B, GO’ G1 € Z be given. Let the sequence {Gn}i_O be defined by

G = A-G_ - B-G for n=1, 2, ... . (4.3)

2 2
Let «, B Dbe the roots of x - A-x + B =0 . We assume that A = A~ - 4-B
is not a square, and that o/B 1is not a root of unity (i.e. the sequence is

not degenerate). Put
A=——  p=—— = (4.4)

Then A and pu are conjugates in K = Q(VA) . We now have for all n » 0

G = Ao+ pept (4.5)

(cf. Shorey and Tijdeman [1986], Theorem C.1). We will show that when we are

solving (4.1), we may assume without loss of generality that
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(GO’Gl) = (Gl’B) = (A,B) =1

Namely, if d = (GO’Gl) then d | Gn for all n > 0, and thus we may
study (4.1) with Gh = Gn / d instead of with Gn . Next suppose that
d = (A,B) . If also d2 | B then it is easy to show that dn_1 | Gn for all
n > 2 . Then we study (4.1) with Gh = Gn+1 / d" instead of with Gn . The
A’, B> such that G’ = A -G - B -G are A =A/d, B =B/ d2 ,
n+l n n-1
and thus (A’,B’) = 1 . If however d~ t B, then we split the sequence into
two parts. We study (4.1) first with Gn = G2-n and then with Gn = G2-n+1 ,
instead of with Gn . For both sequences {G’} the A’, B’ such that
G’ = AN -G - B -G are given by A’ = A~ - 2-B , B = B2 . Then
n+l n n-1
(A’,B>) = d, and d2 | B> , so we are in the previous case. Finally, let p

be a prime such that p | (Gl’B) , and let p be a prime ideal of Q(VA)
lying above p . By p | B =« we have p | («) or p | (B) . Suppose
p | (o) . Then p + (B) by (A,B) =1 (note that A = « + B ). Hence

ordp(h-an+u-3n) = min [[ ordp(h-an), ordp(u-Bn) I = ordp(u)

if n > no for some no . Thus ordp(Gn) is constant for n 2 no , and the
same is true if p | (B) . Thus we may assume that (Gl’B) =1
LEMMA 4.1. Let n, ml, e, mS be a solution of (4.1). Then, with the above
assumptions, we have for 1 =1, ..., s either mi =0 or n=0 or
ord (a) = ord_ (B) =0,
Py Py (4.6)
ord (A) = ord_ (u) = - —-ord_ (A) < O .
I I 2 I

Proof. Suppose p, | B . Then P, Y A, hence, from (4.3) and (B’Gl) =1,
p. ¥ G for all n > 1
i n

Then, by «-8 =B,

Thus, m, = 0O or n =0 . Next suppose P; fY B .

ord (a) + ord_ (B) = ord_ (B) =0 .
j < j < j <

i i i
Now, o« and B are algebraic integers, so their pi—adic orders are
nonnegative. It follows that they are =zero. Put E = -aA-yu-A . Note that

Ee€Z , and for all n > 0O

6> . - AG -G + B-GZ = E-B™ .
n+1 n n+l n
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Suppose that P, | E , then we infer that P, ¥ Gh. for all n , since
(GO’Gl) = 1 . Hence m, = 0 . Next suppose P, Y E, then

ord  (A-VA) + ord_ (u-¥A) = ord_ (E) =0 .
Pi Pi Pi
Since A-¥A and u-VA are algebraic integers (note that VA = o - B ), the

result follows. O

From Lemma 2.1 it follows that we may assume without loss of generality that

(4.6) holds for i =1, ..., s . We may also assume that ord_ (w) = 0 for
i
i =1, ..., s . The special case s = 0 1in equation (4.1) is trivial if

A >0, and will be treated implicitly in the next section for all A .

4.3. The growth of the recurrence sequence.

First we treat the hyperbolic case A > 0 . Note that |«l # Bl , since the
sequence is not degenerate. So we may assume ll > 1Bl . We have the
following, almost trivial, result on the exponentiality of the growth of the
®
sequence {Gn}n=0 . Let
U &
n, > max (2, logIAI/loglﬁl ),
-n
o 0
= Al = lul-151 .

4 u B
Note that ¢y > 0 .
n

LEMMA 4.2. Let A >0 . If n > 0 then lGnl 2 7y lal

Proof. By (4.5), l«l > IBl and ny > 0 it follows for n > ng that

-n oy o, —n
1G 11l ™ = a7 > A - el % sy o
N u (3 ul- I3 i

We apply this to (4.1) as follows.

COROLLARY 4. 3. Let A > O . Any solution n, n

m_ of (4.1) with

1o
n > no satisfies
S log Py log(y/Iwl)
n < z m, - -
jop & loglal loglal
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Proof. Clear, from Lemma 4.2 and (4.1). o

Next we study the elliptic case A < 0 . Since «/f 1s not a root of unity,

B> 2 . Since («,B) and (A,u) are pairs of complex conjugates, lal = B
and |Al = Jul . Let veR, v 2> 1 be given. We study the inequality
IG_ | € v (4.7)
n

in the variable n € NO . We apply a result of Waldschmidt (see Section 2.3)

from the complex theory of linear forms in logarithms, which gives an upper

bound for n that is particularly good in v . See also Kiss [1979]. Let

E = -A-u-A,
-1, -1,
U2 = Z-max (m, log B) , U3 ~'max (m, log E) ,
Ul =min (U, U_ ), U = (U., U.)
2 = min 2, 3 . 3 = max 2, 3 .
C. = 3.362x10°T U -U_-1log(2-e-UY) , C. = log(a-e-U’)
1”7 p Y3 to8lererYy ) by T L08R YL

C, = max ( log(m/2-|ul) + C,-C, + C,-log(4-C /log B),

‘loglA-VAl )-4/log B .

THEOREM 4.4. Let A <0, veR, v21.1If n>» 0 satisfies (4.7) then

n <C -log v .

4
+
3 log B
Remark. Note that C3 does not depend on v .

The following corollary of Theorem 4.4 is immediate.

COROLLARY 4.5. Let A < 0O . Any solution n, m

1o My of (4.1) satisfies

s
4
n < C3 + Tog B-W loglw| + i:1mi-log Py .

Proof (of theorem 4.4). Note that |al = IBl = VB > V2 . First we treat the

case Gn = 0 . Kiss [1979] gives an upper bound for such n , but since in

our situation (G Gl) = (Gl’B) = (A,B) =1, we can do much better. Namely,

O’
put Rn = (an—Bn)/(a—B) for all n € Z . It is easy to show that Rn € Z
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and R = -B "R for all ne€Z . Now G = A 0 + u-B 0 0 implies
-n n n,
n. n-n n. n-n n
G =ra w4 uB O-B O - aa %vaR
n n-
0
-n
=g Ova-B"R
n -
0
Thus we have
o o
G, = I[-A-B VAlI'R. , G, = I[-x-B .YAll-B-R
0 n 1 n -1
0 0
Suppose that p | (Rn,B-Rn_l) for some prime ideal p in Q(YA) . Then
= n . — . = n s .
p | (a-Rn—B-Rn_l) = («) , and p | (B R -B Rn—l) (B)" , which contradicts
(A,B) =1 Thus (R _,B‘R ) =1, and then by (G.,G,) =1 we must have
n n-1 0’1
-n
IA-B Oval =1

Thus we find that Gn = 0 implies

_ 2
= Tog B logla-VAl < C, -

Now we turn to the case Gn # 0 . We have from (4.7)

n
‘ [Zﬁ]-[ﬁ] -1 | < L.V (4.8)
v B lul
We may assume n 2 2 . Let -A/p = ean-w , o/ = ean-@ , with - é <Y < é
and - é < @ < é Let k € Z be such that | ¢ + n¢ + k | < é Then
k| <1 + é-n < n . Put
. -A o«
A=2mi-( ¢y +ng+ k) = Log u + n-Log 3 + 2-k-Log(-1)
By lemma 2.3 and (4.8) we have an upper bound for [A]l
. 2ni- (Y+n-p+k)
Al = 21| Yy + n-p + k | € ;n-le -1
n (4.9)
- lﬁ ‘ A I -1 < in._X_.B‘n/Z
u) B 2 |l
From Gn # 0 we derive A # 0 . Then from lemma 2.4 we can derive a lower

bound for [A]l . Note that max(n,2lk|) <€ 2n, so that W = log(2-n) . We

choose V, =

1 é . The number =z = a/f satisfies
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B-z> - (A2 B)-z+B=0,

hence h(a/B) < =-log B . And =z = -A/p satisfies

1
2

Ez” - (2E+AGL)z +E=0,
hence h(-a/p) < é-log E. Thus V. = U, , V3 = U; satisfy the requirements
for Theorem 2.4. We find

IAl > exp ( —Cl-( log(2-n) + log(2-e-U;) ) )

(4.10)

= exp ( —C,-(logmn+C,) )

Combining (4.9) and (4.10) we find n < a + b-log n , where

-2 L .
a = Tog B [log v + 10g2'|u| + C1 C2 ] ,
b = 2-C1/log B .

The result now follows from Lemma 2.1, since

21 max(m, log B)
log B

b = 2-C1/log B = 1.681x10 -max(m, log E)-log(Z-e-U;)

which is certainly larger than e2 . u]

Remark. Note that v may depend on n . Thus we can find an upper bound for
the solutions n € NO of e.g. lGnl < n® for any constant c .
We now want to reduce the bound found in Theorem 4.3. We do this by studying

the diophantine inequality

| y +np +k | < vO-B'n/2 , (4.11)

which follows from (4.9), where Vg T v/4-lpl . We have to distinguish
between the homogeneous case ¥ = 0 and the inhomogeneous case Yy # 0 . We
apply the methods that have been described in Sections 3.2 and 3.3
respectively. Unlike in other chapters, here we give the results in the form

of precisely defined algorithms.
First we study the homogeneous case ¥ = 0 . We then use Algorithm H (see the

next page). Let N be an upper bound for n for the solutions of (4.11),

for example the bound found in Theorem 4. 3.
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Input: ¢, B, lul, vy, N .
Output: new, reduced bound N* for n .
n0/2
(i) (initialization) Choose n, > 2/log B such that B /nO > 2-vO ;
NO := N ; compute the continued fraction
lel = [ 0O, ay, By eees By g, ]
0
and the denominators Ao oo 9y 4 of the convergents of |¢l ,
0
[ < : i = .
with EO so large that q£O NO < q£0+1 ; i 0 ;
(ii) (compute new bound) Ai 1= maX(al,...,aE +1) ; compute the largest
i
integer N, such that
i+1
Ni+1/2
< .
B /Ni+1 L (Ai+2) ,
< .
and £i+1 such that a4y Ni+1 < dp  4q 7
i+1 i+1
(iii) (terminate loop)
. < Doz g Say L
if n, Ni+1 < Ni then 1* i+ 1, goto (ii) ;
else N := max(nO,Ni+1) , stop .

Figure 4. ALGORITHM H. (reduces upper bound for (4.11) in the case = 0 ).

LEMMA 4.6. Algorithm H terminates. Inequality (4.11) with Y = 0 has no

solutions with N* <n <N .

Proof. Termination 1is obvious, since all Ni are integers. Note that
BX/Z/X is an increasing function for x > 2/log B . Hence, if n 2 ng >

‘ lel = lkl/n | < VO-B_n/Z/n < 1/2n2 .
It follows (cf. (3.6)) that lk|/n is a convergent of lel , say

= < . .
lk|/n p,/dq, - Then q < n, and (cf. (3.5)),
| 1ot - sa | > 1/t w2
¢ P’ In m+1 Iy -

Suppose n < Ni for some 1 > 0 . Then m < Ei . Hence,

-1

— . < .
ol lk|/n < v (am+1+2) vy (Am+2)

n/2 ‘ —2.‘
0

It follows that if N. 2 n then n < N, . O
i+l 0 i+l
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Next we study the inhomogeneous case Y # 0O . Again, let N be an upper

bound for n satisfying (4.11) . We now have the following Algorithm I.

Input: ¢, ¥, B, VO, N .
Output: new, reduced upper bound N* for all but a finite number of

explicitly given n .

(i) (initialization) NO := [N] ; compute the continued fraction
lel = [ 0, as 2y VK ]
0
and the convergents pi/qi for i=1, ..., EO , with EO so

large that q£O > 4-NO and HqEO-WH > 2-N0/qEO . (If such EO

cannot be found within reasonable time, take EO so large that

q >4-N_ ) ; 1 :=0 ;
EO 0
(ii) (compute new bound)
if qui-wu > 2-Ni/q£i

then N 1= [2-log(q% v /Ni)/log Bl ;
i

i+l 0

; compute

N [~

else compute K € Z with | K - qa, | <
i

< ] = . = ;
np€Z, 0<ny< qEi , with K = mn, pEi 0 (mod qgi) ;

if n = n, is a solution of (4.11), then print an

appropriate message;

Ni+1 1= [2-log(4-q£i-v0)/log Bl ;
(iii) (terminate loop)
if N. < N.
- i+l i
then 1 :=1 + 1 ; compute the minimal Ei < Ei—l such that
qEi > 4-Ni and Hqgi-WH > 2-Ni/q£i (if such Ei does
not exist, choose the minimal Ei with a, > 4-Ni );
i
goto (ii) ;
else N* : = Ni ; stop .

Figure 5. ALGORITHM I. (reduces upper bound for (4.11) in the case y # 0 ).

LEMMA 4.7. Algorithm 1 terminates. Inequality (4.11) with Y # 0 has for
N* < n <N only the finitely many solutions found by the algorithm.

Proof. It is clear that the algorithm terminates. Suppose that n < N, for
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some 1 » 0O . Then if qu Yl > 2-Ni/q£ , we have
i i

qu.-wu = Hqg.-(w+n-@+k) - n-@-qg.u
i i i
-n/2
< . . < v -
dp_ - WHn-erkl + n/q) < qp vg BT+ NG,
i i i i
< . . < 2-
It follows that n Ni+1 If HqEi yll 2 Ni/qﬂi , then

|K+n-p£.+k-q£.| < IK—qE.-x/JI + qg.-lxp+n-<p+k| + n-IpE.—qE.-goI
1 1 1 1 1 1

1 -n/2 3 -n/2
>t 9 Vo'B *Ny < gt Vo'
i i i
-n/2 1 . R .
If q, -v.-B <=, then K +np, + k-q, =0, since it is an integer.
Ei 0 4 Ei Ei
By (pg.’qg.) =1 it follows that n = ng (mod qg.) . Since q > Ni , the
i i /2 1 i
c1eqs . — v . 1 <

only possibility is n n, - If qEi Yo B > 7 then n Ni+1 follows
immediately. u]
We remark that in practice one almost always finds an Ei such that

Hqgi-WH > 2-Ni/q£i , 1if Ni is large enough.

4.4. Upper bounds.

In this section we will derive explicit upper bounds for the solutions of
(4.1), both in the hyperbolic and elliptic cases. Our first step is the
application of the p-adic theory of linear forms in logarithms, which works
the same way in both cases. We use it to find a bound for m, that is
polynomial in log n . Then we combine this with the results of Section 4.3
on the growth of the recurrence sequence, which for the solutions of (4.1)

yield a bound for n that is linear in the m, (Corollaries 4.3 and 4.5).

Assume that n, > 2 . Let D be the discriminant of Q(VA) . Put
174
L = log max ( le:DI™"7, la-A-VAl, la-u-VAl, 1B-A-VAl, |B-u-VAl )
Let d be the squarefree part of A . For 1 =1, ..., s put

¢, = 2 if P, | d, ¢, = 1 otherwise,
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d

e, = 2 if p; = 2, d =5 (mod 8) or if p, > 2, (E; = -1,
pi = 1 otherwvise,
O3
B 6 > 7 3 4 4-pi+4 goi-L-pi + 2/L 13
c, . =10 ————| '¢. ‘L -p. -1 1+ .
4,1 pi-log p; i i log 0

LEMMA 4.8. The solutions of (4.1) with n » n, satisfy

0

3 .
< : = e .
m, C4,i (log n) for i 1, , S

Proof. Rewrite (4.1), using (4.5), as

o n - W N S mi
B - [ -3 UL
Then, by (4.6),
w -n o ™ «\ " (-
< o 0= r, 11 < r, (3]

1

i i i=1 i
Apply Lemma 2.5 (Schinzel’s result) with &7 = «, & = B, x” = u-'VA,
¥’ = -A-VA . Then we find, using ord_ (-) = ¢.-ord_ (-) ,

pi 1 pi
7 4-p.+4 e.
6 2 -3 .4 i i 3
< e — . . . . . .
m, < 10 [pi'log pi] Lpg ( log n + 9, Lop~ + 2L )7,

from which the result follows, since n > n_ . O

Put

s
C, = max(C i) , m = max(mi) , P=Tp
i i i=

In the case A > 0, let n, > max ( 2, logla/ul/logla/Bl ) , and put
C. = log P / ( loglal + min(0,log(y/Iwl)) ) ,
C, =max ( 8-C,-(log 27-C,-C )3, 841-C )

4 4 °5° 7 4

In the case A <0, put

_ 4
C, = max { Cy + Tog B log(2 |GO u-val),
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]1/3 [4-C4-log P]1/3

4-loglwl
8 [[C3+ log B

108-C4-log Pyy3
log B ]] } ’

-log[ log B

_ 3 .
C8,i = C4,i (log C7) for i=1, ..., s.

Then we have the following result, giving explicit wupper bounds for the

solutions of (4.1).

THEOREM 4.9. Let n, ml, e, mS be a solution of (4.1).
i > . .
(i). If A >0 and n n, then n < C5 C6 and m < C6
(ii). If A <O then n<C, and m, < C, ., for i=1, , S
7 i 8,1

Proof. (i). Corollary 4.3 yields n < Cs-m . By Lemma 4.8 we now have

3 3
m < C4-(log n)- < C4-(log Cs-m) .

If C4-C5 > (62/3)3 , we apply Lemma 2.1 with a =0, b = C4-C5, h =3, and
we find m < 8-C4-(log 27-C -CS)3 . If C -C5 < (62/3)3 , then

4 4

n < Cs-m < C4-C5-(log n)3 < (e2/3)3-(log n)3 ,

from which we deduce n < 12564 . Now, m < C4-(log n)3 < 841-C4 .
(ii). From Lemma 4.8 and Corollary 4.5 we see that

4
n < Cy+ Tog B-log(Z-lGO-u-VAl) ,
or
n<°cC, + 4-loglwl 4‘C4'10g P-(lo n)3
3 log B log B g :

The result now follows from Lemma 2.1, since 4-C4-log P/log B > (62/3)3 . o

4.5. A basic lemma.

We introduce some notation, and then give an almost trivial lemma that is at

the heart of our reduction methods for both the hyperbolic and the elliptic

cases. Let for i =1, ..., s
- _ — « - -
e; = ordp.(A) , fi ordp.(logp.(B)) - fi e;
i i i
-A o
9, = - lo —) /1o =) .
= - 1om, G/10g, (@)
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By Lemma 4.1 the pi—adic logarithms of «/f and -A/p exist. Note that

logp (a/B) # 0 , since the sequence {Gn} is not degenerate. Note that for
i

con jugated g, & also long and long’ are conjugates, hence
logp(E/E’) € VA-@p . Hence both numerator and denominator of ﬁi are in
VA-Q , so ¢, € Q@ . Hence, if &, # O , we can write
p. i p. i
i i
©
9, = Z u. ,°p. ,
i = i,2 vi
i
where k. = ord (¢.) and |u, e {0, 1, ..., p.-1 } for all € . The
i ; 1 i,? i
following lemma localizes the elements of {Gn} with many factors p;: in

terms of the pi—adic expansion of ﬁi

LEMMA 4.10. Let ne N, . If ord (G ) +e, > 1/(p.-1) then
E— 0 p; n i i

ord (G ) =g, + ord_ (n-9,)
p; n i P; i

Proof. By Lemma 4.1 we have

ey 0+ =or (5 9) =, (2 )

1

With & = (—A/u)'(a/B)n - 1 we have by assumption ordp (g) > 1/(pi—1)
i
Hence ordp () = ordp (logp (1+8)) , and it follows that

i i i
o -A
ord (Gn) te, = ord [ n-log [E] + log [——] ]
P, P, P, p, L u
= ord_ (n-9,) + f, . o
p. i i

1

4.6. Trivial cases.

We have to exclude some trivial cases first. The first trivial case is that

of ordp (ﬁi) < 0 . Then the solutions of (4.1) satisfy m, < 1/(pi—1) -es
i
or, by Lemma 4.10,

m. =f. - e, + ord (n-%.)
i i i P; i
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Since n€Z and ord (#.) < 0 we have ord (n-¢.) = ord (&.) . Hence
p, 1 p, i p, 1

m, < max ( f. +ord_ (&,), 1/(p.-1) ) - e,
i i p; 1 i i

The case where all pi—adic digits of ﬁi from a certain point on are all
zero 1s a special case, because the reduction methods of the next sections
then do not work. This is so because these reduction methods make use of
zero—-dimensional p-adic diophantine approximation, as explained in Section

3.9, applied to the p-adic linear form
A o
lo =) + n-lo =
g, () + nelog (9
for p = ST This means that we must study the p-adic number
A o
4 = - lo =) / lo =) .
g, () / 1og (3

If it happens that this number ¢ 1s zero, or that all digits in the p-adic
expansion of ¢ are zero from a certain point on, then obviously the
reduction process of Section 3.9 breaks down, since it is based on the
assumption that the p-adic expansion of ¢ contains sufficiently many

non-zero digits.

This case can be dealt with as follows. Note that ﬁi =r holds for all
i=1, ..., s with the same r . Thus, by Lemma 4.10,

m, <max (g, + ord (n-r), 1 - e, ) <g. +1 +ord (n-r) . (4.12)
i i P; i i P;

Then we have, if A > 0, by Corollary 4.3,

S
n-loglal < ) (gi+1)-log p; ~ log(y/Iwl) + logln-rl ,
i=1
from which a good upper bound for n can be derived (no application of the

Gelfond-Baker theory is involved, so the constants are relatively small). And

if A < 0, the proof of Lemma 4.11 below yields ﬁi = 0 , whence, by (4.12),

s m,
= . < .
lGnl [wl .ﬂ P, VgD
i=1
for some constant Vo - Only minor changes in the results and algorithms of

Section 4.3 suffice to deal with this inequality instead of (4.7).
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There is however an elementary way of treating this case, using congruences
only, that is guaranteed to work. We define the following special ’symmetric

recurrences’. For «, B as defined in Section 4.2, let d be the squarefree

part of A , and put

T- = (1 2V(-1) )™+ (1 3V(-1)) 6",

and for d = -3 also (with w=p or p for p = é-(1+V(—3)) )

U (@)= (1+0 Yoo+ (1 + 0w )pY,

|
€
K
+
€
o

V (w) =
n
for all n € Z . Note that

T".T  =2S. , U (wU (@R =3R. , V (0)V (@):S =5
n n n n n n n

n 2n 3n 3n

We have the following lemma. We assume that ordp(ﬁ) > 0.

LEMMA 4.11. If & has only finitely many nonzero p-adic digits, then there
exist an r € N and a kK € Q such that G = k'R , or G = k-S , or
0 + n n-r n n-r
(if d=-1) G =«k'T_, or (if d=-3) G =«k'U(w) or «k-V (),
n_ n n n n
where w = p or p . Further, r =0 if A <O.
Proof. By ordp(ﬁ) > 0 we have O = r for some T € NO . From the

definition of % we infer

ol ) 0

hence 1 = (B/a)r'(u/k) is a root of unity. It follows that we can write

Gn A-ocr-( 061’1—1" + T1‘{31’1—1" )

First let B 1 . Then A > 0 and

G.=ao (a8 7)) =t - (af £8" ),

r‘( al—r + Bl—r ) _ ih-ar-( “r—l + Br—l )

[}
|

= A
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Note that

1S3
+
®
1S3
+
®
1

(2, a+B)=1(1) or (2),

1S3
|
®
1S3
|
®
1

(e -B)

By (GO’Gl) = 1 it follows that =*a-a' = 1, é or 1/(a—B) , respectively,

and the assertion follows.

Next suppose [B|l » 2 . Then

Gy B ( R Gy (mea’ £ B )
Since (B’Gl) = 1 , we have B | n-ar * Br . By (A,B) = 1 we have
(a,B) = (1) , and from « | Br it then follows that & = r = 0 . So
GO = A-(1+m) € Z . The result now follows easily, since for 7 the only
possibilities are *1 for all d , and moreover +/(-1) if d= -1, and
tp, tp if d = -3 . o

In the cases of Lemma 4.11 we can treat (4.1) as follows. Lemma 4.10 shows
that the smallest index n = g(m-pg) > 0 such that m-p£ | Gh grows
exponentially with £ . Also, Gn grows exponentially with n , as follows

from Lemma 4.2 and Theorem 4.4. Hence G grows doubly exponentially
g(m-p’)
m, m
with £ . It follows that a = W Py -...-pSS cannot keep up with Gg(a)
m m

the m, tend to infinity. It follows that if pll-...-psS is large enough,

as

there exists a prime g such that g | but g t a . Now the sequences

G
g(a)
{Rn}, {Sn} have special divisibility properties, such as

R | R if and only if n | m ,
n m

S | s for odd k ,
n kn

< >
ordZ(Sn) ord2(53) for all n 1

Making use of this kind of properties it can be proved that q | Gn whenever

a | Gn . This gives an upper bound for the solutions of (4.1), since for

those solutions a | Gn but g ¢ Gn . We give two examples.

Example. Let A =16, B =1, GO =1, G, =8, w=1, p1 = 2, p2 = 11 . Then
=8 + 3:V7, B =8 - 3V7, A = w=2, so A/u is a root of unity. Hence

a
61 = 02 = 0 . Note that we have a sequence of type Sn here. We have
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n -3 -2 -1 0 1 2 3
Gn 2024 127 8 1 8 127 2024
Gn (mod 16) 8 -1 8 1 8 -1 8
Gn (mod 11) 0 6 8 1 8 6 0
Gn (mod 112) 88 6 8 1 8 6 88
Gn (mod 23) 0 12 8 1 8 12 0

It follows by this table that ordZ(Gn) =0 or 3, according to n even or
odd, and ordll(Gn) > 0 if and only if n = 3 (mod 6) . This can also be
derived from Lemma 4.10, which yields: if ordZ(Gn) > 1 (which happens
exactly for odd n ), then ordZ(Gn) = 3 + ordz(n) = 3 . Further, if
ordll(Gn) > 1 (which happens exactly when n = 3 (mod 6) ), then
ordll(Gn) =1+ ordll(n) (e.g. ordll(G33) =2, but ordll(Gll) =0 ).

Now, G3 | G3k holds for all odd k . Note that G3 has exactly 3 factors

2, and 1 factor 11 . But it is larger than 23-11 = 88 . Hence there is

a prime g , distinct from 2 and 11 , such that q | Gn whenever
My M

11 | Gn . Thus Gn =2 11 has no solutions with m2 #Z 0 , so that there

remain only three solutions: n = -1, 0, 1 . Note that it is not necessary to

know the value of q explicitly. In this case it is 23 , and indeed it is

easy to show directly that 23 | Gn if and only if n = 3 (mod 6)

Example. Let A =5, B = 13, GO = G1 =1 . Then A = -27, a =1 + 3-p,
A = (1+p)/3 . Then A/A = p is a root of unity, thus © = 0 . We will solve
Gn = +2™ . The sequence G = aodt o+ A is related to the sequence

H =20 +2a andto R = (a -o )/(a-oa) by G-H-R =R
n n n n n 3

Since Rn has nice divisibility properties, we have useful Iinformation on

/3 .
n

the prime divisors of Gn and Hn . We find:

n 0 1 2 3 4 5 6 7 8
0 1 1 -8 -53 -161 -116 1513 9073 25696
0 1 4 7 =17 -176 -659 -1007 3532 30751
0 0 1 5 12 -5 -181 -840 -1847 1685

Now, Gn = 0 (mod 16) if and only if n = 8 (mod 12) (Lemma 4.10 yields: if
ordZ(Gn) > 2 (which happens exactly when n = 2 (mod 3) ), then

ordZ(Gn) =2 + ordz(n) ), Hn = 0 (mod 16) if and only if n = 4 (mod 12) ,

and Rn = 0 (mod 16) if and only if n = 0 (mod 12) . Note that
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G4-H4-R4 = R12/3 = —24-5-7-11-23 . Considering the sequences modulo 5, 7, 11
and 23 we find that 24-7-11-23 | Gn-Hn for all n =0 (mod 4) , and in fact
11 | Gn whenever 16 | Gn . Thus G = #2" implies m < 3 . It follows

n
from Section 4.3 how to solve lGnl < 8.

We note that a process as described above can always be applied when dealing

with a situation as in Lemma 4.11. This is guaranteed by Lemma 4.10.

From now on we thus assume that ordp (ﬁi) 20 forall i=1, ..., s, and
i

that infinitely many pi—adic digits L) of ﬁi are nonzero.

4.7. The reduction algorithm in the hyperbolic case.

First we give the reduction algorithm (Algorithm P, see the next page) for
the case A > 0 . It 1s based on Lemma 4.10 and Corollary 4.3 only. Let N

be an upper bound for n for the solutions n, m m_ of (4.1). For

10
example, N = C_-C as in Theorem 4.9.

576
THEOREM 4.12. With all the above assumptions, Algorithm P terminates.
Equation (4.1) with A > 0 has no solutions with N* <n<N, m, > Mi for

i=1, ..., s .

Proof. ©Since the pi—adic expansion of ﬁi is assumed to be infinite, there

exist r. with the required properties. It is clear that S: < r. < S: o
and that N, < N, . S50 s, . < s, . holds for all j 2 1 . Since

J J-1 i, i, J-1
s. . 2 0, there is a j such that N, < n or s, . = 8, . for all

i,J J 0 i,J i, j-1
i=1, ..., s . In the latter case, Kj remains .false. ; in both cases the
algorithm terminates. We prove by induction on j that m, < g; + S. j for
i=1, ..., s, and n < Nj hold for all j . For j =0, it is clear that
n < NO . Suppose n < Nj—l for some j > 1 . Suppose there exists an 1
such that m, > g; + S. i From Lemma 4.10 we have
ord (n-¢.,) =m, - g, 2s, .+1,
p. i i i i,

1

hence, by wu, 0 ,
i,s.
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Input: «, B, A, W, W, pl, e, pS, N .
Output: new, reduced upper bounds Mi for mi for i=1, ..., s,
and N* for n .

(1) (initialization) Choose an n_. > 0 such that

0 n,
ny > loglu/al/logla/Bl 5 y := IAal - lul-la/Bl ;
. :=ord_ (A) + ord_ (lo (a/B))
g; b, b, gpi B
3/2 if pi =2 ¢ for i=1, ..., s ;
h, := ord_ (A) + 1 if p., =3
i Py i
172 if Py > 5
s g
g:=y/ Iwl-TIp." 5 N, :=N;
. i 0
i=1
(ii) (computation of the ﬁi’s) Compute for 1 =1, ..., s the first Ty
pi—adlc digits ui,£ of
A ° )
- o
4. = -log (——)/log (—) = z u. ,°p. ,
i p; M p; B iz Lt
i
where r, 1Is so large that p., 2> N and u, #0 ;
i i 0 1,ri
(iii) (further initialization, start outer loop) S; o=t 1 for
i=1, ..., s; j:=1;
(iv) (start inner loop) i :=1 ; Kj := .false. ;
(v) (computation of the new bounds for m, terminate inner loop)
S
= m3 > .
Si,j := min { s € NO | Py Nj—l and ui,s Z0 } ;
if s, . <s, .
i,J i, j-1
then Kj = .true. ;
if i<s

then i :=1 + 1 ; goto (v) ;

(vi) (computation of the new bound for n , terminate outer loop)
S
Nj := min ( Nj—l’ (izlsi,j-log p; ~ log g )/loglal ) ;
if N. > n and K,
- 0 J
then j := j + 1 ; goto (iv) ;

*
else N :=max ( N_,, n. ) ;
J 0

Mi := max ( hi’ g; * Si,j ) for i=1, ..., s ; stop.

Figure 6. ALGORITHM P. (reduces given upper bounds for (4.1) if A > 0 ).
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which contradicts our assumption. Thus, mi < gi + si j for i=1, ..., s .
b

Then from Corollary 4.3 it follows that

o <

S
Y (gi+si,j)-log Py ~ log(y/Iwl) ]/loglal ,

i=1
hence n < Nj . o
S. -
Remark 1. In general, one expects that p; *J will not be much larger than
Nj , 1.e. not too many consecutive pi—adic digits of ﬁi will be zero. Then
N. 1is about as large as log Nj—l In practice, the algorithm will often

terminate in three or four steps, near to the largest solution. The
computation time is polynomial in s , the bottleneck of the algorithm is the

computation of the pi—adic logarithms.

Remark 2. Peths [1985] gives for s = 1 a different reduction algorithm.
For a prime p; he computes the function g(u) , defined for u € N as the
smallest iIndex n 2> 0 such that Gn #Z 0 and p? | Gn . Note that if the
pi—adic limit 1im g(u) exists, then by Lemma 4.10 it is equal to ﬁi

uw o

[0

Remark 3. If B = *1 (hence A > 0 ), we can extend the sequence {Gn}n_o

to negative indices by the recursion formula

G = A-B-G - B-G for n =0, -1, -2,
n-1 n n+1l

(cf. (4.3)). Then (4.5) is true for n < 0 also. We can solve equation (4.1)
with n € Z not necessarily nonnegative, by applying Algorithm P twice: once
for AG }m_

n n=0 n n 0
Note that G’ =B (o +2-8) , and

, and once for the sequence {G’}m_ , defined by G = G
n n=0 n -n

lo (-p/2) lo (-a/u)
gpi IS gpi K
= - —-— - = ¢ — = -
i log_ (a/B) log  (a/B) i
Pi Pi
Now, instead of applying Algorithm P twice, we can modify it, so that it
works for all n € Z , as follows. Lemmas 4.8 and 4.10 remain correct if we
replace n by Inl . In Theorem 4.9 the lower bound for n must be

0
replaced by

ng > max (2, lloglu/all/loglas/Bl, Ilogla/ull/logla/Bl )

and 7y has to be replaced by
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-n -n

. 0 0
y = min (1Al = lgl-la/Bl 7, lul = 1Al la/Bl )

Similar modifications should be made in step (i) of Algorithm P. Further, in

step (ii), r. should be chosen so large that
i
. > _ .
if p; # 2 then p; NO and ui,r. #0, ui,r. Zp 1 ;
i i
ri—l
> .
else pi NO and ui,ri # ui,ri—l K

and similar modifications have to be made in step (v) for S; - With these

changes, Theorem 4.12 remains true with n replaced by Inl|

We conclude this section with an example.

Example. Let A=6, B=1, G. =1, G, =4, w =1, p1 = 2, p2 = 11 . Then

0 1
«=3+2V2, B=3-2V2, A= (1+2V2)4V2, w=1(-1+2V2)/4av2,
and A = 32 . With n, = e6O = 1.142X1026 we find C4 < 2.49><102O . With the
modifications of Remark 3 above we have ¥y > 0.323, C5 < 1.76,
m m
C6 < 2.62X1026, CS-C6 < 4.62X1026 . Hence all solutions of Gn = 2 1-11 2
satisfy Inl| < 4.62X1026, max(ml,mz) < 2.62><1026 . We perform the reduction
©
Algorithm P step by step. (We write the p-adic number z u.g-p£ as
£=0
O.uouluz.... , and 1f p > 10 we denote the digits larger than 9 by the
symbols A, B, C, ... ).
(i) n, = 2, y¥ > 0.303, g = OR g = 1, g > 0.0275,
_ _ 1 _ 26
h1 = -1, h2 =2 NO = 4.62x10 .
(ii) 4, = 0.10111 10111 01000 11100 10100 01001 10001 10010

00001 11101 01000 10000 01001 10011 10101 01101
11100 01011 00001 11010 00011 01001 01010 00101
10001 01011 00000 11001 01011 11101 10100 01011

00o1.... ,
02 = 0. A9359 05530 7330A 1A223 96230 3A006 A3366 83368
8270.... ,
so r, = 90 (since u =1, u =0 289 >N, )
1~ 1,89 - 1,90 ’ o7’
r. =29 (since u ) = 6 1129 >N, )
2 2,29 - o
(iii) Sl,O = 91, SZ,O = 30 ;
(v)-(vi) Sl,1 = 90, 52,1 = 29, K1 = .true., N1 < 76.9 ;
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(v)-(vi)

n
1l
—
O
n
1l
N
7N
1l
-
~
c
™
=
A
00
~J

1,2 2,2 2 2
(v)-(vi) 51,3 = 6, 52,3 = 1, K3 = .true., N3 < 5.8 ;
(v)-(vi) 51,4 = 6, 52,4 = 1, K4 = .false., N4 < 5.8
Hence Inl| < 5, m, < 6, m., < 2 . We have
n | -5 -4 -3 -2 -1 0 1 2 3 4 5
Gn | 2174 373 64 11 2 1 4 23 134 781 4552
So there are 5 solutions: with n = -3, -2, -1, 0, 1

4.8. The reduction algorithm in the elliptic case.

We now present an algorithm to reduce upper bounds for the solutions of (4.1)

in the case A < 0 . The idea is to apply alternatingly Algorithms P and one

of H and I. Let N Dbe an upper bound for n , for example n = C7 as in
Theorem 4.9.
Input: «, B, A, W, W, pl, s ps’ N .
Output: new, reduced upper bounds N* for n, and Mi for m, for
i=1, ..., s .
(i) (initialization) NO := [Nl ; §J:=1;
. :=ord_ (A) + ord_ (lo (a/B))
g; b, b, gpi B
3/2 if pi =2 ¢ for i =1, , S 3
h, := ord_ (A) + 1 if p., =3
i p; i
172 if p; 25
(ii) (computation of the 8.’s, ¢, ¥ ) Compute for i =1, ..., s the
first r. pi—adlc digits ui,£ of
A ° )
- o
4. = -log (——)/log (—) = z u. ,°p. ,
i p; M p; B iz Lt
i
where r, 1Is so large that p., 2> N and u, # 0 ; compute
i i 0 1,ri
Y = Log(-A/u)/2mni , and the continued fraction
gl = I5=Log(a/B)| = [ 0, a a ]
¢ - 21mri g - s 1’ » P/O,
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with the convergents pi/qi for i=1, ..., ¢ where £ is so

0"’ 0
< ] = . .
large that dp _q NO < q, if ¢ 0 ; a4, > 4 NO and
0 0 0
g, I > 2-N_/q if Yy #0 and such ¢ can be found in a
EO 0 EO 0
reasonable amount of time, q£ > 4-NO otherwise;
0
(iii) (one step of Algorithm P) For i =1, ..., s put
s
— s > .
i, 1= max ( h., g; + min { s e Ny | Py Nj—l and U g 20} ) ;
(iv) (one step of Algorithm H or I)
if Yy =0
s Mi
then A := max(a,,...,a ) 5 v = |wl- T p, - J ;
— 1 L .-1 . i
i=1
n. /2
choose n, > 2/log B such that B /nO > v/2- lul ;
compute the largest integer N, such that
N./2 J

B J /N < (A+2) -v/4- lul ;
N. := max(n.,N.) ;
J 0"

if N, <N,
ir j -

. < .
-1 then compute Ej with qgj_1 Nj <q,

J
j:=j+1; goto (iii) ;
else if Hqg._l-wu > 2-Nj_1/q£._
J J-1
then N, := [2-log(q2 v/4-|ul "N, ,)/log Bl ;
J Ej—l j-1
else compute K € Z with |K—qE Pl <
Jj-1

Mg Sdp
Jj-1

s

N [~

compute n, € Z , 0 < with

K + n,p,  E 0 (mod qp )
J-1 J-1
if n=n is a solution of (4.1)

then print an appropriate message;

N, := [2-1log(q v/lul)/log Bl ;
j I
j-1
if N, <N,
- ] J-1
then compute the minimal Ej < gj—l such that
qEj > 4-Nj and Hqgj-WH > 2-Nj/q£j (if such Ej

does not exist, choose the minimal { ., such that
a, > 4-Nj ) ; j:= ]+ 1 ; goto (iii) ;

J
(v) (termination) N* i = Nj ; M, :=M, , for i=1, ..., s ; stop.

Figure 7. ALGORITM C. (reduces upper bounds for (4.1) in the case A < 0 ).
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The following theorem now follows at once from the proofs of Lemmas 4.6, 4.7

and Theorem 4. 12.

THEOREM 4.13. Algorithm C terminates. Equation (4.1) with A < O has no

solutions with N* < n < N and mi > Mi for 1 =1, ..., s , apart from

those spotted by the algoritm.

We conclude this section with an example.

0

Example. Let A =1, B=2, G, =2, G, =3, then A=-7, a = (1 + V-7 )/2
and A = (2 + V-7 )/V-7 . Let w = *1

» Py = 3, P, = 7 . We have with n_ = 2

0
the following results: C4 < 6.4OX1016, C3 < 9.14X1029, C7 < 7.42X103O,
22 _ _ _ _
maX(CS,l’CS,Z) < 2.30x10 . Further, 3%1 =1, g, = 0, h1 =1, h2 =0 . By
Theorem 4.9 we may choose NO = 7.42x10 . We have

¢ =l ® - arctan(¥7/3) 1l / 2n

=[lo, 2, 1, 1, 2, 16, 6, 1, 2, 2, 13,
1, 1, 3 1, 1, 2, 1, 2, 1, 1,
1, 1, 1, 9, 2, 1, 2, 1, 7, 1,
6,269, 4, 3, 1, 1, 50, 2, 1, &6,
1, 1, 2, 1, 1, 7, 1, 61, 1, 12,
3, 7, 4 7 3,121, 1, 21 2, 1, 7, I,

>

Yy = Il m - arctan(4-V7/3) 1l / 2n
0.29396 28336 99645 40267 89566 60520 01908 06203... ,

¢, = 0.20010 12210 00011 02102 00211 00222 02220 12021
10020 20202 21102 00121 01000 01002 11100 20122
11111 22202 21021 02212 2200... ,

9, = 0.32542 12042 43561 34020 61561 13452 10116 33152

2
25336 45044 11254 55033...
Now we choose EO = 61 , since
q61 = 142 51183 31142 44361 19375 51238 81743 > 4-NO ,
and uq61-wu = 0.24487... > 2-N0/q61 = 0.104... . We have Ml,l = 67,
M2 1 = 37 , and we find N1 = 637 . Next we choose 21 = 9 , since
q9 = 10102 > 4x637 and qu-wu = 0.38745... > 2x637/10102 . We have
M1,2 =7, M2,2 =4 , and we find N2 = 74 . Next we choose 22 = 6 , since
q6 = 1291 > 4x74 , and uq6-wu = 0.49398 > 2x74/1291 . We have M1 3 =6 ,
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M2 3 = 3, and we find N3 = 60 . In the next step we find no improvement.

Hence n < 60, m, < 6, m,, £ 3. It 1s a matter of straightforward computation
My M
to check that there are only the following 6 solutions of Gn = 3 -7
_ _ _ _ 42 _ _ 2 2
G1 = 3, G2 = -1, G3 = -7, G5 =3, G7 =1, G17 =3 -7 .

4.9. The generalized Ramanujan-Nagell equation.

The most interesting application of the reduction algorithms of the preceding

section seems to be the solution of the generalized Ramanu jan-Nagell equation

(4.2). Let k be a nonzero integer, and let R be distinct prime
numbers. Then we ask for all nonnegative integers x, 21, e, zS with
s z,
X2t k= [ p.t
. i
i=1
First we note that z, = 0 whenever -k is a quadratic nonresidue
(mod pi) . Thus we assume that this is not the case for all i . Let p; | k
for 1i=1, ..., t and P, Yk for i =1t+l, ..., s . Let ordp (k) be odd
i
for i=1, ..., r and even for i =r+l, ..., t . Dividing by large enough
powers of pi for i =1, ..., t , (4.2) reduces to a finite number of
equations
2 s 7}
Dyxy + k= T p; (4.13)
i=r+1
with pi ¥ k1 for 1 =1, ..., s, and DO composed of pl, e, pr only,
and squarefree. We distinguish between the 257" combinations of zi odd or
even for i = r+l1, ..., s . Suppose that zi is odd for i = r+l1, ..., u
and even for i =u+l, ..., s . Put
u (23—1)/2 s 23/2
y= T p. - T p. . (4.14)
. i . i
i=r+1 i=u+l
Then, from (4.13),
u
2 2 _
Dy X] - (1 P, )y~ = k- (4.15)

i=r+1

u
Put D =D, T p; . Then (4.14) and (4.15) lead to
i=r+1
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2
s mi , (4.16)
v= T p:
i=r+1
u u
with v = y-. ) P; » W =X, k2 = kl-. ) p; and also to
i=r+1 i=r+1
2 2 _
% D-w = k2
s mi , (4.17)
w= T p;
i=r+1
with v = DO-X1 , W =Yy, k2 = —kl-DO . We proceed with either (4.16) or
(4.17), which is the most convenient (e.g. the one with the smaller |k | ).

2

If D=1, then (4.16) and (4.17) are trivial. So assume D > 1 . Let & be
the smallest unit in Z + VD-Z with € > 1 . It is well known that the

solutions v, w of v2 - D-w2 = k2 fall apart into a finite number of
classes of associated solutions. Let there be T such classes, and choose
for =1, ..., T 1in the <t th class the solution Vr 0’ wr 0 such that
- . .. - 2 2 _
¥y = VT,O + wr,O VD > 1 is minimal. Then all solutions of v D-w = k2
are given by v = tv , W= 1w , with
T,n T,n
n -n
v = ( y_re + yl-e )/2
wn A, (4.18)
wr,n = ( ¥, € T UE )/Z-VD
for n € Z where y> = v - W VD That is v and
© ’ t 7,0 7,0 ) ’ T,n n=—o
{wT n}n__00 are linear binary recurrence sequences. Now, (4.16) and (4.17)
reduce to T equations of type (4.1). If k2 =1, then T =1, ¥, =&
71 = 8_1 . If k2 | 2-D, k2 # 1 , then it is easy to prove that 73 = |k2|-s,
2 = |k |'8_1 so that
v = 1% ‘
_ 2n+1 , 2n+1
Ven T Vik, | [ (7 V1, 1) + (Y1, 1) ]/2 ,
_ 2n+1 , 2n+1 ]
Men = Vik, | [ (7, V1k,1) (7, Y1k, 1) ]/2 VD .

In both cases, (4.16) and (4.17) can be solved by elementary means (see
Section 4.6, of related interest are Stermer [1897], Mahler [1935], Lehmer
[1964], Rumsey and Posner [1964] and Mignotte [1985]). If k2 Yt 2-D, then we

s m,
apply the reduction algorithm to one of the equations Veon = ) pil ,
’ i=r+1
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= m,

W= ) pil . Note that n 1is allowed to be negative, since B = *1 , so
’ i=r+1

we can use the modified algorithm of Remark 3, Section 4.7.

Thus we have a procedure for solving (4.2) completely. It is well known how

the unit € and the minimal solutions % for =1, ..., T can

\%
r,0° "t,0
be computed by the continued fraction algorithm for VD . We conclude this

section with an example. It extends the result of Nagell [1948] (also proved

by many others) on the original Ramanujan-Nagell equation X2 +7 =27

THEOREM 4.14. The only nonnegative integers x such that X2 + 7 has no

prime divisors larger than 20 are the 16 in the following table.

X X2 + 7 X X2 + 7 X X2 + 7
0 7 7 56 = 23-7 31 968 = 23-112
1 8 = 23 9 88 = 23-11 35 1232 = 24-7-11
2 11 11 128 = 27 53 2816 = 28-11
3 16 = 24 13 176 = 24-11 75 5632 = 29-11
5 32 = 25 21 448 = 26-7 181 32768 = 215
273 74536 = 23-7-113

Proof. Since -7 1is a quadratic nonresidue modulo 3, 5, 13, 17 and 19 ,
we have only the primes 2, 7 and 11 left. Only one factor 7 can occur

in X2 + 7 , thus we have to solve the two equations
X +7=2 "-11 , (4.19)

X~ +7 =72 "-11 . (4.20)

Equation (4.20) can be solved in an elementary way. We distinguish four

cases, each leading to an equation of the type
y - Dz =-¢c

with ¢ | 2:D, and either y or =z composed of factors 2 and 11 only.

We have:
21/2 22/2

(1) z1 even, 22 even, y = 2 -11 , Z = x/7T, c= 1, D = 7
(21+1)/2 22/2

(ii) z1 odd, 22 even, y = 2 -11 , Z = x/7T, c= 2, D= 14 ;
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21/2 (22—1)/2

(ii1) z1 even, 22 odd, y =x, z = 2 -11 R c=-7, D= 77 ;
(21—1)/2 (22—1)/2

(iv) z, odd, z, odd, y = x, z = 2 -11 , c=-7, D=154 .

In the first example of Section 4.5 we have worked out case (i). We leave the

other cases to the reader.

Equation (4.19) can be solved by the reduction algorithm. Again we have four

cases, each leading to an equation of the type

y2 B D-22 _

with 2z composed of factors 2 and 11 only. We have
21/2 22/2

(1) z1 even, > even, y = x, z = 2 -11 , c=-7, D= 1
(21—1)/2 22/2

(ii) z1 odd, > even, y = x, z = 2 -11 R c=-7, D= 2;
21/2 (22—1)/2

(iii) z, even, z, odd, vy = x, z = 2 <11 , c=-7, D=11 ;
(21—1)/2 (22—1)/2

(iv) z odd, odd, vy = x, z = 2 <11 , c=-7, D=22

1

Case (i) is trivial.

(4.1).

following data the reader should be able to perform

the cases (iii) and (iv),

2

is a correct upper bound.

Case (iii):

%

Case (iv):

o

10 + 3-V11 ,

. 10011

11011
01010
00010

. 23075

197 +

.11101

10000
01011
10101

. 6A001

A

01000 00110
10010 00001
10010 11101

00111 01110
76425 39004
42-v22 , A

01101 01110
00110 10101
10100 01100
01100 10011

68184 22921

In the example in Section 4.7 we have worked

thus completing the proof.

(2 +V11 )/2-V11

10100
10110
11001
00101

26090

(9

01010
01100
11101
11111

902A0

98

00110 10110
10111 10100
10000 10010
01101 01111

A92A1 03757

The other three cases each lead to one equation of type

out case (il). With the

Algorithm P by hand for

30

In these cases N < 10

>

01001
00110
01010
10101

11110
01101
11011
11110 10.... ,

07314 58414 TA238....

+ 2.V22 Yy/2-V22 ,

10111
01101
10011
01001

10001
01111
00011
01110

724A4 16769

00100
01101
00010
00000

00011
10101
11110
01110 O11.... ,

45650 16482 SA6AA. ...



Remarks. 1. The computation time for the above proof was less than 2 sec.

2. Let o(X,Y) = a-X2 + b-X-Y + c-Y2 be a quadratic form with integral
coefficients, and A = b2 - 4-a-c positive or negative. Let k Dbe a nonzero
integer, and Py o--os Py distinct prime numbers. Then we note that

4-2-0(X,Y) = (2-a-X+b-Y) - A-Y |

so that the diophantine equations

s zi s zi
®(X,k) = TMp.” ., X, MIp.) =k
. i . i
i=1 i=1
in integers X # 0 and 21, e, zS € NO , can both be solved by our method.

4.10. A mixed quadratic-exponential equation.

In this section we give an application of Algorithm C to the following

diophantine equation. Let

®(X,Y) = a-X2 + b-X'Y + c-Y2
be a quadratic form with integral coefficients, such that D = b2 - 4-a-c 1is
negative. Let (g, v, w be nonzero integers, and Py o--os Py distinct prime

numbers. Consider the equation

S mi n
(X, w- ] P, ) = v-q (4.21)
i=1
in integers X , and n, ml, e, mS € NO .

Let B, E be the roots of ®(x,1) = 0 . Let h Dbe the class number of
Q(VD) . There exists a m € QYD) such that we have the principal ideal

equation (m)-(m) = (qh) . Put n = n, + h-n2 , with 0 < n, < h . Then

o(X,Y) = v-qn is equivalent to finitely many ideal equations

— — Py =2
(a-X-a:B:Y) (a-X-a:B:Y) = (¢): (o) () " (m) ,

n
(a-v-q 1) . Hence we have the equations in algebraic numbers

with (o)e(0)

aX - apyY=ymn aX - a By

1
<
A

a-X - a-E-Y

1
<
A
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where y 1is composed of o , units, and common divisors of a-X - a-f-Y and
a-X - a-E-Y . Note that there are only finitely many cholces for Y

possible. Thus, (4.21) is equivalent to a finite number of equations

_ s m, n, _ 0,

a-(B=B)-w- M p,” =ym - ym—,

i=1
- Py T
or, if we put A = y/a-(B-B) and Gn =Axnw~ +Aam,
2
s m,
G, =w T p; (4.22)
2 i=1

Here, {Gn }2 -0 is a recurrence sequence with negative discriminant. So

2 2

(4.22) is of type (4.1), and can thus be solved by the reduction algorithm of
Section 4.8.

Before giving an example we remark that (4.21) with D > 0 is not solvable

with the methods of this chapter. This is due to the fact that in Q(VD)

with D > 0 there are infinitely many wunits, hence infinitely many

possibilities for ¥ . Another generalization of equation (4.21) is to
t n,

replace qn by ) qil . This problem is also not solvable by the method of
i=1

this chapter, since it does not lead to a bilnary recurrence sequence 1if
t > 2 . These problems can however be dealt with by using multi-dimensional
approximation methods, as presented in Chapter 3 and applied in Chapter 7.

We finally present an example.

THEOREM 4.15. The equation

2 ml m2 m m

x> -31.72%x+2 (31732 2t

in X€Z, n, m,, m, €N has only the following 24 solutions:

n m, m,, X n m, m,, X

1 1 0 -1, 4 5 2 0 -10, 19
1 0 0 -4, 5 6 0 0 -26, 27
2 0 0 -6, 7 7 0 0 -37, 38
3 0 1 2, 5 7 3 0 2, 25
3 1 0 -7, 10 11 1 1 -137, 158
4 0 1 -6, 13 17 2 2 -829, 1270
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Proof. Put B = (1 +V-7)/2 . Then
2 2 =

X" - XY + 2V = (X-B-Y)-(X-B-Y)
Note that @Q(V¥-7) has class number 1 , and that

o= Lt VT 1 -V , 11 =(2+V-7)(2-V-7)

2 2
_ _ m, m,

Suppose y | X - BY and y | X - B-Y . Then y | (B-B)-Y = -V-7-3 ~-7 7 .
On the other hand, ¢ | 11-2" . It follows that ¥ = %1 , hence X - B-Y and
X - E-Y are coprime. Thus we have two possibilities:

X-pvy=t(2+vV-7)-(1 ‘ZV_7 )

X-pvy=t(27V-7)-(21 ‘ZV_7 )
in each equation the 2nd and 3rd * being independent. Hence we have to
solve

. . . m, m

Géj) A g 3o 2 e =1, 2

with 69) =60 2560 ror 521, 2, ana A1V =3P - Gwnyv-7
n+l n n-1

so that G(l) = G(Z) =1, G(l) = 3, G(Z) = -1 Note that 0?1) = —0?2) for

0 0 1 1 i i
. (1) _ (2) . .
i=1, 2, and ¥ = -y For j = 1 we have solved (4.22) in the
example of Section 4.8. It is left to the reader to solve (4.22) for j =2 .
This can be done with the numerical data given for the case j =1 . u]

Remark.

The computation time for the above proof was less than 3 sec.
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Chapter 5. The inequality 0 < x - y <y ° in S-integers.

The results of this chapter have been published in de Weger [1987].
5.1. Introduction.

Let S Dbe the set of all positive integers composed of primes from a fixed
finite set { Py -oos Py }, where s 2> 2, and let &8 € (0,1) . In this
chapter we study the diophantine inequality

0<x -y« y8 (5.1)

in x, y € S . We give explicit upper bounds for the solutions, and we show
how the algorithms for homogeneous, one- and multi-dimensional diophantine
approximation in the real case, that were presented in Chapter 3, can be used
for finding all solutions of (5.1) for any set of parameters Py -os Pg
8 . For s = 2 the continued fraction method (cf. Section 3.2) is used. For

s » 3 we use the L3—a1gorithm for reducing upper bounds (cf. Section 3.7).

Tijdeman [1973] (see also Shorey and Tijdeman [1986], Theorem 1.1) showed
that there exists a computable number c¢ , depending on max(pi) only, such

that for all x, y €S with x>y 2> 3,
c
x -y >y/(log y) .

Thus, for any solution of (5.1) a bound for x, y follows. Stermer [1897]
showed how to solve the equation x - y = k with k =1, 2 with an
elementary method (see also Mahler [1935], Lehmer [1964]). Our method can
solve this equation for arbitrary k € Z . For the one-dimensional case
s =2, Ellison [1971b] has proved the following result: for all but finitely
many explicitly given exceptions, | 2% -3 | > exp(x-(log 2 - 1/10)) for
all X, vy € N . Cijsouw, Korlaar and Tijdeman (appendix to Stroeker and

Tijdeman [1982]) have found all the solutions x, y € N of the inequality

Il -q | <p

for all primes p, g with p < g < 20, and with & = é . We shall extend
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these results for many more values of p, q and with & = 0.9 . Further, we
determine all the solutions of (5.1) for the multi-dimensional case s = 6 ,

_ . _1
{p --os Pg b =42 35 7,11, 13} with &= .

In Section 5.2 we derive upper bounds for the solutions of (5.1). In Sections
5.3 and 5.4 we give a method for reducing such upper bounds in the one- and
multi-dimensional cases respectively, and work them out explicitly for some

examples. Section 5.5 contains tables with numerical data.

5.2. Upper bounds for the solutions.

We assume that the primes are ordered as Py < ... < P, - For a solution
x, y of (5.1), the finitely many =z € N for which =z-x, z'y 1is also a
golution of (5.1) can be found without any difficulty. Therefore we may

assume that (x,y) =1 . Put

X = max ord_ (x-y)
1<i<s i

Put

s
C, = 29'S+26-SS+4-maX(1,——l———)-( log p.)-log(e-log p )/ (1-8) ,
1 log Py 120 i s—1

C, = 2-log 2/log p, + 2-C1-log(e-C1-log pS)

THEOREM 5.1. The solutions of (5.1) satisfy X < C

5 -
Proof. If y < é-x , then y8 >xX -y 2>y , which contradicts y 2 1 So
y > é-x . Put A = log(x/y) . Then
0<A<x/y -1c< y_(l_é) < (é-x)_(l_é) (5.2)
X .
By x = max(x,y) » p, » We obtain
0 <A< 21_5-p_(1_5)'X . (5.3)

1

We apply Waldschmidt’s result, Lemma 2.4, to A, with n =s, g = 2 . Note
that the ’independence condition’ [@(Vpl,...,Vpn):Q] = 2 holds. Since
p; > 3 we have Vi = log p; for 1 2> 2 . Thus
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A > exp ( -(log X + log(e-log pS))-Cl-(l—S)-log Py )
Combining this with (5.3) we find

X < C,-logle-log pS) + log 2/log P, * Cl-log X .

1

The result now follows from Lemma 2.1, since C1 > e2 . o
. 17

Examples. With s = 2, 2 < pi € 199, & = 0.9 we have C1 < 2.30x10° ,
C, < 1.97><1019 .
2 1 33 36
With s =6, 2 < p; < 13, & = S we find C1 < 8.37x1077, C2 < 1.35x10 .
5.3. Reducing the upper bounds in the one-dimensional case.
In this section we work out the examples s =2, 6 = 0.9 , and P> P, run

through either the set of primes below 200, or the set of non-powers below 50
(we did not use that the p; are primes). We note that for any other triple

Py» Py d the method works similarly. We prove the following result.

THEOREM 5.2. (a) The diophantine inequality

X1 X2 X X 1)

. 1 2
| P | < min ( Py Py ) (5.4)

with Py Py primes such that Py < P, < 200 , and

1
> > i = =
Xl, X2 € 7, X1 2, X2 2, and either & >
X X (5.5)
or & = 0.9, min ( pll, p22 ) > 1015

has only the 77 solutions listed in Table I.

(b) The diophantine inequality (5.4) with p,» b, non-powers such that
2 < Py < P, < 50 and conditions (5.5), has only the 74 solutions listed in
Table II.

Remarks. The Tables are given in Section 5.5. In Tables I, II the column

”delta” gives the real number with

| X1 ) X2 = nin ( X1 X2 )delta
Note that in Theorem 5.2 we do not demand (Xl’XZ) = 1 , and in Theorem
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5.2(b) we do not demand P> P, to be primes. The conditions (5.5) are
chosen such that the numerous solutions of (5.4) with d = 0.9 and

1 %2 15
min ( Py Py ) < 10 can be found without much effort.

Proof. Write

A= | %, log p; - x,-log p, | , X = max(x )

1°%2
We assume that

by > 10°° (5.6)

since it is easy to find the remaining solutions. Let log pl/log P, have

the simple continued fraction expansion (cf. Section 3.2)

log p,/log p, = [ o, a, 2, 1,
and let the convergents be rn/qn for n=1, 2, ... . We may assume that
= i > . i
(Xl’XZ) 1 . First we show that X1 X2 For if X1 < X2 , then
_ 199
A= X, log P, Xy log Py > X ( log P, log Py ) > X-log 197 °
and from (5.3) and (5.6) we then infer
0.0101 < 0.0101-X < X-log %g% <A< 20'1-10_5/2 < 0.0034 ,
which is contradictory. Thus Xy 2 X5 hence X = Xy Next we prove that
pf/lo > 3.1°X . (5.7)
X710 .
Namely, suppose the contrary. Then 2 € 3.1-X , and it follows that
X < 80 . This contradicts 3.1-X > p§/10 > 105/2 . From (5.3) we infer
‘ fg ) log pl ‘ P 20.1 ‘p—X/lo‘l s 8)
X log P, log P, 1 X
It follows from (5.7) that
‘ f% ) log Py ‘ 20.1 ‘ 1 . 1
X log P, log 2 3.1-X2 2-X2
Hence X2/X is, by Lemma 3.1, a convergent of log pl/log p, , say rk/qk .
From the example at the end of Section 5.2 we see that X < X, < 1.97><1019

0
We find from (3.7) that k € 92.996 , hence k € 92 . Lemma 3.1 further

yields: if (5.3) holds then
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qk/loll_'log P,

a > -2 +p _, (5.9)
k+1 1 e 20.1

and if
N qu”o.l_.“)g_pz (5.10)
k+1 1 qk 20.1

then (5.3) holds for (Xl’XZ) = (qk,rk) . We computed the continued fraction
expansions and the convergents of all numbers log pl/log P, in the
mentioned ranges for Py Py exactly up to the index n such that
9,1 < 1.97><1019 < a4, (cf. Section 2.5 for details of the computational
method). Note that n < 93 . We checked all convergents for (5.9), and
subsequently for (5.10). It is possible, though unlikely, that there is a

convergent that satisfies (5.9) but fails (5.10). We met only one such a

case: p; = 15, P, = 23 , with log 15/log 23 =[ 0, 1, 6, 2, 1, 51, ...]1 ,
so that ag = 51, r, = 19, q, = 22 . Now, (5.9) holds but (5.10) fails, since
152'2'%2'(10g 19)/20'1 = 51.4... € [51,53)
. . 0.1 -2.2
We have in this case A = 0.002714... < 0.002771... = 2 -15 , so (5.3)
is true. But log(1522—2319)/log(2319) = 0.9008... > &8 , so (5.1) is not

true. This example illustrates that (5.3) is weaker than (5.1). Therefore all
found solutions of (5.3) have been checked for (5.1) as well. The proof is

now completed by the details of the computations, which we omit here. u]

Remarks. 1. Theorem 5.2(a) is used in the proof of Theorem 6.2.

2. The computations for the proof of Theorem 5.2 took 35 sec.

5.4. Reducing the upper bounds in the multi-dimensional case.

Now let s » 3 . Put X = ordp (x/y) for i =1, ..., s . Then
i

S
A= z X, log p;

Note that (5.3) is of the form (3.1). Hence by Theorem 5.1 we can use the
method described in Section 3.7 for solving (5.3). We shall do so for the
example s = 6, { Pys -5 Py Yy =4{2, 3, 5, 7, 11, 13 } (the first six

primes), and & = é
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We use small refinements of Lemmas 3.7 and 3.8, devised speclally for this

application, as follows. Let notation be as in Section 3.7.

LEMMA 5.3. Let X be a positive number such that

1
2 2
2r) > V(4-n"+(n-1) -y )-X1 : (5.11)
Then (5.3) has no solutions with for 1 =1, ..., s
1
-C- . =- < < < . .
log(y-C-V2/s X1)/2 log p; < Ix, | <X <X (5.12)
LEMMA 5.4. Suppose that
N S
IAl > ) Ix, | . (5.13)
. i
i=1
Then
S
x| < log[y-C-VZ/(IAI— > IXiI)]/(l—S)-log p; - (5.14)
i=1
Remark. Lemmas 5.3 and 5.4 are refinements of Lemma 3.8, in that they
differentiate between the different X: - Moreover, Lemma 5.3 has slightly

sharper condition and conclusion than Lemma 3.7.

Proofs (of Lemmas 5.3 and 5.4). Analogous to the proofs of Lemmas 3.7 and

3.8, using (5.2) and

[x. |
P; g max(x,y) = x < 2-|Al 172 . O

THEOREM 5.5. The diophantine inequality

0 <x -y« Vy

*1 %6
in x, y €S =4{2"-...-13 |Xi€[NO for i =1,

(x,y) = 1 has exactly 605 solutions. Among those, 571 satisfy

., 6} with

ordz(x-y) < 19, ord3(x-y) < 12, ords(x-y) <8,
. < . < . < .
ord7(x y) 7, ordll(x y) 5, ord13(x y) 5

The remaining 34 solutions are listed in Table III.
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Remark. The upper bounds for ordp (x-y) given for the 571 solutions not
i
listed in Table III are chosen such that it takes a reasonable amount of

computer time to find them all by a brute force method. The list of all 605

solutions is too extensive to be reproduced here.

Proof. By the example at the end of Section 5.2 we know that X < X for

0
XO = 1.35X1036 . We apply the method described 1in Section 3.7. Take
C = 10240 (which is chosen so that it is somewhat larger than Xg ), and
¥y = 1 . We applied the L3—a1gorithm to the corresponding lattice Fl , and
found a reduced basis Cps ore Cg with |91| > 9.4OX1039 . By Lemma 3.4,
ury) > 2729, 40x10%? > 1.66x10°7 .

R 2 2 37 .
This is larger than V(4:-67+5-1 )-xO = 1.64...x107" , so (5.11) holds with
X1 = XO . By Lemma 5.3 we find

X < log(10240-V2/6-1.35x1036)/§-10g 2 < 1350.4 ,
so X € 1350 . Next we choose C = 1032, ¥y =1, and XO = 1350 . The reduced
basis of the corresponding lattice FZ was computed, and we found
|91| > 2.71><105 . Hence E(FZ) > 4.79><104 , which 1is larger than
V149-1350 = 1.64...><104 . Hence Lemma 5.3 yields for all i =1, ..., 6

%1 < log(1032-V2/6-1350)/§-log P;

and it follows that

Ix, | €187 , |Ix,| <118, |Ix,| €80,
! > 3 (5.15)
< < <
|X4| 66 , Ix_| 54 |X6| 50
12 4
Next we choose C = 1007, 79y = 100 . We use Lemma 5.4 as follows. If
(Al > 106 then (5.13) holds by (5.15), and Lemma 5.4 yields
Ix, | <67, Ix. | <42, Ix,l €29,
! > 3 (5.16)
< < <
|X4| 24 |X5| 19 , |X6| 18
All vectors in the corresponding lattice r satisfying (5.15) and

3
(Al < 106 have been computed with the Fincke and Pohst algorithm, cf.

Section 3.6. We omit details. We found that there exist only two such
vectors, but they do not correspond to solutions of (5.1). Hence all

solutions of (5.1) satisfy (5.16). Next, we choose C = 108, y = 104 . If
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(Al > 5x10° then Lemma 5.4 yields

lx, ] < 42 , Ix.| €27, Ix.| €18,
! g > (5.17)
< < <
|X4| 15 , |X5| 12, |X6| 11
There are 143 vectors in the corresponding lattice F4 satisfying (5.16)
5

and [A] € 5x107 . Of them, 2 correspond to solutions of (4.1), namely those
with

(x,,...,x.) = 7, -5, 3, -9, -3, 8), A = 257674 ,

(-10, 10, -6, 5, -6, 4) , A = 144817 .

X
X
1

Both also satisfy (5.17). Hence all solutions of (5.1) satisfy (5.17). At
this point it seems inefficient to choose appropriate parameters C, ¥y , and
a bound for [Al to repeat the procedure with. But the bounds of (5.17) are

small enough to admit enumeration. Doing so, we found the result. u]

Remark. Theorems 5.2 and 5.5 find applications in solving other exponential
diophantine equations, see Stroeker and Tijdeman [1982], Alex [1985°],
[1985b], Tijdeman and Wang [1988], and Section 6.4 of this book.

Remark. The computation of the reduced basis of T took 113 sec, where we

applied the L3—a1gorithm as we described it in Section 3.5, in 12 steps. The
direct search for the solutions of (5.17) took 228 sec. The remaining
computations (computation of the log p; up to 250 decimal digits, of the
reduced basis of FZ , and of the short vectors in F3 and F4 ) took 8 sec.
Hence in total we used 349 sec.
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Tables.
(Theorem 5.2(a)).

5.5.
Table 1I.
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(Theorem 5.2(b)).
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Table III . (Theorem 5.5).

Xy X3 Xy Xy Xg X X ¥ Xx—y
-1 =11 -1 0 6 0 17 71561 17 71470 91
0 4 5 1 —6 0 17 71875 17 71561 314
21 -2 =2 =1 -3 0 20 97152 20 96325 827

1 13 -1 -3 =1 =2 31 88646 31 BBiRS5 461
19 Q 0 -8 1 0 57 67168 57 64801 2367

6 e | 1 -6 i B8 58304 88 5TB0S5 499
-2 15 =1 -2 —4 0 143 48907 143 48180 727
11 —15 0 2 1 1 143 50336 143 48907 1429

1 g8 -1 -8 0 3 288 29034 288 24005 5029
—22 5 1 -1 1 3 293 62905 293 60128 2777
13 1 I~ 1 —6 337 92000 337 BT663 4337

1 2 9 —4 —4 0 351 56250 351 53041 3209

3 3 0 4 2 =7 627 52536 627 48517 4019
—26 1 0 5 3 0 671 10351 671 08864 1487
3 13 1w -2 o 0 781 25000 781 21827 373

8 -2 =10 4 1 1 B78 95808 B7E Q0625 5183
25 1 —d 0 -5 0 1006 63296 1006 56875 6421
—6 1 -2 =6 0 7 1882 45551 1882 38400 7151
8 —13 0 3 =2 3 1929 14176 1929 13083 1093

1 —-13 -3 7 2 0 1992 97406 1992 90375 7031

e | -4 1 —4 7 4392 39619 4392 30000 9619
—4 2 —11 2 6 0 TR12 58401 T812 50000 8401
16 -3 5 1 -1 -6 14336 00000 14335 62273 37727
-8 8 0 -8 3 2 14758 24779 14757 89056 35723
-3 =2 -5 11 0 =3 19773 26743 19773 00000 26743
—25 T 1 0 -2 5 40600 88955 40600 86272 2683
2 0 13 =9 =2 0 48828 12500 48827 86447 26053
—14 19 -2 —4 1 —1 1 27848 76137 1 27848 44800 31337
-24 -1 -2 12 -1 0 1 38412 7201 1 38412 03200 84001
=35 5 10 0 1 -8 2 61035 15625 2 61033 83072 1 32553
2 -4 -9 3 T =2 2 67363 98612 2 67363 28125 TO487
18 ki 0 —13 0 2 9 68892 08832 9 68890 10407 1 98425
7 -5 3 =9 =3 8 1305 16915 36000 1305 16881 72831 33 63169

- 10 10 -6 5 —6 4 2834 49801 04623 2834 49760 00000 41 04623
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Chapter 6. The equation x +y =1z in S-integers.

The results of this chapter have been published in de Weger [1987].

6.1. Introduction.

Let S Dbe the set of all positive integers composed of primes from a fixed
finite set { Py -oos Py } , where s > 3 . This chapter is devoted to the

diophantine equation
X +y =2 (6.1)

in x, y, z € S . Without loss of generality we may assume that x, y, z are

relatively prime. For any a € S we define

m(a) = max ord_ (a)
1<ics  Pi
It was proved by Mahler [1933] that (6.1) has only finitely many solutions,
but his proof 1is 1ineffective. An effective version, i.e. an effectively
computable upper bound for m(x-y-z) for the solutions x, y, z of (6.1),
can be derived from the results of Coates [1969], [1970] and Sprindguk
[1969], since (6.1) can be reduced to a finite number of Thue equations. See

also Chapter 1 of Shorey and Tijdeman [1986].

We derive an explicit upper bound in Section 6.2. Section 6.3 is devoted to
some details of the p-adic approximation lattices on which the reduction
method of Sections 6.4 and 6.5 are based. In Section 6.4 we give a method of
golving (6.1) in the one-dimensional case s = 3 . This method is based on
the reduction procedure given in Sectlion 3.10, and we also use a combination
of p-adic and real approximation techniques, similar to that of Section 4.8.
But instead of actually performing the real reduction step, we now can simply
refer to the results of Chapter 5. As an example we find all the solutions of
the slightly more general equation x * y = w-z , where x, y, z are powers

of 2, 3 or 5, and we€Z, |wl £ 1000000, (w,z) =1
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In Section 6.5 we give a procedure for solving (6.1) in the multi-dimensional
case s 2z 4 , based on the reduction procedure described in Section 3.11. We
work out the example { Pys --os Pg y=4{2, 3, 5, 7, 11, 13 } , and actually
determine all the solutions. This generalizes the result of Alex [1976], who
gave by elementary arguments a complete solution of (6.1) for the case
{ Pys -os Py }y=4{2, 3, 5, 7 } . See also Rumsey and Posner [1964] and
Brenner and Foster [1982]. We conclude in Section 6.6 with some remarks on
the Oesterlé-Masser conjecture, also known as the ’'abc’-conjecture, which is
related to equation (6.1). In particular, our method of solving (6.1) leads
to a method of finding examples that are of interest with respect to the

abc-con jecture. Finally, we give tables 1in Section 6.7.
6.2. Upper bounds.
We give in this section an upper bound for the solutions of (6.1), based on

Lemma 2.6 (cf. Yu [1987]). Note that in de Weger [1987] we used the result of

van der Poorten [1977] instead (see also the Correction to de Weger [1987]).

We introduce a lot of notation. Assume that Py < ... < P, - Let q; be the
smallest prime with qa, ¥ pi'(pi—l) for 1i=1, ..., s . Put
s
t=102s/31, P= p,, q9=mxgdg, ,
. i . i
i=1 i
C1(2,t) and a; as in lemma 2.6 with n =t ,
15t
(p,-1) (2+p.—1)

1

t+5/2 2-t 2
-q -(g-1)-log  (t-q) -max

_ t
U = C1(2,t) a, t : s
i (log pi)

t log P
- (log pS) '( log(4-log pS) + 8.t ) ,
C1 =UuUs/6-t , C2 = U-log 4 ,
s
V, = max(1,log p,) for i =s-t+1, ..., s, Q= il V. ,
i i . i
i=s-t+1
_9-t+26  t+4
Cy =2 t Q-log(e-V__,) ,
C, = max (7.4, (Cl-log(P/p1)+C3)/log P ),
Cg = (CZ-log(P/p1)+C3-log(e-VS)+O.327)/log P,
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@]
|

= max ( CS’ (C2-log(P/p1)+log 2)/log Py ),

(@]
1

. 2+ ( Cg + C,rlog C, ) .

p
max ( Py log(2-(P/p1) S)/log Py C

@]
1

,*C; - log Cop Co )

Now we state the main result.

THEOREM 6.1. The solutions of (6.1) satisfy m(x-y-z) < C8 .

Proof. If we consider instead of (6.1) the equivalent equation

then we may assume that x-y has at most t prime divisors, P; s --» P

say. Suppose first that m(x-y) < Py - Then

Ps

mz) ¢, < 2imax(x,y) < 2-(P/p) ~

Py

hence

p
m(x-y-z) < max ( Py 1og(2-(P/p1) S)/log Py ) < Cg :

Next suppose that m(x-y) > p_. and m(z) > 2 . Then for some p = p, ,

S 1

m(z) = ord (z) = ord Il +2 = 1 1 = ord Illog (71 .
p p y p Py

t .

Put x/y = Tl p J . Then m(x-y) max |Xi | . We apply Lemma 2.6 (Yu’s
=1 ' 1<t 1

lemma) with n = t, BO = Bn = B =B = m(x'y) . Since m(x-y) 2 Py and

t > 2 we have

W = max I[ log(1+13€-B), log B, log p 1l = log B .

Note that Cl(p,n) is maximal for p = 2 . We obtain

m(z) < C,-log m(x-y) + C, - (6.3)

Obviously (6.3) is true if m(z) < 2 . If in (6.2) the plus sign holds, then

m(x-y)
1

(P/p )m(z)

1 > z > max(x,y) > p

By (6.3) and C3 > 0 it then follows that
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m(x-y) < C,"log m(x-y) + Ce - (6.4)

Next suppose that in (6.2) the minus sign holds. Then we apply Lemma 2.4 to

prove (6.4) for this case, as follows. Suppose (6.4) is false. Then

Cl-log m(x-y)+C2

e/p )" # (rp)
y _Z _ z 1 1
| £ -11 === < <
X x  max(x,y) m(x-y) C,-log m(x-y)+C ’
Py 4 6
Py
which is less than = , by the definition of C4 and C6 . Hence
C,-log m(x-y)+C
1 2
(P/pl)
[log Y| < (2-1log 2) -1 Y _ 1 < (2-1log 2)-
P P pm(x-y)
1

On the other hand, Lemma 2.4 yields
[log %I > exp ( —C3-(log m(x-y) + log(e-VS)) ) .
Thus we obtain
m(x-y)-log p; < log(2-log 2) + (Cl-log m(x-y)+C2)-log(P/p1)
+ C3-(log m(x-y) + log(e-VS)) < (log pl)'(C4-log m(x-y)+C6)

This contradicts our assumption that (6.4) if false. Consequently (6.4) is

true in all cases. Now, by C4 > e2 , Lemma 2.1 yields m(x-y) < C7 , and

(6.3) then yields m(x-y-z) < Cg - o
17

Examples. If s = 3, { Pys Pys Pg } =42, 3, 5} then C8 < 3.98x10 .

If s =6, { pl, ceey p6 r=4{2, 3, 5, 7, 11, 13 } then C8 < 5.6OX1027 .

6.3. The p-adic approximation lattices.

As in the proof of Theorem 6.1 we consider (6.2) instead of (6.1). Let p be

any of the primes Py oees Py - We may assume that p f x'y . Rename the
other primes as Py s Py o s such that ordp(logp(po)) is minimal. For
i=1, ..., s=2 put (cf. Section 3.11)
®
9., = - log (p.)/log (p.) = Y u -pE
i p i p -0 =0 it ’
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where u.
i,?

Section 3.11. Then it 1is clear from Section 3.11 how to define the p-adic

e {0, 1, ..., p-1 } . The ﬁi take the place of the 0; of

approximation lattices F“ for pu € NO . Put
s=2
A= .Z Xs ﬁi R
i=1

Then Lemma 3.13 yields

r =« (Xl,...,X

u© s-2"70 p

x ) |

5-2 X ‘ —(u+u0)
s-2"70 p

log [ M p. <p >
Plizp *

=< (Xl,...,X

where By = ordp(logp(po)) . In Section 3.13 we studied the set

« s-2 x, —(u+u0)
= + <
M= kg k) || eyt 1‘p b >,
i=0
which is a sublattice of F“ . In Lemma 3.17 we showed how a basis of F*
can be found from a basis of F“ . In practice this 1s very easy, especially

if for p > 5 it happens to be possible to choose Po such that not only
ordp(logp(po)) is minimal, but also Py is a primitive root (mod p)

Then, using the notation of Lemma 3.17 (with b as the last element of the

0
basis), choose T = Py (mod p) . Then k(QO) = 1 , and it follows that
b =b. for i=1, ..., s=2 . By b. = (0,...,1,...,0,0")7T e nave
=i =i =i i
0?“) k(b.) Htu
pl =t 1 (mdp )
P Pq P
o

If P, =Py (mod p) , then it follows that

* () bl
yo=a +o% =a + Yu , (mod (p-1)/2) for i =1, .., s=2,
i i i i P I
2=0
*
7o = (p-1)/2 .
Lemma 3.14 (with c, = 0, c, = 1 ) now yields: if
*
er’) > V(s-1)-X (6.5)
u 1

then (6.2) has no solutions with

Bt < ordp(z) < m(x-y-z) <X (6.6)

1

119



6.4. Reducing the upper bounds in the one-dimensional case.
In Section 3.10 we have described how an upper bound for the solutions of
(6.1) in the case s = 3 can be reduced. We shall apply that method in this

section to the following problem.

THEOREM 6.2. The diophantine equation

x*ty=wz, (6.7)
%0 %1 u
where x =p,, ¥y =p;, Z2=P , (p,po,pl) = (2,3,5), (3,2,5), (5,2,3) ,

Xy Xp» U € NO, w € Z, Iwl < 106 , and p t w , has exactly 291 solutions

for p =2, 412 solutions for p =3, and 570 solutions for p =5 . In

X

Table I all solutions with u 2> 3 are given. The solutions with u < 2
satisfy X < 14, Xy £9 for p=2, X < 23, Xy £ 10 for p =3, and

< < = .
X 25, Xy 15 for p 5

Remark. It is easy to find all solutions of (6.7) with u < 2 . The Tables

are presented in Section 6.7.

Proof. Put X = max ord (x-y-z) . The example at the end of Section 6.2
p=2,3,5 L7
shows that in the case |w|l = 1 we have X < 3.98x10 . It can be checked

without difficulties that the effect of the w with |w| < 106 in the proof

of Theorem 6.1 can be neclected (it disappears in the rounding off), so that
17

for the solutions of (6.7) also X < XO = 3.98x10 holds. Put
Yo N1
x/y =Py Py > O = - logp(pl)/logp(po)

Note that ¢ 1is a p-adic integer. Define the lattices F“, F: as in Section

6.3, so F“ is generated by

1 0

b, = » by =
1 0(“) 0 p“

For p =2, 3 we have F: = F“ , and for p =5 a basis of F: is

b, = b, - yb b. = 2-b
21721 T T2 20T %

where y = 0 if 0(“) is odd, ¥y =1 if 0(“) is even . Using the

algorithm given in Sectilion 3.10, Fig. 3, we can compute a basis € S of
F: that is reduced in the sense that |91| = E(F:) . We did so, with u as
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in the following table.

< < <
P Py Py kg # ¥ legl> u W ly,! ly, |
3 5| 2 143 - 2.esx10°t 144 10°2'** 114 78
3 2 5| 1 91 - 23x0" 91 10°37" 182 78
2 3| 1 6 o0 52810 65 10°.5% 189 119

ﬁ(u)

The values of can be found in Table III. Making an exception to our

policy, we give the reduced bases of the F: below (in base p notation):
p=2: 10 00000 00100 10001 10110 01110 01101
00001 11101 00101 00100 11100 01111 11010 00011
- 1 00010 00110 01000 01011 01110 00010

00101 11000 00000 11100 01111 01011 10111 00001
10 11011 10000 01011 01101 11000 00111

11001 10100 11011 00000 11111 10110 10110 00001

10 01110 11101 10111 11000 00100 10101
00111 00001 10101 00110 10011 00111 00101 10101

p=3: - 102 01121 02221 00210 12120 20020 22222 10212 20222

21002 00122 21100 11102 22102 20001 11222 02212 21011

-10 12210 12111 01102 02010 12112 12210 21122 21011 20102

- 2 22021 11012 01000 12021 00211 12221 22121 21220 12122

p=5: - 211 32230 21042 22023 30141 33034 21420

- 22104 43102 43111 03114 30134 23410

340 34003 02404 12120 03412 22030 32211

- 414 20001 42202 42210 34043 20120 00432

From this we found the lower bounds for |91| given above. They are all
larger than V2-3.98X1017 . Hence (6.5) holds for X1 = XO , and then we

infer from (6.6) that u < p + By ~ 1, and Iwl-z < W as shown in the table

above. We now find the new upper bounds for |y0|, |y1| as follows. If in
(6.7) the minus sign holds, supposing that min(x,y) > w10/9 , we infer
lx -y | =lwl-z<W<min(x,y)2 7 .
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By Theorem 5.2(a), the inequality | x -y | < min(x,y)o'9 has no solutions

with min(x,y) > W, since W > 1049 . Hence min(x,y) < WlO/9 , and thus

max(x,y) € min(x,y) + |wl-z < w10/9 + W .

If in (6.7) the plussign holds, then this inequality follows at once. So now
the bounds given in the above table for |y0|, |y1| follow from

10/9
+

Iyil-log P, < log max(x,y) < log(W W)

We repeat the procedure with u as in the following table.

. < < <
p o ¥ |91| > V2 XO < u W |y0| |y1|
2 16 - 167.7 161.3 17 106-217 31 21
3 13 - 535.8 257.4 13 106-313 49 21
5 7 1 276.1 267.3 7 106-57 49 31

The numbers are now so small that the computations can be performed by hand.

For example, for p =5, the lattice F; is generated by

0

b ,» b s
1 -45607 0 156250

—_

and a reduced basis is

185 -394

Te}
|
fe)
|

205 408

We find upper bounds for u and W as given in the above table. In all

three cases, w10/9 < 1015 . On supposing min(x,y) > 1015 we infer
lx -yl =1lwl-z<w<10™ % ¢ minx, 92?7 .
. . . 0.9
By Theorem 5.2(a) we see that the inequality | x - y | < min(x,y) has
. 65 _28 84 _53
only two solutions: (x,y) = (277,577), (277,377) . However, both have
|l x -y | > 10792 5o we infer min(x,y) < 103 ,  hence by
max(x,y) < 1015 + W we obtain the bounds for IyOI, |y1| as given above.

These bounds are small enough to admit enumeration of the remaining cases. o

Remark. The computer calculations for the above proof took less than 1 sec.
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6.5. Reducing the upper bounds in the multi-dimensional case.

In Section 3.11 we have described how an upper bound for the solutions of
(6.1) in the case s > 3 can be reduced. We shall apply that method in this

section to the following problem.

THEOREM 6.3. The diophantine equation

X +y =2 (6.8)

*1 %6
in x, y, z€ S =<2 "-...-13 | X, € NO for i =1, ..., 6 > with

(x,y) =1 and x <y has exactly 545 solutions. Of them, 514 satisfy
ordz(x-y-z) < 12, ord3(x-y-z) <7, ords(x-y-z) <5,
vez) vez) v-z) € 3 .
ord7(x y-z) 4, ordll(x y-z) 3, ord13(x y-z) 3

The remaining 31 solutions are given in Table II.
Remark. From Theorem 6.3 it is easy to compute all 545 solutions of (6.8).

Proof. In the example at the end of Section 6.2 we have seen that
m(x-y-z) < XO = 5.6O><1027 . With the notation of Section 6.3 we choose the

following parameters.

* * * * *
p pO pl p2 p3 p4 “O H 70 71 72 73 74
2 3 5 7 11 13 2 605 - - - - -
3 2 5 7 11 13 1 385 - - - - -
5 2 3 7 11 13 1 275 2 0 1 1 1
7 3 2 5 11 13 1 220 3 0 -1 -1 0
11 2 3 5 7 13 1 165 5 2 0 -1 -1
13 2 3 5 7 11 1 165 6 -2 -1 -2 3
We computed the six values of the ﬁiu) for i =1, 2, 3, 4 (and give them

in Table III), and the reduced bases of the six lattices F: , by the

L3—algorithm. Thus we obtained lower bounds for E(F*) as in the following
table. They are all larger than V5-5.6OX1027 (note that we have a very
large margin here, we could have taken the u’s probably about 20% smaller).
So we apply Lemma 3.14 for X1 = XO = 5.6O><1027 . For every p we thus find

ordp(z) < u o+ By ~ 1 . Since (6.2) is invariant under permutations of x, vy,

z , we even have ordp(x-y-z) S u+ Ug ~ 1 , as shown in the next table.
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*
L) > lc, 174 > ord (x-y-z) <
P " c, NE
2 4.7OX1O35 606
3 1.15X1O36 385
5 6.27><1O37 275
7 3.17X1O36 220
11 5.74X1O33 165
36
13 1.73%x10 165

Hence m(x-y-z) < 606 .
We repeated the procedure with XO = 606 and u as in the following table.
After computing the reduced bases of the six lattices F* we found the

following data. Note that in all cases E(F:) > V5606 .

* * * * * *
P [ Yo ¥ Yy U3 E(F“) > ordp(x-y-z) <
2 66 - - - - - 1909 67
3 42 - - - - - 2304 42
5 30 2 0 0 1 1 3417 30
7 24 3 -1 0 1 -1 2391 24

11 18 5 0 -2 2 -1 1443 18

13 18 6 0 1 1 -2 3196 18

Hence m(x-y-z) < 67 . Next, we repeated the procedure with XO =67, and p

as in the following table. We found

* * * * * *
P [ Yo ¥ Yy U3 E(F“) > ordp(x-y-z) <
2 55 - - - - - 364 56
3 35 - - - - - 301 35
5 25 2 1 1 1 0 622 25
7 20 3 -1 1 -1 0 693 20
11 15 5 -1 -2 2 192 15
13 15 6 -1 0 3 -2 658 15

Hence m(x-y-z) < 56 .

To find the solutions of (6.2) with ordp(x-y-z) below the bounds given in
the above table, we followed the following procedure. Suppose that we are at
a certain moment interested in finding the solutions with ordp(x-y-z) < f(p)

where f(p) 1is given for p =2, ..., 13 . Choose p , and pu < f(p) - tg >
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and consider the lattice F: for these values of p, pu . If a solution
X, V, Z of (6.2) exists with ordp(z) > u o+ By then the vector

T . _ . . .
(Xl""’X4’XO) with X, = ordpi(x/y) for i =0, ..., 4, is in the
. . 2 2 . *
lattice. Its length is bounded by V(f(po) +...+f(p4) ) . All vectors in F“

with length below this bound can be computed by the algorithm of Fincke and
Pohst, as given in Section 3.6. Then all solutions of (6.2) corresponding to
lattice points can be selected. Then we replace f(p) by u + By ~ 1, and
we repeat the procedure for newly chosen p, u .

We performed this procedure, starting with the bounds for ordp(x-y-z) given
in the above table for f(p) , and with p, m as in Table IV (where #
stands for the number of solutions of (5.2) found at that stage). At the end
we have f(2) =4, f(p) =1 for p =3, ..., 13 . The remaining solutions
can be found by hand. u]

Remarks. 1. Theorems 6.2 and 6.3 have applications in group theory (cf. Alex
[1976]). We use Theorem 6.3 in Section 7.2.

2. The computer calculations for the proof of Theorem 6.3 took 438 sec., of
which 412 were used for the first reduction step. In this first step we
applied the L3—a1gorithm in 11 steps (cf. Section 3.5), which cost on average
about 60 sec. per lattice. The remaining 50 sec. were mainly used for the

computation of the 24 ﬁiu)’s .

6.6. Examples related to the abc-conjecture.

Let x, y, z be positive integers. Put

G = ) p .
plxyz
p prime

For all x, y, z with (x,y) =1 and x +y = z we define
c(x,y,z) = log z / log G

(called the Masser-ratio, according to Tijdeman [1989]). Recently, Oesterlé
posed the problem to decide whether there exists an absolute constant C
such that c¢(x,y,z) < C for all x, y, z . Masser [1985] conjectured the
stronger assertion that c(x,y,z) < 1 + & , when Z exceeds some bound
depending on € only, for all € > 0 . For a survey of related results and

conjectures, see Stewart and Tijdeman [1986], Vojta [1987], Tijdeman [1989].
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It might be interesting to have some empirical results on c(x,y,z) , and
search for x, y, z +for which it is large. From the preceding sections
may be clear that such x, y, z correspond to relatively short vectors

appropriate p-adic approximation lattices.

As a byproduct of the proofs of Theorems 5.5 and 6.3 we computed the value

c(x,y,z) , corresponding to many short vectors that we came across

to
it

in

of

in

performing the algorithm of Fincke and Pohst. All examples that we found with

c(x,y,z) > 1.4 are listed below. Our search was rather unsystematic, so we

do not guarantee that this list is complete in any sense.

X y z clx,y,z)
112 32-56-73 221 23 1.62599
1 2-37 54'7 1.56789
73 310 211'29 1.54708
57.7937 713 218-37-132 1.49762
112 39'13 211'53 1.48887
37 215 38'5 1.48291
27-52 76-41 136 1.46192
1 25-3'52 74 1.45567
219-13-103 711 311-53-112 1.45261
1 212'53 35-72-43 1.44331
1 24-37'547 58-72 1.43906
210'7 57 38'13 1.43501
3 53 27 1.42657
5 311 210'173 1.41268

Two more examples with c(x,y,z) > 1.4 are known:

x=1, y=3547", z=2%7, clxy,2) = 1.4495 ,

found by G. Frey (communicated to us by Prof. F. Cort), and

x=2, y= 109-310 , Z = 235 , clx,y,z) = 1.62991 ,

found by E. Reyssat (communicated to us by Prof. M. Waldschmidt), which wins

the race. Note that these two examples show large primes at two places.

These results do not seem to yield any heuristical evidence for the truth or

falsity of the abc-conjecture.
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6.7. Tables.

127

Table I. (Theorem 6.2.)
P=2py=3,p, =5

Xg frs X Py sign u W
2 9 10 9765625 -1 4 —610351
10 59049 10 9765625 -1 4 — 606661
4 81 12 244140625 -1 9 —476837
6 729 10 9765625 -1 5 — 305153
2 9 8 390625 -1 3 — 48827
fi 729 5 390625 -1 3 —48737
10 59049 8 390625 -1 3 —41447
14 4782969 10 9765625 —1 7 — 38927
4 81 8 390625 -1 4 — 24409
1] 1 5 190625 —1 5 — 12207
8 6561 8 390625 —1 6 — 6001
0 1 6 15625 -1 3 — 1953
4 81 6 15625 -1 3 —1943
8 6561 6 15625 -1 3 —1133
6 729 6 15625 -1 4 —931
2 9 4 625 -1 3 -7
2 9 6 15625 -1 8 —61
] 1 4 625 -1 4 -39
4 81 4 . 625 -1 5 —-17
0 1 2 25 -1 3 -3
2 9 2 25 -1 4 -1
1 3 1 5 1 3 1
1 3 3 125 1 7 1
2 9 0 1 —1 3 1
3 27 1 5 1 5 1
4 81 0 1 -1 4 5
4 81 2 25 -1 3 7
6 729 2 25 -1 6 11
6 729 4 625 —1 3 13
3 27 3 125 1 3 19
5 243 3 125 | 4 23
5 243 1 5 1 3 3
7 2187 5 3125 1 6 B3
6 729 0 1 -1 £ 91
7 2187 1 5 1 4 137
11 177147 1 5 1 10 173
3 27 5 3125 1 4 197
8 6561 0 1 -1 5 205
7 2187 3 125 1 3 289
8 6561 4 625 -1 4 N
Table continued


bdeweger
Stamp


Table I. (cont.)

Xg P X T SIgN u w
| 3 5 3125 1 3 391
5 243 5 3125 1 3 421
9 19683 3 125 1 5 619
8 6561 2 25 -1 3 817

10 59049 6 15625 —1 5 1357
5 243 7 78125 1 5 2449
9 19683 1 5 1 3 2461
9 19683 5 3125 1 3 2851

10 59049 2 25 —1 4 3689

12 531441 4 625 —1 7 4147
1 3 7 78125 1 4 4883
9 19683 7 78125 1 4 6113

13 1594323 7 78125 1 8 6533

10 59049 4 625 -1 3 7303

10 59049 0 1 -1 3 7381

12 531441 8 390625 -1 4 8801
3 27 7 78125 1 3 9769
7 2187 7 78125 i 3 10039

11 177147 5 3125 1 4 11267
3 27 9 1953125 1 7 15259

1 177147 3 125 1 3 22159

§ 177147 7 78125 1 3 31909

12 531441 0 1 —1 4 33215

12 531441 6 15625 -1 3 64477

12 531441 2 25 ~1 3 66427

1 177147 9 1953125 1 5 66571

13 1594323 3 125 1 4 99653
7 2187 9 1953125 1 4 122207

14 4782969 2 25 -1 5 149467

13 1594323 | 5 | 3 199291

13 1594323 5 3125 1 3 199681
1 3 9 1953125 1 3 244141
5 243 9 1953125 1 3 244171
9 19683 9 1953125 1 3 246601

14 4782969 6 15625 -1 4 297959

13 1594323 9 1953125 1 3 443431

15 14348907 5 3125 1 5 448501

14 4782969 8 390625 -1 3 549043

14 4782969 4 625 -1 3 597793

14 4782969 0 1 -1 3 597871

16 43046721 0 1 -1 6 672605
9 19683 11 48828125 1 6 763247

15 14348907 1 5 1 4 896807
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Table I. (cont.)
P=3po=2,p,=5
Xo o X m' sign u W
14 16384 10 9765625 =1 4 — 120361
9 512 9 1953125 -1 3 —72319
4 16 8 390625 -1, 3 — 14467
12 4096 6 15625 -1 3 —427
7 128 5 3125 -1 4 -7
2 4 4 625 -1 3 =23
1 2 2 25 1 3 1
5 32 1 5 -1 3 1
6 64 3 125 1 3 7
11 2048 4 625 1 5 11
9 512 0 1 1 3 19
10 1024 2 25 -1 3 kY
3 8 6 15625 1 4 193
15 32768 3 125 —1 4 403
14 16384 1 5 1 3 607
17 131072 7 78125 -1 3 1961
16 65536 5 3125 1 3 2543
8 256 7 78125 1 3 2903
19 524288 2 25 1 4 6473
18 262144 0 1 -1 3 9709
23 8388608 1 5 -1 6 11507
13 8192 8 390625 1 3 14771
22 4194304 8 390625 -1 5 15653
10 1024 11 48828125 1 7 22327
18 262144 9 1953125 1 4 27349
20 1048576 4 625 —1 3 38813
0 1 9 1953125 1 3 72338
21 2097152 6 15625 1 3 78251
5 32 10 9765625 1 3 361691
24 16777216 3 125 1 3 621383
23 8388608 10 9765625 1 3 672379
26 67108864 7 78125 1 4 829469
p=3 po=2,p =3
Xg R X ' sign o w
12 4096 16 43046721 -1 3 — 344341
5 32 15 14348907 -1 3 —=114791
7 128 1 3 -1 3 1
6 64 B 6561 1 3 53
14 16384 2 9 -1 3 131
13 8192 9 19683 1 3 223
20 1048576 10 50049 1 3 8861
21 2097152 3 27 -1 3 16777

129


bdeweger
Stamp


Table II.
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nr.
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Chapter 7. The sum of two S-units being a square.

7.1. Introduction.

Let Py» -vs Py ( s> 1) be distinct primes, and let S be the set of
positive rational integers which have no prime divisors different from the
p; - A rational number is called an S-unit if its absolute wvalue 1is a

quotient of elements of S . Thus the set of S-units is

L”mps|ﬂ€Z for i=1, ..., s> .

We study the diophantine equation
X +y =2z

in S-units x, y , and =z € Q , where the set of primes pl, e, pS is
given. We show how to find all solutions of this equation, using the theory
of p-adic linear forms in logarithms, and a computational p-adic diophantine
approximation method. We actually perform all the necessary computations for
solving the equation completely for { Pys -5 Py }y=4{2, 3, 5, 7} . This
type of equations has applications in arithmetic algebraic geometry (cf.
Setzer [1975], Pinch [1984]).

We start with getting rid of the denominators. Let x, y, z be a solution.
There is a d € S such that ld-x|, Id-yl € S . Put d = dl-dg , where
dl’ d2 € S and d1 squarefree. Then

2

d;rd'x +d -dy = (ddy2)7

1 2 %

which has the same form as x + y = 22 , but now Idl-d-xl, |d1-d-y| € ScZ
and dl-dz-z € Z . Without loss of generality we may therefore study
x +y =2z |, (7.1)

where

Xxe€sS, tyes, zelZ,
x>y, z>0, (7.2)

(x,y) 1is squarefree .
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We shall prove the following results.

THEOREM 7.1. Let IS be given. There exists an effectively
computable constant C , depending on Py -os Py only, such that any
solution X, Y, Z of equation (7.1) with conditions (7.2) satisfies

max (x,|lyl,z) < C .

THEOREM 7.2. Let { p,, ..., p, } ={ 2, 3,5 7} . Equation (7.1) with

conditions (7.2) has exactly the 388 solutions given in Table I.

Remarks. 1. The Tables are given in Section 7.9. We stress that the aim of
this chapter 1s not only to prove these theorems, but to show as well that
for any given set of primes { Pps oo Py }  a result similar to Theorem 7.2
can be proved along the same lines, 1In a more or less algorithmic way.

2. Equation (7.1) with conditions (7.2) can be seen as a further

generalization of the generalized Ramanujan-Nagell equation

T+ k=pop T (7.3)

(cf. Chapter 4), namely by taking |k| € S arbitrary instead of k € Z
fixed. The method of this chapter to solve (7.1) is also a generalization of

the method of Chapter 4 to solve (7.3).

Equation (7.1) can be transformed into a number of Pell-like equations. Put
2

x =D-u ,

where D, ue€ S, and D 1is squarefree. There are only 2® possibilities

for D . Now, (7.1) is equivalent to a finite number of equations
z= -Du =y (7.4)

in u € S , ty € S, z € Z , with z > 0 and (u,y) = 1 . We treat
equation (7.4) by factorizing its both sides in the field K = Q(VD) . When

dealing with equation (7.4) we allow =z and u to be negative.

7.2. The case D =1

First we consider the special case D = 1 . Then (7.4) is equivalent to
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z+u=y,
z-u=y,
= . + . .
where y Y'Yy s Yy €S, ty, € S, and Yy > Iy2| . Subtraction yields
2:u =y, " Y, (7.5)

where now all variables u, Y0 Yo (apart from the sign) are in S , hence

in Z . By (u,yl) = (u,yz) = 1, equation (7.5) is of the form a + b = ¢

>

or 2-a + 2'b=2-¢c, where a, b, ¢ are composed of primes 2, pl, e, pS
only, and (a,b) =1 , a 2 b >0 . In Chapter 6 it was shown how to solve
a + b = c . For our standard example { Pys oo Py y =42, 3, 5 7 } we

have the following result.

LEMMA 7.3. Let A Py o-es Py y=4{2, 3, 5, 7 } . Equation (7.1) with
conditions (7.2) and D =1 has exactly the 95 solutions given in Table I

with D =1

Proof. From Theorem 6.3 it follows that a + b = ¢ with a, b, ¢ € S ,

(a,b) =1, a > Db has exactly 63 solutions. They are easy to compute. Each

of these gives rise to three possibilities for (7.5):

if 2 | a then (u,yl,yz) = (éa,b,c), (b, 2c,2a), (c,2a,-2b),

if 21b then (wy,y,) = (a,2b,2c), (éb,c,a), (c,2a,-2b),

if 21 c then (uy,,y,) = (a,2b,2c), (b,2c,2a), (éc,a,—b).

Of the thus found 189 possibilities, the 95 ones given in Table I with D =1

satisfy x >y and =z > 0 , whereas the others don’t. o

This completes our treatment of the case D =1

7.3. Towards generalized recurrences.

From now on, let D > 1 . Put K = QD) . Let o : K = K Dbe the

automorphism of K with o(YD) = -¥D . For any number or ideal X in K we

write X’ for o¢(X) , for convenience. Let P, for 1 =1, ., s be the

prime ideal in K such that ordp (pi) >0 . If P; splits in OK , this is
i

well defined 1f a choice has been made from the two possibilities for

VD (mod p ) . Put for a solution =z, u, y of (7.4)
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X =z + u-vD .

>

Then y = x'x’ , and by (u,y) = 1 we have

min ( ordpi(u), ordpi(y) ) =0. (7.6)

Equation (7.4) leads to the conjugated ideal equations

s a; bi
) = Twe; 9
i=1
(7.7)
S a; bi
o) = Tw», " »;
i=1
where a., bi € NO , and bi =0 if pi = pi . We need the following
auxiliary lemma.
LEMMA 7.4. If & € K and ordp(E) = ordp(E’) for a prime p , then
ord (&) < ord (£-8’)
o 3 o E-E
Moreover, if p =2 and D =1 (mod 8) , then
ordZ(E) < ordz((E—E’)/Z) ,
and, if p=2 and D=2, 3 (mod 4) , then
1
< =&’ = .
ordZ(E) ordz((E £)/2VD) + >
Proof. This is an easy exercise, which we leave to the reader. u]

We distinguish, as usual, three cases for the factorization of the prime p;
in K : it may split, ramify or remain prime. See Borevich and Shafarevich

[1966], section III.S.

i
=p. , and from ord_ (x) = ord_ (y’) and
P} p, X p, X

- p; remains prime in K . Then P; Y D, and if p. = 2 then
D =5 (mod 8) . We have (pi) =P
Lemma 7.4 we obtain

ord (y) = 2-ord  (¥) < 2-ord_ (y-y’) = 2-ord_ (2-u-VD)
P, Y P, X P, XX P,

It follows, using (7.6), that
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if p, #2 then ordp (y) = 2:a; =0,
i

1 then

if p; = 2 then ordz(y) = 2-ai =0, 2, and if a;

ordz(u) =0 .

- P, ramifies in K . Then P, | D if P, #Z2 , and D=2, 3 (mod 4) if
- — — - by = 1.
p, = 2 . We have (pi) =P P =R and ordpi(x) = ordpi(x ) = Ay

From Lemma 7.4 we find

ord (y) = 2-ord_ (¥) <1 + 2-ord_ ((y-x’)/2:¥D) = 1 + 2-ord_ (u)
Pi Pi Pi Pi

By (7.6) we obtain

1
Q

1
(@)
=
Q
o}
Q.
(=
[

ord_ (y) a, =1 then ord (u) =0 .
P; 1 Pi

- P, splits in K . Then P, Y D, and if p, = 2 then D =1 (mod 8)

We have (pi) = P, @}, P; #p} - Further, ordpi(pi) =1, ordpi(pi) =0
Hence ord_ (x) =a, , ord_ (x’) =b, . If a, = b, then from
P; i P; i i i

ord_ (y) cord_ ((y-x’)/2) = 2-ord_ (u)
Py i Py Py

1
N
O
in)
(o}

&~
N
N

we obtain by (7.6) that

ordpi(y) =a; =b, =0.

1 1

If a, # bi then ordp (y) = a, + b, >0, hence ordp (u) =0, by (7.6).
i i

We infer in this case

ord (y) =a, +b, >1 + 2-min(a,,b,) =1 + 2-ord_ (x—x’)
p; i i it p;

=1+ 2-0ord (2)
p

It follows that

d
or b (y)

max(a,,b.,) , min(a,,b,) =0 if p, # 2,
i i’7i i i

1

d
or b (y)

max(a,,b.) + 1 , min(a,,b,) =1 if p, =2 .
i i’7i i i

1

Put bO = min(ai,bi) if p, = 2 occurs, and bO = 0 otherwise. (Note that
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min(ai,bi) = 1 may occur only if s # p; , hence only if p; = 2 splits).

Let us assume that the splitting primes of Py» ---» Py @re py, ..., Py
for some 0 <t < s . Put
I={il1<i<t, a, >b, },
i i
I’ ={il1<ig<t, a, <b,}
i i
hi
For 1 =1, ..., t, let hi be the smallest positive integer such that pi
is a principal ideal, say
hi
P, = (m.)
If h denotes the class number of K , then hi | h . Now, ni € K is

determined up to multiplication by a unit. Thus we may choose L such that

.| > In} | if 1ieT1,
i i
.| < Im,| if 1 e I’
i i
For 1 =1, ..., t , put
| a. = b, | =c. h. +d. ,
i i ii i

with Ci’ d, € N. , and O £ d. € h. -— 1 . Consider the ideal

i 0 i i
bO di di s ai
a=(@2) - 1w TP} m »;
iel iel”’ i=t+1
From the above considerations it follows that, for given K , pl, e, pS ,

there are only finitely many possibilities for a . By (7.7) it follows that

s s

(x) =a- ] (m,) - T (m)

. i . i

iel iel’
(namely, la,-b,| = max(a,,b,) if p, # 2 , since then min(a,,b,) = 0 ; and
i~ i’7i i i’7i
la,-b,.| = max(a,,b,) -1 if p, =2 and b, =1 ). Hence a 1is a principal
i i i’7i i 0

ideal, say
a = (o)

for an « € OK . Up to multiplication by a unit, there are only finitely many

possibilities for o« . Let € Dbe the fundamental unit of K with € > 1
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c, c,
Mmoo
iel iel
) (7.8)
c, c,
Mmoo
iel iel
, , mt € NO , and for each possible «
3 " &« .n my 3
R B T L B
iel iel”’ iel iel”’
my M o’ ,n M my
) T ) T + 5 € ) LA ) T
iel iel”’ iel iel”’
(7.9)

are generalized recurrences in

Now, (7.7) leads to the system of equations
X =z + wD = *a el
x> =z - WD =+’ e’
where n € Z Put for n € 7 , m1
= a . n .
G“(n,ml,...,mt) = >/p'€
= & ..n,
H“(n,ml,...,mt) = 5 €
Then (7.8) is equivalent to
+ =
tu G“(n,cl,...,ct)
+ =
tz H“(n,cl,...,ct)
The functions G and H
« o

all variables but one are fixed,

sequences.

We show an example in Fig. 8.

the sense that if

then they become integral binary recurrence
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7.4.

Let us write

m

—_ “ . n .
Figure 8. Ga(n,m) = Syp’€ T

11 +

< 10

m

2-Y¥30, = 13 + 2-¥30

(horizontally). Numbers

> 10

Towards linear forms in logarithms.

(u)

ord

u.
i p.
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I, =<il|l1<1i<s, ord (G (n,m
p,

1,...,mt)) > 0 occurs

for at least one (n,m ..,mt) € 7 X Né > .

1

Note that since (u,y) = 1 the sets IU’ I, I° are disjunct. We proceed

with the first equation of system (7.9). Written out in full detail it reads

C. C. C. C. u.

o n i , 1 o« ,n , 1 i _ i
syp’€ MmN, " -5pe - Mmy - Mm =%Tp, . (7.10)
iel iel”’ iel iel”’ :'LEIU
Now, I, 17, 1 depend on « , which depends on the particular solution of

U
equation (7.4) that we presupposed. However, we know that o« Dbelongs to a

finite set, which can be computed explicitly. So if we can solve (7.10)
completely for each « of this set, then we can find all solutions of (7.9),

hence of (7.1).

The set of the «’s may be reduced, without loss of generality, as follows.

If D=1 (mod 8) then bO =0, 1 may both occur, with « = “O’ 2-a0
respectively. We only have to consider 2-a0 , because if u = Uy Z = Zg is
a solution of (7.9) for «o = “O , then u = 2-u0, zZ = 2-2O is a solution of
(7.9) for o = 2-a0 . Hence it is not necessary to consider o = o if also
o = 2-a0 is already being considered. By the same argument, if
D =5 (mod 8) then with o« = « such that ordz(ao) =0 also « = 2-a0
may occur, so that we only have to consider the latter. Note that it may now
occur that (u,y) = 2 . The condition (u,y) =1 1is used only to ensure that
HJ and I U I’ are disjunct. This remains true in the above cases with
(u,y) = 2 . Further, if (ao) # (ab) for some «y > then we only have to
consider one o« of the pair o ab . Namely, 1f the I, I’ Dbelonging to
“O are IO’ Ib , then the I, I’ belonging to ab are Ib, IO , and then
“6 n ¢35 ,Cl %0 , ,Cl ¢35
Gab(n’ml’ ,mt) = 57D € g,nl -q ™ - 5D € g,nl -q L
0 0 0 0
“6 -n €1 €1 *0 -n €1 €1
= = D g’ -q n; q,ni - 5yp ¢ q L q,nl
0 0 0 0
=¥ Gao(—n,ml, ,mt) ,
(by using €-¢’ = %1 ), and analogously
Hab(n’ml’ ,mt) =t H“o( n,m,, ,mt)
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From equation (7.10) we now derive pi—adic linear forms in logarithms, in

three different ways, according to 1 € I, I’ or IU . Put

3 1
= = i = = i = = = i P .
vs > if p. 2, 7. 1 if p; 3, 18 > if p; 5

Then vy > 1/(pi—1) , hence if ordp (8) > s for a & € K then
i

d 1 1+ = d . 7.11
or pi( ogpi( £)) or pi(E) ( )

We now have the following result.

LEMMA 7.5. Let n, ; (ieI UVl ), us (ie IU ) satisfy (7.10).

(1). For i eI, put

A, = ord_ (2VD/a’) ,
i p.
i
o € nj
A, = log_ (=) +n-log_ (=) + ) c.-log (=)
T,
- Y c.-log (—%)

I
1
O
in)
(o}
i

(ii’). For i € I’ put
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Remark. Note that all the above pi—adic logarithms are well-defined, since
their arguments have pi—adic order zero. This follows from the fact that IU’
I and I’ are disjunct, and if D = 1 (mod 8) from the choice « = 2-a0 .
Proof. For (i), divide (7.10) by its second term. For (ii), divide (7.10) by
its second term, and add 1. For (ii’), divide (7.10) by its first term, and

add -1. Then in all three cases take the pi—adic order, and apply (7.11). O

The linear forms in logarithms Ai’ Ki’ K; , as they appear 1iIn Lemma 7.5,
seem to be inhomogeneous, since the first term has coefficient 1. However, it
can be made homogeneous by incorporating this first term in the other ones,

as follows. Put

*®
h =1lem (2, h,, ..., h )
1 s

Note that, by the definition of « ,

*
* n n. n. S n. h -b
o =Rt o Tl p, 2 o, (7.12)

iel 1 e’ b i=t+1

where the exponents n; for 0 <€ 1 < s are integral. It follows that

Put
* * * * * *
A.=h -A., n =h n+n., c¢c.=h c. +n
i i 0 J J J
Then it follows that
x x c x T, x T,
Ai =n -log (57) + Y c,-log (E%) - Y c.-log (E%)
Py jel Y Py 75 jerr J Py 75
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Note that the prime divisors of D are just the ramifying primes. By (7.12),

*

*
o )h . Snol o nni‘ o n,ni ; ni_vi.zh -(bo—vo)
2VD - LS T Py ’
iel iel i=t+1
where Vi = é-h*-ord (4D) € Z for i = t+1, ..., s , and VO =1 if 2
i
splits, vy = 0 otherwise. If p; = 2 splits we have assumed that bO =1
Hence the last factor vanishes. So put
* * * * * *
K. =h K, , XX =h K., u,=h-u, -(n, -v, ),
i i i i J J J J
*
= i <1xg .
IU IU Ui t+1 i s, v, 0 >
Then it follows that
K? = n*-log (e2) - ) *u%-log (p.) + ) c%-log (m’,) +
P jEIU J p; J jel J p; J
+ ) ¢ lo (m.) ,
jer’ J p; J
Ki* = n*-log (e) - ) *u%-log (p.) + ) c%-log (m.) +
P jEIU J p; J jel J p; J

+ ) c"-log  (m)
jep 9 Py

This leads to the following reformulation of Lemma 7.5.

LEMMA 7.6. Let n, c, for 1€ 1 UTI u, for i e€ 1 be a solution of

i ’ i U

. *® *® *® *® *®
(7.10), let A., k., K. be as in Lemma 7.5, and let h , A., K., K., n.,
% X % i i i i i i i
c., u., I be as above.
i i U
(i). Let 1 eI .. If u, + A, > y. then

U i i i

* *
u, + A, + ord (h ) = ord (A,)
i i P; p, i

(ii). Let i €1 . If h,-c, +Kk, » . then
i 7 i i

* *
h.c. + k. + ord (h') = ord_ (X.)
i p. p i

i i .
i i
(ii’). Let 1 €I’ . If h,-c, + K. 2 7. then
i 7i i i
* *
h.c. + k> + ord (h) =ord (K5 )
i 7i i P; p; i
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Remark. We will study the linear forms in logarithms A?, K%, Ki* for

i
arbitrary integral values of the wvariables n*, c?, u? . Notice that the
parameter o« has disappeared completely from these linear forms. This means
that we have to consider the linear forms for each D only, instead of for

each «o .

7.5. Upper bounds for the solutions: outline.

Let us first give a global explanation of our application of the theory of
p-adic linear forms 1in logarithms, that gives explicit upper bounds for the
variables occurring in the linear forms A?, K?, Ki* . Then we give arguments
why we choose this way to apply the theory, and not other possible ways. In

the next section we give full details of the derivation of the upper bounds.

In the sequel, by the ’constants’ Cl’ ce s C12 we mean numbers that depend
only on the parameters of (7.10), not on the unknowns n, Ci’ ui
Put

M= max (c¢.), U=max (u,), B=max (M, U, Inl ),

. , i .
ielUI 1€IU
* * * * * * % *
M = max (c.), U =max (u.,), B =max (M, U, In | ),
. i .
ieIUI”’ iel
U
N = max ( InOI, R Intl, Int+1—vt+1|, , In-v 1)
Then it follows that
* * X* + N
X «h -X+N, XK R (7.13)
h

for X =M U, B . We apply Lemma 2.6 to the p-adic linear forms in

logarithms. For A? we find, in view of Lemma 7.6(1i),

*
U<c, + C2-log(B ), (7.14)

and for Ki’ K; we find, in view of Lemma 7.6(ii), (ii’),

M<C. +C -log(B) (7.15)
3 , log . .

Here, Cl’ C2, C3, C4 are constants that can be written down explicitly. In

order to find an upper bound for B we try to find ClO’ C11 such that
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B<C _+C  -log(B9 (7.16)
10 11 98 : :

In view of (7.13) we may insert and delete asterisks any time we like, as
long as we don’t specify the constants. In order to prove (7.16) it remains,

in view of (7.14) and (7.15), to bound In| by a constant times 1log B . We

will introduce certain constants CS’ C6, C7 , and distinguish three cases:
— . < <
(a). ( C6 + C7 M) n C5 ,
(b). n > C5 , (7.17)
. < = .
(c) n ( C6 + C7 M)

In case (a) it is, by (7.15), obvious that (7.16) holds. In cases (b) and (c)
one of the two terms of GOc dominates. We shall show that there exist

constants C8’ C9 such that
< . . .
n| Cg + CyU (7.18)

Then (7.16) follows from (7.14).

From (7.16) we derive immediately an explicit upper bound C12 for B ,
hence for all the variables involved. Since the constants Cl’ e, C4 will
be very large, also C12 will be very large. To find all solutions we

proceed by reducing this upper bound, by applying the computational p-adic
diophantine approximation technique described in Section 3.11, to the p-adic

*

linear forms in logarithms A?, Ki’ Ki* . Crucial in that line of argument is

that the constants CS’ e, C9 are very small compared to Cl’ e, C4
This method leads to reduced bounds for the p-adic orders of the linear
forms. Then we can replace (7.14) and (7.15) by much sharper inequalities,
and repeat the above argument, to find a much sharper inequality for (7.16).
In general we expect that it is in this way possible to reduce in one step
the upper bound C12 for B to a reduced bound of size log C12 .

Before going into detail we explain briefly that it 1is possible to treat
(7.10) partly by the theory of real (instead of p-adic) linear forms in
logarithms, and subsequently by a real computational diophantine
approximation technique (cf. Section 3.7), and why we prefer not to do so.
First, note that Ki and K; have generically more terms than Ai , and are
therefore more complicated to handle. Since Ki’ K; occur only in case (a),
this is the most difficult case. Equation (7.10) consist of three terms, each
of which is purely exponential, i.e. the bases are fixed and the exponents

are varilable. If one of these three terms is essentially smaller than the
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other two (more specifically, smaller than the other terms raised to the
power & , for a fixed & € (0,1) ), then we can apply the real method. There

are two ways of doing this. Write (7.10) as
X - x = 2-u-VD .

First, suppose that I|y-y’ | < |x’|8 . Then In| cannot be very large, and we
are essentially (i.e. apart from a finite domain) in case (a). Unfortunately,
the region for |[n| that we can cover in this way becomes smaller as M — ®
(see the example below). Second, suppose that lxl > |x’|1/8 , or
lxl < |x’|8 . Then we are essentially in case (b) or (c). But this area can
be dealt with easier p-adically, since here we use the linear forms A, ,
whereas the real linear forms 1in logarithms wused in this case will
generically have more terms. The areas sketched above, in which we can apply
the real theory, will not cover the whole domain corresponding to case (a)
(cf. the white regions in Fig. 9 below). Hence we cannot avoid working with

the p-adic linear forms Ki’ K; . But then it is more convenient to avoid the

use of real linear forms.

o]

51 A
i
s
T — , -,
Ef%ﬁ'* T x=x?
'.::::‘.""i__nh
i
s :H'I'!'
- 2x'|
A X
= x = Ix"1+1x'|
- x= Ix'l
=, x = lx'1-Ix'|
= =
- + 1, .,
x=7lx"| x = 3lx |

Figure 9.
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Let us 1llustrate the above reasoning with an example. Let «a = « = 1 ,
1

e=1+V2, mo= 1+ 2V2 , s =1, 1={1}, py=7, 1 =¢, and &=~

Then we have y = (1+V2)n'(1+2-V2)M . Fig. 9 above gives in the (n,M)-plane

2
the curves x = ¥ 7, 2-1x’ |, Il 1+/Ix |, x|, |y |VIxl, é'lx’l, Vi |,
which are boundaries of the four regions A, B, C, D . We have the following
possibilities.
number of terms in linear form
case
region (essentially) p-adic method real method
A (b), (c) 2 3
B (b)), (c) 2 -
C (a) 3 -
D (a) 3 2
) 1o ; 19
The hardest part is C . It can be reduced to E-lx [ <x < Ix’ | = x| and
x| + |x’|8 < ¥y < c-ly’l for any c¢c > 1 , 8 € (0,1) , but will never

disappear. So we cannot avoid the p-adic linear form in case (a), which then

works in regions C and D together.

7.6. Upper bounds for the solutions: details.

We now proceed with filling in the details of the procedure outlined in the

previous section.

We apply Yu's lemma (Lemma 2.6) as follows. We have L = K = Q(VD) , so
d = 2 . For the “i we have e&/¢’, nj/n3 , or g, €, p., m,, n3 . We have

to compute the heights of these numbers. We have at once

hi(p.) =1 . if .23, h(2) =1,
(pJ) og(pJ) i pJ (2)
h(e) = h(e’) = é-log(s) ,
h(m,) = h(m,) = = log(max(1, I7,|) -max(1, In’1)) .
J J 2 J J

Further, let B =¢ or B = nj . Then the leading coefficient of /B’ is

ay = [B-B’ | , and we infer
h(E—) = élog(IB'B’I-max(l,Igrl)-max(l,lgll)) = log(max(IBI, IR’ 1)) .

Hence
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.
€y - _Jy = ,
h(Z7) = log(e) , h(nh) = log(max(lnjl,lnjl)) .

The order of the o, is important in two respects: it is required that the

Vi for i =1, ..., n-1 are in increasing order, and that ordp(bn) is
minimal among the ordp(bi) . Since the bi are the unknowns, we should
assume that Vn < V1 < ... < Vn—l . In the final bound however, only the
+
product Vl-...-Vn and Vn—l appear. So the ordering of the Vi only
+
matters for defining Vn—l . It follows that we can take

V, = max ( h(ai), fp-(log p)/d ) ,
with the o, in any order, if we define

vioo= (1, Vv V)

no1 - Max » Vo e V)

Further, we take

4 fp/d
B=By=B =B =mx (Ibl, ..., Ibl 2, 3n(p -1) )
3 . 3
Then log(1+ZH-B) > fp-(log p)/d . By B > 2 it follows that 1 + ZH-B <B.

Hence we can take

W = log B .

There are two more conditions to be checked. The +first one 1is that

b b
all-...-ann #Z 1 . This is immediate, if we assume the obvious condition that
not all bi are zero. The second one is [K(ai/q,...,ai/q):K] = qn , which

is less obvious. For our situation it follows from the following lemma.
Application of Yu’s newest results avoids such a condition (cf. Yu [1989]).
Nevertheless we include the lemma here, to show that it is often possible to

prove such a condition, which may in some cases lead to lower constants.

LEMMA 7.7. Let X = Q(VD) , with € as fundamental unit, and h as class

number. Let Py ooos Py be distinct prime numbers, and let pi be for

i=1, ..., s a prime ideal in K 1lying above p; - Let hi be a divisor
h.

of h such that pil is principal, and denote a generator by L Let

either: (1) all P, split, and then
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or: (2)
EO =¢ or g , E.=nm or T’

Let q be an odd prime, not dividing h . Then

1/q
o -

s+1

[K(E gDk = g

1/q)

Proof. Let KO = K(Eé/q) , and Ki = Ki_l(Ei for 1 =1, ..., s . We use
induction on i to prove that [KS:K] = qS+1 . Note that [KO:K] = q
Suppose that [Ki:K] = ql+1 . It remains to prove that [Ki+1:Ki] = q , hence
it suffices to prove that Ei+1 - Ki , since (q is prime. Suppose the
contrary 1is true. Ki is a K-vector space of dimension ql+1 , with as
basis all the elements
i kj/q
T = 1] &.
ko,...,ki =0 J
for kj e {0 1, ..., g1 } for j=0, ..., i . It follows that there
exist ay k. € K such that
0 i
1/q
g4 = ). a T . (7.19)
i+l ko""’kl ko,...,ki ko,...,ki

The group of K-embeddings of Ki into € 1is generated by the oj for

j=0, ..., 1 defined by
1/q, _ 179 _ .
oj(EE ) = EE for £ =0, , 1, L#E]G,
179 179
o. (") = p-E, ,
J EJ e EJ

where p 1is a primitive g th root of unity. Hence all the embeddings are

given by
i Ej
gt T jEO"j
for Ej €e {0, 1, ..., g1} . It follows that
) i Ej i km/q ) i Ejkj
@EO,...,Ei(TkO,...,ki) - jEO"j (mEOEm ) = onp 'Tko,...,ki
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=0 JJ
- p .
ko,. ,ki
- . 1/q . aq
The minimal polynomial of E.+1 over K is Xt - Ei+1 Hence the
conjugates of Ei:? are J Ei:? for j=0,1, ..., g1 , all with equal
multiplicity. There exist numbers mj e {0, 1, ..., g1 } such that for
Jj=0,1, ..., g1 we have
1/q J 1/q

(El+1) - &4

Hence
z £JmJ
1/q Jj=0 1/q
Yo, ..t .(El+1) - f Eia1

Now apply ) ) to (7.19). Then for each tuple (20,...,21) we find

(OIS |

i
z £JmJ z £JkJ
=0 1/ =0
- i DR k o) Tk k
k.,....,k, 00°""71 O |
0 i
i+l - . . i+l

Here we have a system of (g linear equations in the ¢ unknowns

a The determinant of this system is exactly the

ko,...,ki

discriminant of Ki over K , hence nonzero.

Jjust one solution of

ay k. =0 if (kO""’ki) # (mO, ,mi) ,
0 i
1/
%n m, El+? m m
RRRELY o oMy

The latter equation now ylelds an equation over K :
! J
S ES

My j=0

3

q
. a
i+l mO,..

In case (1) this leads to the ideal equation

)
Piv
Piv
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the system. But we know that solution:

square root of the

i+l

Consequently there is in C



and in case (2) to

(’)hi+1 q ' ) j' J
Piv =at TPy ’

(where p( > stands for p or p ) for some fractional ideal a (note

that (EO) = (1) ). Because of unique factorization for ideals it follows in
both cases that q divides all mj-hj for j =1, ..., 1 and hi+1 . This
contradicts the assumption q t h . u]
bl bn
Remarks. 1. If ordp(oc1 EEREN -1) > 1/(p-1) then
bl bn
ordp(oc1 R -1) = ordp(bl-logp(a1)+...+bn-logp(an))

We prefer to work with the logarithmic version, since that is the one we use
in the computational method of reducing the upper bounds.

2. In order to apply Yu’s lemma we can take for q the smallest odd prime
f
that does not divide h-p-(p F-1)

3. The author is grateful to M.A.J.G. van der Vlugt (Leiden) for discussions

on the above lemma.

We now proceed to compute the constants C1 to C12 . To find C1 and C

we apply Lemma 2.6 to A% , for all 1 € I . Then we find for each such 1
i U

constants C1 i C2 i such that, under the conditions

P.
u, + A, >y, , B > max (2, %-ti-(pi *

_1)),
(where ti denotes the number of terms in A? ), we obtain
a Ny <c, . +cC. .-log BY
or p, i 1,i ©~ T2,1 °8F

By Lemma 7.6(i) and the relation ordJp = ep-ordp , and assuming that

f /2
* 4 i

U > max (y.,-2,) , B 2>max (2, =-t, (p. -1) ), (7.20)

el i i el 3 i i

U U
we see that it suffices to take
*

C, = max ( —(Ai+ordp.(h )) + Cl,i/ep. ) . C, = max ( C2,i/ep. )

1€IU i i 1€IU i

Then (7.14) holds.
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Next we apply Lemma 2.6 to K? and Ki* , for all i el and I’
respectively, to obtain C3 and C4 . By X"’ we denote X if i e I ,
and X’ if 1 € I’ . There exist by Lemma 2.6 constants C3 i and C4 i

such that under the conditions

fp /2.
i
'ti'(pi

) *
h,-c, +k, >y, , B >»mx (2
1 1 1 1

-1) )

Wl

) ¥

(where again ti denotes the number of terms of K; ), it follows that

ord (KF o
P i

*
) < C +C, ;log B .
i

3,1 4,

Again, by Lemma 7.6(ii), (ii’) it follows that, under the conditions

O’ f /2

M > max (—iﬁ—i——) , B > max ( 2, %-t.-(pi !
ielVUT’ i ielVUT’

-1) ) (7.21)

it suffices to take

k' V+ord (h*)
i p.

C, . C, .
1 3,1 4,1
C, = max ( + ) , C, = max (—————J
3 . , h. h.-e 4 . , ‘h,-e
ielVI i i pi ielVI i pi
Then (7.15) holds.
We take C5 to C7 as follows:
C. = lo (2-‘5i‘)/2-1o e C_ = lo (2-‘5;‘)/2-10 e
5 - g o g ’ 6 - g (X, g ’
ni n;
C, = ( z log|—| + z log|— )/2-log € .
7 . ™’ A .
iel i iel 1

Note that C or C may be negative, but that always -C_ < C_ . Further,

5 6 6 5
C7 is always strictly positive, unless I = I’ = & . Next we show how to
take C8 and C9 . Suppose first that

>
n > max ( CS’ 0)

Then, from €-g’ = *1 and the choice of m,oowe find by (7.8) that

o - fe
X’ - o’

which expresses that the first term of GOc dominates. Put

C.
i
il

iel”’

>

n

..'l'l'

iel

T .
1
.
1

€

8,

i
Y
i
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U
Then we infer
U Uy
P> T p; = = lx=x’172:VD > Ix1/4-VD
1€IU
«l n Ci Cy «l n
=ap€ 1 Im. | ll ,Inil > W5 €
iel iel
hence
n < ( 10g(%§%) + U-log(P) )/log € .

Next suppose that
n < min ( —(C6+C7-M), 0)

Then we find that the second term of GOc dominates, namely

C C

‘X" ‘“,‘ e |0 n; i L i
A | = [Z—|. =] . n - . n —
x e yer|™y iel’ |1
, 144 T, M , -2+ (n+C,-M)
‘a ‘ -2:n i i _ ‘a 7
> |=|-¢ A mil=l-n — = [=]|-¢
o . m, | U | o
iel]l il iel i
., 2-C
> ‘Q; € 6 =2
o
Put
F'= Mmwmin (1, =}l ) - T min (1, Im.| )
. i . i
iel iel’
Then we infer
u o’ | _Inl €1
> —? . ’ . - . . ’ .
P lx=x’ 1/2-VD > |y’ |1/4-VD WD € nlel = Imy
iel iel’
lw’ | _Inl €1 i
2 . . 3 ’ . 3
WD € .ﬂ mln(l,lnil) .ﬂ ,mln(l,lnil)
iel iel
R LY B P N E i
%) 4YD

Hence
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-C_/C 1/C
In| < [ 1og(é£9—-r 6 7) + U-log(P) ]/log(s-r 7)

The remaining possibilities in cases (b) and (c) are C. < n < 0 and

0 <nc«< —(C6+C7-M) < -C So we may take, noting that T <

6 -
-C_/C 1/C

C, = max log(ézg)/log €, log(ézg—-F 6 7)/log(s-l"

8 lecl lo |

1/C

Cy = (log P)/log(e T 7)

Then (7.18) holds in the cases (b) and (c). Now take

ClO

max ( C,, C,, IC.I, |C6|+C

10 Y30 %5 'Cyr Cg*CyoCy )

3 77

C

L, = max ( C,» Cpr CpeCo CyeCy )

Then it follows that (7.16) is true, if conditions (7.20) and (7.21) hold.

Hence, by Lemma 2.1, we infer the following result.

LEMMA 7.8. In the above notation,

BY <« ¢ B < C
12 12

hold unconditionally, where

* * * * *
C.., = max [ 2-(N+h"-C, +h +Cyy - log(h 'C11))’ max (h -(71—Ai)+N),

12 10 el
U
O fp /2
max (h*-—iﬁ—i——+N), 2, max (%-ti-(pi . —1)) ] ,
ielUI’ i iEIUI’UIU
I
C12 ==, (C12+N)
h
Proof. Clear. O

Remarks. 1. Theorem 7.1 is an immediate corollary of Lemma 7.8.

2. In practice, almost always the first term in the max-definition of CTZ

dominates. Moreover, the term N will in practice disappear in the rounding

off. Similarly, in the definitions of C10 and C11 , the dominating factors

are in practice C1 to C4 .
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7.7. The reduction technique.

We now want to reduce the upper bound C for B (or C for B* , which

*
12 12

is equivalent), to a much smaller upper bound. We do so using the p-adic

computational diophantine approximation technique described in Section 3.11.

We perform this procedure for A = A%, K?, Ki* , for the relevant i . We

work 1in the p-adic approximation latéices F“ themselves, and not in the
sublattices described in Section 3.13. The computational bottlenecks are the
computation of the p-adic logarithms to the desired precision, and the
application of the L3—Algorithm. We refer to Chapter 3 for details. Once we
have found reduced bounds for ordp(A) for the above mentioned A, we

combine these bounds with Lemma 7.6 and with estimates (7.13), (7.17) and
(7.18) to find reduced bounds for B and B* .

When reduced upper bounds for B, B* are found in this way, we may try the

. . *
above procedure again, with C12, C12

We may repeat the argument as long as improvement is still being made. But at

replaced by their reduced analogons.

a certaln stage, usually near to the actual largest solution, the procedure
will not yield any further improvement. Then we have to find all solutions by
some other method. One technique that may be useful is the algorithm of
Fincke and Pohst, described in Section 3.6. Another way 1s to search directly
for solutions of the original diophantine equation below the reduced bounds.
In our present equation this may well be done by employing congruence
arguments for finding all solutions of the second equation of system (7.9)

below the obtained bounds.

7.8. The standard example.

In this section we shall work out the procedure outlined above for our
standard example { Pys o5 Py }y =42, 3, 5, 7 } , thus proving Theorem
7.2. In Tables II and III we give the necessary data on the fields K = Q(VD)

for the 15 values of D, and on the factorization of 2, 3, 5, 7 in K .

Explanation of Tables II and III. For p; = 2, 3, 5, 7 we give in Table II a

generator of the ideal s with ordp (pi) > 0 if s is a principal
i

ideal, and we give ”pi” if it is not principal. In all the latter cases,
hi =2, so p? = (ni) is principal. An asterisk (%) denotes a splitting
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prime. Note that for each D at most one of the primes 2, 3, 5, 7 splits,

so t €1 . In the final column of Table II we give for the splitting prime
h.
p; @ generator L of the ideal pil . In Table III, when pi and pj are

not principal, but pi-pj is, we give a generator of it. The autor is

grateful to R.J. Kooman (Leiden) for checking these tables.

From Tables II and III it is easy to find all possibilities for I, I’ and
o« . We may assume I’ = @ . In Table IV we give all possible I, IU’ a (we
give primes P; instead of indices i ). An asterisk (%) appears when
() # (a’) . The set IU is found by checking GOC (mod pi) for all P;
There are 54 cases with I = @ (the ”symmetric” cases), and 54 cases with
I # & (the ”asymmetric” cases). We start with the symmetric cases. This

incorporates all cases with D = 3, 5, 35, 42, 210 , when none of the primes

2, 3, 5, 7 splits in QD) . Now, t = 0 , hence equation (7.10) becomes

o n o’ n i
= . - Lo? = +
Goc(n) VD € VD € _.ﬂ p: - (7.22)
iel
U

With A=¢ +¢ €Z7Z, B =Ne =¢-¢” =*1 , we have for all n € Z

G (n+t2) = A-G (n+1) - B-G (n)

o o o

%o

Since (a) = («’) , there is an n, € Z such that o« = *e¢ -« . Hence

IG (n.-n)| = |G _(n)l

a 0 o

for all n € Z , which explains why we call these cases ”symmetric”. In this

situation we can apply elementary congruence arguments, as explained 1in

Section 4.5. We have the following result.
LEMMA 7.9. Let A Py» -os Py y=4{2, 3, 5, 7 } . Equation (7.1) with
conditions (7.2) and 1 = @ has exactly 91 solutions, that appear in Table

I marked with an asterisk ().

Sketch of proof. In Table V we give the necessary data for these 54 cases.

We explain this table, and leave many details to the reader to check. For

each p =2, 3, 5, 7 we give 21, nl, al, h2, e, h7 . If for a p only
L, +1 ¢

21 is given, then p ! ¥ Ga(n) for all n € Z, and p ! | Ga(n) for at

least one ne€ Z . If n a are given, then

17

159



p | Ga(n) & n = n, (mod al)
Def ine n2 = a1 if n1 =0, and n2 = n1 if n1 #Z 0 . Then n2 is the
L, +1
smallest positive index such that p | G“(nz) . Now it is true that

G (n,) | G (n) whenever n =n, (mod a,) ,
o 2 o« 1 1

This 1is related to symmetry properties of the recurrence sequence

®
{G (n)} _ . For qgq=2, 3, 5, 7 we have defined
« n=-o

h = ord (G (n.))
q q o 2

h2 h3 h5 h7 £1+1
Hence 2 ©-3 75 7.7 | Ga(n) whenever p | Ga(n) . We have taken 21
so large that always
h, h, h. h

G (n)>2%3%5°7 ", (7.23)

o 2
Consequently, there exists some prime r 2> 11 that divides G“(nz) , hence

2 +1

r divides all Ga(n) with p ! | Ga(n) . It follows that for a solution
of equation (7.22) we must have

ord (G (n)) < ¢

p « 1

In this way we find with ease all solutions of (7.22). o

Let us illustrate this with the example D = 3, « = V3 . Then

G (n) = = (2+v3)™ + L. 2-v3)"™ |
o 2 2

and G (-n) = G (n) . We have for G (n)
a a a

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G“(n) 1 2 7 26 97 362 .... Ga(14) = 50843527
mod 4 1 2 -1 2 1 2 -1 2 1 2 -1 2 1 2 -1 2
mod 3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
mod 5 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1
mod 49 1 2 7 -23 -1 19 -21 -5 1 9 -14 -16 -1 12 0 -12

We see that 27, 3, 5} Ga(n) for all n € Z , and 2 | Ga(n) if and only
if n odd . So p

7 is the only interesting case. We have 7 | Ga(n) if
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and only if n = 2 (mod 4) , 72 | Ga(n) if and only if n = 14 (mod 28) ,

(and in general

7 G,(n) @ n= 2.7 (nod 2-7571)

for k > 1 , and a similar relation holds for any symmetric recurrence and
any prime p for which arbitrary high powers of p occur in Ga(n) , cf.
Lemma 4.10). Now, 21 = 0 does not lead to (7.23), since then n, = 2 , and
Ga(Z) = 7 , so that no suitable r exists. But with 21 = 1 we have
n2 = 14 ,2 and h2 = h3 = h5 = 0 , h7 = 2 , and (7.23) holds, since
G“(14) > 77 . Hence there exists a prime r > 11 such that r | G“(14) , and
thus r | Ga(n) whenevgf O72O |]F (n) . It follows that for solutions of

(7.22) we have Ga(n)  2°:3°:57-7° =14 , so that all solutions can be read
from the above table. Note that it 1s not necessary that r is known
explicitly, only that Ga(nz) is large enough. In our example, r = 337 or

r = 3079 satisty.

Finally we treat the remalning 54 cases, where I # 8 . Then we need the

non-elementary reduction technique described in Sections 7.5 to 7.7.

In all our instances, the set I contains only one element, since there is
only one splitting prime. We denote by = the L belonging to this prime,

and we write m for c, - Equation (7.10) now reads

O N m o« .0 _,mo_ uj
/D€ ™ Toyp e T =Py
jel
U
We computed the constants C1 to C12 , CTZ , according to Section 7.6, for

each of the 54 cases. We omit the details of these computations, and simply

give the data in Table VI. In this table we give for each D the p; € IU

together with the V. and Ai (it turns out that the Ai do not depend on

’ ’

n are the

the « , only on the pi ). The values ns, n, n 5 7

integers such that

It follows that in all cases we have CTZ < 3.23><1030 .
The next step 1s to define the lattices, and find lower bounds for the

shortest nonzero vectors in the lattices. We start with treating the A? , of

which there are 3 for each of the 10 D’s . We have computed the 30 values of
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log ET] log [
T[_ b
gp. -

such that it is a pi—adic integer, to the desired precision of u digits. We

took u as follows:

P K p?
2 209 8.22><1062
3 133 2.87><1063
5 95 2.52x1066
7 76 1.69><1064
in order to have pg somewhat larger than the maximal CT; , being
1.05><1061 . We computed the 30 values of the 0(“)’5 , but do not give them

here. The lattices F“ are generated by the column vectors of the matrices

1 0

ﬁ(u) pu

We performed the p-adic continued fraction algorithm of Section 3.10 for each

of these 30 lattices. In the table below we give for each D the maximal

CTZ (there is one for each « ), and the minimal bound for E(F“) (there is

one for each i € IU ) that we found. We omit further details.

D p u Cr < 0(r) > U<
0 12 w

2 2, 3, 5 1.5, 1.0, 1.0 3 19X1028 8.26X1O3O 210

6 2, 3, 7 1.5, 1.5, 1.0 2 72X1026 2.05><1O31 210

7 2, 5, 7 2.0, 1.0, 0.5 1 O7X1O3O 2.43X1O31 210
10 2, 5, 7 1.5, 0.5, 1.0 3 22X1029 2.22><1O31 210
14 2, 3, 7 1.5, 1.0, 0.5 4 80X1026 1.48X1O31 210
15 2, 3, 5 3.5, 1.5, 0.5 2 15X1028 1.55X1O31 212
21 2, 3, 7 3.0, 0.5, 0.5 1 9OX1026 7.78X1O3O 211
30 2, 3, 5 2.5, 0.5, 0.5 4 15X1028 1.37X1O31 211
70 2, 5, 7 2.5, 0.5, 0.5 3 23X1O3O 2.51X1O31 211
105 3, 5, 7 1.5, 0.5, 0.5 4 54X1029 3.96><1O31 134
In all cases, E(F“) > VZ-CTZ . Hence Lemma 3.14 with n = 2, c, = 0, c, = 1

yields
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d (AY) < pu + i el
or p, 1 Bty 1

U >

where

= min ( ord (lo (gr)), ord (lo (ET)) ,
TR ( p, (108, p, (108, G )

as given above. By Ai + ord (h") > 0 we obtain from Lemma 7.6(i) upper
i

bounds for us ie IU , hence the upper bounds for U , as given above.

Next, we treat the K? , one for each D , having 5 terms, namely

K. = n*-log (e’) + m*-log () — ) u%-log (p.),
Pi Pi 1<j<4 P J
J#i

where 1 € I, so p; is the splitting prime. We have the following data.

ord_ (log_ (-))
D p, VD (mod p,) Py P

g w 2 3 5 7
2 7 3 1 2 1 1 1 -
6 5 4 1 1 1 1 - 2
7 3 1 1 1 1 - 1 1
10 3 2 1 1 1 - 1 1
14 5 2 1 1 1 1 - 2
15 7 6 1 1 1 1 1 -
21 5 4 1 1 1 1 - 2
30 7 4 1 1 1 1 1 -

70 3 2 1 1 1 - 1
105 2 1 (mod 4) 2 4 - 2 2 3

From this table our choice for VD (mod pi) becomes clear. It follows that

>

ord_ (log (e’)) 1is always the least one of the five ord_’s 1in the above
i i i

table. So we define:

log (m) log  (p.)
% p, P . .
ST ) %2307 T Teg, ey WS (L2 HD

1 1

and we computed these numbers up to u digits, with p as follows:
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P K p?
2 539 1.8Ox10162
3 343 4.49x10163
5 245 1.77><10171
7 196 4.36><10165
so that pg is somewhat larger than the maximal CT; . We computed the 40
values of the ﬁi?;,3,4 , but do not give them here. The lattices T are

generated by the columns of the following matrices:

We computed the reduced bases of the 10 lattices by the L3—algorithm. Again,

we omit the computational details. We found data as follows.

D in I < L(r) > M«

p in H “O 12 B “ B

2 7 196 1 3.19x10°°  2.25x10°% 196
26 33

6 5 245 1 2.72x10 2.16x10 245
30 32

7 3 343 1 1.07x10 1.14x10 343

10 3 343 1 3.22x10%°  1.07x10°% 343

14 5 245 1 4.80x10%°  4.92x10°° 245

15 7 196 1 2.15x10°°  2.78x10°% 196

21 5 245 1 1.90x10%°  4.37x10°° 245

30 7 196 1 4.15x10°°  2.69x10°% 196

70 3 343 1 3.23x10°0  1.03x10°% 343

105 2 539 2 4.54x10%°  6.68x10°F 540

*

* 12 - *

Ry o+ ord (h') > 0 and hi > 1 we have M < ordp (Ki) <uotoyg hence an
i i

upper bound for M as given in the table above.

In all instances, E(F“) > V5-C so that by Lemmas 3.14 and 7.6(ii) and

Finally, we compute the new, reduced bounds for |n| , and thus for B , by

Inl < max ( Cg» Cg * Co°M, C

6 7 3 + C9-U ) .
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Hence we find data as in the following table.

D| Co< C < C,< Co< Cg< M< U< Inl< B< N< B <
2 0.394 0.394 0.420 1.967 3.859 196 210 812 812 3 1627
6 0.152 0.652 0.190 1.345 1.631 245 210 343 343 3 689
7 0.126 0.626 0.357 2.702 2.757 343 210 581 581 2 1164
10 0.601 0.191 0.181 1.3%9 2.337 343 210 492 492 3 987
14 0.102 0.602 0.325 1.861 1.508 245 210 318 318 3 639
15 0.540 0.668 0.257 1.394 1.649 196 212 350 350 2 702
21 0.222 0.722 0.142 1.564 2.386 245 211 505 505 1 1011
30 0.414 0.613 0.399 1.239 1.102 196 211 233 233 3 469
70 0.362 0.556 0.390 2.729 1.505 343 211 320 343 3 689
105 0.390 0.579 0.379 3.232 2.545 540 134 344 540 1 1081
Here we used B* < h*-B + N and h* = 2 . So in one step we have reduced
the bound B* < 3.23><1030 to B* < 1627 . The total computation time was

1715 sec, on average 0.7 sec for each 2-dimensional lattice, and 170 sec for

each 5-dimensional lattice.

We made a further reduction step, now using the reduced bound for B* as

given above in stead of CTZ . We give the data for the A? in the

tables below. For u we took Byl with By, By, 2s below:

p ‘ 2 3 5 7
iy ‘ 11 7 5 4
* *
< ‘B” < < > < <
D | B V2B bW E(r“) T U
2 | 1627 2301 2 22 1.82x10° 1.5 23
6 689 975 3 33 3.99x10% 1.5 34
7 | 1164 1647 3 33 4.50x10% 2 34
10 987 1396 3 33 5.91x10" 1.5 34
14 639 904 3 33 2.58x10% 34
15 702 993 3 33 7.36x10" 3.5 36
21 | 1011 1430 3 33 2.00x10% 3 35
30 469 664 2 22 9. 98x10° 24
70 689 975 3 33 5.76x10" 2.5 35
105 | 1081 1529 3 21 3.89x10% 1.5 22
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We found E(F“) and bounds for U as given in the above table. For the K?
we found, with pu = By, with u, as above, and u, as in the table below,

the results given in that table.

D | B < V5B < bow< LT > pg < M Inl < B B" <
2 | 1627 3639 7 28  1.24x10% 1 28 90 90 183
6 | 689 1541 6 30  4.04x10° 1 30 145 145 293
7 | 1164 2603 7 49  1.07x10" 1 49 9% 9% 194
10 | 987 2207 7 49 1.16x10% 1 49 80 80 163
14 | 639 1429 6 30  3.07x10° 1 30 53 53 109
15 | 702 1570 6 24  2.70x10° 1 24 60 60 122
21 | 1011 2061 6 30  3.88x10° 1 30 85 85 171
30 | 469 1049 6 24  2.50x10° 1 24 27 27 57
70 | 689 1541 6 42 1.90x10° 1 42 55 55 113
105 | 1081 2418 7 77  1.00x10% 2 78 59 78 157

The computation time was 15 sec.

We made a third step, and give data like above, for A?

D | B < V2B < O R LA
2| 183 258.9 2 22 1821 1.5 23
6 | 209 4144 2 22 875 1.5 23
71 194 2744 2 22 1285 2 23
10| 163 2306 2 22 634 1.5 23
14 | 109 154.2 2 22 268 1.5 23
15 | 122  172.6 2 22 873 3.5 25
21 | 171 2419 2 22 818 3 25
30 57 80.7 2 22 998 2.5 24
70 | 113 159.9 2 22 585 2.5 24
105 | 157  222.1 2 14 281 1.5 15

*
and for Ki
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D | B < V5B < boow< U)o py <M<
2 183 409.3 5 20 440 1 20
6 293 655.2 5 25 665 1 25
7 194 433.8 6 42 602 1 42
10 163 364.5 5 35 473 1 35
14 109 243.8 5 25 626 1 25
15 122 272.9 6 24 2700 1 24
21 171 382.4 5 25 645 1 25
30 57 127.5 4 16 129 1 16
70 113 252.7 5 35 366 1 35
105 157 351.1 5 55 354 2 56
and finally for Inl| , and in more detail for ordp.(u) for i e IU
i
D | MK u, < Uy < ug < u, < In| <
2 20 23 14 10 0 90
6 25 23 15 0 8 38
7 42 23 0 10 8 66
10 35 23 0 10 8 55
14 25 23 14 0 8 36
15 24 25 15 10 0 42
21 25 24 14 0 8 61
30 16 24 14 10 0 27
70 35 24 0 10 8 65
105 56 0 14 10 8 11

Now we will not find any further improvement if we proceed in the same way.
But the upper bounds are now small enough to admit enumeration of the
remaining possibilities, making use of mod p arithmetic for p =2, 3, 5, 7 .
We did so, and found the remaining solutions, presented in Table I. We used

only 3 sec computer time for this last step.

This completes the proof of Theorem 7.2. u]
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Table II.

172

D h € Ne pl pz p3 p4 L
2 |1 142 -1 V2 3 5 1+2V2 1+2V2
3|1 2+V3 1 1+V3 V3 5 7 -
5 |1 §(1+V5) -1 2 3 Vs 7 -
6 | 1 5+2V6 1 2+V6 3+V6 1+V6" 7 1+V6
711 8+3V7 1 3+V7 247" 5 V7 2+V7
*
10 | 2 3+/10 -1 P, P, Ps 7 1+/10
14 | 1 15+4¥14 1 4+V/14 3 3+V14" 7+2V14 3+V14
*
15 | 2 1 4+V/15 1 P, 1 P, 1 Py . P, 1 8+V/15
21 | 1 5(5+V21) 1 2 5(3+V21) 5(1+V21) 5(7+V21) 5(1+V21)
30 | 2 11+2V30 1 P, v, 5430 p4* 13+2V30
35 | 2 6+V35 1 P, 3 Ps ?, -
42 | 2 13+2V42 1 P, P, 5 7+V42 -
70 | 2 251+30/70 1 P, pz* 25+3V70 ?, 17+2Y70
* 1
105 | 2 41+4Y105 1 P, P, 10+/105 ?, 5(11+V105)
210 | 4 29+2Y210 1 i) P, Ps ?, -
Table IT1.
D L) by P53 PPy by P53 by Py P3Py
10 -2+/10 V10 - 5-V10 - -
15 3+V15 5+V/15 1+/15 V15 6-V15 -5+2V15
30 6+V30 - -4+V30 - 3+V30 -
35 - 5+V35 7+V35 - - V35
42 6+V 42 - - - - -
70 -8+V70 - 42+5V70 - 7+V70 -
105 é(—9+V105) - §(7+V105) - 21+2V105 -
210 - - 14+/210  15+V210 - -



Table IV.

D o I Iy D o I Iy D o I Iy
2 1 - 2357 14 4+/14 - 7 35 1 - 2357
1 7 235 4+V14 5 7 V35 - 23
V2 - 37 7+2/V14 - 2 5+V35 - 7
V2 7 35 7+2¥14 5 2 7+V35 - 5
3 1 - 2357 15 1 - 2357 42 1 - 2357
V3 - 2 7 1 7 235 Va2 - -
1+V3 - 3 V15 - 2 6+V 42 - 57
3+V3 - 5 V15 7 2 7+ 42 - 3
5 2 - 2357 3+/15 - 57 70 1 - 2357
2Vs - 237 3+V15 7 5 1 3 257
6 1 - 2357 5+V/15 - V70 - -
1 5 237 5+V/15 7 V70 3 -
V6 - 57 14/15° 7 35 25+3V70 - 37
Ve 5 7 15+/15° 7 - 25+3/70 3 7
2+V6 - 6-V15° 7 25 12+5V/70 - 5
2+V6 5 —5+2/15° 7 23 42+5/70 3 5
3+V6 - - 21 2 - 2357 7+V/70° 3 5
3+V6 5 2 2 5 237 104¥70° 3 7
7 1 - 2357 2V21 - 25 —8+/70" 3 57
1 3 257 2V21 5 2 35-4Y70° 3 2
V7 - 2 3+V21 - 2 7 105 2 - 2357
V7 3 25 3+V21 5 27 2 2 357
3+V7 - 7 7+V21 - 23 2105 - 2
3+V7 3 57 7+V21 5 23 2¥105 2 -
7+3V7 - 35 30 1 - 2357 20+2V¥105 - 23 7
7+3V7 3 5 1 7 235 20+2Y105 2 37
10 1 - 2357 V30 - - 42+4¥105 - 25
1 3 257 V30 7 - 42+4¥105 2 5
V10 - 37 5+/30 - 7 7+/105° 2 35
V10 3 7 54/30 7 15+/105° 2 7
2+/10° 3 57 6+V30 - 5 —9+/105" 2 57
* *
5-V10 3 2 7 6+V30 7 5 35-3¥105" 2 3
14 1 - 2357 3+/30° 7 5 210 1 - 2357
1 5 237 10+V30° 7 3 Y210 - -
V14 - 35 _4+V30° 7 35 14+/210 - 35
V14 5 3 15-2V30° 7 2 15+/210 - 7
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Table VI.

D p. v, A (iel’)
i i i U
2 235 300 1.5 0O 0
6 237 310 1.5 0.5 0©
7 257 201 1 0 0.5
10 257 310 1.5 0.5 0©
14 237 301 1.5 0O 0.5
15 235 211 1 0.5 0.5
21 237 211 0 0.5 0.5
30 235 311 1.5 0.5 0.5
70 257 311 1.5 0.5 0.5
105 357 111 0.5 0.5 0.5
D o« n n n, n,n_n I I* N K C*
€ m 2 37577 U U 12
2 1 0 0 0 0 0 O 235 235 3 0 3.19O><1028
V2 0 0 1 0 0 O 35 235 2 0 3.19O><1028
6 1 0 0 0 0 0 O 237 237 3 0 2.712X1026
Ve 0 0 1 1 0 O 7 27 2 0 4.6O4X1022
2+V6 1 0 1 0 0 O 3 2 3 2 0 2.O9O><1022
3+V6 1 0 0 1 0 0O 2 2 3 3 0 2.O9O><1022
7 1 0 0 0 0 0 O 257 257 2 0 1.065><1030
V7 0 0 0 0 0 1 25 25 2 0 2.146><1028
3+V7 1 0 1 0 0 O 57 257 1 0 1.065><1030
7+3V7 1 0 1 0 0 1 5 25 1 0 2.146><1025
10 1 0 0 0 0 0 O 257 257 3 0 3.214><1029
V10 0 0 1 0 1 O 7 27 2 0 8.414><1024
-2+/10 -1'1 1 0 0 0O 57 257 2 1 3.214><1029
5-V10 -1'1 0 0 1 0O 2 27 3 1 8.414><1024
14 1 0 0 0 0 0 O 237 237 3 0 4.791X1026
V14 0 0 1 0 0 1 3 2 3 2 0 4_347x1022
a+v/14 1 0 1 0 0 O 7 27 2 0 8.143X1022
7+2V14 1 0 0 0 0 1 2 2 3 0 8.371><1018
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Table VI. (cont.)
*
D o n2 n3 n5 n7 C12

15 1 0 000 00 2 2 2 0 2.144x10°%
V15 000 1 10 2 2 2 0 9.427x10%°
3+V/15 1 01 1 0 O 5 2 1 0 1.694x10°%
5+/15 1 01 0 1 O 3 2 1 0 1.035x10°%
1+/15 01 1 0 0 0 3 2 11 2.144x10°°
15+/15 01 1 1 1 0 2 1 1 9.427x10°
6-V15 -1'1. 0 1 0 O 25 2 2 1 1.694x10°%
-5+2¥15 | -1 1 0 0 1 O 23 2 2 1 1.035x10°%
21 2 0 02 0 00 23 2 1 0 1.898x10°°
2v21 00 2 1 0 1 2 2 0 0 2.610x10'°8
3+V/21 1 02 1 0 O 27 2 1 0 3.220x10°°
7421 1 0 2 0 0 1 23 2 1 0 1.435x10°°
30 1 0 000 00 23 23 3 0 4.141x10°%
V30 001 1 10 2 2 0 2.022x10°0
5+V30 1 0 0 0 1 O 3 23 3 0 2.217x10%%
6+V30 1 01 1 0 O 5 25 2 0 3.276x10°%
3+V30 01 01 0 0 5 25 3 1 3.276x10°%
10+V/30 01 1 0 1 0 3 23 2 1 2.217x10%%
-4+V30 -1 1.1 0 0 O 3 23 2 1 4.141x10°%
15-2¥30 | -1 1 0 1 1 O 2 2 3 1 2.022x10°0
70 1 0 000 00 2 25 3 0 3.229x10°0
V70 001 0 1 1 2 2 0  2.115x10°
25+3V70 1 0 0 0 1 O 7 27 3 0 8.482x10%°
42+5V70 1 01 0 0 1 5 25 2 0 7.003x10%°
7+/70 01 0 0 0 1 5 25 3 1 7.003x10%°
10+V/70 01 1 0 1 0 7 27 2 1 8.482x10%°
-8+V70 -1 1.1 0 0 O 5 25 2 1 3.229x10°0
3%-4/70 | -1 1 0 0 1 1 2 2 3 1 2.115x10°7
105 2 0 02 0 00 3 3 1 0 4.533x10°°
2Y105 00 2 1 1 1 0 0 4.295x10°
20+2V105 1 0 2 0 1 O 3 3 1 0 1.690x10%°
42+4Y105 1 0 2 1 0 1 5 5 1 0 8.655x10°°
7+/105 01 2 0 0 1 3 3 1 1 1.396x10%°
15+/105 01 2 1 1 0 7 7 1 1 1.049x10°!
-9+/105 | -1 1 2 1 0 O 5 5 1 1 2.485x10°°
35-3¥105 | -1 1 2 0 1 1 3 3 1 1 5.880x10°°



Chapter 8. The Thue equation.

Acknowledgements. The research for this chapter has been done in cooperation
with N. Tzanakis from Iraklion. The results have been published in Tzanakis

and de Weger [1989%].

8.1. Introduction.

Let F(X,Y) € ZI[X, Y] be a binary form with integral coefficients, of
degree at least three, and irreducible. Let m be a nonzero integer. The

diophantine equation
F(X,Y) = m

in X, Y € Z 1is called a Thue equation. It plays a central role in the
theory of diophantine equations. In 1909 Thue proved that it has only
finitely many solutions (cf. Thue [1909]). His proof was ineffective. An
effective proof was given by Baker [1968]. See Chapter 5 of Shorey and
Tijdeman [1986] for a survey of results on Thue equations. By using Lemma 2.4
in Baker’s argument, we derive a fully explicit upper bound for the solutions
of the Thue equation. Then we show how the methods developed in Chapter 3 can
be used to actually find all the solutions of a Thue equation. Our method
works in principle for any Thue equation, and in practice for any Thue
equation of not too large degree, provided that some algebraic data on the

form F are available. See also Tzanakis [1989] for a short introduction.

Variants of the method we use here have been used in practice to solve Thue
equations by Ellison, Ellison, Pesek, Stahl and Stall [1975], Steiner [1986],
Pethd and Schulenberg [1987], and Blass, Glass, Meronk and Steiner [1987a],
[1987b]. In all these cases m = 1 , whereas de Weger [1989b] treats an
example with m > 1 , using the method described in this chapter. When
determining all cubes in the Fibonacci sequence, Pethd [1983] solved a Thue
equation by the Gelfond-Baker method, but with a completely different way to

find all the solutions below the upper bound. And there are numerous Thue

equations that have been solved by different (usually ad hoc) methods.
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8.2. From the Thue equation to a linear form in logarithms.

In this section we show how the general Thue equation leads to an inequality
involving a linear form in the logarithms of algebraic numbers with rational

integral coefficients (unknowns). Let

F(X,Y) =

fi-X ‘YT e ZI[X, Y]
i

0

I wl=]
B
|
-
=

be a binary form of degree n > 3 and let m be a nonzero integer. Consider

the Thue equation

F(X,Y) =m , (8.1)

in the unknowns X, Y € Z . If F 1is reducible over @ , then (8.1) can be
reduced to a system of finitely many equations of type (8.1) with irreducible
binary forms. For such equations of degree 1 or 2 it 1s well known how to
determine the solutions. Therefore we may assume from now on that F is
irreducible over @ and of degree > 3 . Let g(x) = F(x,1) . If g(x) =0
has no real roots then one can trivially find small wupper bounds for

max(1Xl, 1Yl) for the solutions (X,Y) of (8.1). Therefore, throughout this

chapter we assume that the algebraic equation g(x) = 0 has at least one
real root. We number its roots as follows: E(l), ce E(S) (with s > 1)
are the real roots and E(S+1) = E(S+t+1), ce s E(S+t) = E(S+2t) are the

non-real roots, so that we have t ( > 0 ) pairs of complex-conjugate roots,

and s + 2-t = n .

Consider the field KX = Q(8) , where g(8) = 0 . We will define three

positive real numbers Y1 < Y2 < Y3 , that will divide the set of possible
solutions (X,Y) of (8.1) into four classes:

— the ’very small’ solutions, with Yl < Y1 . They will be found by
enumeration of all possibilities,

— the ’small’ solutions, with Y1 < Yl < Y2 . They will be found by
evaluating the continued fraction expansions of the real roots E(i)

— the ’large‘ solutions, with Y2 < Yl < Y3 . They will be proved not to
exist by a computational diophantine approximation technique,

— the ’very large’ solutions, with [Y| > Y3 . They will be proved not to

exist by the theory of linear forms in logarithms.

The value of Y3 follows from the Gelfond-Baker theory of linear forms in

logarithms. The value of Y2 follows from the restrictions that we use as we
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try to prove that no ’large’ solutions exist. The value of Y1 follows from

Lemma 8.1 below. This lemma shows that if |Y| 1is large enough then X/Y is
extremely close’ to one of the real roots E(l) . In a typical example Y3
1050 10

may be as large as 10 , Y2 as 10 , and Y1 as small as 10 .

LEMMA 8.1. Let X, Y € Z satisfy (8.1). Put B =X - &Y,

2n—1‘|m| 1/n
- - . 5
min Ig’(E(S+l))I- min |[Im E(S+l)| it
YO = 1<€igt 1<€igt ,
1 if t =20
2" in| . (1)_.(J)
% gt % F Z'1<?i9<nlg g
1<i<s SEeJR
Y. =max | Y., |(a-c)t(n2)
1~ 0’ 1
(1). I 1Yl > YO then there exists an iO € {1, ..., s } such that
(i.)
0 -(n-1
B 1 <cplYl (n-1)
(1) . . .
B | > C,-lYl for 1e€{1, ..., n}, 1#1i..
2 0
(ii). If 1Yl > Y then X/Y is a convergent from the continued fraction
(io)
expansion of &
(1) (1)
Proof. Let i/ < {1, ..., n } be such that |[B | = min IB | . We
1<i<n
have from (8.1)
n .
£ 1811 = il
i=1
(io)
By the minimality of If |  we have for all i
. (i) (i.) . (i)
0 0 0
vigg O = g O Wy g 97 <2ep)y
(1)
Hence |IB | > C2-|Y| Further,
(1i.) . (i) -1
0 -1 0
I8 | = [m| m |B(l)| < Im| m ol vl IE( )_E |
[f .1 . £ 1 .0,
0 1#1O 0 1#1O
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n-1 n-1

_ 2 ~|ml _ 2 ~|ml
- .y (i4) B (i)
0 -1 0 -1
o mEP-g Oy e OH)own
1#1O
Now, if iO > s (and hence t > 1 ) then, by the definition of YO ,
. (i)
0 -1
‘X ) E(lo)‘ _ 1B » 0L .
Y lyl ° (i) |- 1Yl
o)
Y n .
< [T%T] . min | Im E(l)l ,
s+1<i<s+t
which is impossible if |Y| > YO . Hence iO < s , and now (i) follows at
once. Moreover, if |Y| > Y1 , then
(i.) (i.)
X 0 0 -1 n 1 ,n=2 n 1 -2
- - = < g —- . g =-
- O =18 T a2 Py T < 2y P
(i) (i.)
and thus | é - & 0 | < é-lYl 2 , since & 0 is irrational. Now (ii)
follows from a well known result on continued fractions, cf. (3.6). O
Now let [yl > Y1 and iO e {1, ..., s } as in Lemma 8.1. Choose
j, ke {1, ..., n} such that iO’ j, k are pairwise distinct and either
. . _ (k) _ .(3)
gy ke {1, ..., s} or jJ+t=%kk (so that € =& ), but further the
choice of j, k is free. By g0 =x - v.e) for 1 = iy, J» k we get,
on eliminating the X and Y ,
(i) . . (i) (i) .
0 (j) (k) (3) (k) 0 (k) 0 (3)
g ErVe) g€ ")+ ") =0,
or, equivalently,
(i) . . (i)
0 (3) (k) (k) .(3) 0
g ~ ) g o _ _g%ed p
G o g o G g (8.2)
€ -£ g -&

By Lemma 8.1, the right hand side of (8.2) is ’extremely small’. Put, if
j, ke {1, ..., s} (let us call it ’the real case’)

o) _(j) (&)

A= log | ST B(j)
0 (k)
g & B
and if j, ke { s+1, ..., s+2-t } (let us call it ’the complex case’)
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A= jrlog | S B(j) ’
0 (k)
g O-g P
where, in general, for =z € C , Log(z) denotes the principal value of the
1 . (k) _ .(J)
ogarithm of =z (hence - < Im Log(z) < m ). By & = € we have
A€R and |Al < @ .
The following lemma shows how small [Al is.
LEMMA 8.2. Put
g(ll) . E(lz)
C, = max : p ,
S g sz | (H) (13)
17173 e - &
* 1/n
Y2 = max [ Yl’ [(2 C1 C3/C2) ] ]
*
If 1Yl > Y2 then
1.39-C, -C
1 73 -
Al < ————E;————-IYI n
2
Proof. Consider first the real case. From Yl > Y. and Lemma 8.1 it

2
follows that the right hand side of (8.2) is absolutely less than é and,

consequently,

Gy) (5w

S o
0" (k)

g O-g P
It follows that the left hand side of (8.2) is equal to eA - 1, and now
(8.2) implies, in view of Lemma 8.1 and the definition of C3 R

-(n-1)
|eA_1| ‘. ‘Cl Y| B C1 C3‘|Y|_n
3 C2-|Y| C2

On the other hand, |eA—1| < é implies (cf. Lemma 2.2)

IAl < 2-1og 2-leM-11 < 1.39-1e"-11
which proves our claim in the real case.
In the complex case the left hand side of (8.2) is equal to elA - 1, and,

as in the real case, we derive
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@]
N [~

Since |elA—1| = 2-|sin A/2| , it follows that |[Isin A/2] < i , and therefore

by Lemma 2.3

Al < 2-—2isin a2l = M) <102 et
sin 1/4 sin 1/4
which proves the lemma in the complex case. u]

In the ring of integers of the field K (as well as in any other order R

of K ) there exists a system of fundamental units 81, e, Sr , Where
r =s +t - 1 (Dirichlet’s Unit Theorem). Note that since F 1is irreducible
and we have supposed s > 0 , the only roots of unity belonging to K are
1 . We shall not discuss here the problem of finding such a system (for

efficient methods see e.g. Berwick [1932], Billevid [1956], [1964], Pohst and

Zassenhaus [1982], Buchmann [1985], [1986]). We simply assume that a system
of fundamental units is known. On the other hand, there exist only finitely
many non-associates o oo By in K such that fO-N(ui) = m for
i=1, ..., v (we use N(-) to denote the norm of the extension K/Q ). We

also assume that a complete set of such pi’s is known. Let M Dbe the set

of all C-ui , where T 1is a root of unity in K . (In the important case
|f0| = Iml =1, it is clear that M = { -1, 1 } ). Then, for any integral
solution (X,Y) of (8.1) there exist some u € M and aj, ..., a_ € zZ ,

such that

Thus, the initial problem of solving (8.1) is reduced to that of finding all
a a
integral r-tuples (al,...,ar) such that p-sll-...-srr for some u € M be

of the special shape X - Y-& , with X, Y € Z . As we have seen, X and Y
can be eliminated, so that we obtain (8.2). Thus the problem reduces to

solving finitely many equations of the type

. . . (1. )ya,
(1,) . (x)) %1 . (1i.) 071
0 k . k 0 .
E(' )_E(J)'“E';' r St') - l=- 3 )_EE?))'“(-) ‘ ﬁ St')
1 J) oL J 1 J s J
£ 0 —E(k) U i=lle; E(k)_E 0" u i=1{e;

(the so-called ’unit equation’). In the real case we have
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(8.3)

(8.4)

in the

0" .(J) (k) r €.
A = log g p 3 g + z a, - log p ,
o)y Y i=1 ! eJ)
3 =3 i
and in the complex case
i . k
E(lO)_E(J) (k) r el
A = Arg : . : + z a, Arg : + a.-2m ,
(10) (K) “(J) jop 1 8(J) 0
3 =3 i
with a, € Z , and -m < Arg(z) < m for every z € C . Note that A
real case, and 1i-A in the complex case, is a linear form in (principal)

logarithms of algebraic numbers,

The Gelfond-Baker theory provides an explicit lower bound for

of maxlail Using this

explicit upper bound for maXIail

8.3. Upper bounds.
Let A = max |a, | First we find
1<igr
LEMMA 8.3. Let I = { hl’ e hr
(h.)

_ i
Ur = (1°g|8£ |)1<i<r,1

(where 1 indicates a row and £

where the coefficients

a, are integers.

[Al

in terms

in combination with Lemma 8.2 we can find an

This is what we do in the next section.

an upper bound for A

yc{1, ..., n} Put

LULr

in terms of

a column of the matrix),

-1 -1 d
U.” = (u.,) , N[U_"] = max z [u,
I i I 1<i<r f=1 it
Put also
_ min | (i)I max | (i)I
Ho 7 ¢in'® B T it ’
HEM HEM
1, max |E(11)—E(12)|
2 1€i, <i <n
— 1512
4 - U ’
. . -1 -1
C_ = min ( (n-1) 'min N[U_"], max N[U_"] )
5 I I
I I
Then, for
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1/n

Y] > max ( Yy» 2-Iml /G, ),
we have
A< Cs-log(C4-|Y|) .
al ar
Proof. By B = e c.cE we have
(h,) (hl)
loglB /i | a,
= UI- . . (8.5)
(h) (h) °r
loglB /i |
On the other hand, for every h e€ {1, ..., n } , using the end of the proof
of Lemma 8.1,
(i.) (i.)
h h 0 0 h
™ = ixev g™ <ixevee 00w gvie 0 ™))
(i.)
1 0 (h)
< _
5TV + |Y|-|E g |
(i,) (i,)
1 max 1 2
<o+ g aw® 8 ),
and therefore
(h)
) < C4-|Y| for h=1, ..., n.
u
Note that C4-|Y| > 1 . Indeed, by
n .
mie™ = 2 <
i=1 0
it follows that min |u(l)| < |m|1/n , hence pu_ < Imll/n . Therefore
1<i<n
(i,) (i,)
1 max 1 2 -1/n Y]
. 2_ _ . . R . S
Cy Y>> (5% 1y < <nlE g “ 1) 1¥lInl g 1n > ¢
172 2m|
Then,
(h)
log ;TET < log(C4-|Y|) for h=1,...,n, log(C4-|Y|) >0 . (8.6)
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Next we show that

(1)
log ETET ‘ < (n—l)-log(C4-|Y|) for 1i=1, ..., n. (8.7)
u
Indeed, in view of (8.6), a stronger inequality is true if IB(l)/u(l)l > 1
Suppose now that |B(l)/u(l)| <1 . By
n |,(h)
miE—l =1
h=1 “(h)
it follows that
(1) (1) T (h)
log B(i) ‘ = -log B(i) = hleog ETET < (n—l)-log(C4-|Y|) ,
¢ ¢ n#i ' H

in view of (8.6). Now the inequality

A < (n-1)-min N[U_l]-log(C -1Y1)
. I 4

-1

follows from (8.5), (8.7), the definition of N[UI ] and the fact that, as
we have not put so far any restriction on I , this could be chosen so that
N[U_l] be minimal. It remains to show that

I

A < max NIU-'1 -log(C, 1Y)
I I 4

Choose I such that i. € I . Then, by Lemma 8.1, for every h e 1,

0
|B(h)/u(h)| > C2-|Y|/p+ > 1 and now, in view of (8.6),
B(h)
log| =5y ‘ < log(C4-|Y|) ,
K
which implies our assertion. u]

Lemmas 8.2 and 8.3 immediately yield

LEMMA 8.4. Put

— — . 1/n
C, = , Y, = max (Y, 2-Inl ,» u,/C, ) .

If 1Yl > Yé then

-n
Al < C6-exp(6g-A) .
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Next we apply Lemma 2.4 (Waldschmidt). It yields in the real case (assuming
that A # 0 )

IAl > exp(—C7-(log A+ c8)) , (8.8)
and in the complex case this holds when A is replaced by A’ = max la, |
O<i<r
The precise values for C7 and C8 are given in Section 2.3. It should be
noted that in the complex case a, makes now its appearance, while it was

not present in Lemmas 8.3 and 8.4. In order to obtain an upper bound for A ,

we must find an upper bound for A’ in terms of A . Indeed, using

Arg(zl-z ) = Arg(zl) + Arg(zz) +k2n, ked{ -1, 0, 1},

2
we find from (8.4) and the proof of lemma 8.2 that if A > 2 then

lagl < é + é-r-A + |Al/2m <1 + 1A < T-A .

Thus we may apply (8.8) in both cases with the same A if we replace C by

C8 C8 in the real case,

Cé = C8 + log r in the complex case.

We can now give an upper bound for A .

LEMMA 8.5. Put

2-C C.-C
_ 5 , ) 5 77
Cy = —3 ( log Cg + C,°Cy + C,-log —— )
If 1Yl > Y2 , then A < C9 .
Proof. As we have seen in the proof of Lemma 8.2, IeA—ll < é in the real
iA 1 (iO)
case, and |le  -1] < > in the complex case. Note that f # 0 . Hence

(8.2) implies A # 0 . Therefore Lemma 8.4 and (8.8) yield

C

S ,
A< H_'( log C, + C,-Cy + C_-log A ) .
The result now follows from Lemma 2.1. u]
Remark. From this upper bound for A an upper bound for Y| can be
derived, thus a value for Y3 (cf. Section 8.2). We shall not do this. Note
that Y, (cf. Lemma 8.4) is not necessarily equal to Y (cf. Section 8.2).

2 2
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8.4. Reducing the upper bound.

We are now left with a problem of the following type. Let be given real

numbers §, TEEERE “q (g> 2, the case g =1 1is trivial). Write
A=23d+ a; iy + ...+ aq-uq ,
where the a.,’s belong to Z , and put A = max la,| . If K,, K,, K are
i 1<i<q 1 2 3
given positive numbers, then find all g-tuples (al,...,aq) e 71 satisfying

Al < Kl-exp(—KZ-A) , A<K (8.9)

5 -
In our case, it follows from (8.3) or (8.4) how to define g, 8 and the

>

“i s , and from Lemmas 8.4 and 8.5 how to define Kl’ K2, K3 . In general,

K1 and K2 are ’small’ constants, whereas K3 is ’very large’. Put

Below we distinguish three cases. In the first two we suppose that the pi’s
are Q-independent.

(i). Let &8 =0, so that A = AO . Then the linear form is homogeneous, and
we apply the method of Section 3.7.

(ii) Let &8 # 0 . Then the linear form is inhomogeneous, and we apply the
method of Section 3.8.

>

(iii). Suppose now that the u;’s are Q-dependent. Let r be the

approximation lattice for the linear form A , as defined in Section 3.7.
Then we expect the lower bound for |x| (x €T, x#0 ) in general to be
very small’, since the vector having as coordinates the coefficients of the

dependence relation will give rise to a very short vector in the lattice. So

the reduction process, as applied in the two previous cases, will not work.

In such a case we work as follows. Let M be a maximal subset of
{ul,...,uq} consisting of Q-independent numbers. With an appropriate choice
of subscripts we may assume that M = { O TERRRE “p }, p <qg . Then we can
find integers d > 0 and dij for 1 <1< p< j<qg such that
b
d-pj = izldij-ui for jJj=p+l, ..., q.

(These numbers d, dij can be found as coordinates of extremely short

vectors in reduced bases). On the other hand, (8.9) is equivalent to
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N ] < Kl-exp(—KZ-A) . A<Ky, (8.10)
where A’ = d-A and Ki = d-K1 . Now, with & = d-& and
g9
ai =d-a, + z .ca,
j=p+1 Y
we obtain
b
A= ) aly
i=1
Put D = max ( Idl, ldijl :1<i<p<j<q) . Then
|ai| < (g-p+1)DA for i=1, ..., p.
Therefore, put A’ = max la’|l , then A’ < (g-p+1):-D-A , and (8.10) implies
1<i<p
N ] < Kl-exp(—KZ-A ), A< K% (8.11)
where
AN=8 + al K] + ...+ ap'“p , K1 = d-K1 ,

Ké KZ/(q—1+p)-D , Ké = (q—p+1)-K3 .

Now, to solve (8.11) we apply the reduction process described in (i) or (ii),
depending on whether & =0 or & # 0 , and maybe more than once, if
necessary, until we find a very small upper bound for A’ . After having
found all solutions (ai,...,aé) of (8.11), we have a lower bound L > O
for IA’] . It is reasonable to expect that L is not ’extremely small’,

>

because the integers ai, ce s ap being ’small’ in absolute value cannot
make (A | ’extremely small’. Now combine [Nl > L  with the first
inequality of (8.10) to get
K
A< 1—-log(—l) .
K L
2
Since L 1is not ’very small’, as argued heuristically, the above upper bound

for A 1is ’small’.
Returning now to the general case, we point out that if the reduced upper

bound for A (found after some reduction steps as described above) is not

small enough to admit enumeration of the remaining possibilities in a
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reasonable time, then it might be necessary, or at least advisable, to use
the technique of Fincke and Pohst, cf. Section 3.6. However, when solving a
Thue equation, and not only an inequality for a linear form in logarithms, it

may be better to avoid this method, and to use continued fractions of the

(i)

roots & . In practice we can search for the solutions (X,Y) of (8.1)
satisfying Y1 < Yl € C as follows, referring to Lemma 8.1. Here e.g.
C = Y2 , and we can imagine C here as being a ’large’ constant compared to
Y1 , but not ’very large’ (cf. the introduction of Yl’ Y2 in Section 8.2).
~ (i)
Let & be a rational approximation of & , such that
(i )
~ 0 1
|E—E | < 5 - (8.12)
6-C
Since 1Yl > Y1 , X/Y must be a convergent, pk/qk say, from the continued
(i )
fraction expansion of £ 0 . Denote by ay a4, the partial
quotients in this expansion. First we claim that a1 > 3 . Indeed, by (3.5)
1 ) 1 (10) Py ) (10) X C1
5 S 2<E —q——E —?< n

(ak+1+2)'IYI (ak+1+2)-qk k [Y]
If ak+1 =1 or 2, then we would have IYln_2 < 4-C1 , which is absurd,
since Y| > Y1 > (4-C1)1/(n_2) . Thus, a1 > 3, and by (3.5) we have

(i.) p 1 1
‘EO——k<a g2 € 3.42
Ik k+1 9k Ik

Therefore,

.p Loy (i) p

‘E _ Tk < ‘E_E 0 v e 0" Tk < 1 + 1 < 1

e e 2 2 2

and this means that pk/qk is 1in fact a convergent from the continued

fraction expansion of & too. Moreover, in view of the inequalities

(i.) p C C
1 > < e 0" Tk < 1 < 1 ,

] q n n

(ak+1+2) e k Y| |qk|
a1 must be sufficiently large compared to q > namely
n-2

qul

ak+1 > T -2 . (8.13)
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This inequality can be checked easily for all k such that e < C.

(i)

To sum up, we propose the following process for every real root & 0 for

iO =1, ..., s (note that iO is a priori not known). (1) Compute a
B (i)

rational approximation & of & satisfying (8.12) (a truncation of its

decimal expansion will do). (2) Expand £ into its continued fraction with

partial quotients a and convergents pi/qi for all

o 2 Bpr e By
i=1, ..., k with q, < C < Ay (3) Test all these convergents for the
conditions (8.13) and F(pi’qi) = m . Concerning this last test, note that if
X/Y = pi/qi , then X = Z-pi , Y = Z-qi for some Z € Z with 2Z° | m

This simple observation excludes in general most of the reducible quotients

X/Y , and all of them if m 1is an n-th-powerfree integer.

Having tested for all solutions in the range |Y| < C we may suppose that
Y] > C . For such solutions (X,Y) we can obtain a lower bound for the

corresponding A as follows (the idea is due to A. Pethd, cf. also Section 1

of Blass, Glass, Meronk and Steiner [1987b]). For every (i,j) € {1,...,r} X
. (), V1]
{1,...,n} let @ij be the number +1 or -1 for which Isi | > 1,
r Q..
and put E, = ] |8§J)| *J . Then
i=1
r a
. . . . A
g9 = W eI e
i=1 * N

and hence for any pair jl’ j2 with j1 # j2 we have

. A A
(Jl) (JZ) E. + E,
Iyl = g "t g | Jp o
TG Gy, TG G5),
1 2 1 2
e g 2 e g 2
and from this we can find a lower bound for A , if we know that Y] > C

Of course, for an other pair jl’ j2 we may find a different lower bound,

and therefore we can take the larger one.

8.5. An application: triangular numbers that are a product of three
consecutive numbers.
In this section we prove, as an application of the general theory described

in the previous sections, the following result. The problem was posed by S.P.
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Mohanty (cf. Mohanty [1988]; the proof in this paper is incorrect). The n-th

triangular number is for n € N defined as Tn = é-n-(n+1)

THEOREM 8. 6. The only triangular numbers that are a product of three
consecutive Iintegers, are T3 = 1-2-3 , T15 = 4-5-6 , T20 = 567 ,
T44 =9-10-11 , T608 = 56-57-58 , T22736 = 636-637-638 .

Proof. We have the diophantine equation n-(n+1) = 2-m-(m+1)-(m+2) in
n,meN. Put x=2m+2, y=2-n+ 1. Then we are lead to the equation
y2 = X3 - 4-x+1 in x, ye€ N, with x> 4 even and y > 3 odd. Theorem
8.7 below now completes the proof. u]

THEOREM 8.7. The elliptic curve

y2 = x> - ax 41 (8.14)

has only the following 22 integral points:

(X,iy) = (_2,1), (_1,2), (0,1), (2,1), (3,4), (4,7), (10,31)’

(12,41), (20,89), (114,1217), (1274,45473)

We prove this theorem in two main steps. First, we reduce the problem to the
solution of two quartic Thue equations. Then we solve these equations using

the general theory developed in the previous sections.

Let L be the totally real field Q(y) , where

-4y +1=0.

(1) (2)

Let the conjugates of ] be ] = 0.254..., y = =-2.114...,
w(3) = 1.860... . From a table of Delone and Faddeev ([1964], p. 141) we see
that the class number of L is 1 , its ring of integers is ZI[yl , its
discriminant 1s 229 , and a pair of independent units is ¢, 2 - ¢ . From

Table I of Buchmann [1986] we see that -7 + 2-w2, 2.y + wz is a pair of

fundamental units in Z[y] . By -7 + 2-w2 = —w_l-(Z—W) , 2y + wz = (2—!{/)_1
we see that Y, 2 - ¢y 1is also a pair of fundamental units in ZI[y]
The equation (8.14) of the elliptic curve can be written as
2 2 2
vy = (x -y ) (x +xy+ (y-4)) (8.15)
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and the factors on the right hand side are relatively prime. Indeed, 1f =

were a common prime divisor of them, then =n would divide
2 2
(x"+xy+ W-4) ) - (x+2¢y )-(x-y)=3y" -4,

which is prime, since its norm is -229 . Therefore we would have that mn 1is
a unit times this prime, and then by (8.15), x - ¢y = unitX(3-w2—4)quuare

Take norms, then we get y2 = *229%Xsquare , which 1s clearly impossible.

Now (8.15) implies
_ oyl J. 2 ..
x -y =ty , aeziyl, i, je{0, 1} . (8.16)

Since (8.14) is trivial to solve for x < 0 (the only solutions with <0

X
are the first three pairs stated in the theorem), we may assume that x > 1

(1)

Since Y = 0.254... , we see that the minus sign in (8.16) is impossible.

Then, by w(Z) =-2.114... , 1 # 1 . We conclude therefore that

X~y = ) (urvegrw D), uw v, wez, je{0, 1} . (8.17)

First case: j =0. Then (8.17) 1implies, on equating corresponding

coefficients in both sides,
X = u2—2-v-w, w2—2-u-v—8-v-w =1, v2+4-w2+2-u-w =0 . (8.18)

Note that w 1is odd and v 1is even, hence 4 | 2-u'w , so u 1is even. Put

u = 2-u1 , VvV = 2-v1 . The last equation of (8.18) now reads
woo+ u; W + vy = 0
Consider this as a quadratic equation in w . Its discriminant must be a

square, 22 say. Then

Note that Uy and z have the same parity. We may assume u 2> O .

First suppose that u and z are even. Since w2 + u,-w + v2 =0 and w

1 1 1
is odd, we find u, = 2 (mod 4) , and A% is odd. Put u, = 2-u, ,
21 > > 1 1 2
= 2. - = >
z 2 z, - Then u, \2] z, where u, and v, are odd. By u, 0

there exist m, n € Z such that

193



It follows that

2-(m2—n2) , W = —(min)2 .

u = 4-(m2+n2) , Vv

Since the sign of =z , and thus that of n , is of no importance, we may
assume W = —(m+n)2 . After substitution in the second equation of (8.18) we

obtain the Thue equation

m4 + 36-m3-n + 6-m2-n2 - 28-m-n3 + n4 =1

The left hand side can be factored as
(m+n )-( m3 + 35-m2-n - 29-m-n2 + n3 ),

and therefore 1t can be solved very easily. Its only solutions are
*(m,n) = (1,0), (0,1) . They lead to *(u,v,w) = (4,2,-1), (4,-2,-1) , and
then by (8.18) we find x = 20, 12 respectively, which furnish the solutions
(x,*y) = (20,89), (12,41) for (8.14).

Secondly, we suppose that Uy and z are odd. Then \21 is even, so by
u1 2 0 there exist m, n € Z with
u1 = m2 + n2 , 2 v1 =2mn, 2z = m2 - n2

It follows that

u = 2-(m2+n2) , vVv=2mn, WwW=-n or wW = -n

We may assume that w = —m2 . Substituting this in the second equation of

(8.18) we find the Thue equation

m4 + 8-m3-n - 8-m-n3 =1
The left hand side is again reducible. The only solutions, as is easily seen,
are *(m,n) = (1,0), (1,1), (1,-1) . Since m and n cannot have the same
parity, only the first pair is accepted. It leads to (u,v,w) = (2,0,-1) ,
and hence to (x,ty) = (4,7) for (8.14).

Second case: j =1 . Then, equating the coefficients in (8.17) we get

x = 2-u" + v2 + 4-w2 + 20w - 4-vw , (8.19)
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u2 + 4-v2 + 18-w2 - 4-u-v + 8'u-w - 18-v-w =1,
> > (8.20)
2:v_ + 9w -2-uv+4uw- 8vw=0.
The first relation of (8.20) can be replaced by
2
u= - 2vew =1 . (8.21)

Note that u 1is odd. Put z = v - 2-w . Then the second equation of (8.20)
yields

w = 2-z-(u-z)

First we suppose that =z 1is odd. Then there exist m, n € Z such that

zZ = m2 , u-2z=2 n2 ,
where we use that u » 0 and (u,w) = 1 . Thus, choosing signs properly,
u = m2 + 2-n2 , VvV = m2 +4-mn, w=2-mn .

Substituting this in (8.21) we obtain the Thue equation

m4 - 4-m3-n - 12-m2-n2 + 4-n4 =1 . (8.22)

In Theorem 8.8(i) below we prove that this equation has only the solutions
*(m,n) = (1,0) , leading to (u,v,w) = (1,1,0) , and finally for (8.14) to
(x,ty) = (3,4)

Secondly we suppose that 2z 1s even. Then there exist m, n € Z with

Thus, choosing signs properly, we find
2
u=2m +n , v=2m +4mn, wW=2-mn .
Now, substituting into (8.21), we obtain the Thue equation
4 2 2 3 4

n -12-n"n” -8nm” +4m =1. (8.23)

In Theorem 8.8(ii) below we prove that this equation has only the solutions
*(m,n) = (0,1), (1,-1), (3,1), (-1,3) . They 1lead respectively to
(u,v,w) = (1,0,0), (3,-2,-2), (19,30,6), (11,-10,-6) , which lead for (8.14)
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to the solutions (x,*y) = (2,1), (10,31), (1274,45473), (114,1217) . Thus
this result completes the proof of Theorem 8.7, provided the Thue equations
(8.22), (8.23) have as their only solutions the pairs (m,n) mentioned

above. We now proceed to prove this.

THEOREM 8.8. (i). The Thue equation

X4 - 4-X3-Y - 12-X2-Y2 + 4-Y4 =1 (8.24)

has only the solutions *(X,Y) = (1,0)

(ii). The Thue equation

X4 - 12-X2-Y2 - 8-X-Y3 + 4-Y4 =1 (8.25)

has only the solutions =*(X,Y) = (1,0), (1,-1), (1,3), (3,-1)

Proof. We use the notation and results of Sections 8.2 and 8.3. Let the

algebraic numbers ¢ and ¢ be defined by

04 - 12-192 -89 +4 =0, @4 - 4-@3 - 12-<p2 + 4 =0.
Since ¢ = 2/9 , it follows that ¢ and ¢ generate the same field K over
Q@ . In the notation of Section 8.2 we have n =4, s =4, t =0, and & =9

or & = ¢ . Simple computations show that for & = ¢, ¢ we can take

YO =1, C1 = 0.843 , C2 = 0.589 , Y1 = 2, C3 = 6.645 ,
Y = 3 =p =1, C, =8.3374
2 - s “_ - “+ - ) 4 - . .
In these computations we estimated Cl’ C3, C4 from above and C2 from

below, using the following approximations for the conjugates of ¢ and ¢ :

o) 2 _1.080 286 352, oY) = —1.851 360 980 ,
9% 2 3,720 935 260 , %) = 0.537 210 524 ,
90 2 0.332 111 7116 , ) = s5.986 021 747 ,
o) 2 5. 976 760 624 , ¢ = _0.671 871 290 .
Now we work in the order R of K with Z-basis { 1, @, é-ﬁz, 2-03 }

(note that -02 is an algebraic integer). Note that

N [~

=4+ 60 - 2-03 €R .

DI

4

On the other hand, (8.24) and (8.25) are respectively equivalent to
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NormK/Q(X—Y-ﬁ) =1 and NormK/Q(X—Y-@) = 1 , which means that if (X,Y) is

a solution of (8.24) or (8.25), then X - Y9 or X - Y-¢ , respectively, is

a unit of the order R . A system of fundamental units of R 1is given by

We do not prove this fact here. For a proof, see Tzanakis and de Weger

[1989a], Section III.2 and Appendix I.

Thus the solution of (8.24) and (8.25) 1is reduced to finding all
3 M1 %2 %3
(al,az,a3) € Z such that the unit isl "€, €4 has the special shape

X - Yy or X - Y-¢ , respectively. In the notation of Lemma 8.3 we have,

after some numerical computations, that we leave to the reader to check, that

min N[Ugl] = 0.634950... , max N[Ugl] = 1.210070... ,
I I
(here, of course, I =4{ 1, 2, 3, 4 } ). Therefore we can take in Lemma 8.4
C5 = 1.211
Also,
C =6 38771><104 Y =3
6 ’ 2 )

(The values of C5 and C6 are estimated from above.)

Now, relation (8.3) becomes in our case

L0 ) 3 )
A = log|>————| + ) a,-log|—/—| , (8.26)
Go) | =t el
3 B3 i
where & =8¢ or ¢ . As mentioned in Section 8.2, once iO is fixed, we can
choose j, k arbitrarily. Thus we can choose
j=3, k=4 if iO =1 or 2,
(8.27)
j=1, k=2 if iO =3 or 4
Therefore, for each & € { ¢, ¢ } we have four possibilities for A . For
each of these eight cases we have, as will be shown below,
- 38 -
C7 = 5.71x10 , C8 =6.17 ,
and therefore, by Lemma 8.5, if |Y| > 3, then for A = max la,| we have
1<i<3
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the upper bound C9 = 3.26><1040 . As is easily checked, the only solutions of

either (8.24) or (8.25) with |Y| € 3 are those listed in the statement of

the theorem. Therefore we may assume that |Y| > 3, so that

A < 3.26><1040 .
Before we apply the reduction method of Section 3.8 we show that the

application of Lemma 2.4 yields the above constants C7, C8 . We apply this

result in the case of A given by (8.26). In this case, we compute the Vi’s
. , . . _ (k) ,_(J)

for the wvarious a;’s appearing in A, as follows. If oy = |8i /si

for 1 =1, 2, 3, then o, is a unit and hence 3, (appearing in the

computation of h(ai) ) is equal to 1. Clearly, every conjugate of o, is in

absolute value less than

max Is(h)l
_ 1<h<a G

i~ min Is(h)l
1<h<d 1

jund

>

and Hi > 1 . Therefore, h(ai) < Hi , and we can take

- (k) ,_(J)
Vi =max ( log Hi’ |log|8i /si ')
Since the latter term equals the logarithm of either Isik)/sij)l or its
inverse, it follows that
Vi = log Hi
(i) . (i)
If «, = S 0 —E(J)|/|E 0 —E(k)l , then all conjugates of «, are in
absolute value less than C3 . Therefore, h(ai) < (log ao)/d + log C3 ,
where a, and d are as in the definition of h(«a) for o = o, An upper
bound for aP can be computed as follows. Consider the algebralc numbers
Xip = é-(z(l ™)y for i, he {1, ..., 4} with i#h . It can be
checked that the numbers Xip, @are algebraic integers for & = ¢ or ¢
Now, for each permutation o = (01020304) € S4 we consider the number
x(o) = Xy o /Xo o (independent of o ), and the polynomial
12 13
P(X) =T (X-x@)) .
0€S

4

Consider also the number
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Note that

2 1 2 1
A= M (&8 ) =~ D,
2 1€i<h<4 2
where D is the discriminant of the defining polynomial of £ , and

therefore A2 = 229 . On the other hand, the coefficients of P(X) are up to

the sign the elementary symmetric functions of x(o¢) for o € S, , and so

(i), 4
S

they are symmetrical expressions of the & with rational coefficients.

This means that P(X) € Q[X] . On the other hand, by the definition of A ,
any coefficient of P(X) multiplied by A4 is a polynomial of the xih’s
with coefficients in Z and therefore it is an algebraic integer. Combine
this with the fact that P(X) € Q[X] to see that 2292-P(X) € ZI[X] . Hence,
since o, is a root of P(X) , its leading coefficient a, is at most
2292 . To conclude, we have h(ai) < 2-(log 229)/d + log C3 and it is clear
that |log ail/d < log C3 . Since o, £ Q@ we have d » 2 , so we can take

Vi = log 229 + log C3 .

Simple computations now show that

log H, = 4.074586... , log H, = 5.667432... ,
log Hy = 4.821584... ,

log C, = 1.262065... 1if £ =49,

log C, = 1.893823... if E=¢,

log 229 + log C3 < 7.327545. ..

Therefore we apply Lemma 2.4 (Waldschmidt) with n = 4, D < 24, e(n) = 73,

8(k) 8(k) 8(k) (iO) (1)
o, = ! o, = 3 o, = 2 o, = g————:g—i—
1 8(j) ’ 2 8(j) ’ 3 8(j) ’ 4 (io) (%) ’
3 2 g -
for £€=9 or ¢, and b1 = a1 , +b2 = a3 , b3 = a%_, b4 =1, B=A,
V1 = log H1 , V2 = log H3 , V3 = V3 = log H2 , V4 = V4 = log 229 + log C3 .

Thus we find that
Al > exp(—C7-(log A+ C8)) ,

with C7 = 5.71X1038 and C8 =6.17 .
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We have now to apply the reduction process described in Section 3.7. In our

situation we have to solve (8.9) with

_ _ 4 _n _ 4 _ 40
K1 = C6 = 6.38771x10" , K2 = CS = 1511 > 3.303 , K3 = 3.26x%10

( K2 is estimated from below), and

A=8 +a iy +ast, Y agiy,

where for & and the pi’s we have, in view of (8.26) and (8.27):

E(l)_g(3) (2)_5(3)
S =8 = log|>+——>— or 8 =96, := log|=>—=~ s
1 1 4 2 2 4
E( )—E( ) E( )—E( )
1 (4) where & =9 or ¢, (8.28)
€,
“i = log 37 for i=1, 2, 3,
i
or
(3) (1) (4) (1)
- - g -& - =3
8 =8, := log or 8 =8, := log >
3 3 2 4 4 2
E( )—E( ) E( )—E( )
1 2) where & =9 or ¢, (8.29)
€,
i
u. = log , for 1i=1, 2, 3
i 8il)

Numerical details are given in the preprint version of Tzanaklis and de Weger

[1989a] (to be obtained from the author). We take c. = 10140

0 , and we work

with the lattice with associated matrix

1 0 0
A = 0 1 0
[co-ul] [co-uz] [co-u3]

Note that in each of the four cases of (8.28) (resp. (8.29)) we have the same
lattice, Fl (resp. FZ ), say. In each case & # 0 , and we had no
numerical evidence that the pi’s are Q-dependent. Therefore we worked as in

case (1i) of Section 8.4.

For each Fi we have applied the integral version of the L3—algorithm, and
each time we have computed the integral 3x3-matrices B, U, <u"1 , as defined
in Section 3.7. In our cases, the coordinates of the vectors of the reduced

bases (i.e. the elements of B ) turned out to have 46 to 48 digits, i.e. the
1/3

lengths of the reduced basis vectors are of the size of o ,

as expected.
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In each of the eight cases we computed the coordinates S;» Sy, Sy of
0
X = 0
—[00-8]
with respect to the reduced basis 91, 92, 93 of the lattice. From our
computations we found
46 . .
|91| > 3.247x10 in the case of lattice Fl ,
46 . .
|91| > 4.846X10 in the case of lattice FZ ,
HS3H > 0.029 1in all 8 cases.
This means that in view of Lemma 3.5, in all cases 1. = 3, and

Ur,x) > 0.029-§-3.247x1046 > 4.708x10%% .

Then the assumptions of Lemma 3.10 are fulfilled with n =3, ¥y =1, C =c

O’
_ _ _ _ . . 40 . . .

c = Kl’ S = K2, XO = X1 = K3 , Since V27 K3 < 1.112x10 , which implies

A< 1 -log(10140-6.38771x104/3.26x1040) < 72.8 .

3.303

It follows that A < 72. We repeat the procedure with K3 = 72 and
Sy = 1012 . We found from our computations

|91| > 1.293><104 in the case of lattice Fl ,

|91| > 1.092><104 in the case of lattice FZ ,

HS3H > 0.143 1in all 8 cases.
This means that in view of Lemma 3.5, in all cases iO = 3, and

1 4 2

E(Fi,g) > 0.143-5-1.092x10 > 7.807x10" .
Then the assumptions of Lemma 3.10 are fulfilled, since 1/27-K3 < 3.742X102 ,
which implies

1 12 4

A< 57565-10g(10 -6.38771x10 /72) < 10.5 .
It follows that A < 10 . We enumerated all remaining possibilities, and
found no other solutions of (8.24) and (8.25) than those mentioned. O

The computations for the proof of Theorem 8.8 took 35 sec.

201



8.6. The Thue-Mahler equation, an outline.

Let F(X,Y) be as in Section 8.1. Let Pyroooos Py be fixed distinct prime

numbers. The diophantine equation
=
F(X,Y) =*Tp

in the variables X, Y € Z , Dy -oes D € NO , with (X,Y) =1, is known
as a Thue-Mahler equation. It was proved by Mahler [1933] that this equation
has only finitely many solutions, and by Coates [1970] that they can, at
least in principle, be determined effectively, since an effectively
computable wupper bound for the variables can be derived from the p-adic

theory of linear forms in logarithms. For the history of this equation we

refer to Shorey and Tijdeman [1986], Chapter 7.

We believe that it 1s possible to solve Thue-Mahler equations, not only in
principle, but in practice. This can be done by reducing the above mentioned
upper bounds, wusing a combination of real and p-adic computational
diophantine approximation techniques, based on the L3—a1gorithm for reducing
bases of lattices (cf. Sections 3.7 and 3.8 for the real case, 3.11 and 3.12
for the p-adic case, Section 1.5 for a short outline of how to combine the
real and p-adic techniques, and Sections 4.8 and 6.4 for some explicit
examples of such combined techniques). The method can be considered as a
p-adic analogue of the method for solving Thue equations, on which we

reported in the preceding sections.

Such an idea (but without wusing the L3—algorithm) was used by Agrawal,

Coates, Hunt and van der Poorten [1980], who solved the equation

X2 - XY + X-¥2 4 vo o= 211"
This is to the author’s knowledge the only example in the literature where a
Thue-Mahler equation has been solved by the Gelfond-Baker method. Other

methods may apply as well for solving Thue-Mahler equations. For example,

has been solved by Tzanakis [1984] by a different method. The advantage of
the Gelfond-Baker method above many other ideas is that it works in principle
for any Thue-Mahler equation, because it is not very much dependent on the

parameters of the particular equation that one wants to solve.
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Both examples of Thue-Mahler equations mentioned above are of the simplest
kind, in view of the fact that the cubic field @Q(¢) , where ¢ 1is a root of
F(x,1) = 0 , has only one fundamental unit, and there occurs only one prime.
Therefore 1t is sufficient to use two-dimensional real continued fractions
and one-dimensional p-adic continued fractions, instead of the more
complicated L3—a1gorithm (which anyway was not yet available in 1980, when
Agrawal, Coates, Hunt and van der Poorten did their work). With the use of
the L3—a1gorithm the method can in principle be extended to the general
situation, where there are more than one fundamental units, and more than one

primes. In a forthcoming publication, Tzanakis and the present author plan to

give details and worked-out examples (Tzanakis and de Weger [1989b]).
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