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Chapter 1

Introduction

This report is the result of my graduation project in completion of the Master program Industrial
and Applied Mathematics at the Eindhoven University of Technology (TU/e). It has been written
in order to obtain the degree of Master of Science. The project has been carried out at the
Netherlands National Communications Security Agency (NLNCSA), which is part of the General
Intelligence and Security Service (GISS) in Leidschendam.

1.1 Project Background

Elliptic curves have been a subject of research for a long time already. They naturally occur in
the study of congruent numbers and Diophantine equations. Initially, researchers were mainly
interested in finding points on elliptic curves over infinite fields such as the field of rational or real
numbers. The study of curves over finite fields, which at first sight seem to form rather boring
abelian groups, aided in finding such points. In 1985, however, elliptic curves over finite fields
found an application of their own in cryptography. Koblitz and Miller independently realized that
discrete logarithm-based cryptosystems might provide better security when defined on the group
of points on an elliptic curve rather than the conventional multiplicative group of a finite field.
Or alternatively, they figured, elliptic curves could enable shorter keys, while providing a similar
level of security. Since then, a lot of research effort has been put in elliptic curve cryptography
and numerous cryptosystems have been proposed. Some of them, however, proved less secure
than initially assumed, as the structure of the proposed elliptic curves provides tools to attack the
system.

This is where pairings first come into play. A pairing in this context is a function that takes
as input two points on an elliptic curve and outputs an element of some multiplicative abelian
group. Furthermore, a pairing satisfies some special properties, the most important of which is
bilinearity. Due to these special properties, pairings are hard to construct. The two pairings that
are known at present are the Weil pairing and the Tate pairing. In 1993, Menezes et al. discovered
that the Weil pairing can be used to attack discrete logarithm-based systems on a certain class
of elliptic curves; the so-called MOV-reduction. One year later, Frey and Rück used the Tate
pairing to describe a similar attack, called the FR-reduction. This cryptanalytic use was the only
known application of pairings for a long time. In 2000, however, Joux discovered that pairings
can be used as cryptographic building blocks as well. The bilinearity of the pairings enables many
cryptosystems with interesting properties. Joux’s discovery spurred an extensive research into
new applications based on pairings. The large number of articles on pairing-based cryptography
that have appeared since 2000 indicates the tremendous amount of research effort put into this
subject. An excellent reference is Barreto’s ’Pairing-Based Crypto Lounge’ [4].

Undoubtedly the most striking application of pairings is the realization of identity-based cryp-
tography. In this variant of public-key cryptography, already proposed by Shamir in 1984, users’
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public keys are derived from their identity and the corresponding secret keys are generated by
some trusted party. The fact that public keys are linked to the users’ identity guarantees the
authenticity and therefore takes away the need for certificates as in conventional public-key cryp-
tosystems. Some satisfactory identity-based signature schemes were proposed soon after Shamir
described the concept of identity-based crypto. The implementation of an identity-based encryp-
tion scheme, however, remained an open problem until Joux’s discovery of the constructive use of
pairings. In 2001, Boneh and Franklin were able to design an efficient identity-based encryption
scheme through pairings. (Simultaneously, Cocks came up with a non pairing-based solution; we
do not deal with this scheme.) Soon identity-based signature schemes appeared that are com-
patible with the encryption scheme by Boneh and Franklin, thus yielding a complete and fully
functional solution to the open problem put by Shamir. Besides identity-based systems, numerous
other pairing-based schemes with interesting properties have appeared, such as an efficient key
agreement protocol and a signature scheme with short signatures.

1.2 Project Description

It is of great importance for the NLNCSA to keep abreast of the recent developments in cryptogra-
phy. Therefore, the aim of this project is to gain knowledge of the current status of pairing-based
crypto in general and identity-based crypto in particular. This includes the mathematics involved
on one hand and the potential applications on the other. The fact that in this subject challenging
mathematics lies close to real-life applications (in contrast to most interesting mathematics, where
usually a large gap is present between theory and practice) is what makes the assignment in our
opinion very appealing.

The mathematics involves divisor theory on elliptic curves and consists of number theoretical and
algebraic aspects. Since the constructive application of pairings was discovered as recently as 2000,
there has not yet appeared a thorough and sound treatise of the theory. Instead, many articles
have appeared, often treating (part of) the subject from a different point of view, making different
assumptions and using a different notation. We try to give an overview of currently known theory
and expose the relation between the different mathematical aspects. Further, we give some proofs
that appear to be absent in the literature and support the theory with some examples.

In order to deal with the practice of pairings in cryptography, we describe the setting to which
pairings apply, namely discrete logarithm-based cryptography on elliptic curves. We examine
the definition, security and application of identity-based cryptography, in comparison with the
conventional PKI implementation of asymmetric cryptography. Next, we discuss the encryption
scheme by Boneh and Franklin and expose its relation with the classic ElGamal encryption scheme.
Lastly, we perform a literature search for applications of pairings, mainly focussing on identity-
based applications, but also treating non identity-based applications.

In addition, the NLNCSA asks for a small computer implementation of the pairings, in order to
clarify the theory and expose the problems one encounters when implementing. We have written
a program in Mathematica, which step by step defines the functions needed for the computation
of the Weil and the Tate pairing. We have put the stress on the expository function of the
implementation rather than the efficiency. The working of the pairings is demonstrated with some
small examples.

1.3 Report Outline

As more or less suggested by the project description, this report is divided into two parts. Part I
(Chapters 2-6) deals with the mathematical theory of the pairings, where we try to keep the fact
that we are interested in cryptographic applications at the back of our minds. Part II (Chapters
7-9) is devoted to the applications of pairings in cryptography. We have tried to keep both parts
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independently readable. For this purpose, Part II abstractly defines pairings on elliptic curves as
bilinear maps on additive groups, without going into detail how these pairings can be constructed.
We therefore believe that, except for some specific examples, Part II can be read without knowledge
of the Weil and Tate pairing or even elliptic curves.

Below we give the outline of Parts I and II. We summarize the main results of both parts and
make some concluding remarks in Chapter 10. The code of the Mathematica implementation is
given in Appendix A.

Part I
In Chapter 2, we first state some facts about elliptic curves and functions on elliptic curves. Next
we deal with divisor theory on elliptic curves, which lies at the heart of the definitions of the Weil
and the Tate pairing.

Chapter 3 focusses on the Weil pairing. The relation between two slightly different definitions of
the Weil pairing is exposed and the specific properties of the Weil pairing are given. Then an
efficient way to compute the Weil pairing is described and clarified with an example.

The Tate pairing is discussed in Chapter 4. We deal with the definition and properties of this
pairing. Next we give the algorithm for computing the Tate pairing, along with an example. We
then investigate its relation with the Weil pairing. Hence, readers are advised to read Chapter 3
prior to Chapter 4. Lastly, we outline how the implementation of this algorithm can be optimized.

With the definition of the pairings out of the way, we discuss some aspects that turn out to be
important in cryptographic applications. Chapter 5 covers the notion of the embedding degree of
an elliptic curve. We give a lower bound for the embedding degree and describe the additional
conditions for both pairings. Next we investigate which curves have suitable embedding degree.
Chapter 5 elaborates on Chapters 3 and 4.

Distortion maps on elliptic curves are covered in Chapter 6. We give the definition and discuss on
which curves such maps can exist. Next we explain how they can be used to modify the Weil and
the Tate pairing and describe how these modifications can be used in cryptographic applications.
Chapter 6 can be read independently from Chapter 5, but refers to Chapters 3 and 4. This is
depicted in Figure 1.1.

Part I 2 3 4
6

5
´́
QQ

Figure 1.1: Outline Part I

Part II
In Chapter 7, we give a general introduction to elliptic curve cryptography. For this purpose,
we first describe the discrete logarithm problem and related problems, on which this type of
cryptography is based. Next, we discuss how these problems apply to elliptic curves and what
the consequences are of using elliptic curves. Apart from some specific examples, no knowledge
of elliptic curves is required. Lastly, we focus on how pairings can be used as building blocks for
cryptographic applications. Pairings are defined in a general way, hence readers do not need to
have any knowledge of these pairings.

Chapter 8 covers the area of identity-based cryptography. After giving the definition, we com-
pare identity-based cryptography to conventional asymmetric cryptography, which makes use of
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public-key infrastructures. Next we describe how pairings can be used to realize a functional
implementation of identity-based cryptosystems. In this chapter, we frequently refer to Chapter
7.

Besides identity-based cryptography, pairings enable several other applications. These are dealt
with in Chapter 9. The two applications that get the most attention are an efficient multi-party
key exchange and a signature scheme with short signatures. Chapter 9 uses the matter covered in
Chapter 7, but can be read independently from Chapter 8; this is depicted in Figure 1.2.

Part II 7
9

8
³³³
PPP

Figure 1.2: Outline Part II



Chapter 2

Preliminaries

In this Chapter, we describe divisor theory on elliptic curves. For this purpose, we briefly give
some facts about elliptic curves in Section 2.1. Unless stated otherwise, the results in this section
come from [76]. Next we discuss functions on elliptic curves and the multiplicity of their zeros
and poles in Sections 2.2 and 2.3. We are then ready to deal with divisor theory in Section 2.4
and a way to compute divisors in practice in Section 2.5. For details on divisor theory, the reader
is referred to [54, 76].

2.1 Elliptic Curves

Let K denote a field and K its algebraic closure. Throughout the report, we write K∗ for K/{0}.
Consider the homogeneous function over the projective plane P2(K) given by

F (X, Y, Z) = Y 2Z + a1XY Z + a3Y Z2 −X3 − a2X
2Z − a4XZ2 − a6Z

3,

where a1, a2, a3, a4, a6 ∈ K. An elliptic curve E is defined to be the set of solutions to F (X,Y, Z) =
0 in the projective plane P2(K), where points are equivalent to their multiples, i.e. (X : Y : Z) ∼
(λX : λY : λZ) for λ ∈ K

∗
. There is exactly one point in E with Z = 0, namely (0 : 1 : 0), which

we will call the point at infinity and denote by O. By convention, we require the curve to be
non-singular , i.e. for all points P ∈ E the three partial derivatives ∂F/∂X, ∂F/∂Y and ∂F/∂Z
are not all zero at P .

For simplicity, we will use affine coordinates x = X/Z and y = Y/Z, and denote an elliptic curve
by the (affine) Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (2.1)

Then the elliptic curve is the set of points (x, y) ∈ A2(K) = K ×K that satisfy equation (2.1),
together with the extra point at infinity O. E is said to be defined over K, denoted E/K, if
a1, a2, a3, a4, a6 ∈ K. Then K is called the definition field. We denote by E(K) the set of K-
rational points, i.e. the points with both coordinates in K, together with O. Observe that by
definition, we can write E = E(K).

Two elliptic curves E1/K, E2/K are isomorphic over K, denoted E1/K ∼= E2/K, if there exist
u, r, s, t ∈ K, u 6= 0, such that the admissible change of variables

(x, y) −→ (u2x + r, u3y + u2sx + t)

transforms the equation of E1 into the equation of E2. We will generally be working with elliptic
curves over a finite field K = Fq consisting of q elements, where q = pm is a prime power. In this
case, the algebraic closure of K is given by K =

⋃
i≥1 Fqi . If the characteristic p of K is greater
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than 3, then any curve defined over K is isomorphic with a curve of particularly simple form,
namely:

E : y2 = x3 + ax + b, a, b ∈ K. (2.2)

Similarly, one can simplify the Weierstrass equation for curves over finite fields of characteristic
p = 2 and 3; we will not deal with these cases here.

There exists a natural operation that makes the set of points on an elliptic curve into a group.
This operation, known as the tangent-and-chord-method , is written additively and has the point
at infinity O as zero element. We next give the explicit formula for the addition of two points on
a curve defined over a field of characteristic > 3. Let P = (x1, y1), Q = (x2, y2) ∈ E \ {O}. The
point −P is given by (x1,−y1). Suppose Q 6= −P , then P + Q = (x3, y3), where

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

and

λ =





y2−y1
x2−x1

, if P 6= Q,

3x2
1+a

2y1
, if P = Q.

Similar formulae exist for curves over characteristic 2 and 3.

Since there exists an addition on elliptic curves, we can also define scalar multiplication. Namely,
for m ∈ Z and P ∈ E, the multiplication-by-m is given by:

[m]P = P + . . . + P (m terms) for m > 0,

[0]P = O, and [−m]P = [m](−P ) for m < 0.

Now we can define the order of a point P ∈ E as the smallest positive integer k such that [k]P = O.
If no such integer exists, then the order is said to be infinite. If [n]P = O for P ∈ E, then P
is called an n-torsion point . Remark that a point P is an n-torsion point if and only if its order
divides n. The subgroup of n-torsion points in E is denoted by E[n], so

E[n] = {P ∈ E : [n]P = O}.
Further, we write E(K)[n] for the subgroup of n-torsion points in E(K), so

E(K)[n] = {P ∈ E(K) : [n]P = O}.

Let E be an elliptic curve defined over Fq. The number of points in E(Fq), called the order of
the elliptic curve, is denoted by #E(Fq). The trace of Frobenius or simply trace of a curve is the
value t satisfying #E(Fq) = q + 1 − t. The elliptic curve E/Fq is said to be supersingular if the
characteristic p of Fq divides t, and non-supersingular otherwise. In other words, the curve E/Fq

is supersingular if t ≡ 0 (mod p). The following is an important result by Hasse.

Theorem 2.1 (Hasse’s bound; Silverman [76], Theorem 5.1.1) The trace t of a curve sat-
isfies |t| ≤ 2

√
q.

We now give a result on the group structure of E that we need later on. Throughout the report,
we will write Zn for Z/nZ.

Lemma 2.2 (Silverman [76], Corollary 3.6.4 and Theorem 5.3.1) If n and q are relatively
prime, then E[n] ∼= Zn ⊕ Zn. If n = pe, then either E[pe] = {O} if E is supersingular, or
E[pe] ∼= Zpe if E is non-supersingular.
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Note that from Lemma 2.2 follows that for n coprime to q, the number of n-torsion points #E[n]
is equal to n2; a fact that will frequently be used. Moreover, if n is prime, then E[n] is generated
by any two linearly independent n-torsion points.

A rational mapping from E to E that is also a group homomorphism is called an endomorphism.
The set of endomorphisms on E forms a group and is denoted by End(E). The multiplication-by-
m map, sending a point P to [m]P , is an endomorphism. Further, on every elliptic curve defined
over Fq there exists another endomorphism, known as the Frobenius endomorphism or Frobenius
map. The Frobenius endomorphism Φ : E → E sends a point (x, y) to (xq, yq) and fixes O. Then
P ∈ E(Fq) if and only if Φ(P ) = P .

2.2 Functions on an Elliptic Curve

Let K = Fq and let the curve E/K be given by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (2.3)

Define the function r ∈ K[x, y] by

r(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6,

then the coordinate ring K[E] of E over K is defined as the integral domain

K[E] = K[x, y]/(r),

where (r) is the ideal in K[x, y] generated by r. Similarly, K[E] is defined as

K[E] = K[x, y]/(r).

We can write l ∈ K[E] in canonical form

l(x, y) = v(x) + yw(x), v(x), w(x) ∈ K[x],

by using the relation (2.3) to knock down exponents of y that are greater than or equal to 2.

By taking the field of fractions of K[E], we obtain the function field K(E). Here, two elements
f1/g1 and f2/g2 ∈ K(E) are identified if f1g2 = f2g1. Again, we can do the same for K, so K(E)
is the field of fractions of K[E]. An element of K(E) is called a rational function.

A non-zero rational function f ∈ K(E)∗ is said to be defined at a point P ∈ E \ {O} if f can be
written as f = g/h, for g, h ∈ K[E], with h(P ) 6= 0. In that case, the evaluation of f at P , given
by f(P ) = g(P )/h(P ), is well-defined. Further, f is said to have a zero at P if f(P ) = 0, and f
is said to have a pole at P (denoted by f(P ) = ∞) if f is not defined at P . We will deal with the
multiplicity of the zeros and poles in the next section. Note that a non-zero rational function can
only have a finite number of zeros and poles.

To determine the value of a rational function at the point O, it seems natural to compare the
degrees of the denominator and the enumerator. However, when trying to find the degree of a
function, we cannot simply assign a weight of 1 to both variables x and y, as this would violate
the relation y2 = x3 + ax + b. Therefore, we define x and y to have weight 2 and 3, respectively.
Then, for nonzero g(x, y) = v(x) + yw(x) ∈ K[E], the degree of g is given by

deg(g) = max{2 · degx(v), 3 + 2 · degx(w)},
where degx(p) denotes the usual degree of a polynomial p in the variable x. Now let f = g/h ∈
K(E). If deg(g) < deg(h), then f(O) = 0. If deg(g) > deg(h), then f is said to have a pole at O,
denoted f(O) = ∞. If deg(g) = deg(h), then f(O) = a/b, where a and b are the coefficients of
the leading terms of g and h, written in canonical form, respectively.

Example 2.3 Consider the curve E/K : y2 = x3 + 3x, where K = F11, and the rational function
f = y+x+1

x+8 ∈ K(E). Then f can be written as g/h with g = y + x + 1 and h = x + 8. Now
deg(g) = 3 and deg(h) = 2, so f has a pole at O and we write f(O) = ∞.
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2.3 Multiplicity of Zeros and Poles

Recall that a rational function f ∈ K(E) on an elliptic curve E is said to have a zero at a point
P ∈ E if f(P ) = 0 and a pole at P if f(P ) = ∞. We next describe how to find the multiplicity of
the zeros and poles of a function.

For every point P ∈ E, there exists a rational function u with u(P ) = 0, satisfying the following
property: every non-zero rational function f ∈ K(E)∗ can be written as

f = uds,

where s ∈ K(E), s(P ) 6= 0,∞, for some integer d. A function u with this property is called a
uniformizing parameter for P . The value of d does not depend on the choice of u. We can find a
uniformizing parameter using the following theorem:

Theorem 2.4 (Menezes [54], Theorem 2.22) Let P ∈ E. If l : ax + by + c = 0 is any line
through P that is not tangent to E at P , then l is a uniformizing parameter for P .

Searching for a uniformizing parameter, we can distinguish between three general cases, namely

P /∈ E[2], P ∈ E[2] \ {O}, and P = O.

Let P = (c, d) /∈ E[2], then u = x−c is a line through P not tangent to E, so x−c is a uniformizing
parameter for P . If P = (c, 0) ∈ E[2] \ {O}, then a line through P not tangent to E, and thus
a uniformizing parameter for P , is given by u = y. Finally, after switching to a different set of
parameters, one can see that u = x/y is a uniformizing parameter for P = O (for details see [54]).

Let u be a uniformizing parameter for P ∈ E. The non-zero rational function f ∈ K(E)∗ can be
decomposed as f = uds, where s ∈ K(E) and s(P ) 6= 0,∞. Then the order of f at P , denoted
ordP (f), equals d. If P is a zero of f , then ordP (f) > 0 and the zero is said to have multiplicity
ordP (f). In case P is a pole, then ordP (f) < 0 and the multiplicity of the pole is defined as
−ordP (f). Remark that if P is neither a zero nor a pole, then ordP (f) = 0.

Example 2.5 Recall from Example 2.3 that the rational function f = y+x+1
x+8 ∈ K(E) on the

curve E/K : y2 = x3 + 3x with K = F11 has a pole at the point at infinity O. A uniformizing
parameter for O is u = x/y. Then write

f = uds = (x/y)ds =
y + x + 1

x + 8
, so s =

yd(y + x + 1)
xd(x + 8)

.

Then for d = −1, we see that s = x(y+x+1)
y(x+8) , which is equal to one at O. Hence, ordO(f) = −1

and we say that f has a pole of multiplicity one at O.

2.4 Divisor Theory

Up to a constant multiple, a rational function is uniquely determined by its zeros and poles.
Therefore, it makes sense to construct a tool that can be used to record these special points of a
function. As we are dealing with points on an elliptic curve and their multiplicities, finitely many
of which are unequal to 0, it seems natural to use a formal sum. So, define a divisor D as a formal
sum of points

D =
∑

P∈E

nP (P ),

where nP ∈ Z and nP = 0 for all but finitely many P ∈ E. The group of divisors of E, denoted
Div(E), is the free abelian group generated by the points of E, where addition is given by

∑

P∈E

nP (P ) +
∑

P∈E

mP (P ) =
∑

P∈E

(nP + mP )(P ).
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The support of a divisor D =
∑

P∈E nP (P ) ∈ Div(E) is given by the set of points

supp(D) = {P ∈ E|nP 6= 0}.
Further, its degree deg(D) is defined by

deg(D) =
∑

P∈E

nP .

It is easily verified that the divisors of degree 0, denoted Div0(E), form a subgroup of Div(E).

Since the number of zeros and poles of a non-zero rational function f ∈ K(E)∗ is finite, we can
now define the divisor of a function f , denoted div(f), as

div(f) =
∑

P∈E

ordP (f)(P ).

Note that div(f) = 0 if and only if f is a constant function.

A divisor D ∈ Div(E) is called principal if D = div(f) for some rational function f . Further, two
divisors D1, D2 ∈ Div(E) are said to be (linearly) equivalent , denoted D1 ∼ D2, if D1 − D2 is
principal, i.e. we can write D1 = D2 + div(f) for some rational function f . The following is an
important theorem in divisor theory.

Theorem 2.6 (Silverman [76], Corollary 3.3.5) Let D =
∑

P∈E nP (P ) be a divisor. Then
D is principal if and only if

∑

P∈E

nP = 0 and
∑

P∈E

[nP ]P = O.

Consider the following theorem, regarding the equivalence with divisors of a certain form:

Theorem 2.7 (Lynn [50]) Let D ∈ Div(E). Then there exists a unique point P ∈ E such that

D ∼ (P ) + (deg(D)− 1)(O).

As a consequence, if D is a degree 0 divisor, then it is equivalent to (P )− (O) for some point P .

The set of all principal divisors is denoted Prin(E). The quotient group

Pic(E) = Div(E)/Prin(E),

which represents the set of divisors that are not principal, is called the Picard group or divisor
class group. From the fact that

div(f1f2) = div(f1) + div(f2)

for all f1, f2 ∈ K(E) follows that Prin(E) forms a subgroup of Div0(E). Hence, we can define the
group called the degree zero part of the Picard group, or divisor class group of E, as follows:

Pic0(E) = Div0(E)/Prin(E).

We next describe how to evaluate a rational function f ∈ K(E) in a divisor D =
∑

P∈E nP (P )
that satisfies supp(div(f)) ∩ supp(D) = ∅. The evaluation of f in D is given by

f(D) =
∏

P∈supp(D)

f(P )nP .

This evaluation is well-defined because D and div(f) have disjoint support. For future reference
we give the following lemma.
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Lemma 2.8 Let D ∈ Div0(E) be a degree zero divisor and f1 ∈ K(E) a rational function such
that supp(div(f1)) ∩ supp(D) = ∅. Let c ∈ K

∗
, then the rational function f2 = cf1 satisfies

f2(D) = f1(D).

Proof. For brevity, we write D = supp(D). Observe that supp(div(f1)) = supp(div(f2)), so div(f2)
has support disjoint from D. Write D =

∑
P∈E nP (P ), where

∑
P∈E nP =

∑
P∈D nP = 0. Then

f2(D) =
∏

P∈D
f2(P )nP =

∏

P∈D
(cf1(P ))nP = c

P
P∈D nP

∏

P∈D
f1(P )nP =

∏

P∈D
f1(P )nP = f1(D).

¤

We conclude this section with a result from Weil, which is an important tool in the study of
bilinear maps on elliptic curves.

Theorem 2.9 (Weil’s reciprocity law) Let f, g ∈ K(E). Then

f(div(g)) = g(div(f)).

See [34] or [35] for a proof for curves that are not necessarily elliptic, or [17] for a proof for elliptic
curves specifically.

2.5 Computing the Function of a Principal Divisor

Recall that for any degree zero divisor D ∈ Div0(E), there is a unique point P ∈ E such that
D ∼ (P )− (O). In other words, D can be written in what we will call canonical form:

D = (P )− (O) + div(f), (2.4)

where f ∈ K(E) is uniquely determined up to a constant multiple. For given degree zero divisor
D, we will next show how to compute P and f in (2.4) (see [54, 58]). For this purpose, we will
first give an explicit formula for adding two divisors in canonical form, such that the result is in
canonical form as well.

Let D1, D2 ∈ Div0(E) be given by

D1 = (P1)− (O) + div(f1),
D2 = (P2)− (O) + div(f2).

Let P1 + P2 = P3, and let l : l1y + l2x + l3 = 0 be the equation of the line through P1 and P2

and v : x + v1 = 0 the vertical line through P3. If P1 = P2 then l is the line tangent to P1, and if
P3 = O then take v = 1. Then

div(l) = (P1) + (P2) + (−P3)− 3(O),

and
div(v) = (P3) + (−P3)− 2(O).

Now we can write the sum of divisors D1 + D2 as:

D1 + D2 = (P1) + (P2)− 2(O) + div(f1f2)
= (P3)− (O) + div(l)− div(v) + div(f1f2)
= (P3)− (O) + div(f1f2f3),

where f3 = l/v. Note that f3, regarded as element of K(x, y), is defined at all points except for
P3 and −P3, since the function v is zero at P3 and −P3.



2.5 Computing the Function of a Principal Divisor 17

We describe a method for writing the principal divisor D =
∑n

i=1 ai(Pi) ∈ Prin(E) as the divisor
of a function f ∈ K(E). Since deg(D) = 0, we can write

D =
n∑

i=1

ai(Pi) =
n∑

i=1

ai((Pi)− (O)).

Before we proceed, we need the notion of an addition chain. Let a ∈ N, then an addition chain for
a is a sequence 1 = d1, d2, . . . , dt = a, such that each dj , 2 ≤ j ≤ t, can be written as dj = dk + dl,
where k, l < j. Now let d

(i)
1 , . . . , d

(i)
ti

be an addition chain for ai. Then for each i = 1, . . . , n we use
the method described above to successively express d

(i)
j ((Pi)− (O)) for j = 1, . . . , ti in canonical

form. Let the canonical form for the summands ai((Pi)− (O)) be given by (P ′i )− (O) + div(fi).
Finally, we add the divisors (P ′i )− (O) + div(fi) for 1 ≤ i ≤ n.

Menezes [54] argues that if we keep f in factored form, then f will be of polynomial size and
its computation takes polynomial time. Provided that f (as element of K(x, y)) is defined at
a point P , also the evaluation of f(P ) takes polynomial time. By construction, f is undefined
at most at the points ±Qj , where the intermediate divisors are given by Dj = (Qj)−(O)+div(gj).

2.5.1 Example

Consider the curve E/K : y2 = x3+3x, where K = F11. Table 2.1 shows the points on E(K), along
with their orders. Since the number of points #E(F11) = 12, we have t = q + 1 −#E(F11) = 0,
so E is supersingular.

Point Order Point Order
P0 = O 1 P6 = (3, 5) 3

P1 = (0, 0) 2 P7 = (3, 6) 3
P2 = (1, 2) 6 P8 = (6, 5) 4
P3 = (1, 9) 6 P9 = (6, 6) 4
P4 = (2, 5) 12 P10 = (7, 1) 12
P5 = (2, 6) 12 P11 = (7, 10) 12

Table 2.1: F11-rational points on E : y2 = x3 + 3x

The divisor D = 6(P2)− 6(O) is clearly principal, because the order of P2 is 6. An addition chain
for 6 is given by 1, 2, 4, 6. Then the rational function f with div(f) = D is computed as follows:

(P2)− (O) = (P2)− (O) + div(1).
2(P2)− 2(O) =

(
(P2)− (O)

)
+

(
(P2)− (O)

)

= (P7)− (O) + div
(y + 4x + 5

x + 8
)
.

4(P2)− 4(O) =
(
2(P2)− 2(O)

)
+

(
2(P2)− 2(O)

)

= (P6)− (O) + div
( (y + 4x + 5)2

(x + 8)2
(y + 3x + 7)

(x + 8)
)
.

6(P2)− 6(O) =
(
2(P2)− 2(O)

)
+

(
4(P2)− 4(O)

)

= div
( (y + 4x + 5)3

(x + 8)3
(y + 3x + 7)

(x + 8)
(x + 8)

1
)
.

The rational function f is given by

f =
(y + 4x + 5)3(y + 3x + 7)

(x + 8)3
.
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Considered as an element of K(x, y), f is undefined at the points P6 and P7. However, regarded
as a rational function (i.e. an element of K(E)), f can be rewritten as follows:

f =
(y + 4x + 5)3(y + 3x + 7)

(x + 8)3
· (y − 4x− 5)3

(y − 4x− 5)3

=
(y2 + 6x2 + 4x + 8)3

(x + 8)3
· (y + 3x + 7)
(y − 4x− 5)3

=
(x3 + 6x2 + 7x + 8)3

(x + 8)3
· (y + 3x + 7)
(y − 4x− 5)3

=
(x + 8)3(x + 10)6

(x + 8)3
· (y + 3x + 7)
(y − 4x− 5)3

=
(x + 10)6(y + 3x + 7)

(y − 4x− 5)3
,

which is actually defined at P6 = (3, 5). Similarly,

f =
(y + 4x + 5)3(y + 3x + 7)

(x + 8)3
· (y − 3x− 7)
(y − 3x− 7)

=
(y + 4x + 5)3

(x + 8)3
· (x3 + 2x2 + 5x + 6)

(y − 3x− 7)

=
(y + 4x + 5)3

(x + 8)3
· (x + 8)3

(y − 3x− 7)

=
(y + 4x + 5)3

(y − 3x− 7)
,

which is in turn defined at P7 = (3, 6). Thus, being a rational function, f is defined at both P6

and P7.



Chapter 3

Weil Pairing

This chapter is dedicated to the Weil pairing. We start in Section 3.1 with the definition of this
pairing as given in [76]. We then discuss some properties that are important for the practical use
of the Weil pairing in cryptography in Section 3.2. Section 3.3 deals with another, closely related
definition of the Weil pairing. This alternative definition makes it possible to efficiently compute
the pairing; this is shown in Section 3.4.

3.1 Definition

For the definition of the Weil pairing, we need the notion of the ramification index, which is defined
as follows:

Definition 3.1 Let F : E → E be a nonconstant rational mapping, P ∈ E and u a uniformizing
parameter for F (P ). Then the ramification index of F at P is defined by

eF (P ) = ordP (u ◦ F ).

By the definition of the order of a point, we see that eF (P ) is independent of the choice of u.
Further, since u is a uniformizing parameter for F (P ), it follows that u ◦ F has a zero at P , and
thus eF (P ) ≥ 1. A result from [18] is that if F is an endomorphism, then eF (P ) is constant for
all P and eF (P ) is denoted by eF . In particular, if F is the multiplication-by-m map for some
integer m, then eF = 1.

Another definition we need is the following:

Definition 3.2 Let F : E → E be a nonconstant rational mapping. The homomorphism F ∗ :
Div(E) → Div(E) is given by

F ∗((Q)) =
∑

F (P )=Q

eF (P ) · (P ).

Though this definition might seem rather artificial, it is constructed such that the following identity
holds:

div(r ◦ F ) = F ∗(div(r)), (3.1)

where r is a nonzero rational function. The proof that equation (3.1) holds, uses the fact that

ordP (r ◦ F ) = (ordF (P )r)(eF (P ))

(for details see [18]).

With these definitions out of the way, we are now ready to describe the setting for the Weil
pairing. Recall that a divisor D =

∑
P∈E nP (P ) is principal if and only if deg(D) = 0 and
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∑
P∈E [nP ]P = O. Let m ≥ 2 be a fixed integer coprime to p = char(K). Suppose T ∈ E[m], then

it easily follows that the divisor m(T )−m(O) is principal. Let f ∈ K(E) be a function such that

div(f) = m(T )−m(O).

Now consider the divisor [m]∗(T )− [m]∗(O). By Definition 3.2, this divisor can be written as
∑

[m]P=T

e[m](P ) · (P )−
∑

[m]P=O
e[m](P ) · (P ). (3.2)

Let T ′ ∈ E be such that [m]T ′ = T . Such T ′ always exists, because we are working over an
algebraically closed field K. Since e[m] = 1, we can rephrase (3.2) as:

∑

R∈E[m]

(T ′ + R)− (R),

which clearly has degree 0. Moreover, since #E[m] = m2 by Lemma 2.2 and [m2]T ′ = O, we find
that ∑

R∈E[m]

T ′ + R−R = [m2]T ′ = O.

Hence, the divisor [m]∗(T )− [m]∗(O) is principal and there is a function g ∈ K(E) with

div(g) = [m]∗(T )− [m]∗(O).

Now the definition of the Weil pairing (as given in [76]) is the following:

Definition 3.3 With the notation as introduced above, the Weil em-pairing

em : E[m]× E[m] → µm

is given by:

em(S, T ) =
g(X + S)

g(X)
, (3.3)

where X ∈ E is any point such that g(X + S), g(X) 6= 0,∞, and µm is the group of mth roots of
unity in K.

Below we prove that the Weil pairing is well-defined.

Theorem 3.4 The Weil pairing em is well-defined, i.e. maps to an mth root of unity and does
not depend on the choice of function g and point X.

Proof. Let S, T ∈ E[m]. Note that

div(f ◦ [m]) = [m]∗div(f) = [m]∗(m((T )− (O))) = m · div(g) = div(gm),

so gm = c · (f ◦ [m]) for some c ∈ K
∗
. Now, for any X ∈ E:

g(X + S)m = cf([m]X + [m]S) = cf([m]X) = g(X)m,

which shows that

em(S, T )m =
g(X + S)m

g(X)m
= 1,

and thus em(S, T ) is indeed an mth root of unity. Moreover, em(S, T ) does not depend on the
choice of g, as g is unique up to a constant multiple.
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We next show that the outcome of the pairing is irrespective of the choice of X. Let TP : E → E
be the translation-by-P map, which sends the point Q to Q + P . Then expression (3.3) can be
written as

em(S, T ) =
g ◦ TS

g
.

Lemma 13.3 in [18] shows that for S, T ∈ E[m], we have div(g ◦ TS) = div(g). Hence (g ◦ TS)/g is
a constant and thus em(S, T ) = g(X + S)/g(X) does not depend on the choice for X (provided
that g is defined at X and X + S). ¤

3.2 Properties

The next theorem states that the Weil pairing satisfies some important properties ([76, 18]). For
comprehensibility, we include the proof as given in [76].

Theorem 3.5 (Silverman [76], Proposition 3.8.1) Let S1, S2, S, T1, T2, T ∈ E[m]. The Weil
pairing as defined in Definition 3.3 satisfies the following properties:

1. em(S1 + S2, T ) = em(S1, T )em(S2, T ) (linearity in the first factor).

2. em(S, T1 + T2) = em(S, T1)em(S, T2) (linearity in the second factor).

3. em(S, S) = 1 (identity).

4. em(S, T ) = em(T, S)−1 (alternation).

5. If em(S, T ) = 1 for all S ∈ E[m], then T = O (non-degeneracy).

Proof.

1. For linearity in the first factor, choose X such that g is defined at X, X+S1 and X+S1+S2.
Then

em(S1 + S2, T ) =
g(X + S1 + S2)

g(X)
=

g(X + S1 + S2)g(X + S1)
g(X + S1)g(X)

= em(S2, T )em(S1, T ).

2. For linearity in the second factor, let f1, f2, f3, g1, g2, g3 be functions as above for T1, T2, and
T3 = T1 + T2. Choose h ∈ K(E) with divisor

div(h) = (T1 + T2)− (T1)− (T2) + (O).

Then
div(f3/f1f2) = mdiv(h),

so
f3 = cf1f2h

m for some c ∈ K
∗
.

Compose with the multiplication-by-m map, use fi ◦ [m] = gm
i , and take mth roots to find

g3 = c′g1g2(h ◦ [m]) for some c′ ∈ K
∗
.

Now

em(S, T1 +T2) =
g3(X + S)

g3(X)
=

g1(X + S)g2(X + S)
g1(X)g2(X)

h([m]X + [m]S)
h([m]X)

= em(S, T1)em(S, T2).
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3. For the identity, observe that:

div
(m−1∏

i=0

f ◦ T[i]T

)
=

m−1∑

i=0

div(f ◦ T[i]T ) = m

m−1∑

i=0

([1− i]T )− ([−i]T ) = 0.

Hence
∏m−1

i=0 f ◦ T[i]T is constant; and if we choose some T ′ ∈ E with [m]T ′ = T , then∏m−1
i=0 g◦T[i]T ′ is also constant, because its mth power is the above product of f ’s. Evaluating

the product of g’s at X and X + T ′ yields

m−1∏

i=0

g(X + [i]T ′) =
m−1∏

i=0

g(X + [i + 1]T ′).

Now cancelling like terms gives

g(X) = g(X + [m]T ′) = g(X + T ),

so
em(T, T ) = g(X + T )/g(X) = 1.

4. To prove alternation, we combine properties 1.-3.:

1 = em(S + T, S + T ) = em(S, S)em(S, T )em(T, S)em(T, T ) = em(S, T )em(T, S),

so em(S, T ) = em(T, S)−1.

5. Non-degeneracy: if em(S, T ) = 1 for all S ∈ E[m], so g(X + S) = g(X) for all S ∈ E[m],
then from Theorem 3.4.10 in [76] follows that g = h ◦ [m] for some function h ∈ K(E). But
then

(h ◦ [m])m = gm = f ◦ [m],

so f = chm for some constant c ∈ K
∗
. Hence

mdiv(h) = div(f) = m(T )−m(O),

so
div(h) = (T )− (O).

Therefore T = O. ¤

Consider the following corollary, concerning the Weil pairing of two independent m-torsion points.

Corollary 3.6 Let m be a prime and S and T be two linearly independent m-torsion points. Then
the Weil pairing of S and T is non-trivial, i.e. em(S, T ) 6= 1.

Proof. By the non-degeneracy of the Weil pairing, there exists an m-torsion point S′, independent
from S, such that em(S, S′) 6= 1. Since m is prime, em(S, S′) is a primitive mth root of unity in
K. Moreover, because S and S′ are independent, the group of m-torsion points is generated by S
and S′. Hence, we can write T as T = [a]S + [b]S′ for some 0 ≤ a ≤ m − 1 and 1 ≤ b ≤ m − 1.
Then

em(S, T ) = em(S, [a]S + [b]S′) = em(S, S)a · em(S, S′)b = em(S, S′)b 6= 1,

where the last inequality follows from the fact that em(S, S′) is a primitive mth root of unity. ¤



3.3 Alternative Definition 23

3.3 Alternative Definition

Besides the definition given in Section 3.1, there is another, closely related definition, which makes
it possible to efficiently compute the Weil pairing. For the time being, we denote this alternative
Weil pairing by e′m. The definition as stated in [54] is as follows. Fix an integer m coprime to p,
and let S, T ∈ E[m]. Let A and B be divisors, such that A ∼ (S)− (O) and B ∼ (T )− (O), and
A and B have disjoint support. Since S and T are m-torsion points, it easily follows that mA and
mB are principle divisors. So there are fA, fB ∈ K(E) such that

div(fA) = mA and div(fB) = mB.

Definition 3.7 With the notation as introduced above, the alternative Weil pairing

e′m : E[m]× E[m] → µm

is given by:

e′m(S, T ) =
fA(B)
fB(A)

.

The following theorem asserts that the outcome of the alternative Weil pairing is indeed an mth
root of unity and does not depend on the choice of divisors A and B and functions fA and fB .

Theorem 3.8 The Weil pairing e′m as defined in Definition 3.7 is well-defined, i.e. maps to an
mth root of unity and is independent of the choice of divisors A and B and functions fA and fB.

Proof. Observe that by Weil’s reciprocity law

(fA(B)
fB(A)

)m

=
fA(B)m

fB(A)m
=

fA(mB)
fB(mA)

=
fA(div(fB))

fB(mA)
=

fB(div(fA))
fB(mA)

=
fB(mA)
fB(mA)

= 1,

which shows that e′m(S, T ) is an mth root of unity.

Consider the Weil pairing e′m(S, T ) = fA(B)/fB(A). Let B′ ∼ (T )− (O) be a divisor such that A
and B′ have disjoint support, and let fB′ be a divisor such that divfB′ = mB′. Since B ∼ B′, we
can write B′ = B + div(h) and thus fB′ = fBhm for some h ∈ E(K). Then

fA(B′)
fB′(A)

=
fA(B)fA(div(h))

fB(A)hm(A)
=

fA(B)fA(div(h))
fB(A)h(mA)

=
fA(B)
fB(A)

fA(div(h))
h(div(fA))

=
fA(B)
fB(A)

,

where the last equality holds by Weil’s reciprocity law. This proves that the pairing does not
depend on the choice of B; an analogous argument can be used to prove the same for A.

Furthermore, functions fA and fB are unique up to a constant. Since both fA and fB are being
evaluated in a degree zero divisor, Lemma 2.8 implies that outcome of the pairing is irrespective
of the choice of these constants. ¤

Although sometimes claimed in the literature ([76, 54]), the two definitions of the Weil pairing are
not completely equivalent, as remarked in [17] and [37]. To be precise, the definitions turn out to
satisfy the relation em(S, T ) = 1/e′m(S, T ) = e′m(T, S), which is proven below. See also [35], or
[37] for a sophisticated proof of this relation for the more general version of the Weil pairing on
algebraic curves.

Theorem 3.9 Let S, T ∈ E[m]. Then em(S, T ) = 1/e′m(S, T ).
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Proof. First of all, note that f in Definition 3.3 equals fB in Definition 3.7. Recall that T ′ satisfies
[m]T ′ = T ; let S′ ∈ E be such that [m]S′ = S. Similar to g in Definition 3.3, there is a gA that
satisfies

div(gA) = [m]∗(S)− [m]∗(O) =
∑

R∈E[m]

(S′ + R)− (R),

and thus gm
A = fA ◦ [m].

Let X ∈ E be such that the divisor

D = (m− 1)(S′ + X) + (S′ − S + X)−m(X)

has support disjoint from supp(div(g)). Clearly,

deg(D) = 0 and [m− 1]S′ + [m− 1]X + S′ − S + X − [m]X = O,

so D is a principal divisor. Let h ∈ K(E) such that div(h) = D. Now apply Weil’s reciprocity
law to g and h:

g(div(h)) = h(div(g)).

Then

g(div(h)) =
g(S′ + X)m−1 · g(S′ − S + X)

g(X)m

=
g(S′ + X)m

g(X)m
· g(S′ − S + X)

g(S′ + X)

=
f ◦ [m](S′ + X)

f ◦ [m](X)
· g(S′′)
g(S′′ + S)

(where S′′ = S′ − S + X)

=
f(S + [m]X)

f([m]X)
· 1
em(S, T )

,

where em(S, T ) = g(S′′ + S)/g(S′′) is the Weil pairing as in Definition 3.3.

On the other hand,

h(div(g)) =
∏

R∈E[m]

h(T ′ + R)
h(R)

, since div(g) =
∑

R∈E[m]

(T ′ + R)− (R).

Define the function H ∈ K(E) as

H(P ) =
∏

R∈E[m]

h(P + R) =
∏

R∈E[m]

h ◦ TR(P ).

Then

div(H) =
∑

R∈E[m]

div(h ◦ TR)

=
∑

R∈E[m]

(
(m− 1)(S′ + X −R) + (S′ − S + X −R)−m(X −R)

)

=
∑

R∈E[m]

(
(m− 1)(S′ + X + R) + (S′ + X + R)−m(X + R)

)

= m
∑

R∈E[m]

(S′ + X + R)− (X + R)

= m div(gA ◦ T−X)
= div(gm

A ◦ T−X).
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Hence we can write
H = gm

A ◦ T−X = fA ◦ [m] ◦ T−X ,

and thus
∏

R∈E[m]

h(T ′ + R) = H(T ′)

= fA ◦ [m] ◦ T−X(T ′)
= fA ◦ [m](T ′ −X)
= fA(T − [m]X).

Further,
∏

R∈E[m]

h(R) = H(O)

= fA ◦ [m] ◦ T−X(O)
= fA(−[m]X).

Finally, by Weil’s reciprocity law,

h(div(g)) =
∏

R∈E[m]

h(T ′ + R)
h(R)

=
fA(T − [m]X)
fA(−[m]X)

equals

g(div(h)) =
f(S + [m]X)

f([m]X)
· 1
em(S, T )

.

Then, since f = fB ,

em(S, T ) =
fA(−[m]X)

fA(T − [m]X)
fB(S + [m]X)

fB([m]X)
=

fB(A)
fA(B)

=
1

e′m(S, T )
,

where A ∼ (S)− (O) and B ∼ (T )− (O). ¤

The relation em(S, T ) = e′m(T, S) implies that also the alternative definition of the Weil pairing
e′m(S, T ) (as in Definition 3.7) satisfies the properties listed in Theorem 3.5. Nonetheless, we next
prove the bilinearity directly for this definition, in order to get some insight in the construction
of the (alternative) Weil pairing. We do not handle the identity and alternation properties, as
they are trivial. Remarkably, no proof of the non-degeneracy that directly uses the alternative
definition seems to be known.

Theorem 3.10 The alternative Weil pairing as defined in Definition 3.7 is bilinear.

Proof. We prove linearity in the first factor; linearity in the second goes analogously. Write
e′m(S1 + S2, T ) = fA(B)/fB(A), where

A ∼ (S1 + S2)− (O), B ∼ (T )− (O), div(fA) = mA, and div(fB) = mB.

Further, let divisors A1, A2 and functions fA1 , fA2 be such that

A1 ∼ (S1)− (O), A2 ∼ (S2)− (O), div(fA1) = mA1, and div(fA2) = mA2.

Observe that the divisor (S1 + S2) − (S1) − (S2) + (O) is principal, so (S1) + (S2) − 2(O) ∼
(S1 + S2)− (O). Hence, we can take A = A1 + A2. Then since

div(fA) = mA = mA1 + mA2 = div(fA1) + div(fA2) = div(fA1fA2),
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we can write fA = fA1fA2 , and thus

e′m(S1 + S2, T ) =
fA(B)
fB(A)

=
fA1 · fA2(B)
fB(A1 + A2)

=
fA1(B)
fB(A1)

fA2(B)
fB(A2)

= e′m(S1, T )e′m(S2, T ).

¤

The fact that em(S, T ) is not fully equivalent to e′m(S, T ) does not have consequences for the use
of the Weil pairing in practice. Namely, if the pairing em(S, T ) is a non-trivial mth root of unity,
then so is the pairing e′m(S, T ) = 1/em(S, T ). Another way to look at it, is to observe that the
role of the m-torsion points S and T can indifferently be interchanged, so one might as well work
with e′m(T, S) = em(S, T ) instead of e′m(S, T ). Therefore, the ambiguity in the definition of the
Weil pairing does not lead to confusion. (This probably causes the frequent appearance of the
incorrect assertion of equivalence of e′m and em in the literature.) So without loss of generality,
we can choose either one of the definitions. From here on, we will work with the latter (Definition
3.7), as this is the definition for which an efficient algorithm for the computation exists. To ease
notation, we will drop the addition ’alternative’ and simply denote the Weil pairing by em (rather
than e′m).

Remark 3.11 We have defined the Weil pairing as a bilinear map that maps to the mth roots
of unity in K, where K = Fq is a finite field with q elements. In fact, we do not need the whole
closure K of K; it suffices to consider a subfield Fqkw of K, which is an extension field of Fq of
degree kw. Here kw is the smallest integer such that E[m] ⊆ E(Fqkw ). This parameter, called the
Weil-embedding degree of the elliptic curve with respect to m, turns out to play an important part
in the applications of pairing-based cryptography. We will discuss the Weil-embedding degree of
a curve into detail in Chapter 5.

3.4 Miller’s Algorithm for the Weil Pairing

As we have seen, there are two closely related definitions of the Weil pairing. The latter (Definition
3.7) has the advantage that there is an efficient algorithm for the evaluation of the pairing. This
algorithm, known as Miller’s algorithm for the Weil pairing ([58, 54, 9, 55]), proceeds as follows.
Suppose we want to compute the Weil pairing of the m-torsion points S, T ∈ E[m] ⊆ E(Fqkw ).
For convenience, we write K ′ = Fqkw . Choose points S′, T ′ ∈ E(K ′) such that S′, S + S′, T ′ and
T + T ′ are all different. Then set A = (S + S′)− (S′) and B = (T + T ′)− (T ′). Note that

A− (S) + (O) = (S + S′)− (S)− (S′) + (O),

which is clearly a principal divisor, so A ∼ (S)− (O) as required. Similarly, B ∼ (T )− (O). Now
we can use the method of Section 2.5 to efficiently compute fA, fB ∈ K ′(E), such that

div(fA) = mA = m(S + S′)−m(S′) and div(fB) = mB = m(T + T ′)−m(T ′).

As mentioned in Section 2.5, to prevent the rational functions fA and fB from getting exponentially
large, we keep them in factored form. Finally, we can compute em(S, T ) as:

em(S, T ) =
fA(B)
fB(A)

=
fA((T + T ′)− (T ′))
fB((S + S′)− (S′))

=
fA(T + T ′)fB(S′)
fA(T ′)fB(S + S′)

. (3.4)

The fact that the points S + S′ and S′ are distinct from T + T ′ and T ′ guarantees that fA

(respectively fB), considered as a rational function, is defined at T +T ′ and T (respectively S +S′

and S′). However, while carrying out the algorithm, we want to treat the functions fA and fB as
elements of K ′(x, y) rather than K ′(E). Therefore, the points S′ and T ′ should be chosen so that,
even regarded as an element of K ′(x, y), the function fA (respectively fB) is defined at T + T ′

and T (respectively S + S′ and S′).



3.4 Miller’s Algorithm for the Weil Pairing 27

Suppose we use a fixed addition chain 1 = a1, a2, . . . , at = m for m to construct the functions fA

and fB . Then by construction, fA, regarded as an element of K ′(x, y), is undefined at most at
the 4t points given by

±[a1](S + S′),±[a2](S + S′), . . . ,±[at](S + S′) and ± [a1]S′,±[a2]S′, . . . ,±[at]S′. (3.5)

Therefore, if T +T ′ and T ′ are distinct from the points listed in (3.5), we are sure that the function
fA is defined at these points. Similarly, fB ∈ K ′(x, y) is undefined at most at the 4t points

±[a1](T + T ′),±[a2](T + T ′), . . . ,±[at](T + T ′) and ± [a1]T ′,±[a2]T ′, . . . ,±[at]T ′. (3.6)

As fB needs to be evaluated in S + S′ and S′, we want these points to be distinct from those
mentioned in (3.6).

We next examine the probability of picking a random pair of points (S′, T ′) satisfying these
conditions. For fixed S′, both T + T ′ and T ′ should be distinct from the 4t points listed in (3.5),
leading to a maximum of 8t possibilities for T ′ for which this condition is not met. Further, there
are 8t possibilities for T ′ for which one of the points in the list (3.6) equals either S + S′ or S′,
resulting in a total of 16t possibly unsuitable points. Thus an upper bound for the number of
pairs (S′, T ′) ∈ E(K ′) × E(K ′) that do not satisfy the conditions is given by 16t ·#E(K ′). For
every value of m, there exists an addition chain of length t ≤ 2log2m, hence the probability of
randomly picking an unsuitable pair is at most

16t ·#E(K ′)
#E(K ′)2

=
16t

#E(K ′)
≤ 32 · log2m

#E(K ′)
.

Since #E(K ′) ≥ m, this probability is less than a half for m ≥ 1024. Note that for cryptographic
applications we usually have m À 1024, so the probability of choosing a good pair will in practice
be close to 1.

3.4.1 Example

We return to the curve of our previous example: E/F11 : y2 = x3 + 3x. We could compute the
Weil pairing of two m-torsion points in E(F11)[m] for some integer m. However, from the order
of the points, we can see that the group structure of E(F11) is cyclic. In other words, all points
are linearly dependent. Then by the bilinearity of the pairing and the fact that em(P, P ) = 1 for
all P ∈ E[m], the Weil pairing will map everything to 1. For instance,

e6(P3, P6) = e6(P3, [4]P3) = e6(P3, P3)4 = 1.

Consider instead the points of E over the quadratic extension F112 of F11, which is obtained
by allowing the primitive fourth root of unity i (i.e. i2 = −1). It is easily verified that if
(x, y) ∈ E(F112), then also (−x, iy) ∈ E(F112). Let the endomorphism φ : E(F112) → E(F112) be
given by

φ : (x, y) → (−x, iy) and φ : O → O.

Clearly, the image φ(P ) ∈ E(F112) of a point P ∈ E(F11), P 6= O, is not an F11-rational point
(i.e. φ(P ) 6∈ E(F11)). Hence φ(P ) is linearly independent of P . Furthermore, if P is an m-torsion
point, i.e. [m]P = O, then

[m]φ(P ) = φ([m]P ) = φ(O) = O,

so also φ(P ) is an m-torsion point. Thus we can calculate the Weil pairing em(P, φ(P )), which by
Corollary 3.6 is non-trivial because of the linear independency between P and φ(P ).

Take for example the points S = P6 = (3, 5) and T = φ(P6) = (8, 5i), both of which have
order 3. We choose S′ = (6, 6) and T ′ = (9, 6i), then S + S′ = (7, 1) and T + T ′ = (4, 10i),
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so S′, S + S′, T ′, T + T ′ are indeed all different. To compute the Weil pairing e3(S, T ), we need
rational functions fA and fB such that

div(fA) = 3(S + S′)− 3(S′) and div(fB) = 3(T + T ′)− 3(T ′).

Using the method described in the beginning of this section, we compute:

3(S + S′)− 3(O) = ((6, 5))− (O) + div
( (y + 2x + 7)(y + 5x + 8)

(x + 10)(x + 5)

)
,

3(S′)− 3(O) = ((6, 5))− (O) + div
( (y + 10x)2

x(x + 5)

)
.

Subtracting these equations, we get

3(S + S′)− 3(S) = div
( (y + 2x + 7)(y + 5x + 8)x

(x + 10)(y + 10x)2
)
,

so fA is given by:

fA =
(y + 2x + 7)(y + 5x + 8)x

(x + 10)(y + 10x)2
.

Similarly, we compute

3(T + T ′)− 3(O) = ((5, 6i))− (O) + div
( (y + 2ix + 4i)(y + 5ix + 3i)

(x + 1)(x + 6)

)
,

3(T ′)− 3(O) = ((5, 6i))− (O) + div
( (y + 4ix + 2i)(y + 8ix + 10i)

(x + 1)(x + 6)

)
.

Then subtracting these equations yields us fB :

fB =
(y + 2ix + 4i)(y + 5ix + 3i)
(y + 4ix + 2i)(y + 8ix + 10i)

.

Plugging these results into equation (3.4), we get the Weil pairing of P6 and φ(P6):

e3(P6, φ(P6)) =
fA(T + T ′)fB(S′)
fA(T ′)fB(S + S′)

=
fA((4, 10i))fB(6, 6)
fA((9, 6i))fB((7, 1))

= 5 + 8i.

Indeed (5 + 8i)3 = 1, so e3(P6, φ(P6)) is a 3rd root of unity in F112 .

Note that, as observed in Remark 3.11, we do not need to work over the closure of the finite field
F11. In fact, a field extension F112 of degree 2 suffices for computing the Weil pairing.

Remark 3.12 Such an endomorphism φ that maps a point to a linearly independent point of the
same order is called a distortion map. Distortion maps, which are useful cryptographic tools, are
discussed in Chapter 6.

3.4.2 Implementation in Mathematica

We implement the Weil pairing em for supersingular curves of the form E/Fp : y2 = x3 + ax
with prime p = 3 (mod 4) and E/Fp : y2 = x3 + b with prime p = 2 (mod 3) in Mathemat-
ica (see Appendix A for the code). For this purpose, we define the following auxiliary modules.
The modules Pt (entering a point), Neg (negating a point), PointAddition (adding two points),
and PointMultiplication (multiplying a point by a scalar) follow in a straightforward manner
from the formulae in Section 2.1. The modules DivisorAddition and DivisorMultiplication,
for adding and taking scalar-multiples of divisors in canonical form, follow the method out-
lined in Section 2.5. Picking a random point in the ground field, as is done by the module
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RandomPointGroundField, is a simple matter under the assumption that p = 3 (mod 4). The
module DistortionMap defines the distortion map, which is of standard form for these curves (see
Chapter 6).

Now the module PickTUGroundField uses RandomPointGroundField to pick two candidates S′, T ′

for the construction of the divisors A = (S + S′) − (S′) and B = (T + T ′) − (T ′), and checks
whether S + S′, S′, T + T ′, T ′ are all distinct. The module ComputeFunctionWeil computes a
function having a divisor of the form m(S + S′) −m(S′), which is easily done using the module
DivisorMultiplication. Finally, the module WeilPairing combines PickTUGroundField and
ComputeFunctionWeil to find divisors A,B and functions fA, fB . Next, checks are done to ensure
that the functions fA and fB are defined at the points S + S′, S′, T + T ′, T ′ and the pairing is
evaluated.

We give examples for the curves E1/F11 : y2 = x3 +3x and E2/F131 : y2 = x3 +31. We show that
the pairing of two dependent points is indeed the identity. Moreover, in correspondence with the
example of Subsection 3.4.1, the outcome of the pairing e3(P6, φ(P6)) on the curve E1 is shown to
be 5 + 8i.



Chapter 4

Tate Pairing

In addition to the Weil pairing, there exists another bilinear map on the group of points on an
elliptic curve, which is known as the Tate pairing ([28, 27]). We give the definition of the Tate
pairing in Section 4.1 and discuss some useful properties in Section 4.2. Next, we give an algorithm
to efficiently compute the Tate pairing in Section 4.3 and examine its relation with the Weil pairing
in Section 4.4. Section 4.5 concludes this chapter with some observations on the optimization of
the algorithm.

4.1 Definition

Consider the curve E/K defined over some finite field K. Let m be such that E(K) contains a
point of order m. The set of distinct points obtained from multiplying every point on E(K) by m
is denoted mE(K). This set is a coset of E(K) and is also denoted by CO, as it contains O. The
number of elements in the coset is #CO = #E(K)/m. Other cosets CR can be formed by adding
a point R not in the coset CO to every element in the coset. This way, the group of points E(K)
can be split into m distinct cosets. The quotient group of all cosets is given by E(K)/mE(K).
Now suppose m is prime. If E[m] 6⊆ E(K), then every coset contains exactly one m-torsion point,
see the example below. Else if E[m] ⊆ E(K), then there are m m-torsion points in every coset.
For details, see [72].

Example 4.1 Consider our usual example E/F11 : y2 = x3 +3x. The points on E(F11) and their
orders are given in Table 2.1. We want to split up E(F11) into cosets for m = 3. Observe that

[3]O = [3]P6 = [3]P7 = O, [3]P1 = [3]P2 = [3]P3 = P1,

[3]P4 = [3]P9 = [3]P10 = P8, and [3]P5 = [3]P8 = [3]P11 = P9.

Hence, mE(F11) = CO = {O, P1, P8, P9}. Adding the points P2, respectively P3 to all elements in
CO yields the other cosets CP2 , respectively CP3 :

CP2 = {P2, P6, P10, P5} and CP3 = {P3, P7, P4, P11}.

Cosets CO, CP2 and CP3 all contain exactly one m-torsion point, namely O, P6 and P7 respectively.
The quotient group E(F11)/mE(F11) is given by {CO, CP2 , CP3}.

Let E/Fq be an elliptic curve defined over a field Fq. Let m be a positive integer, coprime to
q, such that E(Fq) contains a point of order m. In cryptographic implementations, m is usually
taken to be a large prime such that m|#E(Fq). Let k be the smallest integer satisfying m|qk − 1.
This value is the (Tate-)embedding degree of the curve with respect to m. We will elaborate on
this in Chapter 5.



4.2 Properties 31

Similar to the Weil pairing, the Tate pairing is defined in terms of rational functions evaluated
in a certain divisor. Let P ∈ E(Fqk)[m], then m(P ) −m(O) is a principal divisor. So there is a
rational function g ∈ Fqk(E) with div(g) = m(P ) −m(O). Now let Q be a point representing a
coset in E(Fqk)/mE(Fqk), then we construct a divisor D ∈ Div0(E) such that D ∼ (Q) − (O).
D should be chosen so that its support is disjoint from the support of the divisor of g. Then the
Tate pairing is defined as follows.

Definition 4.2 With the notation as introduced above, the Tate pairing

〈·, ·〉 : E(Fqk)[m]× E(Fqk)/mE(Fqk) → F∗qk/(F∗qk)m,

is given by:
〈P, Q〉 = g(D).

Note that the result of the Tate pairing is not a unique value, but an equivalence class in
F∗qk/(F∗qk)m. That is, two elements a, b ∈ F∗qk are equivalent (denoted a ≡ b) if and only if
there is a c ∈ F∗qk such that a = bcm. If a unique outcome of the pairing is required, as is often the
case in cryptographic applications, we need to eliminate the mth powers. This is done by raising
the value to the power (qk − 1)/m, since aqk−1 = 1 for all a ∈ F∗qk . Consequently, the value after
this exponentiation is an mth root of unity. This leads to an alternative definition of the Tate
pairing that is sometimes used in the literature, which maps uniquely to the group µm of mth
roots of unity:

〈P, Q〉′ = g(D)(q
k−1)/m.

However, we will work with the former definition, for which the pairing maps to an equivalence
class, and perform an exponentiation afterwards whenever a unique value is required.

The following theorem asserts that the Tate pairing is well-defined in the sense that the choice of
g and D does not matter. The proof of the independency of the choice of D makes clear why the
result of the pairing is to be considered as an equivalence class in the quotient group F∗qk/(F∗qk)m.
Namely, a different choice for D possibly results in a different representative for the equivalence
class.

Theorem 4.3 The outcome of the Tate pairing does not depend on the choice of the rational
function g and divisor D.

Proof. The function g is determined up to a constant multiple. However, since D is a degree zero
divisor, Lemma 2.8 implies that this constant has no influence on the outcome of the evaluation
of g in D.

Let g be a function satisfying div(g) = m(P ) −m(O) and D1 ∼ D2 ∼ (Q) − (O) such that the
support of both D1 and D2 is disjoint from supp(div(g)). Then we can write D1 = D2 + div(h)
for some function h with supp(div(h)) ∩ supp(div(g)) = ∅. Hence

g(D1) = g(D2 + div(h)) = g(D2)g(div(h)) = g(D2)h(div(g))
= g(D2)h(m(P )−m(O)) = g(D2)h((P )− (O))m ≡ g(D2),

which completes the proof. ¤

4.2 Properties

Similar to the Weil pairing, the Tate pairing satisfies some properties that make the pairing suitable
for use in cryptography.

Theorem 4.4 The Tate pairing satisfies the following properties:
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1. 〈O, Q〉 = 1 for all Q ∈ E(Fqk) and 〈P, Q〉 ∈ (F∗qk)m for all P ∈ E(Fqk)[m] and all Q ∈
mE(Fqk) (well-defined).

2. For each point P ∈ E(Fqk)[m] \ {O} there is some point Q ∈ E(Fqk) such that 〈P, Q〉 /∈
(F∗qk)m (non-degeneracy).

3. For all P1, P2, P ∈ E(Fqk)[m] and Q1, Q2, Q ∈ E(Fqk), we have 〈P1+P2, Q〉 ≡ 〈P1, Q〉〈P2, Q〉,
and 〈P, Q1 + Q2〉 ≡ 〈P,Q1〉〈P, Q2〉 (bilinearity).

Proof.

1. For the first part, let g ∈ Fqk(E) be the constant function that always outputs 1, then
div(g) = 0 as required. Then 〈O, Q〉 = g(Q) = 1 for all Q ∈ E(Fqk).

To prove the second part, let P ∈ E(Fqk)[m], Q ∈ mE(Fqk) and g ∈ Fqk(E) such that
div(g) = m(P ) − m(O). Then there exists a Q′ ∈ E(Fqk) such that [m]Q′ = Q. Let
D ∼ (Q)− (O) and A ∼ (Q′)− (O), with support disjoint from the support of div(g). Then

D −mA ∼ (Q)− (O)−m(Q′) + m(O) = ([m]Q′)−m(Q′) + (m− 1)(O),

which is principal, so D ∼ mA. Then

〈P, Q〉 = g(D) ≡ g(mA) = g(A)m ∈ (F∗qk)m.

2. A sophisticated proof of the non-degeneracy is given in [28] (Section 2). For a more elemen-
tary proof using Weil’s reciprocity law, see [34] (Theorem 3).

3. Let P1, P2, P ∈ E(Fqk)[m] and Q1, Q2, Q ∈ E(Fqk). Write

〈P1 + P2, Q〉 = g(D), where D ∼ (Q)− (O) and div(g) = m(P1 + P2)−m(O),

such that P1, P2, P1 + P2,O 6∈ supp(D). Further, let g1, g2 be functions such that

div(g1) = m(P1)−m(O) and div(g2) = m(P2)−m(O).

The divisor A = (P1 +P2)− (P1)− (P2)+(O) is principal, so there is a function, say h, such
that div(h) = A. Then

div(g)− div(g1)− div(g2) = m(P1 + P2)−m(P1)−m(P2) + m(O) = mdiv(h) = div(hm),

so we can write g = g1g2h
m. Then

〈P1 + P2, Q〉 = g(D) = g1(D)g2(D)hm(D) ≡ 〈P1, Q〉〈P2, Q〉.

To prove linearity in the second factor, write

〈P, Q1 + Q2〉 = g(D), where D ∼ (Q1 + Q2)− (O) and div(g) = m(P )−m(O),

such that D and div(g) have disjoint support. Further, let divisors D1, D2 be such that

D1 ∼ (Q1)− (O) and D2 ∼ (Q2)− (O),

where both D1 and D2 have support disjoint from supp(div(g)). Then

D −D1 −D2 ∼ (Q1 + Q2)− (Q1)− (Q2) + (O),

which is principal, so D1 + D2 ∼ D. So we can write

〈P,Q1 + Q2〉 = g(D) ≡ g(D1 + D2) = g(D1)g(D2) = 〈P,Q1〉〈P, Q2〉.
¤
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The second observation of part 1 of the above theorem implies that the outcome of the Tate pairing
is irrespective of which element of the particular coset is chosen for the second parameter; namely,
any element in mE(Fqk) will be mapped to (F∗qk)m, and will therefore vanish in the quotient group
F∗qk/(F∗qk)m.

In contrast to the Weil pairing, which always maps em(P, P ) to 1 for P ∈ E[m], the outcome of
the Tate pairing 〈P, P 〉 for P ∈ E(Fqk)[m] is not necessarily the identity in F∗qk/(F∗qk)m (i.e. an
mth power). In cryptographic applications, it is generally the case that P is an m-torsion point
in the ground field, so P ∈ E(Fq)[m], and m is coprime to q. Then a result by Galbraith [30] says
the following:

Lemma 4.5 (Galbraith [30]) Let P ∈ E(Fq)[m], P 6= O and m coprime q. Then for the Tate
pairing 〈P, P 〉 to be nontrivial, it is necessary that k = 1.

Proof. We write 〈P, P 〉 = g(D), where div(g) = m(P ) − m(O) and D ∼ (P ) − (O). Since
P ∈ E(Fq)[m], it follows that g ∈ Fq(E), and thus g(D) ∈ F∗q . Now suppose k > 1, then
m 6 |(q − 1). Further, m is coprime to q, so every element of F∗q is an mth power and thus
g(D) ∈ (F∗qk)m. Thus to have 〈P, P 〉 nontrivial, a necessary condition is k = 1. ¤

Note that although k = 1 is a necessary condition, it is not sufficient. For trace 2 curves, as
mentioned in [43], a point P of order m results in a non-trivial pairing 〈P, P 〉 6≡ 1 if m2 does not
divide p− 1. However, it is an open problem how to construct these curves.

From Theorem 4.4 and Lemma 4.5 follows the corollary below.

Corollary 4.6 Let P ∈ E(Fq)[m], P 6= O and m prime. Let k > 1 and Q ∈ E(Fqk)[m] an
m-torsion point independent from P . Then 〈P, Q〉 is non-trivial, i.e. 〈P, Q〉 6≡ 1.

Proof. Suppose that 〈P,Q〉 ≡ 1. Let R ∈ E(Fqk) and consider the Tate pairing 〈P,R〉. Every coset
in E(Fqk)/mE(Fqk) contains an m-torsion point (see Section 4.1). Let R′ be an m-torsion point
that is in the same coset as R, so R = R′ + [m]R′′ for some R′′ ∈ E(Fqk). Then 〈P,R〉 ≡ 〈P, R′〉.
Since the group of m-torsion points is generated by P and Q, we can write the m-torsion point
R′ as R′ = [a]P + [b]Q for some 0 ≤ a, b ≤ m− 1. Then

〈P,R〉 ≡ 〈P, R′〉 = 〈P, [a]P + [b]Q〉 ≡ 〈P, P 〉a · 〈P, Q〉b ≡ 1,

where the last equivalence holds by Lemma 4.5. However, this is in contradiction with the non-
degeneracy property of the Tate pairing. Hence 〈P, Q〉 6≡ 1. ¤

4.3 Miller’s Algorithm for the Tate Pairing

As with the Weil pairing, there is an efficient algorithm for the computation, known as Miller’s
algorithm for the Tate pairing (see [5]). Let us start with introducing some notation. For each
pair of points U, V on the elliptic curve E(Fqk), let gU,V ∈ Fqk(E) be the rational function given
by the line gU,V : l1y + l2x + l3 = 0 through U and V . Naturally, if U = V , then gU,V is the given
by the equation of the tangent line at U , and if either U or V is the point at infinity O, then gU,V

represents the vertical line through the other point. Furthermore, for brevity, we write gU instead
of gU,−U .

Now we are ready to give Miller’s formula, which lies at the heart of Miller’s algorithm for com-
puting the Tate pairing.

Theorem 4.7 (Miller’s formula) Let P ∈ E(Fqk) and fc a rational function such that div(fc) =
c(P )− ([c]P )− (c− 1)(O) for c ∈ Z. Then for all a, b ∈ Z, the following holds:

fa+b = fa · fb · g[a]P,[b]P /g[a+b]P .
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The theorem can be proven by simply writing out and comparing the divisors of the functions on
both sides of the equation; for details see [5]. It is interesting to note that this is a special case of
the method for adding two divisors in canonical form in Section 2.5. Namely, let divisors D1 and
D2 be given by a(P )− a(O) and b(P )− b(O) respectively. Then their canonical form is given by

D1 = ([a]P )− (O) + div(fa) and D2 = ([b]P )− (O) + div(fb),

where fa and fb are as in Theorem 4.7. Then their sum D1 + D2 = (a + b)(P ) − (a + b)(O) in
canonical form is given by

(a + b)(P )− (a + b)(O) = ([a + b]P )− (O) + div(fa · fb · g[a]P,[b]P /g[a+b]P ),

where g[a]P,[b]P /g[a+b]P is denoted by l/v = f3 in Section 2.5. Now bringing the terms ([a+ b]P )−
(O) to the left, we get the relation

div(fa+b) = div(fa · fb · g[a]P,[b]P /g[a+b]P ),

which underlies Theorem 4.7.

Recall that the computation of the Tate pairing requires a rational function g with div(g) =
m(P ) − m(O) for P ∈ E(Fqk)[m]. Since P is an m-torsion point, we can write g = fm with
the notation as in the theorem above. Miller’s formula suggests to build this function recursively,
using the double-and-add method as follows.

Since div(f1) = 0, we can take f1 = 1. Then for a > 0, we have

fa+1 = fa · g[a]P,P /g[a+1]P and f2a = f2
a · g[a]P,[a]P /g[2a]P .

Let (mt, . . . , m1,m0)2 be the binary representation of m, where mt = 1. Starting with f(mt)2 =
f1 = 1, we can successively compute f(mt,...,mi)2 for i = t − 1, . . . , 0 by doubling and adding
f(mt,...,mi+1)2 if mi = 1, and only doubling if mi = 0. The result will be g = fm = f(mt,...,m1,m0)2 ,
where div(g) = m(P )−m(O) as required.

The function g needs to be evaluated at a divisor D equivalent to (Q)− (O). Taking for instance
D = (Q + Q′)− (Q′) for some Q′ ∈ E(Fqk), we need to compute g(Q + Q′)/g(Q′). Instead of first
constructing g completely and plugging in D afterwards, it is more efficient to do the evaluation
along the way. That is, we keep track of the evaluations at D of the intermediate functions
f(mt,...,mi)2 , rather than the functions themselves. To be precise, we use the formulas

fa+1(D) = fa+1(Q + Q′)/fa+1(Q′) = fa(D) · g[a]P,P (Q + Q′)g[a+1]P (Q′)
g[a+1]P (Q + Q′)g[a]P,P (Q′)

, (4.1)

and

f2a(D) = f2a(Q + Q′)/f2a(Q′) = fa(D)2 · g[a]P,[a]P (Q + Q′)g[2a]P (Q′)
g[2a]P (Q + Q′)g[a]P,[a]P (Q′)

. (4.2)

The above is summarized in Figure 4.1.

Remark 4.8 This method can be applied because the divisor of the function g is equal to m(P )−
m(O). Remark that the Weil pairing requires functions fA, fB whose divisors are equivalent
to m(S) − m(O), respectively m(T ) − m(O) for S, T m-torsion points, but not equal. Hence,
these functions for the Weil pairing cannot be constructed using this efficient double-and-add
method. Instead, one needs to compute the canonical form for the divisors m(S + S′) − m(O)
and m(S′) − m(O) for some S′ 6= O and subtract these divisors to get the desired function fA

(similarly for fB), as described in Section 3.4.
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1. Choose a random point Q′ ∈ E(Fqk) and compute S = Q + Q′ ∈ E(Fqk).
2. Set t = blog2(m)c, and let (mt, . . . ,m0)2 be the binary representation of m.

Set f = 1 and V = P .
3. For i = t− 1 to 0 do

• Set f = f2(gV,V (S)g[2]V (Q′))/(g[2]V (S)gV,V (Q′)) and V = [2]V .
• If mi = 1 then set f = f(gV,P (S)gV +P (Q′))/(gV +P (S)gV,P (Q′)) and V = V + P .

4. Return f .

Figure 4.1: Miller’s algorithm for the Tate pairing

4.3.1 Example

Again, we consider the elliptic curve E/F11 : y2 = x3 + 3x. The Tate-embedding degree k of the
curve with respect to 6 is equal to 2, because 6|(112 − 1) but 6 6 |(11 − 1). To compute the Tate
pairing 〈P, Q〉 for P = (1, 9), Q = φ(P ) = (10, 9i) and m = 6, we carry out Miller’s algorithm.

1. We choose Q′ ∈ E(F112) to be Q′ = (6, 6). Then S = Q + Q′ = (8 + 7i, 10 + 6i).

2. The binary representation of m = 6 is given by (m2,m1,m0)2 = (1, 1, 0)2, so t = blog2(6)c =
2. Further, we set f = 1 and V = P = (1, 9).

3. For i = 1:

• We compute gV,V and g[2]V :

gV,V = y + 7x + 6 and g[2]V = x + 8.

Then

gV,V (S) = 6, g[2]V (Q′) = 3, g[2]V (S) = 5 + 7i, and gV,V (Q′) = 10,

and thus we set

f = 12 6 · 3
(5 + 7i) · 10

= 8 + 2i and V = [2](1, 9) = (3, 5).

• Since m1 = 1, we compute gV,P and gV +P :

gV,P = y + 2x and gV +P = x.

Then

gV,P (S) = 4 + 9i, gV +P (Q′) = 6, gV +P (S) = 8 + 7i, and gV,P (Q′) = 7,

and thus we set

f = (8 + 2i)
(4 + 9i)6
(8 + 7i)7

= 5 + 4i and V = (3, 5) + (1, 9) = (0, 0).

For i = 0:

• We compute gV,V and g[2]V :

gV,V = x and g2V = 1.

Then

gV,V (S) = 8 + 7i, g[2]V (Q′) = 1, g[2]V (S) = 1, and gV,V (Q′) = 6,

hence we set

f = (5 + 4i)2
8 + 7i

6
= 2 + 7i and V = 2(0, 0) = O.



36 Tate Pairing

• Since m0 = 0, end.

4. i = 0, so the program terminates and returns f = 2 + 7i.

The outcome of the Tate pairing of P = (1, 9) and Q = (10, 9i) is 〈P, Q〉 = 2 + 7i ∈ F∗112/(F∗112)6.
Recall that the value 2 + 7i represents an equivalence class modulo 6th powers. If a unique value
of the pairing is required, the result of the pairing should be raised to the power (112− 1)/6 = 20:
(2 + 7i)20 = 5 + 3i. Indeed, (5 + 3i)6 = 1, so 5 + 3i is a 6th root of unity in F∗112 . Since 6 is not
a prime, it is possible that the outcome of the Tate pairing is not a primitive 6th root. This is in
fact the case, since (5 + 3i)3 = 1.

4.3.2 Implementation in Mathematica

The implementation of the Tate pairing in Mathematica (see Appendix A), also uses the auxiliary
modules mentioned in Subsection 3.4.2. Further, the module ComputeFunctionTate computes the
function g such that div(g) = m(P )−m(O) for an m-torsion point P . This is done by using the
module DivisorMultiplication to multiply the divisor (P )− (O) by m and express the result in
canonical form. Note that DivisorMultiplication uses the double-and-add method described
in the beginning of this section.

Finally, the module TatePairing combines RandomPointGroundField to pick a point Q′ to con-
struct the divisor D = (Q + Q′) − (Q′) and ComputeFunctionTate to construct g. Next, the
module checks whether g is defined at Q + Q′, Q′ and the pairing is evaluated. Further, a mod-
ule TatePairingUnique is defined that simply performs an exponentiation on the outcome of
TatePairing to get a unique value. Since g is constructed using the double-and-add method,
the computation of the Tate pairing is done as in Miller’s algorithm (Figure 4.1), except that the
divisor D is plugged in afterwards, instead of during the construction of g.

As with the Weil pairing, we give examples for the curves E1/F11 : y2 = x3 + 3x and E2/F131 :
y2 = x3 + 31. We demonstrate that the Tate pairing of two points is not a unique value but an
equivalence class. Moreover, it is shown that if the second parameter of the pairing is an element
of mE(Fqk), then the result is the identity.

4.4 Comparison with the Weil Pairing

In this section, we compare the Tate pairing with the Weil pairing. We start with examining the
relation between these pairings from an algebraic point of view. Essentially, there is no relation
between these pairings, as they are defined on different sets. However, when we take Q to be an
m-torsion point and regard the outcome of the Weil pairing as element of F∗qk/(F∗qk)m, we can
compare the two definitions as in Subsection 4.4.1.

Next we compare the efficiency of the pairings in Subsection 4.4.2. It turns out that the Tate
pairing can be computed faster and is thus, from a computational point of view, more suitable for
use in cryptographic systems.

4.4.1 Algebraic Relation

Let P and Q be m-torsion points. As we have seen, the Tate pairing is defined as 〈P, Q〉 = g(D),
where div(g) = m(P ) −m(O) and D is a divisor equivalent to (Q) − (O) with support disjoint
from supp(div(g)). By taking D = (Q + Q′)− (Q′) for Q′ ∈ E(Fqk), with Q′, Q + Q′ 6= P,O, we
meet the conditions and we can write g(D) = g(Q + Q′)/g(Q′). For sake of clarity, we will denote
this function g in the remainder of this subsection as gA, so

〈P, Q〉 = gA(Q + Q′)/gA(Q′).
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Similarly, we define the pairing 〈Q,P 〉 as

〈Q, P 〉 = gB(P + P ′)/gB(P ′),

where div(gB) = m(Q)−m(O) and P ′ ∈ E(Fqk), with P ′, P + P ′ 6= Q,O.

Recall that the definition of the Weil pairing is given by

em(P, Q) =
fA(Q + Q′)fB(P ′)
fA(Q′)fB(P + P ′)

,

where P ′, Q′ ∈ E(Fqk) and fA, fB are such that

div(fA) = m(P + P ′)−m(P ′) and div(fB) = m(Q + Q′)−m(Q′).

It is easily verified that (P + P ′)− (P ′)− (P ) + (O) is a principal divisor and thus there exists a
rational function hA such that

div(hA) = (P + P ′)− (P ′)− (P ) + (O).

Then
div(fA) = m((P + P ′)− (P ′)) = mdiv(hA) + div(gA) = div(hm

A gA),

so hA can be chosen such that
fA = hm

A gA.

Similarly, there is a rational function hB such that

div(hB) = (Q + Q′)− (Q′)− (Q) + (O) and fB = hm
B gB .

Plugging these results into the definition of the Weil pairing, we obtain:

em(P, Q) =
hm

A (Q + Q′)gA(Q + Q′)
hm

A (Q′)gA(Q′)
hm

B (P ′)gB(P ′)
hm

B (P + P ′)gB(P + P ′)

=
(hA(Q + Q′)hB(P ′)

hA(Q′)hB(P + P ′)

)m gA(Q + Q′)gB(P ′)
gA(Q′)gB(P + P ′)

.

Observe that the term
(
(hA(Q + Q′)hB(P ′))/(hA(Q′)hB(P + P ′))

)m is an element of (F∗qk)m,
and therefore vanishes in the quotient group F∗qk/(F∗qk)m. Hence, regarded as an element of this
quotient group, the Weil pairing can be written as

em(P,Q) ≡ gA(Q + Q′)gB(P ′)
gA(Q′)gB(P + P ′)

=
〈P,Q〉
〈Q,P 〉 .

By raising both sides to the power (qk − 1)/m, we can eliminate mth powers and obtain a unique
value:

em(P, Q)(q
k−1)/m =

( 〈P, Q〉
〈Q, P 〉

)(qk−1)/m

.

Example 4.9 We return to the example of Subsection 4.3.1, where we computed 〈P,Q〉20 =
5 + 3i. Similarly, we can compute the Tate pairing 〈Q,P 〉, which is the equivalence class of
1 + 2i ∈ F∗112/(F∗112)6. The unique value obtained from raising this outcome to the power 20 is
(1 + 2i)20 = 5 + 8i. To illustrate the relation between the Weil and the Tate pairing, we also
compute the Weil pairing e6(P, Q) = 5 + 3i and verify

〈P,Q〉20
〈Q,P 〉20 = 5 + 8i = e6(P, Q)20.
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4.4.2 Efficiency of the Pairings

We next compare the Weil and the Tate pairing from a computational point of view. The relation
shown in the previous section indicates that computation of the Weil pairing takes roughly twice
as long as the computation of the Tate pairing. This can be verified by looking at the algorithms
for computing the pairings. Considering the algorithm for computing the Weil pairing em(P, Q),
we see that we need to construct two functions fA and fB such that div(fA) ∼ m(P ) − m(O)
and div(fB) ∼ m(Q) −m(O). These functions need to be evaluated in divisors B ∼ (Q) − (O)
and A ∼ (P ) − (O), respectively. The Tate pairing 〈P, Q〉, on the other hand, only requires a
single function g such that div(g) = m(P ) − m(O), which needs to be evaluated in a divisor
D ∼ (Q) − (O). Moreover, the function g can be constructed using the double-and-add method
of Section 4.3, in contrast to fA and fB . This implies that the computation of the Weil pairing
takes at least twice the computation time for the Tate pairing. The possible additional cost for
the final exponentiation in the Tate pairing does not offset the difference in computation times.
Hence, from a computational point of view, the Tate pairing is superior to the Weil pairing.

4.5 Efficient Implementation of the Tate Pairing

In many cryptographic applications, the computation of the pairing is the most costly operation in
the algorithm. To make pairing-based cryptography practically feasible, it is therefore important
to implement the pairing as efficiently as possible. This section is dedicated to implementation
issues of the Tate pairing, which is faster than the Weil pairing. As we have seen, Miller’s algorithm
is more efficient if we evaluate the intermediate functions right away, rather than first compute
the final function and then do the evaluation. In fact, the algorithm can be sped up even more.
One idea is to adapt the computations in the algorithm such that they are made more efficient.
A second suggestion is to make clever choices for the parameters in order to reduce the workload.
We will outline how these two ideas can be exploited to make significant improvements to Miller’s
algorithm for the Tate pairing in Subsections 4.5.1 and 4.5.2, respectively.

4.5.1 Adaptation of the Algorithm

Along the line of the idea of improving the efficiency of Miller’s algorithm lies the observation
made in [31], regarding the fact that divisions are more expensive than multiplications. Instead
of performing divisions along the way, we can represent the function f as a quotient of functions
f1/f2, using only multiplications. Then only a single final division is required for the computation
of f .

Another suggestion made in [31] is to precompute [n]P for all possible values of n inside a ’window’
of a certain number of bits. Then the number of addition operations can be reduced by considering
windows in the binary representation of the exponent m, rather than performing additions bit by
bit (i.e. using windows of size 1). This method is particularly useful if the binary expansion of m
has a large Hamming weight (that is, a large number of ones).

The authors of [5] argue that if P is fixed or used repeatedly, some profit can be made on precom-
puting the coefficients of the lines gV,P that arise from Miller’s algorithm. They also describe how
to use the structure of the exponent (qk − 1)/m to speed up the final powering, in case a unique
outcome of the pairing is required.

In [39], the authors propose to switch to a projective coordinate system to improve the efficiency
of the elliptic curve addition and doubling operations. Further, they describe a way to directly
compute the terms

g[a]P,P (Q + Q′)g[a+1]P (Q′) in (4.1) and g[a]P,[a]P (Q + Q′)g[2a]P (Q′) in (4.2),
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thereby increasing the number of operations in the ground field Fq, but reducing the number of
operations in the larger field Fqk . Since doing computations in the extension field Fqk is more
expensive than in the smaller field Fq, this method might pay off if k is sufficiently large. Lastly, if
Miller’s algorithm requires w consecutive doublings, then directly computing [2w]P can save w−1
multiplications.

Finally, [24] suggests to combine the two phases in the ’double-and-add’ step, by computing the
function f2a+1 at once. This is done by directly constructing the parabola that represents the
term given by

g[a]P,[a]P · g[2a]P,P

g[2a]P
,

which occurs in the function

f2a+1 = f2a ·
g[2a]P,P

g[2a+1]P
= f2

a ·
g[a]P,[a]P

g[2a]P
· g[2a]P,P

g[2a+1]P
=

f2
a

g[2a+1]P
· g[a]P,[a]P · g[2a]P,P

g[2a]P
.

As with the ’windows’ method described above, the larger the hamming weight of the binary
expansion of m is, the better this method works.

4.5.2 Choice of Parameters

The authors of [5] and [31] independently remark that the choice of the prime order m to a large
extent influences the complexity of Miller’s algorithm. Considering step 3 of the algorithm, we
see that for the bits in the binary expansion (mt, . . . , m0)2 of m that equal 0, the addition step
can be skipped. Obviously, it is wise to choose a prime m for which the Hamming weight of the
binary expansion is as low as possible. For instance, one could use a Solinas prime of the form
m = 2β ± 2α ± 1. For practical values, [5] argues, such primes always exist.

Further, [31] describes that if we can write N = mh, where N is the group order, m a large
prime factor and h a small cofactor, then the Tate pairing 〈P,Q〉(qk−1)/m = g(D)(q

k−1)/m (where
div(g) = m(P ) − m(O) and D ∼ (Q) − (O)) can be computed as follows. Let g′ be a function
with div(g′) = N(P )−N(O), then div(g′) = hdiv(g) = div(gh). Now we can compute

g′(D)(q
k−1)/N = g(D)h(qk−1)/(hm) = 〈P, Q〉(qk−1)/m,

using Miller’s algorithm. If the binary representation of N has a low Hamming weight and m does
not, then it can be quite profitable to compute the pairing with respect to N rather than m.

A result of [5] for supersingular curves, which was generalized to non-supersingular curves in [7],
involves the choice of divisor D.

Theorem 4.10 (Barreto et al. [7], Theorem 3) Let P ∈ E(Fq)[m] and Q ∈ E(Fqk) be lin-
early independent points on a curve with embedding degree k > 1. Then the Tate pairing 〈P, Q〉(qk−1)/m =
g(D)(q

k−1)/m, where div(g) = m(P )−m(O) and D ∼ (Q)− (O) can be computed as

〈P, Q〉(qk−1)/m = g(Q)(q
k−1)/m for Q 6= O.

As a consequence, we can replace formulas (4.1) and (4.2) in Miller’s algorithm by

fa+1(Q) = fa(Q) · g[a]P,P (Q)
g[a+1]P (Q)

, and f2a(Q) = fa(Q)2 · g[a]P,[a]P (Q)
g[2a]P (Q)

,

thereby reducing the complexity of the algorithm. From the theorem also follows the following
corollary:
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Corollary 4.11 (Barreto et al. [7], Corollary 1) Let d > 1 such that d|k. Then one can
freely multiply or divide g(Q) by any nonzero Fqk/d factor without affecting the pairing value.

In [5], it is described how the above corollary enables one to discard the g[2]V and gV +P denomi-
nators in Miller’s formula for certain supersingular curves. In [7], this result is generalized to the
statement that for any curve the g[2]V and gV +P denominators can be omitted if k is even, Q is
such that Φk/2(Q) = −Q, and m divides the order of Q. (Here Φ is the Frobenius endomorphism
given Section 2.1.) Moreover, [7] gives an algorithm for generating these so-called ’pairing-friendly’
groups.

Lastly, as noted in [31], one can profit from working with curves in small characteristic. These cases
are particularly interesting from a cryptographic point of view, as they provide supersingular curves
with large embedding degree (k = 4, 6, see Chapter 5). In characteristic two, certain arithmetic
operations such as exponentiation and point doubling can be implemented very efficiently, which
obviously improves the performance of Miller’s algorithm. Similarly, in characteristic three, there
are efficient methods for cubing and point tripling. To exploit this fact, we need to adapt Miller’s
algorithm to use the (signed) base-3 representation of the prime order m, in stead of its binary
expansion.



Chapter 5

Embedding Degree

Consider the elliptic curve E/Fq and suppose there is an m-torsion point on E(Fq) for integer
m. The definitions of the Weil and the Tate pairing on the curve E require some field extension
of the ground field Fq. The degree of this field extension is known as the Weil-, respectively
Tate-embedding degree. For convenience, we distinguish between these by denoting the Weil-
embedding degree by kw and the Tate-embedding degree by kt. In the previous chapters we have
briefly mentioned how kw and kt can be determined. Namely, the Weil-embedding degree kw is
defined to be the smallest integer such that the curve over Fqkw contains all m-torsion points,
i.e. E[m] ⊆ E(Fqkw ) (Remark 3.11). For the Tate pairing, kt is the smallest integer such that
m|qkt − 1 (Section 4.1).

In this chapter, we examine why the pairings require field extensions of this particular degree.
For this purpose, we first give a lower bound k for kw and kt in Section 5.1. Next, we show
that in all cases kt = k and in most cases kw = k in Section 5.2. Because of these facts, it is
generally said that the embedding degree of the curve with respect to m is k. Namely, for any curve,
the smallest extension degree for which either the Weil or the Tate pairing can be applied is the
(Tate-)embedding degree kt = k. (This justifies the use of k instead of kt in Chapter 4.) Lastly,
we discuss which curves have embedding degree sufficiently small for cryptographic purposes in
Section 5.3.

At this point, we should remark that we often slightly abuse notation. Namely, if m is clear from
the context, we frequently leave out the reference to m and simply talk about the the embedding
degree of a curve. In cryptographic applications we usually work with curves for which the prime
factorization of the order contains a single large prime m. In this case, when we mention the
embedding degree of the curve, we actually mean with respect to that m.

Remark 5.1 Besides the term embedding degree, other names for the embedding degree often used
in the literature are extension degree, MOV degree, security parameter, and security multiplier. We
will always denote k by the term embedding degree; if we talk about extension degree, we mean the
degree of some field extension, which is (in our definition) not necessarily equal to the embedding
degree.

5.1 A Lower Bound

Recall that the pairings map to the group of (equivalence classes represented by) mth roots of unity
µm for some integer m. Intuitively, one would expect that for the pairings to work, a necessary
condition is that all the mth roots are present in the extension field. (In fact, [35] notes that this
condition is often necessary for the non-degeneracy of the pairings.) Hence, this results in the
following lower bound for both the Weil- and the Tate-embedding degree.
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Definition 5.2 Let E/Fq be an elliptic curve and E[m] the group of m-torsion points on E for
integer m. A lower bound for kw and kt for the curve E with respect to m is given by k, where
k is the smallest integer for which all mth roots of unity are contained in the multiplicative group
F∗qk , so

µm ⊆ F∗qk and µm 6⊆ F∗ql for l < k.

Consider the following lemma that tells us something about the value of k.

Lemma 5.3 Let m > 0, then
µm ⊆ F∗qk ⇔ m|qk − 1.

Proof. Suppose µm ⊆ F∗qk . We can write qk − 1 = cm + b for some integers c and 0 ≤ b < m. Let
a ∈ µm be a primitive mth root of unity. Then since a ∈ F∗qk , we have

1 = aqk−1 = acm+b = (am)cab = ab.

Since b < m and a is primitive, it follows that b = 0 and thus m|qk − 1. So

µm ⊆ F∗qk ⇒ m|qk − 1.

Now suppose m|qk − 1. Then qk − 1 = cm for some integer c. Let a ∈ µm, then we have

aqk−1 = acm = 1,

so a ∈ F∗qk . Therefore, µm ⊆ F∗qk , so we conclude

m|qk − 1 ⇒ µm ⊆ F∗qk ,

which completes the proof of the lemma. ¤

Due to Lemma 5.3, we can replace Definition 5.2 with the following equivalent definition:

Definition 5.4 Let E/Fq be an elliptic curve and E[m] the group of m-torsion points on E for
integer m. A lower bound for kw and kt for the curve E with respect to m is given by k, where

m|qk − 1, and m 6 |ql − 1 for 0 < l < k.

5.2 Additional Conditions

As we have seen in the previous section, the extension degree k, as defined in Definitions 5.2 and
5.4, is a lower bound for both the Weil-embedding degree kw and the Tate-embedding degree kt.
Hence, kw ≥ k and kt ≥ k are necessary conditions for the Weil and the Tate pairing, respectively.
In this section, we examine whether this condition is also sufficient, i.e. whether kw and kt can be
as low as the optimal value k.

Recall that the Tate pairing takes as input one point from the group of m-torsion points E(Fqk)[m]
and the other from the quotient group E(Fqk)/mE(Fqk). For k ≥ 1 there always exists an m-
torsion point on E(Fqk), as well as a non-trivial (i.e. 6≡ O) representative in E(Fqk)/mE(Fqk).
Hence, the properties of the input parameters do not lead to any additional constraints on the
required extension degree. Since also the output of the Tate pairing is well-defined for extension
degree k, we find that m|qk − 1 is a sufficient condition for the application of the Tate pairing.
Thus the Tate-embedding degree always reaches the optimal value kt = k.

The Weil pairing, on the contrary, does sometimes need a field extension of higher degree than k.
This is caused by the fact that the Weil pairing, in contrast to the Tate pairing, takes two m-torsion



5.2 Additional Conditions 43

points as input. For the pairing to be non-trivial, these points need to be independent. Lemma
2.2 says that the group of points E[m] is generated by two independent points. It follows that
the complete group of m-torsion points needs to be on the curve over the extension field E(Fqkw ).
Thus the stronger condition E[m] ⊆ E(Fqkw ), imposed by the independency requirement of the
two m-torsion points, is necessary for the Weil pairing. In fact, this condition is equivalent to
m|qkw − 1 and two other conditions, according to a result from Schoof [71].

Initially, the gap between the conditions E[m] ⊆ E(Fqk) and m|qk − 1 was generally believed to
be quite large, see for instance [28] and [54]. In other words, it was assumed that for a consid-
erable number of cases the Tate pairing could be efficiently computed, whereas the Weil pairing
would involve computations over an extension field of insuperably large degree. In 1998, however,
Balasubramanian and Koblitz [3] showed that under a weak assumption, which is almost always
satisfied in practical applications, the conditions E[m] ⊆ E(Fqk) and m|qk − 1 are equivalent.

Theorem 5.5 (Balasubramanian, Koblitz [3]) Let E be an elliptic curve defined over Fq, and
suppose that m is a prime that divides N = #E(Fq) but does not divide q−1. Then E[m] ⊆ E(Fqk)
if and only if m|(qk − 1).

Theorem 5.5 asserts that if m 6 |q − 1, or equivalently k > 1, then the Weil-embedding degree kw

reaches the optimal value kw = k. So if the condition k > 1 is met, as is often the case in practical
applications, then both the Weil and the Tate pairing have embedding degree kw = kt = k.
Further, the condition k > 1 is not necessary for kw = k. That is, even if k = 1, then it is still
possible that E[m] ⊆ E(Fqk) (see for instance Example 5.1 in [54]). A necessary condition for
E[m] ⊆ E(Fqk) is that m2|#E(Fqk), as mentioned in [83]. On the other hand, [3] shows that if
k = 1 and the group E(Fq)[m] is cyclic, then we have to go to the extension field Fqm to get all
m-torsion points, hence kw = m and kt = 1.

In conclusion, we have seen that in all cases kt = k and kw ≥ k. Moreover, if k > 1, then
kw = kt = k. For these reasons, it is generally said that the embedding degree of a curve (with
respect to m) is k, where k is as in Definitions 5.2 and 5.4. Note that for elliptic curves with
trace t = 2, we have #E(Fq) = q − 1 and thus m|q − 1 because m|#E(Fq). So trace 2 curves
have embedding degree k = 1 and the Tate pairing can be efficiently computed. Below, we give an
example of an elliptic curve (with trace 6= 2) for which the Tate pairing reaches the lower bound
k, but the Weil pairing does not.

5.2.1 Example

For q = 31, consider the curve E/Fq given by the Weierstrass equation y2 = x3 + x + 17. The
number of points on the curve is n = #E(F31) = 25, so t = q + 1− n = 7. We set m equal to the
largest prime divisor of n, so m = 5. We even have m2|n, which is a necessary (but not sufficient)
condition for E[m] ⊆ E(Fq). Then the embedding degree k of the curve with respect to m equals
1, since m|q − 1. Thus we can apply the Tate pairing without even having to extend the field Fq.

However, the group of m-torsion points on E(Fq) is given by

E(Fq)[m] = {(3, 4), (14, 4), (3, 27), (14, 27),O} ∼= Z5.

Since the group E(Fq)[m] is cyclic, one has to go to Fqm to get all the m-torsion points. So in
this case, E[m] ⊆ E(F315), but E[m] 6⊆ E(F31l) for l < 5. In other words, in order to apply the
Weil pairing, we need to extend the ground field to a degree of 5. Although the Weil pairing can
still be computed in this small toy example, practical values of q and m will render the pairing
infeasible. The Tate pairing, on the contrary, can be computed very efficiently since k = 1.
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5.3 Curves with Small Embedding Degree

In a nutshell, the Tate and the Weil pairing are bilinear maps that map a pair of points on an
elliptic curve over a finite field Fq to the multiplicative group F∗qk of an extension field of degree k.
Clearly, the larger the embedding degree k, the more computational effort needed to compute the
pairing. Hence, in order to be able to efficiently evaluate the pairing, we need k to be sufficiently
small. On the other hand, in cryptographic applications the security of the system is based on the
hardness of a certain problem in F∗qk , which is related to the value of k (see Chapter 7). In this case
we want k to be small enough to enable efficient computation of the pairing, but simultaneously
large enough to guarantee the hardness of the problem. On the whole, we are interested in elliptic
curves with (moderately) small embedding degree. For the pairing to be computable, the value
of k should in any case satisfy k < (log q)2. The authors of [3] show that curves satisfying
this condition are very sparse, so a randomly chosen curve is with overwhelming probability not
suitable for pairings-based cryptography. So far, the only two classes of curves that are known to
have suitable embedding degree are supersingular curves and so-called MNT curves.

5.3.1 Supersingular Curves

The following two results come from Menezes [54].

Lemma 5.6 (Menezes [54], Lemma 2.9) There exists an elliptic curve E/Fq such that E(Fq)
has order q + 1− t over Fq if and only if one of the following conditions holds:

1. t 6≡ 0(mod p) and t2 ≤ 4q.

2. m is odd and one of the following holds:

(a) t = 0.

(b) t2 = 2q and p = 2.

(c) t2 = 3q and p = 3.

3. m is even and one of the following holds:

(a) t2 = 4q.

(b) t2 = q and p 6≡ 1 (mod 3).

(c) t = 0 and p 6≡ 1 (mod 4).

Lemma 5.7 (Menezes [54], Lemma 2.13) Let E be a supersingular curve and #E(Fq) = q +
1− t.

1. If t2 = q, 2q, or 3q, then E(Fq) is cyclic.

2. If t2 = 4q, then either E(Fq) ∼= Z√q−1 ⊕ Z√q−1 or E(Fq) ∼= Z√q+1 ⊕ Z√q+1, depending on
whether t = 2

√
q or t = −2

√
q respectively.

3. If t = 0 and q 6≡ 3 (mod 4), then E(Fq) is cyclic. If t = 0 and q ≡ 3 (mod 4), then either
E(Fq) is cyclic, or E(Fq) ∼= Z(q+1)/2 ⊕ Z2.

Let the character of Fq be p, i.e. q = pl for some integer l and prime p. Combining Lemmas 5.6
and 5.7, we can divide the class of supersingular curves into the following subclasses (for details
see [54]):

1. t = 0 and E(Fq) ∼= Zq+1.

2. t = 0 and E(Fq) ∼= Z(q+1)/2 ⊕ Z2 (and q ≡ 3 (mod 4)).

3. t2 = q (and l is even).
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4. t2 = 2q (and p = 2 and l is odd).

5. t2 = 3q (and p = 3 and l is odd).

6. t2 = 4q (and l is even).

The following result tells us the embedding degrees of the various classes of supersingular elliptic
curves. In particular, for these curves we have k ≤ 6, which makes them suitable for pairing-based
cryptography.

Theorem 5.8 (Menezes [54], Table 5.2) For the curves in class (1),(2),(3),(4),(5), and (6),
we have embedding degree k = 2, 2, 3, 4, 6, and 1 respectively.

Proof.

1. Let E/Fq be a class (1) supersingular curve. Then n = #E(Fq) = q + 1, so n 6 |q − 1. But
n(n− 2) = (q + 1)(q − 1) = q2 − 1, so n|q2 − 1 and thus k = 2.

2. Similar to class (1) curves.

3. Let E/Fq be a class (3) supersingular curve. Then t2 = q and n = #E(Fq) = q + 1 ± √q.
Notice that q3 − 1 factors as q3 − 1 = (q + 1 +

√
q)(q + 1−√q)(q− 1), so n|q3 − 1. Further,

qj − 1 does not contain n = q + 1±√q as a factor for 0 < j < 3.

4. Let E/Fq be a class (4) supersingular curve. Then t2 = 2q and n = #E(Fq) = q + 1±√2q.
Notice that q4 − 1 factors as q4 − 1 = (q + 1 +

√
q)(q + 1 −√q)(q + 1)(q − 1), so n|q4 − 1.

Further, qj − 1 does not contain n = q + 1±√2q as a factor for 0 < j < 4.

5. Let E/Fq be a class (5) supersingular curve. Then t2 = 3q and n = #E(Fq) = q + 1±√3q.
Notice that q6− 1 factors as q6− 1 = (q +1+

√
3q)2(q +1−√3q)2(q +1)(q− 1), so n|q6− 1.

Further, qj − 1 does not contain n = q + 1±√3q as a factor for 0 < j < 6.

6. Let E/Fq be a class (6) supersingular curve. Then t2 = 4q and n = #E(Fq) = q+1±2
√

q =
(
√

q ± 1)2. Notice that q − 1 factors as q − 1 = (
√

q + 1)(
√

q − 1), so
√

n|q − 1. Hence the
embedding degree of E/Fq with respect to

√
n equals one. ¤

Remark 5.9 The theorem above deals with the (Tate-)embedding degree k. For the classes (1)-
(5) the (Tate-)embedding degree k > 1, so by Theorem 5.5 we have kw = k. This is not sure for
class (6), since here k = 1. Nevertheless, following the proof of Lemma 5.11 in [54], it can easily
be verified that kw = k = 1 for class (6) supersingular curves as well.

Example 5.10 Consider the curve E/F11 from previous examples in Subsections 2.5.1 and 3.4.1
given by E : y2 = x3 + 3x. The trace t of this curve equals 0, because #E(F11) = 12 = q + 1.
Hence the curve is supersingular. As remarked in Subsection 3.4.1, the group structure of E(F11)
is cyclic and, in particular, equivalent to Z12. Therefore, E falls into class (1) and has embedding
degree 2. This corresponds to the observations made in Subsection 3.4.1.

According to the following theorem, it is easy to construct supersingular curves.

Theorem 5.11 (Ireland, Rosen [38]) Let p be a prime.

• The curve E/Fp given by E : y2 = x3 + ax is supersingular if and only if p ≡ 3 (mod 4).

• The curve E/Fp given by E : y2 = x3 + b is supersingular if and only if p ≡ 2 (mod 3).
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Note that there are also supersingular curves of the form E : x3 + ax + b, with a, b 6= 0.

Hence, the class of supersingular elliptic curves provides us with a large collection of curves with
small embedding degree. We point out that supersingular curves come equipped with a remarkably
rich structure, which entails both advantages and disadvantages for their use in cryptography. We
will elaborate on this in Chapter 7. One of the advantages of the rich structure is the existence of
distortion maps on supersingular curves, see Chapter 6.

Note that there exist supersingular curves of genus > 1 (i.e. not elliptic) that have embedding
degree larger than 6. We will not go into detail, as curves of higher genus fall outside the scope of
this study. Interested readers are referred to [30], where an upper bound on the embedding degree
depending only on the genus of the curve is given, along with examples of supersingular curves
with embedding degree up to 12. In [68] these results are extended to the even more general case
of supersingular abelian varieties.

5.3.2 MNT-Curves

Until 2001, supersingular curves were the only curves known to have embedding degree small
enough to apply the Weil or the Tate pairing. In [61], however, Miyaji, Nakabayashi and Takano
describe a method to construct ordinary (i.e. non-supersingular) curves for embedding degree
k = 3, 4 and 6. We refer to these curves as MNT-curves. Their approach is as follows. Let E/Fq

be an elliptic curve of prime order n = #E(Fq) = q + 1− t, where t is the trace of E. Next, fix a
k ([61] only deals with k = 3, 4, 6) and check which restrictions on the parameters n, q and t are
imposed by the condition

m|qk − 1, and m 6 |ql − 1 for 0 < l < k.

For k = 3, 4, 6, these restrictions, also called MNT-criteria, are listed in the following theorem.

Theorem 5.12 (Miyaji et al. [61], Theorems 2-4) Let E/Fq be an elliptic curve with trace
t.

• If (q, t) can be represented by q = 12l2−1 and t = −1±6l for some l ∈ Z, then the embedding
degree of E is k = 3.

• If (q, t) can be represented by q = l2 + l + 1 and t = −l, l + 1 for some l ∈ Z, then the
embedding degree of E is k = 4.

• If (q, t) can be represented by q = 4l2 + 1 and t = 1± 2l for some l ∈ Z, then the embedding
degree of E is k = 6.

The next step is to construct curves that fall into one of the three classes described in Theorem
5.12. This is done by using the complex multiplication (CM-)method (for details see [2]), which
is the only known method for building a curve for given t and q. The difficulty, however, is that
in order to apply the CM-method, one needs to know the solution to a certain equation, called
the CM-equation. Miyaji et al. [61] show that for k ∈ {3, 4, 6} and q prime, the CM-equation can
be reduced to an equation of particular form, known as Pell’s equation, for which the solution is
known.

The independent studies of Barreto et al. [6] and Dupont et al. [23] generalize the MNT-criteria
to arbitrary k, i.e. not restricted to k ∈ {3, 4, 6} (q is still assumed to be prime). For general k,
however, the CM-equation cannot be reduced to Pell’s equation, and therefore the method of [61]
does not work. The authors of [6] circumvent this problem by first choosing a value to serve as
solution to the CM-equation and next searching for parameters that yield a CM-equation with
that particular solution. They further provide examples of curves with embedding degree 7, 11
and 12.
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In [23], the problem of finding a solution to the CM-equation is solved differently. Their approach
is to choose the parameter t in such a way that the solution to the CM-equation is enforced to
be small. (To be precise, they pick |t| to be the largest integer within the Hasse bound, i.e.
|t| = b2√qc.) They then perform an exhaustive search on the remaining parameters to see if the
resulting CM-equation has a suitable solution. They clarify their method with examples of the
construction of elliptic curves with embedding degree k = 5, 7, 10, 11 and 50.

Downside to both methods is that they cannot be used to find curves over fields of fixed prime
order q. Instead, the algorithms take as input the desired embedding degree k and a lower bound
on the size of the subgroup m, and output a prime q and an elliptic curve E/Fq satisfying the
prerequisites. Another disadvantage is that for arbitrary k, both methods cannot reach a curve of
(near-)prime order, as is desirable in cryptographic applications. In fact, for the general methods,
the ratio log q/log m can be no less than 2, which boils down to having a subgroup of prime order
m of size O(

√
q) at best. On the bright side, [6] also describes a method that can achieve a better

ratio for the particular case where k is divisible by 3.

Recently, Brezing and Weng [14] have extended the work of [6] to reach a better relation between
the prime order m and the field characteristic q for arbitrary embedding degree k. They corroborate
their results with examples of curves with ratio log q/log m close to one. In particular, for k
prime they achieve a ratio of approximately k+2

k−1 , which means that m is of size O(q(k−1)/(k+2)).
Unfortunately, this method also suffers from the fact that q cannot be fixed beforehand.

We next give an example of MNT-curves for k = 3, 4, 6.

Example 5.13

• Consider the curve E/F47 given by Weierstrass equation y2 = x3 + 6x + 5. Then n =
#E(F47) = 37 and t = q + 1− n = 11. For l = 2 we have q = 12l2 − 1 and t = −1 + 6l, and
thus the embedding degree of this curve is k = 3.

• Consider the curve E/F31 given by Weierstrass equation y2 = x3 + 2x + 2. Then n =
#E(F31) = 26 (= 2 ·13) and t = q +1−n = 6. For l = 5 we have q = l2 + l+1 and t = l+1,
and thus the embedding degree of this curve (with respect to 13) is k = 4.

• Consider the curve E/F101 given by Weierstrass equation y2 = x3 + 3x + 6. Then n =
#E(F101) = 91 (= 7 · 13) and t = q + 1 − n = 11. For l = 5 we have q = 4l2 + 1 and
t = 1 + 2l, and thus the embedding degree of this curve (with respect to either 7 or 13) is
k = 6.
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Distortion Maps

Let P be an m-torsion point with coordinates in Fq for m an integer coprime to q. As we have
seen, the outcome of Weil pairing em(P, P ) (Theorem 3.5) and, for k > 1, the Tate pairing 〈P, P 〉
(Lemma 4.5) is the identity. Then, because of the bilinearity, the pairing of two linearly dependent
points yields the identity as well. Hence, in applications we often need two linearly independent
points. This chapter deals with Verheul’s distortion map on supersingular curves [83], which is a
useful tool for finding such a pair of independent points.

In the next section we give the definition of the distortion map and show that they do exist on
supersingular curves, but not on most non-supersingular curves. In Section 6.2 we describe how
the distortion map can be used to modify the Weil and Tate pairings to make them satisfy a
stronger non-degeneracy property, which is often desired in cryptographic applications. We deal
with the cryptographic use of (modified) pairings in Section 6.3.

6.1 Definition

Consider the following definition of a distortion map.

Definition 6.1 Let m be an integer coprime to q, E/Fq an elliptic curve and P ∈ E(Fq)[m]. A
distortion map with respect to P is an endomorphism φ ∈ End(E) that maps the point P to a
point φ(P ) that is linearly independent from P .

Note that an endomorphism always maps the point at infinity O to itself, so there exists no distor-
tion map with respect to O. Moreover, the image of an m-torsion point under an endomorphism is
again an m-torsion point. Hence, the distortion map φ with respect to P ∈ E(Fq)[m], if existing,
maps to an m-torsion point φ(P ) ∈ E[m]. Furthermore, if the group of m-torsion points is not
contained in the curve over the ground field, i.e. E[m] 6⊆ E(Fq), then the mth torsion group over
the ground field E(Fq)[m] is cyclic. So, being independent from P , the image φ(P ) of the point
P will have coordinates in an extension field of Fq.

6.1.1 Non-Supersingular Curves

Let E/Fq be a non-supersingular elliptic curve. Its endomorphism ring End(E) contains endo-
morphisms such as the multiplication-by-n map and the Frobenius map. Furthermore, End(E)
is abelian, i.e. φ1(φ2(P )) = φ2(φ1(P )) for all φ1, φ2 ∈ End(E) and P ∈ E. Due to this fact,
non-supersingular curves cannot contain a distortion map if E[m] 6⊆ E(Fq), as proven by Verheul
[83].

Theorem 6.2 (Verheul [83], Theorem 11) Let E/Fq be a non-supersingular curve and let
P ∈ E(Fq)[m] for integer m. If m is relatively prime to p = char(q) and E[m] 6⊆ E(Fq), then
there cannot exist a distortion map φ with respect to P .
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Proof. Suppose such a distortion map φ does exist. Then Q = φ(P ) 6∈ E(Fq), because E[m] 6⊆
E(Fq). Since the endomorphism ring is abelian, we have

Q = φ(P ) = φ(Φ(P )) = Φ(φ(P )) = Φ(Q).

This implies that Q ∈ E(Fq), which is a contradiction. ¤

The following example concerns the case that E[m] is contained in the ground field, which was
left as an open question by Verheul [83]. In fact, the example shows that for E[m] ⊆ E(Fq), a
distortion map can exist on non-supersingular curves.

Example 6.3 Consider the curve E/F197 : y2 = x3 − 4x. Then #E(F197) = 196 = 22 · 72. The
torsion group E[7] ⊆ E(F197) can be generated by the two linearly independent points P1 = (24, 23)
and P2 = (173, 125). Observe that 14 is a fourth root of unity in F197, so 142 = −1. Hence, the
map

φ : (x, y) → (−x, 14 · y) and φ : O → O,

is an endomorphism, i.e. φ ∈ End(E). Moreover, φ(P1) = P2, so φ is a distortion map on E[7].

We should remark that for cryptographic applications, it is desirable to have m close or equal to
#E(Fq). However, [83] mentions that a necessary condition for E[m] ⊆ E(Fq), is that m2|#E(Fq).
Hence, non-supersingular curves containing a distortion map generally do not yield cryptographi-
cally interesting cases.

6.1.2 Supersingular Curves

The endomorphism ring of supersingular curves, on the other hand, is not abelian. For this reason,
supersingular curves enable the existence of distortion maps even if E[m] is not contained in the
ground field. In fact, Verheul [83] remarks that distortion maps always exist on supersingular
curves, with only a finite number of exceptions.

We already came across a distortion map in Section 3.4.1, where we used the endomorphism

φ : (x, y) → (−x, iy) on the curve E/F11 : y2 = x3 + 3x

to map the point (3, 5) to the independent point (8, 5i). This and other distortion maps are listed
in Table 6.1 (see [42, 43]). Note that these endomorphisms do not need to be distortion maps with
respect to all points on the curve. We have remarked already that distortion maps with respect
to O do not exist. Furthermore, returning to our usual example E/F11 : y2 = x3 +3x, we see that
the 2-torsion point P1 = (0, 0) is mapped to itself by φ : (x, y) → (−x, iy). Since all other points
on E(Fq) have y 6= 0, they are mapped to linearly independent points. Hence, φ is a distortion
map with respect to all points on E(Fq) except for O and P1.

Field Curve Distortion map Conditions Group order
Fp y2 = x3 + ax (x, y) 7→ (−x, iy) p ≡ 3(mod4) p + 1

i2 = −1
Fp y2 = x3 + a (x, y) 7→ (ζx, y) p ≡ 2(mod3) p + 1

ζ3 = 1, ζ 6= 1
Fp2 y2 = x3 + a (x, y) 7→ (ω xp

r(2p−1)/3 , yp

rp−1 ) p ≡ 2(mod3) p2 − p + 1
a 6= Fp r2 = a, r ∈ Fp2

ω3 = r, ω ∈ Fp6

Table 6.1: Distortion maps on supersingular curves
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6.2 Modified Pairings

When a distortion map is available, we can modify the Weil and Tate pairing such that they satisfy
a stronger non-degeneracy property.

Definition 6.4 Let m be a prime and E/Fq a supersingular curve, on which a distortion map φ
exists with respect to all points in E(Fq)[m] other than O. Let P, Q ∈ E[m], then the modified
Weil pairing of m-torsion points P and Q is defined as

êm(·, ·) : E[m]× E[m] → µm with êm(P, Q) = em(P, φ(Q)).

The modified Weil pairing satisfies the following property.

Theorem 6.5 Let êm be the modified Weil pairing as in Definition 6.4 and let P ∈ E(Fq)[m],
P 6= O. Then êm(P, P ) 6= 1. We say that the modified Weil pairing is strongly non-degenerate.

Proof. If P ∈ E(Fq)[m] with P 6= O, then φ(P ) is an m-torsion point independent from P . Then
by Corollary 3.6

êm(P, P ) = em(P, φ(P )) 6= 1.

¤

Similarly, we can modify the Tate pairing.

Definition 6.6 Let m be a prime and E/Fq a supersingular curve, on which a distortion map
φ exists with respect to all points in E(Fq)[m] other than O. Let P ∈ E(Fqk)[m] and Q ∈
E(Fqk)/mE(Fqk), then the modified Tate pairing of P and Q is defined as

〈̂·, ·〉 : E(Fqk)[m]× E(Fqk)/mE(Fqk) → F∗qk/(Fqk)m with 〈̂P, Q〉 = 〈P, φ(Q)〉.
Let P ∈ E(Fq)[m]. Recall from Lemma 4.5 that for k > 1 the Tate pairing 〈P, P 〉 is trivial (i.e.
〈P, P 〉 ∈ (Fqk)m ≡ 1). We show that the modified Tate pairing satisfies the strong non-degeneracy

property for k > 1 (or equivalently m 6 |q − 1), and thus 〈̂P, P 〉 is non-trivial for P ∈ E(Fq)[m].

Theorem 6.7 Let 〈̂·, ·〉 be the modified Tate pairing as in Definition 6.6 and let P ∈ E(Fq)[m],
P 6= O. If m 6 |q − 1, then 〈̂P, P 〉 6∈ (Fqk)m. We say that the modified Tate pairing is strongly
non-degenerate.

Proof. If P ∈ E(Fq)[m] with P 6= O, then φ(P ) ∈ E(Fqk)[m] is an m-torsion point independent
from P . Then by Corollary 4.6

〈̂P, P 〉 = 〈P, φ(P )〉 6≡ 1.

¤

Observe that the proof of Corollary 4.6 uses the fact that 〈P, P 〉 ≡ 1 for k > 1. Now consider
the case that k = 1. Then if 〈̂P, P 〉 is trivial, the non-degeneracy of the Tate pairing implies that
〈P, P 〉 is non-trivial. Hence for k = 1, either the regular Tate pairing 〈·, ·〉 or the modified Tate
pairing 〈̂·, ·〉 (if existing) is strongly non-degenerate.

6.3 Cryptographic Use

In this section, we explain how (modified) pairings can be used in cryptographic applications.
The security of cryptosystems is generally based on some hard problem (see Chapter 7). Such a
problem is defined on a group G that is cyclic, i.e. generated by a single element. Ideally, the
order of the element, and thus the order of the group, is a prime. Hence, we would like to define
the pairings on cyclic groups of prime order. Moreover, we would like the outcome of the pairings
to be non-trivial for all input pairs with both parameters different from O. We can distinguish
between asymmetric and symmetric pairings.



6.3 Cryptographic Use 51

6.3.1 Asymmetric Pairings

Let E/Fq be an elliptic curve and n = #E(Fq) the group order of the curve. Let m be a prime such
that m|n and m 6 |q. Then the group of m-torsion points E[m] has the structure E[m] ∼= Zm⊕Zm

and is thus generated by two elements, say S and T . Denote the group generated by S by G1 and
the group generated by T by G2, i.e. G1 = 〈S〉 and G2 = 〈T 〉. Now consider the Weil pairing
em(P, Q), where P ∈ G1 and Q ∈ G2. By Corollary 3.6, em(P, Q) = 1 if and only if P = O or
Q = O. Moreover, em maps to the group µm of mth roots of unity, which is a cyclic group of order
m as well. Denote this group by G3. Hence, we can create a pairing with the desired properties
as above from the Weil pairing, by restricting the first coordinate to G1 and the second to G2:

em(·, ·) : G1 ×G2 → G3, with em(P, Q) = 1 ⇔ P = O ∨Q = O.

Similarly, we can restrict the first and second coordinate of the Tate pairing to G1, respectively
G2. Clearly, an exponentiation is required to get a unique outcome in G3. Then by Corollary 4.6,
for k > 1 we have

〈·, ·〉(qk−1)/m : G1 ×G2 → G3, with 〈P, Q〉(qk−1)/m = 1 ⇔ P = O ∨Q = O.

In cryptography, these pairings are said to be asymmetric, as G1 6= G2.

If m2 6 |n, then E[m] 6⊆ E(Fq). Hence, the mth torsion group is not contained in the curve over
the ground field and the group G1 is given by G1 = E(Fq)[m]. In practice, often P ∈ G1 is given,
and we need to find an appropriate Q such that the pairing is non-trivial, i.e. Q ∈ G2, Q 6= O.
This can be a problem when no distortion map is available. Note that these asymmetric pairings
are non-degenerate by definition. The notion of strong non-degeneracy does not apply to these
asymmetric pairings, as the input parameters come from different groups.

6.3.2 Symmetric Pairings

A symmetric pairing can be obtained by restricting both parameters of the modified Weil pairing
to the group G1. Then by Theorem 6.5 and the bilinearity of the pairing, the modified Weil pairing
êm(P, Q) of P, Q ∈ G1 is trivial if and only if P = O or Q = O. Hence

êm(·, ·) : G1 ×G1 → G3, with êm(P, Q) = 1 ⇔ P = O ∨Q = O.

Similarly, we can restrict both parameters of the modified Tate pairing to G1 and perform an
exponentiation to get a unique outcome. Then by Theorem 6.7 and the bilinearity of the pairing,
we have for k > 1:

〈̂·, ·〉(q
k−1)/m

: G1 ×G1 → G3, with 〈̂P, Q〉
(qk−1)/m

= 1 ⇔ P = O ∨Q = O.

These pairings are called symmetric, because both input parameters come from the same cyclic
group G1.

Observe that, by construction, the symmetric pairings are strongly non-degenerate. Hence, when
given an S ∈ G1, we do not have any problem to find an appropriate T . In fact, because of
the strong non-degeneracy, we can take S itself, or any multiple of S except for O. Therefore,
symmetric pairings are in practice often more convenient than asymmetric pairings.



Chapter 7

Elliptic Curve Cryptography

Elliptic curve cryptography is realized by considering the well-known problem of taking discrete
logarithms on the group of points on an elliptic curve. After giving an introduction to the discrete
logarithm problem defined on an arbitrary group in Section 7.1, we focus on its analogue on elliptic
curves in Section 7.2. Lastly, Section 7.3 describes how pairings can be used to make certain elliptic
curves into so-called Gap Diffie-Hellman groups, which lie at the heart of pairing-based systems.

7.1 Introduction to the Discrete Logarithm Problem

We give the general definition of the discrete logarithm problem and related problems, discuss the
currently known attacks and describe some standard protocols based on this problem.

7.1.1 Discrete Logarithm and Related Problems

The security of many cryptosystems relies on the hardness of the discrete logarithm problem. In
the following definition, we describe when we consider a problem to be hard, in a rather informal
manner. For a more formal definition, see [64] (which uses term intractable instead of the term
hard).

Definition 7.1 We consider a problem to be easy when there exists an algorithm that solves the
problem with running time that is polynomial in size of the input. We consider a problem to be
hard when no such polynomial time algorithm exists.

An algorithm is called subexponential time when it runs asymptotically faster than any exponential
time algorithm, but asymptotically slower than any polynomial time algorithm (see [54]). Hence,
we can divide the set of hard problems into two classes. We say that problems that can be solved
by a subexponential time algorithm are easier than problems solved in exponential time at best,
even though both classes of problems are hard.

We are now ready to give the definition of the discrete logarithm problem and related problems.
We regard these problems on the finite multiplicative group (G, ∗) of order n. As explained in the
next section, we can, without loss of generality, assume that the order n of G is prime. In other
words, G is cyclic and can be generated by a single element, say g.

Definition 7.2 Let h ∈ G, such that h = gx for some unknown x ∈ Z∗n. Given g and h, the
discrete logarithm problem (DL) is to find x. We use the notation DLg(h) = x.

Closely related to the discrete logarithm problem is the computational Diffie-Hellman problem.

Definition 7.3 Let a, b ∈ Z∗n. Given g, ga, gb, the computational Diffie-Hellman problem (CDH)
is to find the element h ∈ G such that h = gab. We use the notation CDHg(ga, gb) = h.
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Obviously, CDH is no harder than DL; the ability to compute discrete logarithms directly enables
one to solve the computational Diffie-Hellman problem. Thus when the computational Diffie-
Hellman problem in a group is hard, then so is the discrete logarithm problem. Conversely, it is
not known whether the hardness of DL in general guarantees that CDH is hard as well. For a
group of given prime order n, however, [52, 53] show that the two problems are equivalent if one
can construct an elliptic curve over Fn with certain properties. But since there exists no provable
method for constructing such curves for general prime order n, [52, 53] do not provide proof of
the equivalence of DL and CDH in any group. Nevertheless, since their ideas are considered a
strong heuristical argument, the discrete logarithm problem and the computational Diffie-Hellman
problem are widely believed to be equivalent. Henceforth, when examining the security of cryp-
tosystems based on the computational Diffie-Hellman problem, we will consider the hardness the
discrete logarithm problem.

Besides the computational Diffie-Hellman problem, there exists a weaker version, known as the
decision Diffie-Hellman problem.

Definition 7.4 Let a, b, c ∈ Z∗n. Given g, ga, gb, gc, the decision Diffie-Hellman problem (DDH) is
to decide whether gc = gab (mod n). We use the notation DDHg(ga, gb, gc) = 1 if CDHg(ga, gb) =
gc and DDHg(ga, gb, gc) = 0 otherwise.

It is clear that the computational Diffie-Hellman problem is at least as hard as its decisional
version. Indeed, a method to solve DDH would be to compute h = CDHg(ga, gb), and check
whether gc = h. Conversely, for most groups it is not clear whether DDH is easier than CDH.
Groups that do satisfy this property, i.e. where CDH is hard but DDH is easy, are named Gap
Diffie-Hellman (GDH) groups, which will be discussed in Section 7.3. The relation between DL,
CDH and DDH can be depicted as follows.

DL −→ CDH −→ DDH

Throughout the report, A −→ B means that problem A is at least as hard as problem B.

7.1.2 Attacks on the Discrete Logarithm Problem

Several attacks are known on the discrete logarithm problem (see [54, 63, 82]). The methods that
do not use the properties of the underlying group, besides multiplication, inversion and unique
encoding of the group elements, are called generic. Examples of generic methods are Shanks’
”Baby-Step Giant-Step” method and Pollard’s ”Lambda” and ”Rho” (or ”catching kangaroos”)
methods. The fact that these algorithms do not require particular properties makes them work in
any group.

A result of Shoup [75] states that any generic method takes at least O(
√

n) operations to solve
the discrete logarithm problem, where n is the prime order of the group. Therefore, the generic
methods mentioned above are referred to as square root methods. Note the amount of work that
needs to be done to solve the discrete logarithm with a generic method grows exponentially in
the size of the input. This makes groups on which no attacks other than generic ones are known
suitable for the design of DL-based cryptographic protocols.

Note that so far, we have assumed that the discrete logarithm problem is defined on a group that
has prime order. Of course we can just as well work with a group of arbitrary order instead.
However, by the Chinese Remainder Theorem, it suffices to solve the problem in the subgroups of
prime power order. Moreover, due to Pohlig and Hellman [67], there exists a simplification that
reduces DL to the subgroups of prime order in polynomial time. This so-called ”Pohlig-Hellman
method” does not use any additional properties of the group and is thus a generic method. In
other words, DL over a group of non-prime order is no harder than DL over the subgroup of largest
prime order. Therefore, without loss of generality, we may assume that the order of the group on
which we consider the discrete logarithm problem is of prime order, as in Definitions 7.2-7.4.
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On the other hand, methods that do make use of specific properties of the underlying group
are known as Index Calculus algorithms. Briefly, these algorithms require a small suitable set
of elements, called a factor base, and a way to decompose random group elements into elements
of the factor base, if possible. Consequently, the Index Calculus method can only be applied to
groups for which such a suitable factor base and decomposition method are available. So far, the
only known groups that fit the bill are multiplicative groups of finite fields and class groups of
imaginary quadratic fields. An extension to the Index Calculus method worth mentioning is the
Number Field Sieve (NFS) [81]. The NFS uses a somewhat different approach to exploit the ideas
of the Index Calculus Method. Since it requires the same tools as the Index Calculus method, the
NFS cannot be applied to other groups than those to which the Index Calculus method applies.
The NFS and Index Calculus method result in a probabilistic subexponential time algorithm. For
details on these methods, the reader is referred to [54, 63, 57, 81].

Most DL-based protocols were originally defined on the multiplicative group of a finite field F∗q .
The Index Calculus and NFS, providing subexponential algorithms, are at present the best known
methods for solving DL in this group. Therefore, apart from weak parameter choices, the hardness
of the discrete logarithm problem in F∗q is generally believed to be subexponential.

7.1.3 Some Standard Protocols

For future reference, we describe some standard protocols based on the computational Diffie-
Hellman problem.

Diffie-Hellman key exchange
In order two establish a common secret key over an insecure channel, two parties A and B can
carry out the Diffie-Hellman key exchange [22]. (We remark that despite the name key exchange,
the established secret does not necessarily need to be used as a key. Moreover, since the secret
is not known beforehand but agreed upon in the protocol, secret agreement would perhaps have
been a better name. Nonetheless, we stick with the term key exchange, as this is the common
name for the protocol in the literature.) Let G of prime order n and g be as in Definitions 7.2-7.4.
The common secret shared by A and B will be an element of G.

1. A randomly selects an integer a ∈ Z∗n, computes ga, and transmits ga to B.

2. B randomly selects an integer b ∈ Z∗n, computes gb, and transmits gb to A.

3. A computes (gb)a and B computes (ga)b; the shared secret is h = gab.

It is clear that the security of the Diffie-Hellman key exchange is based on the hardness of the
computational Diffie-Hellman problem. Namely, an eavesdropper who intercepts the transmitted
messages ga and gb needs to solve CDHg(ga, gb) to retrieve the secret gab, where g is publicly
available. Note that this protocol suffers from a man-in-the-middle attack, as the parties A and
B do not authenticate themselves.

ElGamal encryption
Again, let G and g be as in Definitions 7.2-7.4. In the ElGamal encryption scheme, user A has
secret key s ∈ Z∗n and a corresponding public key h = gs. B can encrypt a message M , which is
represented as an element of G, with A’s public key h as follows.

1. B picks a random integer r ∈ Z∗n and computes a = gr and b = hrM .

2. B sends cipher text (a, b) to A.

3. A computes b/as = (hrM)/grs = (hrM)/hr = M .
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The message M is hidden by the mask hr, which is uniformly distributed in G∗ as r is chosen at
random. Intended recipient A can compute the mask as = grs = hr because of his knowledge of the
secret key s. An eavesdropper not having this knowledge, needs to solve CDHg(a, h) = grs = hr to
find the mask and be able to decrypt the message. Therefore, we say that the ElGamal encryption
scheme is based on the hardness of the computational Diffie-Hellman problem.

7.2 Discrete Logarithm on Elliptic Curves

Although most DL-based protocols were originally defined on the multiplicative group of a finite
field F∗q , the discrete logarithm problem (and Diffie-Hellman problems) can of course be defined
on any group. The protocols can thus be translated in terms of groups that possibly allow better
security or more efficient arithmetic. In some groups, however, taking discrete logarithms is easy,
for example in the additive group of a finite field. Obviously, such groups are not suitable for
cryptographic purposes, as security is based on the hardness of DL. Fortunately, there also exist
groups in which solving the discrete logarithm problem is believed to be harder than in F∗q , where
the Index Calculus method provides a subexponential algorithm. The group of points on an elliptic
curve is an example of such a group.

In this section we first explore the use of elliptic curves in cryptography. Next we explain that some
care should be taken in selecting the curve, as for some classes of curves there exist reductions to
groups for which DL is easier. At the end of this section, we focus on the consequences of these
observations for the use of elliptic curve cryptosystems in practice.

7.2.1 Use of Elliptic Curves

In 1985, Koblitz [46] and Miller [59] independently proposed to use the group of points on an elliptic
curve for the definition of the discrete logarithm problem. The main reason for their choice was that
the Index Calculus method does not have a natural analogue in this particular group. A number
of researchers have tried to extend the Index Calculus method to make it suitable for elliptic
curves, but without succes (see [63]). For example, the Xedni Calculus method by Silverman [77]
is shown to be unlikely to yield a practical solution in [40]. Hence, there seems to be no general
subexponential time algorithm for solving the discrete logarithm problem. Consequently, elliptic
curve cryptosystems can achieve the same level of security as their analogues in F∗q , using shorter
keys. The fact that there exist many different curves of about the same size can be considered an
additional advantage of elliptic curve cryptography.

Since its introduction in 1985, there has been a lot of research into elliptic curve cryptography
and numerous cryptosystems have been proposed. However, there is some concern among certain
cryptographers about the use of elliptic curves. The fact that Index Calculus method cannot be
applied does not guarantee that no other algorithm exists that takes less than exponential time.
In fact, elliptic curves come equipped with a certain structure, some more than others, which can
potentially be exploited to design an efficient algorithm for solving discrete logarithms. Moreover,
unlike for instance DL-based systems on the multiplicative group of a finite field, elliptic curve
cryptosystems have not yet existed long enough to provide empirical evidence of their security.
On the contrary, many curves that were initially proposed for use in cryptosystems, such as
supersingular curves and curves of trace one, have been shown to be insecure in the sense that
there exists an efficiently computable reduction to a group where solving DL takes subexponential
or, even worse, linear time. Here the pairings discussed in Part I turn out to play an important
part. We focus on this in the next section.

7.2.2 Reductions to Other Groups

Arbitrary elliptic curves suffer from the problem that it is difficult to compute the number of
points on the curve, i.e. the order of the group. Especially in the early years of elliptic curve
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cryptography, when Schoof’s point counting algorithm [71] had not yet matured, determining
the order of the group was a time-consuming task. It was for this reason that the designers of
elliptic curve cryptosystems tended to choose curves known to have a particular structure, enabling
them to immediately compute the number of points. Examples of such curves are supersingular
curves (proposed in [46, 59]) and curves of trace one (proposed in [60]). However, this additional
structure also provides cryptanalysts with handles to attack the system. For instance, the MOV-
and FR-attack described below reduce DL on supersingular elliptic curves to its analogue on the
multiplicative group of some finite field, where a subexponential time algorithm is available due
to the Index Calculus method. Even more drastic are the attacks on curves of trace one described
at the end of this subsection, which reduce the discrete logarithm problem to its analogue on
the additive group of a finite field, which is solvable in polynomial time. As a consequence,
supersingular curves could be used for DL-based systems but with parameters lengths large enough
to provide security under a subexponential time attack, whereas trace one curves should be avoided
altogether. More on this in Subsection 7.2.3.

MOV-reduction
Recall that the discrete logarithm problem on the multiplicative group of a finite field can be
solved in probabilistic subexponential time by the Index Calculus method. In 1993, Menezes,
Okamoto and Vanstone [55] presented an attack that reduces the discrete logarithm problem on
the group of points on a supersingular curve over Fq to its analogue in the multiplicative group of
some extension field F∗qkw of degree kw, which can be solved in subexponential time if kw ≤ log(q).

Let E/Fq be an elliptic curve and P, Q ∈ E(Fq) m-torsion points on the curve such that Q = lP .
The MOV algorithm for reducing the discrete logarithm of P and Q uses the Weil pairing em :
E[m]× E[m] → F∗qkw as follows (see [45]).

1. Determine the smallest integer kw such that E[m] ⊆ E(Fqkw ).

2. Find S ∈ E[m] such that α = em(P, S) has order m.

3. Compute β = em(Q,S).

4. Compute l = DLα(β), the discrete logarithm of β to the base α in F∗qkw .

The original paper [55] (see also [54]) only deals with the case of supersingular curves. For these
curves, the Weil-embedding degree kw is less than or equal to six, thus sufficiently small to allow a
subexponential attack on the elliptic curve DL. Moreover, since the structure of the supersingular
curve E(Fqkw ) is of the form Zcm1 ⊕ Zcm1 for certain c and m1 (see [54, 76]), there exists an
efficient method to find a suitable point S in step 2 of the algorithm above. In particular, set
S = [cm1/m]S′ for a random point S′ ∈ E(Fqkw ), then S satisfies the condition with probability
1−1/m, which is close to one for large m. Verheul’s invention of distortion maps φ on supersingular
curves [83] simplifies the search for a suitable S, as one can simply take S = φ(P ) (see Chapter
6).

Cryptographically interesting non-supersingular curves do not have a distortion map or conve-
nient structure as above. Hence, a generalization of the MOV-attack to non-supersingular curves
requires a different method for finding a suitable point S. Such methods are given in [33] for
non-supersingular curves having structure E(Fqkw ) ∼= Zc1m1 ⊕Zc2m1 with c2m 6 |c1, and in [45] for
general non-supersingular curves.

FR-reduction
Similar to the MOV-reduction, the FR-reduction [28] proceeds by reducing the discrete logarithm
problem on the elliptic curve E/Fq to the multiplicative group of the extension field F∗qk of em-
bedding degree k. This reduction, due to Frey and Rück, employs the Tate pairing instead of the
Weil pairing. Let E, P, Q be as above, and let 〈·, ·〉 : E(Fqk)[m]×E(Fqk)/mE(Fqk) → F∗qk/(F∗qk)m

be the Tate pairing.
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1. Determine the smallest integer k such that m|qk − 1.

2. Pick S ∈ E(Fqk) different from P, Q such that S 6∈ mE(Fqk).

3. Compute α = 〈P, S〉(qk−1)/m and β = 〈Q,S〉(qk−1)/m.

4. Compute l = DLα(β), the discrete logarithm of β to the base α in F∗qk .

Note that the condition in Step 2 is easily verified by checking whether [(qk − 1)/m]S 6= O. Since
the Tate pairing can be computed faster and more often than the Weil pairing, the FR-reduction
is in all aspects superior to the MOV-reduction. Although the MOV- and FR-reduction can
be efficiently applied for supersingular curves, Balasubramanian and Koblitz [3] show that, with
overwhelming probability, the embedding degree k for randomly generated curves is too large (i.e.
k > log(q)).

Reduction on anomalous curves
An elliptic curve E/Fq is said to be anomalous when its trace equals 1, i.e. when #E(Fq) = q.
Miyaji [60] proposes the class of anomalous curves for use in elliptic curve cryptosystems, because
of its immunity against the MOV- and FR-reduction. However, there exist even more efficient
reductions on anomalous curves, which enable one to solve DL in polynomial time. Because of
these reductions, the discrete logarithm problem on anomalous curves is easy and thus unsuitable
for cryptography.

One of these reductions was independently found by both Smart [80], and Satoh and Araki [70]. It
proceeds by lifting points on the curve E(Fq) on which the discrete logarithm problem is defined,
to points on the curve E(Qp) defined over the p-adic numbers Qp, where p is the characteristic of
Fq (see [76] for details on curves over p-adic numbers). The discrete logarithm problem can then
be reduced to its analogue in the group F+

q , for which it is known to be solvable in polynomial
time. This reduction only works for curves satisfying #E(Fq) = |F+

q | = q, i.e. having trace one.

A similar reduction, given by Semaev [73], makes use of a map that embeds the group generated
by the base of the logarithm into the additive group F+

q . Since this map is a homomorphism that
can be evaluated in O(log(p)) operations, this reduction leads to a polynomial time method for
solving the DL problem on anomalous elliptic curves.

7.2.3 Security Issues

As described in the previous subsection, some precautions should be taken in selecting the elliptic
curve. Experience has taught that one should not simply select curves with rich structure to
simplify the arithmetic and ease point counting. Namely, this structure can potentially be used
to reduce the discrete logarithm problem on that curve to its analogue in a group where taking
discrete logarithms takes less than exponential time. An example of such curves is the class of
supersingular curves, on which the discrete logarithm problem is reducible to an instance of DL
on the multiplicative group of a finite field.

To solve this problem, one could take the parameter lengths of the elliptic curve system long
enough to guarantee security not only in the elliptic curve instance, but in the corresponding
reduction group as well. This solution might appear awkward, since it takes away the virtue of
having shorter keys – initially the main reason for using elliptic curves (see Subsection 7.2.1). In
some cases, however, the structure that makes a reduction possible and therefore forces one to use
longer keys, can also be used to design gap Diffie-Hellman groups (see Section 7.3).

A more natural solution is to avoid curves that have more structure than average altogether. Re-
mark that we should not just discard curves for which a reduction is known, such as supersingular
and anomalous curves, but also curves that are built in a special way, for instance curves built by
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complex multiplication (see [2]). Basically, the only way to do this is by selecting the elliptic curve
completely at random, and optionally doing some checks for susceptibility to known reductions
afterwards. In [3], it is shown that, with overwhelming probability, the FR- (and MOV-) reduction
cannot be applied to a randomly selected elliptic curve, so additional checks might not even be
necessary. As remarked above, a disadvantage of randomly selected curves is that it is difficult to
determine the number of points on these curves.

We next discuss how long (or better: how short) the keys for elliptic curve systems should be,
in order to have cryptographic strength similar to traditional DL-based systems over the multi-
plicative group of a finite field. When the elliptic curve is chosen properly, the complexity of the
best known algorithm to solve DL takes time exponential in size N1 = dlog2 qe. On the other
hand, we consider the discrete logarithm problem on the multiplicative group F∗p (p prime) having
complexity subexponential in the size N2 = dlog2 pe due to the Index Calculus method. The field
sizes in bits, given by N1 for the elliptic curve and N2 for the multiplicative group of the finite
field, can be regarded as the key sizes for the cryptosystem. In [8] the following relation between
N1 and N2 for similar security is derived:

N1 ≈ 4.91 N
1/3
2 (log(N2 log 2))2/3.

It follows that in order to achieve security equivalent to conventional systems with key lengths of
1024 and 4096 bits, key sizes of 173 and 313 bits respectively suffice in the elliptic curve system. We
remark that these values are considerably larger than those proposed by Lenstra and Verheul [47],
who accompany their values with well founded arguments. Lenstra and Verheul claim elliptic curve
key sizes in a range from 135 to 139 bits are sufficient to provide security equivalent to 1028 bits in
a conventional system and elliptic curve key sizes ranging from 206 to 272 bits for a conventional
key size of 4047 bits. Further, [47] gives an extensive comparison with other cryptosystems and a
prediction of required key sizes in the future.

7.3 Gap Diffie-Hellman Groups

In this section, we give the definition of gap Diffie-Hellman groups, explain how they can be con-
structed using pairings, and describe how the bilinearity of the pairings gives rise to the definition
of the bilinear Diffie-Hellman problem. Lastly, we discuss some security issues that arise from the
use of gap Diffie-Hellman groups in cryptography.

7.3.1 Definition

A variant of the computational and decision Diffie-Hellman problems is the gap Diffie-Hellman
problem, which is defined as follows. Again, let (G, ∗) be a cyclic group of prime order n, with
generator g.

Definition 7.5 Let a, b ∈ Z∗n. Given g, ga, gb, the gap Diffie-Hellman problem (GDH) is to solve
the computational Diffie-Hellman problem CDHg(ga, gb), possibly with help of a decision Diffie-
Hellman oracle.

For arbitrary g1, g2, g3 ∈ G, the decision Diffie-Hellman oracle (DDH-oracle) gives the answer to
the problem DDHg(g1, g2, g3). Since the gap Diffie-Hellman problem asks to solve an instance
of a computational Diffie-Hellman problem, it is obvious that GDH is no harder than CDH. For
most groups, it is not clear whether GDH is strictly easier than CDH since no polynomial time
reduction from DDH to CDH is known. See [64] for a formal description of gap problems.

The gap Diffie-Hellman problem naturally occurs in groups where CDH is hard but DDH is easy,
i.e. where a gap is present between the hardness of the two problems. Groups that satisfy this
property are called gap Diffie-Hellman groups (GDH groups). In these groups, the problems CDH
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and GDH are equivalent, as the DDH oracle is readily available. Figure 7.1 depicts the relation
between DL, CDH and DDH in a GDH group. Here, the dotted line represents the separation
between hard and easy problems; problems on the left are hard, while those on the right are easy.
Until the discovery of the constructive use of pairings in 2000, no examples of GDH groups were
known. In the next section, we describe how pairings as the Weil and the Tate pairing can be
used to create GDH groups.

DDHCDHDL - -

Hard Easy

Figure 7.1: GDH group

Though the definition of a gap problem might seem rather artificial at first sight, it does occur
naturally in cryptographic applications – in particular in signature schemes. Namely, the security
of a signature scheme is based on a hard computational problem, whereas signature verification
should involve solving some easy decisional problem. Therefore, in gap Diffie-Hellman groups a
basic and comprehensible DL-based signature scheme exists (see [11]). We describe this so-called
GDH signature scheme below. Remark that this scheme is similar to Chaum’s undeniable signature
scheme [19], except for the latter being defined on a group where DDH is hard. The verification
procedure in Chaum’s scheme consists of an interactive protocol in which some confirmer (often
the signer himself) proves the validity of the signature – hence the term ’undeniable’. Okamoto
and Pointcheval [64] point out that the confirmer can be seen as DDH-oracle. Therefore, [64]
shows that the security of Chaum’s undeniable signature scheme, which was an open problem for
many years, is based on GDH.

GDH signature scheme
Let G and g be as in Definition 7.5 and let H : {0, 1}∗ → G∗ be a hash function. As in ElGamal
encryption, user A has a secret key s ∈ Z∗n and a corresponding public key h = gs. Let M ∈ {0, 1}∗
be the message to be signed.

1. A computes m = H(M) ∈ G∗ and σ = ms. The signature is σ ∈ G∗.

2. B computes m = H(M) and accepts the signature if DDHg(h,m, σ) = 1 and disavows
otherwise.

Since g is a generator for G, we can write m = gy for some y. If σ is a valid signature,
then (g, h, m, σ) = (g, gs, gy, gsy) is indeed a Diffie-Hellman tuple. Obviously, anyone able solve
CDHg(h, m) = CDHg(gs, gy) = gsy = σ can forge A’s signature, so CDH needs to be a hard
problem. On the other hand, the signature verification procedure consists of solving a decisional
Diffie-Hellman problem, so DDH should be easy. This is exactly the definition of a GDH group.

7.3.2 Realization with Pairings

We next give the definition of a symmetric pairing on a group G1 and show that the existence of
such a pairing enables one to solve DDH in G1. Let G1 be a cyclic group of prime order n. Since
we will define G1 to be a subgroup of the group of points on an elliptic curve, we write the group
operation additively and write G1 = 〈P 〉 for some point P of order n. Denote by G2 a cyclic
group of order n, where the group operation is written multiplicatively. Then a pairing is defined
as follows.

Definition 7.6 A map e : G1 × G1 → G2 is called a (symmetric) pairing, if it satisfies the
following properties:

1. Bilinear: e(P1 + P2, P3) = e(P1, P3) · e(P2, P3) and e(P1, P2 + P3) = (P1, P2) · e(P1, P3) for
all P1, P2, P3 ∈ G1.
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2. Non-degenerate in the sense that e(P, P ) 6= 1 (which we call strongly non-degenerate).

3. Efficiently computable.

Since the pairing is strongly non-degenerate and G2 is cyclic, it follows that e(P, P ) generates the
group G2. Now the pairing can be used to solve the decision Diffie-Hellman problem in G1 given
by DDHP (aP, bP, cP ) (i.e. decide whether abP = cP ). Namely, by the bilinearity of the pairing,
we have

e(aP, bP ) = e(P, bP )a = e(P, abP ) = e(P, cP ) if and only if ab = c.

Hence, if a symmetric pairing is available, then DDH in G1 is easy. Further, since the compu-
tational Diffie-Hellman problem is believed to be equivalent to the discrete logarithm problem,
which is assumed to be hard on elliptic curves, the group G1 is a GDH group.

Joux [41] discovers that a pairing as described above can be used to implement an efficient protocol
for tripartite Diffie-Hellman key exchange (see Section 9.1). Furthermore, he proposes to use the
Weil or the Tate pairing for this purpose. However, for the Weil pairing and in most cases the
Tate pairing we have that e(P, P ) = 1, as described in Chapters 3 and 4. Hence, they do not
satisfy the property of strong non-degeneracy. Fortunately, they do satisfy a somewhat weaker
notion of non-degeneracy, namely e(P, Q) 6= 1 for P and Q linearly independent. Joux remarks
that, using either the Weil or the Tate pairing, one can efficiently solve a decision problem slightly
different from regular DDH. Briefly, this so-called decision Diffie-Hellman co-problem (denoted
Co-DDH ) is given (P, aP, Q, bQ), with P and Q linearly independent, to decide whether a = b.
Thus, [41] gives the first concrete example of a GDH group, be it with a slightly adapted version
of the decision problem. Barreto et al. [7] show how to find a point Q independent from P . The
Weil and the Tate pairing that do not satisfy the strong non-degeneracy property are denoted by
the term asymmetric pairings, as explained in Chapter 6.

Verheul [83] improves the tripartite Diffie-Hellman key exchange protocol for supersingular curves
by introducing distortion maps (see Section 9.1). As described in Chapter 6, a distortion map is a
linear endomorphism φ that maps a point on a supersingular curve to a linearly independent point
of the same order. This map can be used to modify the Weil or the Tate pairing such that they
do satisfy the strong non-degeneracy property e(P, P ) 6= 1. Thus these modified Weil and Tate
pairings on supersingular curves are symmetric pairings as in Definition 7.6 and can therefore be
used to create GDH groups. Another possibility is to exploit the ordinary (i.e. non-supersingular)
curves for which the Tate pairing does sometimes yield a symmetric pairing (i.e. e(P, P ) 6= 1),
namely curves of trace 2 (see Section 4.2). Joux and Nguyen [43] describe how to construct
elliptic curves for which CDH is provably equivalent to DL but DDH is easy, thus representing
GDH groups.

7.3.3 Bilinear Diffie-Hellman Problem

The realization of GDH groups with pairings enables one to implement protocols such as the GDH
signature scheme. Moreover, the bilinearity of these pairings offer even a lot more possibilities
for building cryptographic applications. Namely, the bilinearity e(aP, Q) = e(P, Q)a = e(P, aQ)
can be used to transport the (possibly secret) value a from one coordinate to the other, without
the need of having a ’in the clear’. It may be clear that this feature makes pairings into useful
cryptographic building blocks. Consequently, the security of most pairing-based protocols depends
on a new type of Diffie-Hellman problem, known as the bilinear Diffie-Hellman problem (see [20]).
Let (G1, +) be an additive cyclic group of order n with generator P , (G2, ∗) a multiplicative cyclic
group also of order n, and e : G1 × G1 → G2 a symmetric pairing. For convenience we take n
prime, as is done in almost all practical applications. Then h = e(P, P ) is a generator of G2, and
the bilinear Diffie-Hellman problem is defined as follows.
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Definition 7.7 Let a, b, c ∈ Z∗n. Given P, aP, bP, cP , the bilinear Diffie-Hellman problem (BDH)
is to compute e(P, P )abc. We use the notation BDHP (aP, bP, cP ) = e(P, P )abc.

It is obvious that BDH is no harder than CDH in G1; namely having the solution to Q =
CDHP (aP, bP ), one can easily compute e(Q, cP ) = e(P, P )abc (similarly for Q = CDHP (aP, cP )
and Q = CDHP (bP, cP )). Further, BDH also depends on the hardness of CDH in G2. For in-
stance, the computational Diffie-Hellman problem on e(P, aP ) = ha and e(bP, cP ) = hbc asks
to find CDHh(ha, hbc) = habc = e(P, P )abc, which is exactly the solution to the bilinear Diffie-
Hellman problem. So the hardness of BDH depends on the hardness of CDH in both G1 and
G2.

To say something about the converse of above implications (i.e. whether hardness of CDH in G1

and G2 also implies hardness of BDH), Cheon and Lee [20] investigate certain properties of the
pairing such as weak-invertibility. A pairing e : G1 × G1 → G2 is said to be weak-invertible if
for any h1 ∈ G2, an inverse image (g1, g2) such that e(g1, g2) = h1 is efficiently computable. If e
satisfies this property, then the bilinear Diffie-Hellman problem is equivalent to the computational
Diffie-Hellman problem in both G1 and G2. Unfortunately, it is not known whether the modified
Weil and Tate pairings are weak-invertible. Therefore, it is uncertain if the hardness of BDH is
equivalent to the hardness of CDH in the corresponding groups G1 and G2. Nevertheless, this is
often assumed to be the case, as no method is known to solve BDH without first solving CDH
in either G1 or G2. The relations between the several Diffie-Hellman problems when a pairing
e : G1×G1 → G2 is available, are depicted in Figure 7.2. Here the subscript Gi denotes the group
on which the problem is defined. Observe that G1 is a GDH group.
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Figure 7.2: GDH group with pairing

7.3.4 Security Issues

Recall from Subsection 7.2.1 that elliptic curves were initially proposed for use in DL-based cryp-
tosystems, because they can achieve security similar to DL-based systems on other groups, while
using shorter keys. It turned out, however, that efficient reductions to less secure groups exist on
certain curves, as described in Subsection 7.2.2. Hence, in order to avoid these weak cases, elliptic
curves should be selected with great care. This can be done by choosing the curves completely at
random and possibly perform some optional checks (see Subsection 7.2.3).

On the other hand, curves to which the reductions apply can be used for different purposes. As
described above, the bilinear maps that make the MOV- and FR-reduction possible can be used
to create GDH groups. Moreover, the bilinearity of these maps can be exploited to build new
cryptosystems with nice properties. We have to keep in mind, though, that we cannot use shorter
keys in this situation, since we are working with curves vulnerable to the MOV- and FR-reduction.
More in particular, to ensure the hardness of the bilinear Diffie-Hellman problem, we have to make
sure that CDH is hard in both G1 and G2. Chapters 5 and 6 explain that G1 is a subgroup of
the curve E(Fq) over a finite field Fq, and G2 is a subgroup of the multiplicative group of an
extension field Fqk of embedding degree k. The desired value for k is a trade-off between security
and efficiency; a larger k enhances the hardness of CDH in G2, whereas a smaller k renders the
computation of the pairing more efficient.
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A concern among some cryptographers regards the hardness of the bilinear Diffie-Hellman problem,
on which the security of pairing-based cryptography relies. Though BDH is often assumed to be
equivalent to CDH in the groups involved, there is at present no proof of this assumption. As with
DL on elliptic curves, there might be certain cases for which BDH is less secure than in general.
Moreover, the extra structure making curves suitable for pairing-based cryptography potentially
provides cryptanalysts with tools to attack the system. Since the constructive use of pairings is a
very recent discovery, there has not been enough time for a thorough scrutiny, which takes many
years. Only the passage of time and the absence of cryptanalytic breakthroughs will take away
the scepsis present among some cryptographers. Further, if particular cases are found that prove
to be weaker than general, then the understanding of these cases and the ability to avoid them
will improve the trust in pairing-based cryptography.



Chapter 8

Identity-Based Cryptography

Undoubtedly the most striking application of pairings is the realization of identity-based public-
key cryptography (ID-PKC), the concept of which was already proposed by Shamir [74] in 1984.
Shamir’s aim was to ease the bother with the certificates that are essential in conventional public-
key settings (public-key infrastructure) for guaranteeing the authenticity of the public keys. After
explaining the concept of ID-PKC in Section 8.1, we compare it with the traditional, certificate-
based public-key cryptography in Section 8.2.

Although the idea of ID-PKC dates back to 1984, its full realization remained an open problem
for many years. In his original article [74], Shamir did come up with a concrete example of an
identity-based signature scheme. Identity-based encryption, however, turned out to be a more
difficult task. In 2001, Boneh and Franklin proposed the first fully functional implementation of
an identity-based encryption scheme, using the bilinearity of pairings. We focus on this scheme
and other identity-based applications in Section 8.3.

8.1 Definition

In this section, we discuss public-key cryptography in general, give the definition of identity-based
cryptography, and define some notions of security for identity-based cryptography.

8.1.1 Public-Key Cryptography

In public-key cryptography each user U has a key pair (pU , sU ) consisting of a public key and a
secret key. This key pair is either generated by the user himself (or herself in the case of a feminine
user), or by some central authority. In the latter case, a secure channel is needed to transport
the key pair to the user. Key pair generation is done by choosing a secret key sU at random and
applying some one-way function to sU to obtain pU . Since the function is one-way, other parties
cannot retrieve the secret key sU from the public key pU . For example, the secret key s in the
ElGamal encryption scheme is chosen at random and the corresponding public key is set to be
h = gs, where g is some publicly known generator for the group. Computing s from h and g boils
down to calculating a discrete logarithm.

Other parties use U ’s public key to encrypt messages intended for U or to verify his signatures.
This can be done by anyone, since the key pU is public knowledge. On the other hand, to decrypt
a received cipher text or sign a message, U uses his secret key sU . The secrecy of the cipher text
and the authenticity of the signature then follow from the fact that user U is the only one knowing
sU .

The main concern in a public-key setting is the authenticity of the public key. Clearly, if a
malevolent person can convince other participants that U ’s public key is some key of his choice



64 Identity-Based Cryptography

instead of the correct pU , he can decrypt messages intended for U only and forge signatures under
U ’s name. Therefore, it is of great importance that participants in a PKC system can verify the
authenticity of other users’ public keys.

The conventional solution to the authentication problem is the use of a public-key infrastructure
(PKI). A PKI often works with a party trusted by all users, called Certification Authority (CA),
which can guarantee the correctness of the public keys as follows. User U identifies himself
to the CA (following some authentication procedure) and presents his public key pU . Next, U
provides a ’proof of possession’ of the corresponding secret key; this is usually done by signing
the certification request with the secret key. If the CA is convinced that user U indeed owns the
secret key corresponding to the public key pU , he publishes a certificate containing U ’s identity,
U ’s public key and possibly some other information, and signs all this information with his secret
key. Participants who want to communicate securely with U then need to look up the certificate
issued by the CA. A valid signature from the CA will convince them of the authenticity of the
public key pU .

In addition to a CA, PKI often makes use of several other authorities, each with a different task.
For instance, there can exist a Registration Authority (RA) that takes care of the authentication
procedure, a Validation Authority (VA) that guarantees the validity of certificates, a Time Stamp-
ing Authority (TSA) that time stamps electronic documents, etcetera. For simplicity, we lump
together all these authorities and assume that the body that we call Certification Authority takes
care of all these tasks.

8.1.2 Identity-Based Cryptography

In 1984, Shamir [74] invented the concept of identity-based cryptography, which addresses the
authenticity problem of public keys in a different way (see also [56]). His idea was to avoid the
need for authentication altogether, by making sure that the actual value of a user’s public key is
inherently linked to his identity. More precisely, the public key of a user is derived directly from
publicly available information that uniquely and undeniably identifies that user. This information
is denoted by a user’s (digital) identity . Depending on the application, the identity can range
from (combinations of) the user’s name, social security number, phone number, email address,
and possibly other personal information. In this setting, a user’s public key is readily available to
anyone who knows his identity, so there is no need to look up the key in some database. Moreover,
the fact that there is no doubt about the authenticity of the public key takes away the need for
certificates as in a PKI setting. We should note, however, that the realization of the link between
users and their digital identities is far from trivial, as discussed in Remark 8.1.

Recall that in conventional public-key systems, key pairs are generated by randomly choosing a
secret key and applying some one-way function to compute the public key. In ID-based cryp-
tography, key pairs are obtained differently. First of all, the public key is uniquely determined
by the identity of the user, instead of computed from the secret key. The secret key thus needs
to be derived from the public key, instead of the other way around. From this follows that key
generation cannot be performed by the users themselves. Namely, if a user knew how to generate
the secret key corresponding to his particular public key, he could also derive the secret keys of
others. Therefore, we need a third party, called Key Generation Center (KGC ). After some au-
thentication procedure (similar to authentication to the CA in a PKI setting), the KGC generates
the secret key of the user. The KGC is able to do this, as he has the privilege of knowing some
secret information, called the master key . The publicly available information that corresponds to
the master key is denoted by the system parameters. A user’s secret key is then computed as some
one-way function of the public key and the master key. Observe that this setting always requires
a secure channel to transport the secret key from the KGC to the correct user, in contrast to PKI
where users possibly generate their own key pairs. Shamir [74] proposes to do this by storing the
secret keys on smart cards.
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Along with the concept of ID-based cryptography, Shamir [74] outlines an implementation of an
ID-based signature scheme. Similar to RSA, this signature scheme is based on the hardness of
factoring large numbers and root extracting modulo a large number. However, Shamir observes
that the RSA encryption scheme cannot be converted to an identity-based encryption scheme.
In fact, the design of a fully satisfactory encryption scheme remained an open problem until
2001, when Boneh and Franklin [9] discovered that the bilinearity of pairings can be used to turn
the ElGamal encryption scheme into an identity-based variant. We will discuss this in Section
8.3. At the same time of [9], another identity-based encryption scheme appeared due to Cocks
[21]. Although this non pairing-based scheme is quite elegant, it suffers from a large bandwidth
requirement. We will not discuss it in further detail.

Remark 8.1 Identity-based cryptography is founded on the implicit assumption that there exists
an unambiguous link between a physical user and the unique piece of information that is denoted
by ’digital identity’. In practice, the realization of such a link is a more complex task than one
would initially expect. Within a company, for instance, there can be several employees with the
same name. To distinguish between them, there often needs to be a trusted party (which we can
call a Registration Authority or RA) that issues the ’digital identities’ to the users. For example,
if the users’ identities are derived from their email addresses, then the department that issues
these addresses functions as the RA. It may be clear that with this function comes a great deal
of responsibility. For simplicity, we often consider the RA as part of the KGC. Note that a link
between users and their digital identities is also needed in PKI-based settings, where a user’s
public key and identity are bound together in a certificate. More on this in Section 8.2.

8.1.3 Security of Identity-Based Cryptosystems

In public-key encryption, there are several concepts of security. The ones we will consider here
are semantic security and chosen ciphertext security. The latter is sufficiently strong for most
applications and is therefore an acceptable notion of security for conventional (i.e. non identity-
based) public-key encryption schemes. These notions of semantic security and chosen ciphertext
security are described below in a rather informal manner. For a more formal description, see
[9, 13].

Semantic security: Intuitively, a standard (i.e. non identity-based) public-key encryption scheme
is semantically secure, if an adversary who is given a ciphertext encrypted with some known
public key cannot learn anything about the corresponding plaintext. More in particular,
consider the following game between a challenger and an adversary. Suppose the challenger
gives an adversary a random public key. The adversary then comes up with two messages,
one of which is randomly chosen and encrypted by the challenger to form the challenge
ciphertext. If the adversary correctly guesses which one, he wins the game. The system
is said to be semantically secure if no polynomial time adversary can win the game with
probability non-negligibly more than a half. (See [9] for the definition of negligible.) We
adopt the notation from [9] and say the system is IND-CPA secure.

Chosen ciphertext security: For the definition of chosen ciphertext security, a similar game is
played. Only this time, the adversary is given the additional opportunity to issue a number
of decryption queries to the challenger. That is, the adversary presents a ciphertext of his
choice and the challenger responds with the decryption of that ciphertext under the secret
key corresponding to the public key given to the adversary. The only restriction is that
the adversary cannot issue a decryption query for the challenge ciphertext outputted by the
challenger. A standard public-key encryption system is said to be chosen ciphertext secure
(denoted IND-CCA) if no polynomial time adversary can win this game with probability
non-negligibly more than a half. Chosen ciphertext security implies that given a ciphertext
and a public key, an adversary cannot learn anything about the plaintext, even if he has
access to the decryptions of a number of ciphertexts of his choice.
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These notions of security have to be strengthened to meet the needs of identity-based encryption,
where any value can serve as public key. In particular, public keys are not random. Hence, the
adversary may already have access to a number of secret keys corresponding to public keys of his
choice. Moreover, an identity-based scheme has to be secure against an attack on an encryption
under a public key of the adversary’s choice rather than a random public key. Below, we describe
how the notions of semantic security and chosen ciphertext security are enhanced, such that they
fit the new situation. We need these notions of security in Subsections 8.3.1 and 8.3.2, where we
discuss the security of the ID-based encryption scheme by Boneh and Franklin [9].

Semantic security for identity-based schemes: To define semantic security for identity-based
encryption schemes, we consider an adversary and a challenger who play a game similar to
the IND-CPA game. In this setting, however, the adversary can choose the public key he
wishes to be challenged on, instead of getting a random public key from the challenger.
Furthermore, the adversary is given the additional opportunity to issue a number of key ex-
traction queries to the challenger. That is, the adversary presents a public key of his choice
and the challenger responds with the corresponding secret key. An obvious constraint is that
the adversary cannot ask to be challenged on a public key that appeared in a previous key
extraction query. A second limitation is that, after choosing a public key to be challenged
on, the adversary cannot issue a key extraction query on that particular key. An identity-
based scheme is said to be semantically secure (denoted IND-ID-CPA) if no polynomial time
adversary can win the game with probability non-negligibly more than a half.

Chosen ciphertext security for identity-based schemes: For chosen ciphertext security in
an identity-based encryption scheme, the adversary and challenger again play a game like in
the IND-ID-CPA situation. Again, the adversary can choose the public key he wants to be
challenged on and issue private key extraction queries. Moreover, the adversary is also given
the opportunity to issue decryption queries as in the IND-CCA game. In this situation, a
decryption query consists of a ciphertext together with a public key. The challenger responds
with the decryption of that ciphertext under the corresponding secret key. Obviously, after
choosing a public key and receiving a challenge ciphertext, the adversary is not allowed
to issue a decryption query consisting of that particular combination. An identity-based
scheme is said to be chosen ciphertext secure (denoted IND-ID-CCA) if no polynomial time
adversary can win the game with probability non-negligibly more than a half.

Similar to the security of encryption schemes, there are several notions of security for signature
schemes in public-key cryptography. The most general notion for non identity-based signature
schemes is security against existential forgery on adaptively chosen message attacks. We give
the definition of this security concept and describe how it is strengthened to provide security
in an identity-based setting (see [16, 13]). In Subsection 8.3.4, the ID-based signature scheme
by Cha and Cheon [16] is shown to be secure against adaptively chosen message attacks in the
identity-based setting.

Chosen message security: Consider the following game where the challenger gives the adver-
sary a random public key. The adversary is allowed to issue a number of sign queries to
the challenger. Here a sign query consists of a message of the adversary’s choice, to which
the challenger responds with a signature under the secret key corresponding to the given
public key. The adversary wins the game if he can output a valid message-signature pair
under that secret key, where the message has not previously appeared in a sign query. A non
identity-based signature scheme is said to be secure against existential forgery on adaptively
chosen message attacks (denoted EUF-CMA) if no polynomial time adversary can win the
game with non-negligible probability.

Chosen message security for identity-based schemes: The challenger and adversary play a
game similar to the non identity-based situation, only this time the adversary can also issue
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a number of private key extraction queries for identities ID of his choice. Sign queries are
now of the form (ID, m), where the challenger responds with a signature for the message
m under the secret key corresponding to the public key derived from identity ID. The
adversary eventually outputs (ID,m, σ), such that ID did not occur as key extraction query
or (ID,m) as sign query. The adversary wins the game if σ is a valid signature for the
message m under the secret key corresponding to the public key derived from ID. An
identity-based signature scheme is said to be secure against existential forgery on adaptively
chosen message attacks (denoted EUF-ID-CMA) if no polynomial time adversary can win
the game with non-negligible probability.

8.2 Comparison to PKI

Recall that both ID-based and PKI-based cryptosystems are asymmetric. Hence, the protocols
for encryption, decryption, signing and signature verification have similar functionality in both
systems. The main difference, however, is key management. Identity-based cryptography was
initially proposed to avoid the need for certificates for public key authentication. In fact, an ideal
ID-based system would satisfy the following properties (see [56]):

• Users only need to know the identity of the user they want to communicate with.

• There is no need for keeping public directories such as files with public keys or certificates.

• The services of the KGC are needed only during the system set-up phase.

However, in practice such an ideal scheme seems to be infeasible. Depending on the application,
there are several practical issues that stand in the way of the realization of an ideal ID-based sys-
tem. We compare ID-based cryptography to the traditional PKI setting, considering the following
practical aspects: authenticity of system parameters, registration at the authority, key escrow, key
revocation and key rollover, key distribution, master key security, scalability, commercial maturity,
and additional possibilities (see [74, 56, 65, 9]).

Authenticity of system parameters
Suppose an attacker in an ID-based system generates his own master key and corresponding system
parameters, and fools users into believing that these forged system parameters are correct. Then
for any public key, he can derive the corresponding secret key under his master key. Hence, he can
decrypt any message encrypted under his forged parameters. Further, he can create signatures
under any name, which will be accepted by users who believe his parameters. The attacker might
even impersonate the KGC and issue secret keys to users on request. Note that previously existing
secret keys of users, generated by the KGC, are not compromised. In conclusion, it is of great
importance that the KGC somehow guarantees the authenticity of the correct system parameters.

A similar problem occurs in a PKI situation, where the users need to be sure of the authenticity
of the public key of the CA. Namely, if an attacker can make users believe that some public key of
his choice is the public key of the CA, then he can create certificates containing forged public keys
for which he owns the secret key. Consequently, the attacker can read the messages encrypted
under the forged public keys and create signatures that appear to be valid under those keys. The
only difference with the ID-based setting is that the attacker cannot impersonate the CA, as users
would notice that their requested certificate contains an incorrect public key.

Registration at the authority
In both systems, a user who wants to participate needs to register at a Registration Authority
(RA), which we often consider part of the CA, respectively KGC. After some authentication
procedure, the RA issues a unique digital identity to the user, for instance in the form of an email
address. In a PKI-based system, a user can now present his digital identity and public key to
the CA, along with a proof of possession of the corresponding secret key. The CA then issues a
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certificate that binds together the digital identity and the public key. Similarly, in an ID-based
setting, the user presents his digital identity to the KGC. The RA is responsible for the uniqueness
of the digital identity and the link between the identity and the physical user. The KGC then
computes the secret key corresponding to the public key derived from the digital identity.

Identity-based systems have the additional disadvantage that the secret key needs to be trans-
ported from the KGC to the user. Thus, a secure channel that guarantees both confidentiality and
authenticity is required. Therefore, ID-based systems seem to work best in applications where it
is easy to achieve a secure channel (for instance relatively small systems), or where users request
secret keys not very often (for instance only at the set-up of the system).

Key escrow
Identity-based cryptosystems have inherent key escrow. Namely, since the KGC owns the master
key, he can generate any private key at any moment. Depending on the application, key escrow
is not necessarily a bad thing. For instance, within a company, the director who functions as
the KGC might want to be able to keep track of the communications between the employees.
Moreover, key escrow enables recovery of lost keys. For signatures schemes, however, it is often
highly undesirable to have key escrow, as it prevents non-repudiation. Note that this escrow
capability is also present in PKI settings where key pairs are generated by some central authority,
in case this authority stores the issued keys. On the other hand, if users generate the key pairs
themselves or the central authority does not store the keys, there is no way that keys can be
retrieved and there is no key escrow. This in contrast to an ID-based setting, where the KGC
always has the ability to regenerate keys.

The ID-based encryption scheme by Boneh and Franklin [9] provides a way to hamper key escrow
by introducing multiple KGCs, say n ≥ 2 (see Subsection 8.3.3). Briefly, each of these n KGCs
has its own master key. A user presents his public key to each KGC and gets from each of them
a partial secret key in return. Then the correct secret key is obtained by combining the n partial
secret keys. This way, the master key, and thus the ability to retrieve any user’s secret key, is
distributed among n KGCs. A secret key can only be recovered when all n KGCs collude. Remark
that in practice, setting up a system with multiple KGCs can be a complex task. Moreover, the
overall workload gets n times as large, as each separate KGC needs to perform a same amount
of work as required in a system with a single KGC. Hence, an ID-based system works best in an
application where key escrow is not an objection, or where the group of users is small enough to
allow multiple KGCs.

Key revocation and key rollover
When a certificate is revoked in a PKI-based scheme, other users are notified by means of a public
Certificate Revocation List or CRL. This occurs for instance when a user leaves the user group
or a secret key is compromised. In the latter case, or when a key pair needs to be replaced after
expiration of the certificate (key rollover), a user can simply generate a new key pair and obtain a
certificate for it. Revocation lists, enabling users to check the validity of public keys, can be used
in an ID-based setting as well. However, since a user’s public key is derived from his identity, he
cannot simply obtain a new key pair after revocation as in a PKI-based scheme. Namely, it can
be very inconvenient or simply impossible to change identity every time a new key pair is needed.

A partial solution to this problem could be to derive the public key not solely from the identity,
but to concatenate the identity with some other general information. For instance, if the current
year is added to the identity, users can use their secret key during that year only. Hence, secret
keys expire annually and each user has to request a new key every year. Unlike PKI, users do
not have to obtain new certificates from other users, as the public key is still uniquely determined
in a straightforward manner (since the current year is common knowledge). But what if a user’s
secret key is compromised halfway during the year? Then that user has to wait until the end of
the year before he can get a new key. This situation can be improved by making the system more
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granular; for instance by concatenating the identity with the current date instead of the current
year. The big disadvantage, though, is that each user then has to obtain a new secret key from the
KGC every day. This results in a large increase in communications and a computational overhead
for the KGC, which has to calculate all private keys. Hence, the length of the validity period is a
trade-off between granularity on one hand and efficiency on the other.

Another (unsatisfactory) solution would be to concatenate the identity with some particular key
information, instead of general information such as current date or year. For example, this infor-
mation could be as simple as an index number, or more particularly, the date the key was issued.
This way, when a key is compromised, the user can request a new key with an increased index
or an updated issuance date. This would destroy, however, the unique property of identity-based
cryptography that public keys can be derived from the identity (in combination with publicly
known information) solely. Namely, other users would have to look up the index number or date
of issuance of the public key in some directory. But the problem of the authentication of that value
would put us back in the situation where we started when we described public-key cryptography.

Key distribution
As described in Subsection 8.1.2, the great simplification of key distribution (from the users’ point
of view) was the main reason to introduce identity-based cryptography. Namely, all public keys
can be derived from the identity of the users. So obtaining someone’s public key, for encryption
or signature verification, becomes a simple and transparent procedure. This in contrast to PKI,
where one has to look up the corresponding certificate, verify the CA’s signature and check the
expiration date of the certificate. Moreover, one has to check the validity of the certificate, which
can be done by either using an up-to-date CRL or performing an online check at a Validation
Authority.

Master key security
The KGC in an identity-based scheme forms a single point of weakness. An attacker who is able
to retrieve the KGC’s master key can derive all secret keys, and is thus able to read all messages
and forge signatures under everyone’s name. Therefore, it is very important for a KGC to keep his
master key secret. To prevent the master key from being stored in one place, it can be distributed
among several KGCs, as with the prevention of key escrow. To a smaller extent, the CA in a
PKI-based setting is a single point of weakness as well. If the CA’s secret key is compromised, an
attacker can create certificates in the CA’s name for new public keys of his own choice, thereby
fooling other users into believing in the authenticity of those public keys. However, knowledge of
the CA’s secret key does not enable an attacker to retrieve previously existing secret keys. So the
attacker cannot read messages encrypted under previously existing public keys, or forge signature
under corresponding secret keys.

Scalability
In an ID-based scheme, the KGC has to perform an authenticity check and compute a secret key
for each key request. Especially when the number of key requests is large, for instance in a system
where keys expire frequently (see key revocation), this may result in a heavy workload for the
KGC. A solution could be to spread the work across several KGCs, possibly at different levels of
authority (see [32]). Observe that these multiple KGCs cannot also be used to prevent key escrow
or increase security by distributing the master key. In this case, namely, each one of the KGCs
has to do a same amount of work as in a setting with a single KGC. Again, ID-based systems
seem to work best in a small-scale deployment.

Commercial maturity
Being introduced as recently as 2001, the realization of ID-based cryptography by pairings is a
very new technology. Although the potentials of ID-based cryptography are promising, there turn
out to be several drawbacks when it comes to practical applications. Moreover, at present the
technology mainly exists in theory and is hardly tested in practice. This in contrast to PKI-based
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cryptography, which has been an established and widespread technology for many years already.
Moreover, unlike ID-based cryptography, PKI has been standardized to a large extent, which is an
important practical aspect. Considering the conservative attitude of companies and organizations
that deploy public-key cryptography, it is hard to imagine that ID-based cryptography will replace
PKI at short notice.

Additional possibilities
The fact that any value can be a public key offers some additional possibilities. For instance, we
can concatenate the identity with other information to accomplish certain nice properties that do
not exist in a PKI setting. We have touched on this when dealing with key revocation, where
adding the current date or year to the identities results in key pairs that expire after a certain
period. In fact, in this setting, users can send encrypted messages into the future. This is done
by using the public key derived from the concatenation of the identity with a future date instead
of the current date. Now the recipient cannot decrypt the message until the specified date, when
the KGC issues the corresponding secret key. Here we assume that the KGC is honest and does
not issue keys before the specified date.

We can extend this idea by including even more information in the public key, such as some
confidentiality specification. For instance, one can encrypt a message using as public key the
identity concatenated with some date and the specification ”secret”. Then the recipient can only
obtain the corresponding secret key and thus decrypt the message, if he has secret clearance on the
specified date. Note that the KGC, which issues the secret keys, has the responsibility of deciding
whether that particular user should have secret clearance or not.

Another application lies a bit further from the original idea of identity-based cryptography. Again,
we use the fact that any value can serve as a public key, but this time we use information different
from identities of the users. Therefore, this type of cryptography is called identifier -based cryp-
tography (see also Subsection 8.3.5) and we denote public keys by identifier keys. An example can
be found in [9], where identifier-based cryptography is used to delegate decryption capabilities.
Here identifier-based cryptography is combined with PKI as follows. User U plays the role of KGC
and generates his own system parameters and master key for an ID-based encryption scheme. U
keeps his master key secret and publishes the system parameters. These parameters function as
U ’s public key in a PKI encryption scheme (which we will call U ’s public PKI-key). As in a
regular PKI setting, the authenticity of U ’s public PKI-key (the system parameters) is guaranteed
by a certificate from a CA. Now other users can encrypt messages for user U as in an ID-based
scheme with system parameters that are given by U ’s public PKI-key, using an arbitrary value as
identifier key. Since U (and in fact only U) owns the master key for the ID-based system, he can
derive the secret key for any identifier key and is thus able to read the messages encrypted under
his system parameters.

Applications of the scheme described above lie in the delegation of decryption keys. For instance,
U can instruct other users to use the current date as identifier key. When U goes on a trip for a
number of days, he installs on his laptop only the secret keys for those particular days and not the
master key. If the laptop is stolen, the keys for the duration of the trip are compromised, but the
master key remains secret. For another application, U can tell other users to use the subject line of
an email as identifier key for the encryption of that email. Suppose U has several employees, each
responsible for a different task. U then provides each employee with the secret key corresponding
to the identifier key that specifies a subject within that employee’s responsibilities. This way, U
achieves that his employees can read only mail that concerns them, while other users only need
a single public PKI-key to encrypt messages for U . See Subsection 8.3.5 for more examples of
identifier-based cryptography.
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8.3 Realization with Pairings

Now we have dealt with the concept of identity-based cryptography, we are ready to describe its
realization through pairings. We start with the identity-based encryption scheme due to Boneh
and Franklin [9], denoted IBE . For comprehensibility, they give two versions of IBE, BasicIdent
and FullIdent. We adopt this approach and show in Subsection 8.3.1 that BasicIdent is closely
related to the ElGamal encryption scheme and that it is IND-ID-CPA secure. In Subsection
8.3.2, we discuss how BasicIdent can be transformed to FullIdent, which is shown to provide
IND-ID-CCA security. The BasicIdent and FullIdent schemes are described in general terms,
without using properties of the particular pairing. In Subsection 8.3.3, we deal with the concrete
pairing as proposed by Boneh and Franklin [9] and make some observations on IBE. Identity-
based signature schemes and other identity-based applications are discussed in Subsections 8.3.4
and 8.3.5, respectively.

8.3.1 The BasicIdent IBE Scheme

The IBE scheme of Boneh and Franklin [9] consists of four algorithms: Setup, Extract, Encrypt,
and Decrypt. Setup is run by the KGC to generate the master key and the system parameters.
This is done on input of a security parameter k, which specifies the bit length of the groups.
The algorithm Extract is carried out by the KGC to generate a secret key corresponding to the
identity of a user. As with regular public-key cryptography, the algorithm Encrypt takes as input
a message and a public key to produce a ciphertext. Similarly, Decrypt enables the owner of the
corresponding secret key to decrypt the ciphertext. The version BasicIdent of IBE is as follows.

Setup: On input of a security parameter k, the algorithm works as follows:

1. Generate a random k-bit prime q, two groups (G1, +), (G2, ∗) of order q, and a sym-
metric pairing e : G1 ×G1 → G2. Choose an arbitrary generator P ∈ G1.

2. Pick a random s ∈ Z∗q and set Ppub = sP .

3. Choose cryptographic hash functions H1 : {0, 1}∗ → G∗1 and H2 : G2 → {0, 1}n for
some n.

The message space is M = {0, 1}n and the ciphertext space is C = G∗1×{0, 1}n. The system
parameters are params = 〈q, G1, G2, e, n, P, Ppub,H1,H2〉. The master key is s ∈ Z∗q .

Extract: For a given string ID ∈ {0, 1}∗ the algorithm works as follows:

1. Compute QID = H1(ID) ∈ G∗1.

2. Set the secret key dID to be dID = sQID, where s is the master key.

Encrypt: To encrypt a message M ∈M under the public key ID, the algorithm works as follows:

1. Compute QID = H1(ID) ∈ G∗1.

2. Choose a random r ∈ Z∗q .
3. Set the ciphertext to be

C = 〈rP,M ⊕H2(gr
ID)〉, where gID = e(QID, Ppub) ∈ G∗2.

Decrypt: Let C = 〈U, V 〉 ∈ C be a ciphertext encrypted using the public key ID. To decrypt C
using the private key dID ∈ G∗1 compute:

V ⊕H2(e(dID, U)) = M.
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Observe that at the encryption phase, the message M is bitwise exclusive-ored with the mask
H2(gr

ID) to form V . At the decryption phase, this V is bitwise exclusive-ored with H2(e(dID, U)).
Then by the identity

e(dID, U) = e(sQID, rP ) = e(QID, P )sr = e(QID, Ppub)r = gr
ID

we find that the masks are equal. So when the message M is encrypted with public key QID, then
decryption with the corresponding secret key dID = sQID does indeed yield the original message
M .

Remark 8.2 The choice for the value of n does not affect the security of the scheme. Hence, n
can be chosen such that it is easy to construct the hash function H2, or such that the messages
and ciphertexts have convenient lengths.

We compare the scheme BasicIdent with the ElGamal encryption scheme of Subsection 7.1.3. Here
user A has a public key h = gs corresponding to his secret key s for some generator g. The message
M is concealed by the mask hr for some randomly chosen r. A can compute the mask from gr

(which is included in the ciphertext) and the knowledge of his secret key s. Note that the group
operation is written multiplicatively. Now consider user A in the BasicIdent scheme, with public
key QA = H1(A) and secret key dA = sQA. Set g = e(QA, P ) and h = gA = e(QA, Ppub), then
indeed g is a generator of G2, h can be regarded as A’s public key, and gs = h as in the ElGamal
encryption scheme. Similar to ElGamal, a message M is concealed by the the mask given by (the
hash of) hr for some random r. Note that this time the group operation is written additively. A
(and besides A only the KGC) can compute the mask

e(dA, rP ) = e(QA, P )sr = gsr = hr (8.1)

from his knowledge of his secret key dA and the value rP (which is included in the ciphertext).

Observe that the scheme BasicIdent bears much resemblance with the ElGamal encryption scheme.
Both schemes hide the message M behind the mask hr, where h is A’s public key and r a ran-
dom value. The value of r is then communicated to A by including in the ciphertext rP (with
additive notation), respectively gr (with multiplicative notation), where P and g are publicly
known generators. Although A cannot get his hands on r in the clear, he can use rP , respectively
gr, in combination with his secret key to compute the mask. Once A knows the mask used for
encryption, he can simply remove it by inverting the operation.

The main difference of BasicIdent with ElGamal is that A does not have the secret s in the clear,
since s is the master key known only to the KGC. Instead, A’s secret key dA = sQA represents s
in disguise. In fact, the unique bilinearity property of the pairing enables A to compute the mask,
without the need of knowing s explicitly. Namely, when we write out expression (8.1), we get

e(dA, rP ) = e(sQA, P )r = e(QA, P )sr = e(QA, sP )r = e(QA, Ppub)r = hr.

As remarked in Subsection 7.3.3, the bilinearity is used to transport the secret value s from the
first coordinate to the second, without knowing the actual value of s. This property is essential
in this identity-based scheme, as it allows the master key s to be kept secret, while secret keys
dID = sQID are sufficient for the users to decrypt their messages.

The security of BasicIdent is considered in the random oracle model, i.e. the security analysis
will regard the hash functions H1 and H2 as random oracles. The security of BasicIdent is based
on the bilinear Diffie-Hellman problem. Namely, [9] proves that if BDH is hard, then the scheme
BasicIdent is a semantically secure identity-based encryption scheme (IND-ID-CPA). This is done
by showing that an adversary who wins the IND-ID-CPA game with probability non-negligibly
more than a half can be used to construct an algorithm that solves BDH with non-negligible
probability. This is made precise in the following theorem.
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Theorem 8.3 (Boneh and Franklin [9], Theorem 4.1) Suppose the hash functions H1 and
H2 are random oracles. Suppose an adversary A wins the IND-CA-CPA game in the BasicIdent
scheme with probability 1/2+ε for non-negligible ε. Suppose A makes at most qE > 0 key extraction
queries and qH2 > 0 hash queries to H2. Then there is an algorithm B that solves BDH with
probability at least 2ε

e(1+qE)·qH2
. Here e ≈ 2.71 is the base of the natural logarithm. The running

time of B is O(time(A)).

8.3.2 The FullIdent IBE Scheme

For many applications of identity-based encryption, IND-ID-CPA security is not sufficient. For
instance, when it might be possible for an adversary to get his hands on the decryption of some
known ciphertexts, we need a stronger notion of security such as IND-ID-CCA. Therefore, Boneh
and Franklin [9] convert the BasicIdent scheme into the FullIdent scheme, which they prove to be
IND-ID-CCA secure. They use the following result by Fujisaki and Okamoto [29], which shows
how to create an IND-CCA secure hybrid scheme from an originally IND-CPA secure scheme.

Theorem 8.4 (Fujisaki and Okamoto [29], Theorem 14) Let E be an IND-CPA secure prob-
abilistic public-key encryption scheme and let Epk(M ; r) denote the encryption of M using the
random bits r under the public key pk. Then the hybrid scheme Ehy defined as

Ehy
pk (M) = 〈Epk(σ; H(σ,M)), G(σ)⊕M〉

is IND-CCA secure. Here σ is a random string chosen from an appropriate domain and G and
H are appropriate hash functions.

Boneh and Franklin apply this transformation to the BasicIdent scheme to get the following
scheme, called FullIdent.

Setup: As in the BasicIdent scheme. In addition, we pick a hash function H3 : {0, 1}n×{0, 1}n →
Z∗q and a hash function H4 : {0, 1}n → {0, 1}n.

The message space is M = {0, 1}n and the ciphertext space is C = G∗1 × {0, 1}n × {0, 1}n.
The system parameters are params = 〈q, G1, G2, e, n, P, Ppub,H1,H2,H3,H4〉. The master
key is s ∈ Z∗q .

Extract: As in the BasicIdent scheme.

Encrypt: To encrypt the message M ∈M under the the public key ID, the algorithm works as
follows:

1. Compute QID = H1(ID) ∈ G∗1.

2. Choose a random σ ∈ {0, 1}n.

3. Set r = H3(σ,M) and set the ciphertext to be

C = 〈rP, σ ⊕H2(gr
ID),M ⊕H4(σ)〉, where gID = e(QID, Ppub) ∈ G2.

Decrypt: Let C = 〈U, V,W 〉 be a ciphertext encrypted using the private key ID. To decrypt C
using the private key dID ∈ G∗1, the algorithm works as follows:

1. Compute V ⊕H2(e(dID, U)) = σ.

2. Compute W ⊕H4(σ) = M .

3. Set r = H3(σ,M). Check whether U = rP . If not, reject the ciphertext.

4. Output M as the decryption of C.
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At the encryption phase, the message M is concealed by the hash H4(σ) of the random value σ.
Further, σ is bitwise exclusive-ored with the mask H2(gr

ID) to form V . At the decryption phase,
this V is bitwise exclusive-ored with H2(e(dID, U)). This yields the correct value for σ, because of
the identity gr

ID = e(dID, U) as in the BasicIdent scheme. Now the mask H4(σ) can be removed
from W = M ⊕ H4(σ) to retrieve the message M . This shows the consistency of the FullIdent
scheme.

Observe that the first part of the ciphertext 〈rP, σ ⊕ H2(gr
ID)〉 corresponds to the BasicIdent

encryption of σ using the random bits r = H3(σ,M) (which are random by the randomness of σ).
Further, the last part M ⊕H4(σ) is a one-time padding of the message M with the random bits
H4(σ). Now if we let H3 and H4 denote the hash functions H and G respectively, we see that
FullIdent is a hybrid scheme as in Theorem 8.4.

The security of the FullIdent scheme is considered in the random oracle model, i.e. hash func-
tions H1,H2,H3,H4 are viewed as random oracles. Boneh and Franklin [9] show that under the
assumption that BDH is a hard problem, FullIdent is a chosen ciphertext secure identity-based
encryption scheme (IND-ID-CCA). Namely, if an adversary wins the IND-ID-CCA game with
probability non-negligibly more than a half, then an algorithm can be constructed that solves
BDH with non-negligible probability. This is made precise in the following theorem.

Theorem 8.5 (Boneh and Franklin [9], Theorem 4.4 and 4.5) Regard the hash functions
H1, H2,H3,H4 as random oracles. Suppose an adversary A wins the IND-ID-CCA game in the
FullIdent scheme with probability 1/2+ε for non-negligible ε and A runs in time at most t. Suppose
A makes at most qE > 0 key extraction queries and qH2 , qH3 , qH4 queries to the hash functions
H2,H3,H4, respectively. Then there is an algorithm B that solves BDH with probability at least

1
qH2(qH3 + qH4)

[(
ε

e(1 + qE + qD)
+ 1)(1− 2/q)qD − 1].

The running time of B is at most t + O((qH4 + qH3) · n). Here e ≈ 2.71 is the base of the natural
logarithm, n the length of σ and q the size of the groups G1 and G2.

From here on, when we talk about the IBE scheme by Boneh and Franklin, we mean the FullIdent
version of IBE.

8.3.3 Observations on IBE

For a concrete implementation of their IBE scheme, Boneh and Franklin [9] propose to use the
modified Weil pairing on the supersingular elliptic curve y2 = x3 + 1 over Fp for some suitable
prime p. Concretely, they pick a random k-bit prime for q and set p to be the smallest prime
satisfying (1) p = 2 (mod 3), (2) q 6 |p + 1, and (3) q2|p + 1. Then G1 is the subgroup E(Fp)[q] of
q-torsion points in E(Fp) and G2 is the group µq of qth roots of unity in the multiplicative group
of the finite field F∗p2 . Now the modified Weil pairing êq : G1 × G1 → G2 is a symmetric pairing
(see Section 6.3) and thus suitable for use in the IBE scheme.

Recall that hash function H1 hashes onto the group G∗1. In this concrete implementation, however,
G1 is a subgroup of the group of points on an elliptic curve, for which it is hard to build a
hash function in practice. Therefore, Boneh and Franklin describe how to relax the hashing
requirements. Instead of hashing directly onto G∗1, one can hash onto some set A ⊆ {0, 1}∗
and use an admissible encoding function L (for the definition, see [9]) to map A onto G∗1. This
relaxation does not affect the security (see [9], Theorem 4.7). It is not hard to find a suitable
admissible encoding function L and set A for the above example, as shown in [9].

Boneh and Franklin observe that also the modified Tate pairing can be used for the implementation
of the IBE scheme. In fact, since the Tate pairing can be evaluated faster than the Weil pairing,
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it will improve the efficiency of the scheme. Furthermore, it is possible to use other elliptic curves.
Note that the pairing needs to be strongly non-degenerate, so we have to use symmetric pairings.
In [9], it is described that the IBE scheme can be adapted to suit asymmetric pairings, such as the
regular Weil and Tate pairing, as well. In this case, we can also use non-supersingular curves with
sufficiently small embedding degree, such as MNT-curves. However, security is then based on a
computational problem that is slightly different from BDH, namely the bilinear Diffie-Hellman co-
problem (Co-BDH). In a nutshell, given (P, aP, bP, Q, aQ, cQ) with P and Q linearly independent,
Co-BDH asks to compute e(P, Q)abc (compare to Co-DDH in Subsection 7.3.2). We will not go
into further detail.

As described in Section 8.2, in some applications it is desired to distribute the master key among
several KGCs. An interesting property of Boneh and Franklin’s IBE scheme is that it provides a
robust way to achieve this using threshold cryptography. Suppose there are n KGCs. According
to Shamir secret sharing, the master key can be distributed such that each t out of n KGCs can
retrieve the master key s. Here, each KGC is given one share si of the master key. A user who
wants to request a secret key, presents its public key QID to t KGCs of his choice. Each of them
responds with the partial secret key d

(i)
ID = siQID. The user then constructs its secret key dID

as dID =
∑

λid
(i)
ID, where the λi’s are the appropriate Lagrange coefficients. Moreover, the fact

that DDH is easy in G1 implies that it is easy to catch a dishonest KGC. Namely, after receiving
their share si, each KGC publishes the value P

(i)
pub = siP . The user can test whether the KGC’s

response d
(i)
ID is valid by performing the following check:

e(d(i)
ID, P ) = e(Qid, P

(i)
pub).

If this is not the case, it is immediately clear that the KGC cheated.

8.3.4 Identity-Based Signature Scheme

Recall that the design of a satisfactory ID-based encryption scheme was an open problem until
2001. For ID-based signature schemes, on the other hand, several proposals appeared even before
the discovery of the constructive use of pairings. In fact, along with the introduction of identity-
based cryptography, Shamir already gave an example of a signature scheme [74]. This scheme
did not come with a security proof and had a primarily illustrative role. Examples of satisfactory
ID-based signature schemes (not making use of pairings) that have appeared since are [26, 25].

When Boneh and Franklin [9] proposed their IBE scheme, the demand arose for an ID-based
signature scheme sharing the same system parameters and keys. Namely, such a compatible
signature scheme together with the IBE scheme would result in a complete solution to identity-
based cryptography. Since [9], a number of such ID-based signature schemes have been proposed.
The first pairing-based signature scheme (actually even prior to [9]) is due to Sakai et al. [69],
though they do not include a proof of security. A rather comprehensible scheme resembling the
ElGamal signature scheme is given by Paterson [66]. Although he gives some security arguments,
Paterson omits a formal security proof. Hess’ scheme [36], which is computationally the most
efficient, does come with a formal proof of security. However, since Hess assumes that the identity
is fixed, this notion of security is not as strong as EUF-ID-CMA. We will describe the identity-
based signature scheme by Cha and Cheon [16], which is provably EUF-ID-CMA secure.

The identity-based signature scheme by Cha and Cheon consists of four algorithms: Setup, Extract,
Sign, Verify. Similar to IBE, the algorithms Setup and Extract are carried out by the KGC. Sign
and Verify are performed by the users to compute and verify a signature on a message, using the
secret and public key, respectively. The algorithms are as follows.

Setup: Similar to IBE. In addition, we pick a hash function H5 : {0, 1}∗ ×G → Z∗q .

Extract: Similar to IBE.
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Sign: To sign a message M under secret key dID, the algorithm works as follows:

• Pick a random r ∈ Z∗q .
• Compute U = rQID, h = H5(M,U), and V = (r + h)DID.

• Set the signature to be σ = (U, V ).

Verify: To verify a signature σ = (U, V ) on a message M , check whether

e(P, V ) = e(Ppub, U + hQID), where h = H5(M, U).

This completes the description of the scheme. Consistency follows from the bilinearity of the
pairing and is easily verified:

e(P, V ) = e(P, (r + h)DID) = e(P, s(r + h)QID) = e(sP, (r + h)QID) = e(Ppub, U + hQID).

As with IBE, the security of this scheme is considered in the random oracle model, so the hash
functions are viewed as random oracles. Cha and Cheon [16] show that this scheme is EUF-
ID-CMA secure under the assumption that CDH is hard in G1. Note that this assumption is
weaker than the assumption needed for the security of IBE, namely that BDH is hard. The
following theorem shows that an adversary that wins the EUF-ID-CMA game with non-negligible
probability can be used to construct an algorithm that solves CDH with non-negligible probability.

Theorem 8.6 (Cha and Cheon [16], Theorem 3) Suppose the hash functions H1,H5 are ran-
dom oracles. Suppose an adversary A runs in time at most t and makes at most qE key extraction
queries, qS sign queries and qH1 , qH5 queries to the hash functions H1,H5, respectively. Suppose
A wins the EUF-ID-CMA game with probability ε ≥ 10(qS + 1)(qS + qH5)qH1/(q − 1), then there
is an algorithm B that solves CDH in G1 with probability ≥ 1/9 and running time ≤ 23qH5qH1 t

ε(1− 1
q )

.

8.3.5 Other Identity-Based Applications

Besides encryption and signature schemes, there are a number of other schemes that arise from
identity-based cryptography. Some of them are truly identity-based in the sense that the identity
of the users is used to derive their public key. Examples of such schemes are ID-based signcryption
schemes and ID-based (authenticated) key agreement schemes, which we describe below. Other
applications lie in the closely related area of so-called identifier -based cryptography, which we
already mentioned in Section 8.2. Identifier-based cryptography makes use of the same machinery
as identity-based cryptography – in particular it exploits the fact that any value can serve as
public key. The subtle difference is that in the case of identifier-based schemes, public keys are
derived from data other than identities of users. This way an efficient solution can be found for
an access control system, with which we deal later on in this section.

Identity-based signcryption scheme
In some applications, communication needs to provide both secrecy and authenticity. This can
be achieved by first signing the message and subsequently encrypting the message-signature pair,
as is done in the identity-based scheme by Boyen [13]. Another possibility is to perform signing
and encryption simultaneously in order to reduce computational costs. This concept is known as
signcryption.

A first implementation of an identity-based signcryption scheme is given by Malone-Lee in [51].
Nalla and Reddy [62] propose an improved scheme that is computationally more efficient. Both
schemes come with heuristic arguments for security rather than a formal proof. On the contrary,
Libert and Quisquater [48] do accompany their identity-based signcryption scheme with a rigorous
security proof. The latter scheme is computationally slightly more efficient than the one by Malone-
Lee. A variant of signcryption that deserves a mention is Lynn’s authenticated identity-based
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encryption scheme [49], which provides authentication but does not support non-repudiation (in
contrast to signature and signcryption schemes). Libert and Quisquater [48] also describe how
their signcryption scheme can be transformed to an authenticated encryption scheme, thereby
disabling non-repudiation but improving security.

Identity-based (authenticated) key agreement
Sakai et al. [69] propose a pairing-based protocol that enables two parties that have never met
to share a common key, as in the classic Diffie-Hellman key exchange in Section 7.1.3. Unlike
Diffie-Hellman key exchange, this key agreement scheme has the nice property that it is fully non-
interactive. This feature follows from the identity-based nature of the protocol, which proceeds
as follows. Consider a system with algorithms Setup and Extract as in the IBE scheme. Each
user U is assumed to have a public key QU = H1(IDU ) derived from U ’s identity IDU and a
corresponding secret key dU = sQU , where s is the KGC’s master key. Suppose users A and B
want to share a secret key, then they can both compute e(dA, QB) = e(QA, QB)s = e(QA, dB)
without the need to communicate even once. Moreover, the fact that the scheme is non-interactive
rules out a man-in-the-middle attack. Note that this scheme has the disadvantages that the key
is static and also the KGC is capable of computing this key (which can also be an advantage in
some applications).

Smart [79] describes how the scheme by Sakai et al. can be adapted such that the common key
is dynamic rather than static. This is done by translating the MQV-protocol, which is a variant
of the Diffie-Hellman key exchange secure against the man-in-the-middle attack, to the identity-
based setting. This identity-based interactive authenticated key exchange works as follows. Users
A and B choose an ephemeral (i.e. short-term) secret key a and b respectively, and send the
corresponding ephemeral public key aP and bP respectively to the other user. Both users can
now compute the common key

e(aQB , Ppub) · e(dA, bP ) = e(aQB + bQA, Ppub) = e(bQA, Ppub) · e(dB , aP ).

The message flow is identical to that of Diffie-Hellman key exchange.

Access control
An application of identifier-based cryptography lies in the encryption of sensitive information in
an access control system, as described by Smart [78]. In such systems, users are granted access to
information if they have the required privileges, which in this case means knowledge of particular
pieces of information. These required pieces of information, or secret keys, are represented in a
logical formula involving conjunctions and disjunctions. For example, let dA, dB , dC , dD be secret
keys corresponding to the identifiers (or public keys) A,B, C,D respectively. Then the formula
A ∧ (B ∨ (C ∧D)) means that only users knowing either the secret keys dA and dB , or the secret
keys dA, dC and dD have access to the information. In other words, the information is encrypted
in such a way that only a correct combination of secret keys (either (dA, dB) or (dA, dC , dD))
enables a user to decrypt. Smart achieves this by exploiting the bilinearity of the pairings and the
fact that any value can serve as identifier. Clearly, public keys are not identities of users, hence
we use the term identifier-based rather than identity-based cryptography.
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Other Applications of Pairings

Besides identity-based cryptography, there are numerous other cryptosystems with convenient
properties that can be built with pairings. We will discuss two of these in more detail. The first
is Joux’s tripartite key exchange [41], which initiated the elaborate research into pairing-based
cryptography. The second is the efficient signature scheme by Boneh et al. [11], which provides
short signatures and elegantly exploits the properties of GDH groups. Other examples of pairing-
based (non identity-based) protocols are an ElGamal encryption scheme with escrow property [9],
escrowable encryption in combination with non-repudiative signatures [83], a credential pseudony-
mous certificate system [84], aggregate signatures [10], an encryption scheme secure in the standard
model [15], a signature scheme secure in the standard model [12], and a forward-secure encryption
scheme [44].

9.1 Joux’s Tripartite Diffie-Hellman Key Exchange

In 2000, Joux [41] discovers that pairings can be used for the construction of cryptographic pro-
tocols. Concretely, he uses them to implement a quite simple tripartite variant of the classic
Diffie-Hellman key exchange (see Subsection 7.1.3). By the bilinearity of the pairings, it is possi-
ble for three parties to share a common key in only a single round of communication, where all
previously known protocols take at least two rounds. Joux further remarks that in this setting
DDH (or rather Co-DDH, as described in Subsection 7.3.2) becomes easy, thereby indirectly giving
the first example of a GDH group.

Joux argues that if there exists a symmetric pairing e : G1 × G1 → G2 where P is a generator
for G1, then the following protocol can be constructed. Suppose three parties A, B, and C wish
to share a secret key over an insecure channel. They randomly choose a number a, b, and c
respectively, which serve as ephemeral secret keys, and publish aP , bP , and cP respectively, the
ephemeral public keys. All three parties can now compute the common key

e(bP, cP )a = e(aP, cP )b = e(aP, bP )c = e(P, P )abc.

An eavesdropper who intercepts communications aP , bP , and cP , can only retrieve the common
key e(P, P )abc if he is able to solve the bilinear Diffie-Hellman problem BDHP (aP, bP, cP ). Note
that, like the original bipartite Diffie-Hellman key exchange, this scheme is vulnerable to a man-
in-the-middle attack.

In the above protocol, it is essential that the map is strongly non-degenerate; otherwise the pairing
would map everything to the identity element in G2 and the common key would not exactly be
secret. However, since the notion of distortion maps had not yet been discovered by the time of
[41], Joux did not have a strongly non-degenerate pairing available. Therefore, he was forced to
adapt the protocol so that it would fit for asymmetric pairings such as the Weil and the Tate
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pairing. The adapted version requires two independent points P and Q. The involved parties
publish (aP, aQ), (bP, bQ), and (cP, cQ) respectively. They can now compute the common key

e(bP, cQ)a = e(aP, cQ)b = e(aP, bQ)c = e(P, Q)abc,

which is non-trivial by the independency of P and Q and the non-degeneracy of the pairing.
However, the bandwidth requirement is twice as large as in the previous protocol, as all parties
have to publish two points in stead of one. Security is now based on the Co-BDH problem (see
Subsection 8.3.3) instead of the BDH problem. When Verheul [83] discovers the existence of
distortion maps for supersingular curves, he remarks that these can be used to create strongly
non-degenerate (i.e. symmetric) pairings such as the modified Weil and Tate pairing. Verheul
thus improves the tripartite key exchange by realizing Joux’s original protocol.

What remains is the vulnerability to the man-in-the-middle attack. Al-Riyami and Paterson [1]
show how this problem can be fixed in a traditional PKI-setting. As usual in PKI, user A has a
secret key x and a public key µA = xP . We will denote these as long-term keys, as opposed to the
ephemeral (or short-term) secret key a and public key aP . Further, A has a certificate CertA from
the CA, where his identity and his long-term public key are bound together by the CA’s signature.
Similarly, users B and C have certificates CertB , respectively CertC , for their long-term public keys
µB = yP and µC = zP . Now the users publish aP ||CertA, bP ||CertB , and cP ||CertC respectively,
where a, b, c are the ephemeral secret keys as before and || denotes concatenation. (Note that the
messages are similar to the original protocol, except for the addition of the certificates containing
the users’s long-term public keys. In particular, this protocol still consists of just a single round of
communication.) Next all three users compute the common key as a function of their own secret
keys (both short- and long-term), and the (short- and long-term) public keys of the others. Al-
Riyami and Paterson describe four ways to do this, all of which use the bilinearity of the pairings
to guarantee consistency of the shared key. Note that the certificates guarantee the authenticity
of the long-term keys, so the users can no longer be impersonated through a man-in-the-middle
attack.

9.2 Short Signatures

As observed by Okamoto and Pointcheval [64], the definition of a GDH group naturally suggests
an elegant signature scheme (see Subsection 7.3.1). For convenience, we repeat the protocol of
this appropriately named GDH signature scheme, this time writing the group operation additively
rather than multiplicatively.

GDH signature scheme
Let (G1,+) be a cyclic group of prime order n with generator P and let H : {0, 1}∗ → G∗1 be a
hash function. User A has a secret key s ∈ Z∗n and a corresponding public key Ppub = sP . Let
M ∈ {0, 1}∗ be the message to be signed.

1. A computes Q = H(M) ∈ G∗1 and σ = sQ. The signature is σ ∈ G∗1.

2. B computes Q = H(M) and accepts the signature if DDHP (Ppub, Q, σ) = 1 and disavows
otherwise.

The main idea is that the signer uses his secret key s to turn the hashed message Q into a signature
σ such that (P, Ppub, Q, σ) is a Diffie-Hellman tuple. Computation of σ without knowledge of s
boils down to solving an instance of CDH, whereas signature verification involves solving DDH.
Thus, to simultaneously provide security and efficiency, we need to define this scheme on a group
where CDH is hard, yet DDH is easy – a GDH group. As described in Subsection 7.3.2, the only
known way to create a GDH group is by using a symmetric pairing e : G1×G1 → G2, where G2 is
a cyclic group of order n. Then the verification is done by checking whether e(P, σ) = e(Ppub, Q).



80 Other Applications of Pairings

Boneh, Lynn and Shacham [11] observe that a GDH signature is a single element of G∗1. Hence,
they look for a GDH group in which elements have a short representation. Boneh et al. propose
to use the GDH group built from the modified Weil pairing ên : E(Fq) × E(Fq) → Fqk on a
supersingular elliptic curve with embedding degree k = 6. This way, they achieve signatures that
are half the size of for instance DSA or ECDSA, while providing similar security. Moreover, they
remark that when curves with larger embedding degree are used, the signature size can be reduced
even further, while maintaining the same level of security. However, for supersingular curves the
maximum embedding degree is six. Therefore, one would have to use non-supersingular curves
for which no distortion maps and consequently no strongly non-degenerate pairings exist. Hence,
the algorithm needs to be slightly adapted such that the point P and hashed message Q come
from different groups and are thus linearly independent. Signature verification then involves a
decision Diffie-Hellman co-problem (Co-DDH, see Subsection 7.3.2), whereas security is based on
the computational Diffie-Hellman co-problem (Co-CDH).

Security of the GDH signature scheme by Boneh et.al. [11] is proven in the random oracle model.
The following theorem shows that the scheme is EUF-CMA secure under the assumption that
CDH is hard in G1.

Theorem 9.1 (Boneh, Lynn and Shacham [11]) Suppose the hash function H is a random
oracle. Suppose an adversary A runs in time at most t and makes at most qS sign queries and
at most qH hash queries. Suppose A wins the EUF-CMA game with non-negligible probability ε.
Then there is an algorithm B that solves CDH in G1 with probability at least ε/(2e · qs) in running
time at most t + 2cA(logp)(qH + qS), where cA is a small constant and e the base of the natural
logarithm.



Chapter 10

Concluding Remarks

This last chapter is devoted to some concluding remarks on the topics of this study. Section 10.1
deals with the mathematical aspects that were covered in Part 1 (Chapters 3 - 6). Section 10.2
discusses some application-related issues that emerged in Part 2 (Chapters 7 - 9).

10.1 Theory of the Pairings

We compare the Weil and the Tate pairing, observe which curves are suitable for pairing-based
applications, and suggest some topics for further research.

10.1.1 The Weil versus the Tate Pairing

From a practical point of view, the two main criteria in comparing the pairings are performance
and applicability. The Tate pairing turns out to be superior in both aspects.

Performance: The computation of the Tate pairing can be done approximately twice as fast as
the computation of the Weil pairing. Since pairings are often the most costly operation in
practical applications, this aspect is an important advantage of the Tate pairing.

Applicability: The applicability of both the Weil and the Tate pairing depends on the embedding
degree of the elliptic curve. Moreover, an additional requirement exists for the application
of the Weil pairing. Hence, the Tate pairing can be applied whenever the Weil pairing can.
We should remark, however, that for practical applications this additional requirement for
the Weil pairing is almost always met.

A disadvantage of the Tate pairing is that the outcome is not a unique value, which is often
required in applications. This problem can be solved by performing an exponentiation on the
outcome of the Tate pairing. Even after this exponentiation, the Tate pairing is considerably
faster than the Weil pairing.

An advantage of the Weil pairing is that its definition is more comprehensible than that of the
Tate pairing, which involves equivalence classes of quotient groups. Further, for the Weil pairing
another definition exists that can be used to prove the properties of the pairing. In particular, the
non-degeneracy property is easier to understand for this definition of the Weil pairing than for the
Tate pairing.

Despite these two slight disadvantages, the Tate pairing seems to be preferable to the Weil pair-
ing for use in practical applications, because of the better performance and applicability. The
advantages of the Weil and the Tate pairing are listed in Table 10.1.



82 Concluding Remarks

Weil pairing Tate pairing
Easier to understand Better performance

Unique outcome Applicable more often

Table 10.1: Advantages of the Weil and the Tate pairing

10.1.2 Suitable Curves

The Weil and the Tate pairing can be applied if the embedding degree of the elliptic curve is
sufficiently small. However, with overwhelming probability, the embedding degree of a randomly
chosen curve is too large. Hence, if we want to find curves suitable for pairing-based applications,
we need to consider special classes of curves.

One of these special classes is the class of supersingular elliptic curves. The embedding degree of
supersingular curves is less than or equal to 6, which is sufficiently small for efficient computation
of the pairings. Moreover, supersingular curves have a rich structure, which makes the existence of
distortion maps possible. These distortion maps map a point on the curve to a linearly independent
point of the same order. Hence, they can be used to modify the pairings such that they satisfy
the strong non-degeneracy property, which often comes in handy in cryptographic applications.
On the other hand, the rich structure potentially provides cryptanalysts with tools to attack
cryptosystems defined on these curves.

For some applications an embedding degree slightly larger than 6 is desired. Since this is not pos-
sible for supersingular curves, one needs to consider non-supersingular curves that are constructed
in a special way. These curves, known as MNT-curves, can have arbitrary embedding degree.
Downside to these curves, however, is that they are often not of (near) prime-order, which is de-
sired in cryptographic applications. Further, the definition field cannot be chosen beforehand, but
follows from the construction. Moreover, since MNT-curves are non-supersingular, no distortion
maps exists on curves that are cryptographically interesting.

10.1.3 Further Research

Some topics for further research that have cryptographic relevance could be:

MNT-curves: It would be interesting to have a generalization that makes it possible to construct
MNT-curves having arbitrary embedding degree, (near) prime-order and arbitrary definition
field.

Curves of higher genus: Pairings are not restricted to curves that are elliptic, i.e. having genus
one. Hence, research into curves of higher genus, which are beyond the scope of this study,
could yield classes of curves with nice properties.

Implementation issues: General improvements of the algorithm or discovery of specific efficient
cases are of cryptographic importance. However, we doubt if there is much room for im-
provement, because a lot of effort has been put in the optimization of the pairing evaluation
already.

Further, we point out some questions that seem to have little cryptographic relevance (other than
enhancing the insight into the theory of pairings).

Open questions: The following questions appear to be left open in the literature.

• Can non-degeneracy of the Weil pairing be proven directly for the alternative definition
(Definition 3.7)?
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• Lemma 4.5 proves the triviality of the Tate pairing of a point in the ground field with
itself for embedding degree greater than one. What can be said in general when the
embedding degree is equal to one?

• Which supersingular curves do not have a distortion map? In particular, can supersin-
gular curves with embedding degree one have a distortion map?

• Consider an endomorphism on a supersingular curve that is a distortion map with
respect to a certain point. Can a (general) lower bound for m be given, such that the
endomorphism is a distortion map for all m-torsion points over the ground field, except
for the point at infinity?

10.2 Pairing-Based Cryptography

We discuss the status of identity-based cryptography, make some observations on the security of
pairing-based crypto, and suggest some topics for further research.

10.2.1 Identity-Based Cryptography

Pairings on elliptic curves have proven to be useful building blocks for many cryptosystems. Yet the
most remarkable application of pairings is the realization of identity-based cryptography. In this
type of public-key cryptography, the public keys are derived from the identity of the users. Ideally,
identity-based cryptography promises to provide an alternative to public-key infrastructures, which
are the conventional solution to the public key authentication problem. Namely, no certificates are
needed because of the identity-based nature of the public keys. Hence, public key distribution is
greatly simplified compared to settings based on public-key infrastructures. Moreover, the freedom
in choosing the public key enables the design of cryptosystems with interesting properties that
cannot be realized with conventional public-key cryptography. This variation is called identifier-
based cryptography.

However, real life turns out not to be ideal. Several practical issues stand in the way of the
realization of an ideal identity-based system. For instance, problems arise from the inherent key
escrow, the difficulty of key revocation, and the commercial immaturity. Most of these problems
get more severe as the system gets larger. Hence, identity-based systems seem to work best in a
small-scale deployment. In conclusion, identity-based cryptography is not likely to be suitable for
large-scale, autonomous application. Still, because of the simple key distribution and additional
possibilities, identity-based cryptography could develop into a valuable supplement to traditional
public-key infrastructures. The advantages and disadvantages of identity-based cryptography in
relation to PKI-based cryptography are summarized below.

Advantages:

• Simplification key distribution.

• Additional possibilities identifier-based crypto.

Disadvantages:

• Problems with key escrow.

• Problems with key revocation.

• Commercial immaturity.
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10.2.2 Security of Pairing-Based Cryptography

Conventional elliptic curve cryptosystems are based on the hardness of either the computational or
the decision Diffie-Hellman problem on the group of points on an elliptic curve. These problems
have been studied extensively and are understood well enough to provide confidence in their
hardness. Pairing-based cryptography often relies on the bilinear Diffie-Hellman problem (or
related problems). The bilinear Diffie-Hellman problem is often assumed to be equivalent to the
computational version; however, at present no proof of this equivalence exists. Moreover, it has
not been around long enough for a thorough scrutiny. Therefore, there exists some scepsis among
cryptographers when it comes to the security of pairing-based systems. Further research into the
hardness of the bilinear Diffie-Hellman problem is needed to reduce this scepsis and increase the
trust in pairing-based systems.

10.2.3 Further Research

We recommend the following topics for further research.

Bilinear Diffie-Hellman problem: The security of many pairing-based cryptosystems is based
on the bilinear Diffie-Hellman problem or related problems. It is therefore important to get
a thorough understanding of these problems, examine their relation to other problems, and
find specific weak cases that are to be avoided.

Applications pairing-based crypto: A lot of effort has been put in finding pairing-based ap-
plications already. Nevertheless, we believe that pairing-based cryptography still has some
interesting applications in store.

Security in standard model: The security of the identity-based encryption scheme using pair-
ings is proven in the random oracle model. It would be interesting to find a way to adapt
the scheme such that it provides security in the standard model.

Practical experience identity-based crypto: A systematic research into the practical expe-
rience of the application of identity-based cryptosystems in different environments is needed
to make clear what the potentials of identity-based crypto really are.
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