A Practical Voting Scheme with Receipts

Mirosław Kutyłowski, Marek Klonowski, Anna Lauks, Filip Zagórski

Wrocław University of Technology

Frontiers of Electronic Elections, 16.09.2005
Polish voting system today

- no voting via Internet, no mail-in
- choosing one party by an x- sign for a single candidate
- any additional sign makes a ballot invalid
Polish voting system today

- no voting via Internet, no mail-in
- choosing one party by an \times- sign for a single candidate
- any additional sign makes a ballot invalid
- votes counted manually by local commissions, then inserted to a (fairly secure) computer system
Ways of corrupting the system by a local commission

- make a vote invalid by a single sign on a ballot (or insert the second \(\times \))
Ways of corrupting the system by a local commission

- make a vote invalid by a single sign on a ballot (or insert the second ✗)
- insert extra ballots and fake a signature of an absent voter
Ways of corrupting the system by a local commission

- make a vote invalid by a single sign on a ballot (or insert the second x)
- insert extra ballots and fake a signature of an absent voter
- dishonest counting paper ballots, invalid data inserted into the system
 (not all parties represented in a local commission, the observers do not have access to all parts of the procedure)
Some Data

1. percentage of invalid votes:
 ▶ Polish Presidential Elections 1995, district Warsaw - 1st round 1.09\%, 2nd round 2.23\%
 ▶ parliament elections 2001, 3.99\%, in 1\% of districts more than 10\% invalid ballots

2. high costs

3. selling votes

4. every protest considered on a single vote basis, standard conclusion of the Supreme Court:
 “this single vote does not change the final election outcome”
Other problems

- voting outside the place of residence requires some efforts
- convincing the citizens that the results are fair
Verifiability

- **local verifiability** – the voter should be convinced that his vote was counted)
Verifiability

- **local verifiability** – the voter should be convinced that his vote was counted

- **global verifiability** – mechanism that allows everyone to check whether every vote was properly counted
Verifiability

- **local verifiability** – the voter should be convinced that his vote was counted
- **global verifiability** – mechanism that allows everyone to check who that every vote was properly counted
- security mechanism should be **simple** enough so that one can explain it and convince the voters

⇒ receipts used
Anonymity

- nobody, in particular the authorities, cannot derive the choice of the voter
Anonymity

- nobody, in particular the authorities, cannot derive the choice of the voter
- voter should not be able to sell a vote and prove how he voted,
Election results

- a vote cannot be modified or erased from the tally,
Election results

- a vote cannot be modified or erased from the tally,
- an election commission cannot cast additional ballots,
Detecting cheaters

- misbehavior can be detected whp
- a proof of misbehaviour can be presented
Advantages

- standard, low cost equipment
- receipts for the voters printed on paper as bar codes (or 2D codes)
- the number of commissions decoding the ballots can be low
Advantages

- standard, low cost equipment
- receipts for the voters printed on paper as bar codes (or 2D codes)
- the number of commissions decoding the ballots can be low
- nobody in the system is assumed to be honest
- ballots prepared by voting machines (and not by external trusted parties)
Advantages

- standard, low cost equipment
- receipts for the voters printed on paper as bar codes (or 2D codes)
- the number of commissions decoding the ballots can be low
- nobody in the system is assumed to be honest
- ballots prepared by voting machines (and not by external trusted parties)
- full anonymity
- no way to sell a vote
Advantages

- standard, low cost equipment
- receipts for the voters printed on paper as bar codes (or 2D codes)
- the number of commissions decoding the ballots can be low
- nobody in the system is assumed to be honest
- ballots prepared by voting machines (and not by external trusted parties)
- full anonymity
- no way to sell a vote
- no way to cheat without being detected
Disadvantages

- each ballot is linked with a voting machine but this is required by Polish law (and has some justification and function in the political system)
- a voting machine knows the preferences of a voter hard to avoid...
Components of the system

Servers:
- voting machines (with printers)
- registration machines
- tallying machines
- plus control servers (independent, watch dog organisations)

Authorities:
- local election committee
- tallying authorities
- plus a court in the case of irregularities
A voter in a voting booth - step 1/5

- a machine prepares a *virtual ballot* at random,
A voter in a voting booth - step 1/5

- a machine prepares a *virtual ballot* at random,
- a voter gets a printout of a *hash ballot* – a commitment to the virtual ballot
 - the machine cannot change the virtual ballot
 - the voter cannot recover the virtual ballot
A voter in the voting booth - step 2/5

- a voter sees depiction of the virtual ballot: 2 lists with the names of the candidates and a random ID

<table>
<thead>
<tr>
<th></th>
<th>Anna Lauks</th>
<th>Marek Klonowski</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Miroslaw Kutylowski</th>
<th>276529020911123456</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Filip Zagorski</th>
<th>Anna Lauks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Marek Klonowski</th>
<th>Miroslaw Kutylowski</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>276529020911123456</th>
<th>Filip Zagorski</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A voter in the voting booth - step 3/5

▶ a voter makes his choice by choosing a candidate and either the left or the right side:

<table>
<thead>
<tr>
<th></th>
<th>3 Anna Lauks</th>
<th>1 Marek Klonowski</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Miroslaw Kutylowski</td>
<td>2765290209111234456</td>
</tr>
<tr>
<td></td>
<td>4 Filip Zagorski</td>
<td>3 Anna Lauks</td>
</tr>
<tr>
<td></td>
<td>1 Marek Klonowski</td>
<td>2 Miroslaw Kutylowski</td>
</tr>
<tr>
<td></td>
<td>2765290209111234456</td>
<td>4 Filip Zagorski</td>
</tr>
</tbody>
</table>
A voter in the voting booth - step 4/5

- a voter gets a vote (encrypted):

 ![Barcodes](image)

- the values printed can be later compared with appropriate hashes from the hash ballot, what about the encrypted values?
A voter in the voting booth - step 5/5

- preparation of a *control ballot*:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Anna Lauks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Miroslaw Kutylowski</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Filip Zagorski</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Marek Klonowski</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2765290209111234456</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A voter in the voting booth - step 5/5

▷ a voter gets the control ballot:

Karta do weryfikacji

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Anna Lauks</td>
</tr>
<tr>
<td>2</td>
<td>Miroslaw Kutylowski</td>
</tr>
<tr>
<td>4</td>
<td>Filip Zagorski</td>
</tr>
<tr>
<td>1</td>
<td>Marek Klonowski</td>
</tr>
</tbody>
</table>

2765290209111234456
ReiopenL92nhdvampSddkfp
Wqwwe91nbe43mpwugfhiu
Jobwjb821q10nxnimmajwax
Pquioeiuwdf7218nzoiqpj11
Oqihiqhr09hK2229kPuo
Scanning of encoded votes

- (under supervision) a voter presents his voting ballot for scanning by a scanning machine
- the ballot gets stamped -
 - for possible investigations, and
 - for preventing to scan the same ballot twice
Vote counting

the parts of votes get separated!
Vote counting

the parts of votes get separated!

Scanned votes are:

- recoded (partial decoding + re-encryption)
- randomly mixed

by different Tallying Authorities

- anonymity is guaranteed
Vote counting

- The last counting commission gets and publishes decrypted votes and identifiers:
 - identifiers
 - votes
Vote counting

- The last counting commission gets and publishes decrypted votes and identifiers:
 - identifiers
 - votes
- A voter can check if his pair of identifiers is on the list.
- Everybody can
 - check if identifiers are paired,
 - check if votes are paired,
 - compute the result of elections.
RE-onions

- y_i - public key, x_i corresponding private key, $y_i = g^{x_i}$, g is generator of a group G with hard discrete logarithm problem. The order of G is a prime.

- ElGamal ciphertexts: for k_1 chosen uniformly at random $(\alpha, \beta) := (m \cdot (y_1 \cdot \ldots \cdot y_\lambda)^{k_1}, g^{k_1})$

- ith server gets: $(\alpha_i, \beta_i) := (m \cdot (y_i \cdot \ldots \cdot y_\lambda)^{k_i}, g^{k_i})$
 and outputs: $(\alpha_{i+1}, \beta_{i+1}) := (\alpha_i / \beta_i^{x_i} \cdot (y_{i+1} \cdot \ldots \cdot y_\lambda)^{r_i}, \beta_i g^{r_i})$

 r_i randomly chosen, $k_{i+1} = k_i + r_i$
Initialization of voting machines

- The public keys \((y_i) \) of the tallying authorities are loaded to the voting machines.
Initialization of voting machines

- The public keys \((y_i)\) of the tallying authorities are loaded to the voting machines
- A private key \(K'\) generated: for signing votes and identifiers with a signature scheme \(\text{sig}'\)
Initialization of voting machines

- The public keys \((y_i)\) of the tallying authorities are loaded to the voting machines.
- A private key \(K'\) generated: for signing votes and identifiers with a signature scheme \(\text{sig}'\).
- A private key \(K\) generated: for creating seeds for constructing RE-onions (deterministic signature scheme).
Initialization of voting machines

- The public keys \((y_i)\) of the tallying authorities are loaded to the voting machines
- A private key \(K'\) generated: for signing votes and identifiers with a signature scheme \(\text{sig}'\)
- A private key \(K\) generated: for creating seeds for constructing RE-onions (deterministic signature scheme)
- The corresponding public keys are delivered to the local registration machine and to the final tallying authority
A voter in a voting booth - step 1/5

- a machine prepares a *virtual ballot*, which consists in the following data:
 - \(r \) - ballot identifier, a random string
 - \(q \) - an auxiliary string used for constructing RE-onions
 - \(r_L, r_R \) - random strings chosen separately for each side

\[
\begin{array}{cccc|ccc}
B & B^L_1 & B^L_2 & I & I^R_1 & I^R_2 \\
I & I^L_1 & I^L_2 & Y & Y^R_1 & Y^R_2 \\
Y & Y^L_1 & Y^L_2 & B & B^R_1 & B^R_2 \\
\end{array}
\]

where \(I, B, Y \) are labels
Content of the onions

- For constructing the RE-onion Z_i^X the voting machine creates signatures $\text{sig}_K(q, i, X, Z)$
- Using random bit generator \mathcal{R}, the machine computes:
 $$k_1 = \mathcal{R}(\text{sig}_K(q, i, X, Z))$$
- After full decoding of the onions we get, for $X = L, R$, $i = 1, 2$:
 - $(B, r_X, \text{ser}_V, \text{sig}'_{K'}(B, r_X, i))$ from B_i^X
 - $(Y, r_X, \text{ser}_V, \text{sig}'_{K'}(Y, r_X, i))$ from Y_i^X
 - $(r, \text{ser}_V, \text{sig}'_{K'}(r, X, i))$ from I_i^X
A voter in the voting booth - step 2/5

- a voting machine creates and prints a hash ballot, which is a commitment to the virtual ballot, it contains:
 - r - ballot identifier
 - h_0 - the root of a Merkle tree of hashes. Its leaves are hashes of r, q, r_L, r_R, and of the RE-onions (without labels)
A voter in the voting booth - step 3/5

- Once the hash ballot is printed, a visualization of the virtual ballot appears on the screen.
- The voter chooses a side c and an icon P of the party for which he votes,
- the voting ballot is created and printed. It consists in RE-onions of the party selected and the identifier.

Example:

\[
\begin{align*}
P_1^c & \quad I_2^c \\
I_1^c & \quad P_2^c
\end{align*}
\]
A voter in the voting booth - step 4/5

- A **control ballot** is created for the column chosen by the voter.
- It contains:
 - The onions from the side and column chosen.
 - The data $q, \operatorname{sig}_K(q, i, X, Z)$ that enable to reveal $k_1 = R(\operatorname{sig}_K(q, i, X, Z))$
- k_1 can be used to open an onion – decipher the ElGamal ciphertext – without the private keys.

(trick borrowed from D. Chaum’s paper)
Why a voting machine cannot cheat?

Each voting machine:

- a *virtual ballot* once created cannot be changed (thanks to the *hash ballot*,

- a voter can verify the contents of an unused half of vote – verification procedure for *control ballot*
Impossibility of manipulations

- encoded votes and identifiers are indistinguishable
- one cannot link together the corresponding onions
Impossibility of manipulations

- encoded votes and identifiers are indistinguishable
- one cannot link together the corresponding onions

Cheating attempt:

- vote removal - successful if one can find both pairs
 for 1000 voters probability of successful removal of a single vote is $\approx 1/8000$, two votes - 1.5×10^{-8}, three votes - 1.9×10^{-12}
- if one part of an identifier is removed, then the cheating attempt will be discovered,
- an investigation procedure finds a tallying authority which made an attempt to cheat.
- if a half of a vote is missing, then a similar investigation possible but not performed for preserving anonymity
Why a voter cannot cheat?

- on verification cards there are only halves of votes/identifiers
 they cannot be used for casting an additional vote
Investigations

- partially reveal the permutation used
- reveal some re-encryption exponents
- zero knowledge proof of correctness of partial decoding
Implementation

test implementation prepared by students of Wrocław University of Technology

http://e-voting.im.pwr.wroc.pl
Still to be done

Apply schemes yielding short

- signatures,
- ciphertexts (of asymmetric schemes),
- and enabling fast re-encryption and fast partial decoding
 (for the China case)

Here, security level for signatures can be lower than in the case of digital signatures used for signing contracts ... that must remain secure for years.
Thanks for your attention

Details and contact: http://e-voting.im.pwr.wroc.pl