The Parameterized Complexity of Matrix Completion

Robert Ganian
Joint work with: Eduard Eiben lyad Kanj
Sebastian Ordyniak Stefan Szeider

!

The
University
Of
Sheffield.

Matrix Completion

- Input: Matrix over GF(p) with missing entries

0	0	2	1	2	1	
1	4	0	2	$*$	1	$0 \mathbf{p = 5}$
1	4	2	3	4	2	
1	$*$	0	$*$	3	$*$	
1	4	4	4	$*$	3	

- General Task: Fill in entries to minimize some measure
- Exploits expected similarities between rows of the matrix

Matrix Completion: Basic Measures

- Input: Matrix over GF(p) with missing entries

0	0	2	1	2	1	0
1	4	0	2	$*$	1	
1	4	2	3	4	2	
1	$*$	0	$*$	3	$*$	
1	4	4	4	$*$	3	

- Task 1: Fill in entries to minimize the rank
- Rank Matrix Completion Problem (RMC)

Matrix Completion: Basic Measures

- Input: Matrix over GF(p) with missing entries

0	0	2	1	2	1	
1	4	0	2	2	1	$0 p=5$
1	4	2	3	4	2	
1	0	0	0	3	0	
1	4	4	4	1	3	

- Task 1: Fill in entries to minimize the rank
- Rank Matrix Completion Problem (RMC)

Matrix Completion: Basic Measures

- Input: Matrix over GF(p) with missing entries

0	0	2	1	2	1	
1	4	0	2	$*$	1	$0 \mathbf{p = 5}$
1	4	2	3	4	2	
1	$*$	0	$*$	3	$*$	
1	4	4	4	$*$	3	

- Task 1: Fill in entries to minimize the rank
- Rank Matrix Completion Problem (RMC)
- Task 2: Fill in entries to minimize the \# of distinct rows
- Distinct Row Matrix Completion Problem (DRMC)

Matrix Completion: Basic Measures

- Input: Matrix over GF(p) with missing entries

0	0	2	1	2	1	
1	4	0	2	3	1	$\mathbf{p}=\mathbf{5}$
1	4	2	3	4	2	
1	4	0	2	3	1	
1	4	4	4	0	3	

- Task 1: Fill in entries to minimize the rank
- Rank Matrix Completion Problem (RMC)
- Task 2: Fill in entries to minimize the \# of distinct rows
- Distinct Row Matrix Completion Problem (DRMC)

Motivation

- Fundamental problems, well studied
- Especially in ML and recommender systems
- Example 1: Netflix Problem
- Entries are movie ratings
- constant-size p
p-RMC, p-DRMC
- Example 2: Triangulation from Incomplete Data
- Entries represent distances, large p
RMC, DRMC

Aim

- Exact algorithms
- Worst-case complexity
- Runtime guarantees
- Understanding the complexity of (p-)RMC, (p-)DRMC fine-grained
- What really makes the problems hard?
- When can they be solved more efficiently?

NP-complete!

Parameterized Complexity?

Considered Parameters

0	0	2	1	2	1
1	4	0	2	$*$	1
1	4	2	3	4	2
1	$*$	0	$*$	3	$*$
1	4	4	4	$*$	3

Considered Parameters

0	0	2	1	2	1
1	4	0	2	$*$	1
1	4	2	3	4	2
1	$*$	0	$*$	3	$*$
1	4	4	4	$*$	3

Number of *? ... too restrictive

- Number of rows where * occur (row)
- k small
a few new users in the Netflix setting

Considered Parameters

0	0	2	1	2	1
1	4	0	2	$*$	1
1	4	2	3	4	2
1	$*$	0	$*$	3	$*$
1	4	4	4	$*$	3

- Number of rows where * occur (row)
- k small
a few new users in the Netflix setting
- Number of columns where * occur (col)
- k small
a few new movies in the Netflix setting

Considered Parameters

0	0	2	1	2	1
1	4	0	2	$*$	1
1	4	2	3	4	2
1	$*$	0	$*$	3	$*$
1	4	4	4	$*$	3

```
Number of *?
... too restrictive
```

- Number of rows where * occur (row)
- k small
a few new users in the Netflix setting
- Number of columns where * occur (col)
$-\mathbf{k}$ small \longmapsto a few new movies in the Netflix setting
- Number of columns and rows covering all * (comb)
- Better than col and row

Results

- Rank Minimization vs. Distinct Row Minimization
- Opinion poll: Which is harder?

row col
 comb

p-RMC \boldsymbol{p}-DRMC

Results

- Rank Minimization vs. Distinct Row Minimization
- Opinion poll: Which is harder?

row col comb

$$
\begin{array}{llll}
\hline p-\mathrm{RMC} & \mathrm{FPT}^{\star} & \text { FPT } & \mathrm{FPT}_{R}^{\star} \\
p \text {-DRMC } & \text { FPT } & \text { FPT } & \mathrm{FPT}^{\star}
\end{array}
$$

- ${ }^{\star}$ - explicitly proven results (others follow)
- R-randomized
- Also works when \boldsymbol{p} is considered a parameter

Proof Technique: DRMC

- Graph representation of compatibilities between rows in (p-)DRMC instances

$$
\left(\begin{array}{cccccc}
1 & \bullet & 0 & \bullet & \bullet & 1 \\
1 & 0 & 0 & 1 & \bullet & \bullet \\
1 & 0 & \bullet & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & \bullet \\
1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Small treewidth \longrightarrow (p-)DRMC can be solved efficiently

- DRMC solution \longrightarrow Minimum Clique-Cover in graph
- row, col and comb \longrightarrow bounded treewidth $(k+p k)$

Proof Technique: RMC

- Can permute rows and columns as above

Proof Technique: RMC

Proof Technique: RMC

- Step 1: Branch into (in)dependent rows in R
- Also branch to determine dependency factors in \mathbf{R}
- Same for C

Proof Technique: RMC

- Step 2: Verify branch (are dependent rows ok?)

Proof Technique: RMC

- Step 2: Verify branch (are dependent rows ok?)
- Solving a set of linear/quadratic equations
- Linear equations: Preprocess to remove
- Quadratic equations: Only few, admit $p^{k^{2}}$ algorithm

Proof Technique: RMC

- Step 3: Output branch with the least independent rows/columns among \mathbf{C} and R

What about higher domains (p)?

- Rank Minimization vs. Distinct Row Minimization
- Opinion poll: Which is harder?

row col comb

$p-\mathrm{RMC}$	FPT *	FPT	$\mathrm{FPT}_{\boldsymbol{R}}^{\star}$
$p-D R M C$	FPT	FPT	FPT^{\star}

RMC XP*
DRMC FPT^{\star}

What about higher domains (p)?

- Rank Minimization vs. Distinct Row Minimization
- Opinion poll: Which is harder?

row col comb

$p-\mathrm{RMC}$	FPT *	FPT	FPT $_{\boldsymbol{R}}^{\star}$
$p-D R M C$	FPT	FPT	FPT *

RMC XP XP $\quad X P_{R}^{\star}$
DRMC FPT^ paraNP-h* paraNP-h

MC: Advanced Measures

- Example:

0	1	1	0	0	1
0	1	1	1	0	0
1	1	1	1	0	1
0	$*$	$*$	$*$	1	1

- 1 means user (row) likes an item (column)
- How would you complete the missing entries?

MC: Advanced Measures

- Example:

0	1	1	0	0	1
0	1	1	1	0	0
1	1	1	1	0	1
0	1	1	1	1	1

- 1 means user (row) likes an item (column)
- How would you complete the missing entries?
- For DRMC and RMC it doesn't matter...
- To capture this intuition, we need clustering
- Complete matrix so as to get only "a few, similar" clusters

Matrix Completion: Clustering

- Input:
- Boolean Matrix M (can be lifted to fixed domain)
- number of clusters k
- Hamming (or arithmetic) distance within cluster r
- comb (or row or col)
- Actually 3 problems (based on Clustering variant)
- IN-Clustering: Partition rows into k clusters, each made of rows with distance $\leq r$ from a center (a row in M)
- ANY-Clustering: Same, but centers need not be in M
- PAIR-Clustering: No centers, r bounds pairwise distance

Matrix Clustering

- Unlike DRMC and RMC, all 3 clustering variants are NP-hard even if all entries are known
- Luckily, both k (desired \# of clusters) and r (distances) are well-motivated parameters

Parameter:	k	r
IN-ClUSTERING	W[2]-c	paraNP-c
ANY/PAIR-CLUSTERING	paraNP-c	paraNP-c

Matrix Clustering

- Unlike DRMC and RMC, all 3 clustering variants are NP-hard even if all entries are known
- Luckily, both k (desired \# of clusters) and r (distances) are well-motivated parameters

Parameter:	k	r	$k+r$
In-CLUSTERING	$\mathrm{W}[2]-\mathrm{c}$	paraNP-c	FPT
ANY/PAIR-CLUSTERING	paraNP-c	paraNP-c	FPT

Matrix Clustering[r+k]

- Much harder than the previous two algorithms
- Here: just a brief, high-level sketch showing the ideas
- Equivalent to graph problems on powers of (induced subgraphs of) hypercubes
- Technique: Kernelization

Matrix Clustering[r+k]

- Step 1: Reduce degree
- Irrelevant "vertex" technique

Matrix Clustering[r+k]

- Step 1: Reduce degree
- Irrelevant "vertex" technique
- Sunflower Lemma

- Outcome: each row has at most $\mathrm{f}(\mathrm{r}+\mathrm{k})$-many rows at distance $\leq r$
- For IN-Clustering: Red-Blue Dominating Set

Matrix Clustering[r+k]

- Step 2:
- If \#rows is too large, reject (because of Step 1)
- If \#rows is parameter-bounded... consider:

0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1

- Because of connectivity, two rows cannot differ in many coordinates
- Stronger claim: the \# of "important coordinates" is bounded
- Outcome: (exponential) kernel

Matrix Completion to Clustering

Parameter:	k	r	$k+r$
In-CLUSTERING	W[2]-c	paraNP-c	FPT
ANY/PAIR-CLUSTERING	paraNP-c	paraNP-c	FPT

Matrix Completion to Clustering

- By extending these techniques, we get:

Parameter:	k	r	$k+r$
In-CLUSTERING	W[2]-c	paraNP-c	FPT
ANY/PAIR-CLUSTERING	paraNP-c	paraNP-c	FPT

Matrix Completion to Clustering

- By extending these techniques, we get:

Parameter:	k	r	$k+r$	$k+r+$ cover
IN-CLUSTERING	W[2]-c	paraNP-c	FPT	N/A
ANY/PAIR-CLUSTERING	paraNP-c	paraNP-c	FPT	N/A
IN/ANY/PAIR-CLUSTERING ${ }^{\square}$	paraNP-c	paraNP-c	paraNP-c	FPT

Concluding Notes

- Matrix Completion is very well-studied in other fields
- Google hits:

$$
\begin{aligned}
& \text { Matrix Completion: } \pm 273,000 \\
& \text { Vertex Cover: } \pm 261,000 \\
& \text { Hamiltonian cycle: } \pm 177,000
\end{aligned}
$$

- Would be interesting to see some practical work on MC
- Lots done on finding/approximating the "right measure"
- But how about efficiently solving the problem for simple measures?
- Low-rank Matrix Completion well studied, but others...?

Concluding Notes

row col comb

$p-\mathrm{RMC}$	FPT^{\star}	FPT	FPT_{R}^{\star}
p-DRMC	FPT	FPT	FPT^{\star}
RMC	XP *	XP	XP_{R}^{\star}
DRMC	FPT^{\star}	paraNP-h	paraNP-h

- No lower bounds for RMC
- Can we derandomize?
- Requires a deterministic algorithms for k quadratic equations over many variables...

巡!

(C)

Thank you for

 your attention
Questions?

row col

p-RMC FPT * FPT p-DRMC FPT FPT

XP ${ }^{\star} \quad \mathbf{X P}$
FPT* paraNP-h*

	row	col	comb
$p-\mathrm{RMC}$	FPT^{\star}	FPT	$\mathrm{FPT}_{\boldsymbol{R}}^{\star}$
$p-D R M C$	FPT	FPT	FPT^{\star}
RMC	XP *	XP	XP_{R}^{\star}
DRMC	FPT^{\star}	paraNP-h	paraNP-h

The University Of Sheffield.

