The Parameterized Complexity of Matrix Completion

Robert Ganian

Joint work with: Eduard Eiben Iyad Kanj

Sebastian Ordyniak Stefan Szeider

Matrix Completion

- General Task: Fill in entries to minimize some measure
 - Exploits expected similarities between rows of the matrix

- Task 1: Fill in entries to minimize the rank
 - Rank Matrix Completion Problem (RMC)

- Task 1: Fill in entries to minimize the rank
 - Rank Matrix Completion Problem (RMC)

- Task 1: Fill in entries to minimize the rank
 - Rank Matrix Completion Problem (RMC)
- Task 2: Fill in entries to minimize the # of distinct rows
 - Distinct Row Matrix Completion Problem (DRMC)

- Task 1: Fill in entries to minimize the rank
 - Rank Matrix Completion Problem (RMC)
- Task 2: Fill in entries to minimize the # of distinct rows
 - Distinct Row Matrix Completion Problem (DRMC)

Motivation

- Fundamental problems, well studied
 - Especially in ML and recommender systems
- Example 1: Netflix Problem
 - Entries are movie ratings
 - constant-size p

p-RMC, p-DRMC

- Example 2: Triangulation from Incomplete Data
 - Entries represent distances, large p

RMC, DRMC

Aim

- Exact algorithms
- Worst-case complexity
- Runtime guarantees
- Understanding the complexity of (p-)RMC, (p-)DRMC
 fine-grained
 - What really makes the problems hard?
 - When can they be solved more efficiently?

NP-complete!

Parameterized Complexity?

0	0	2	1	2	1
1	4	0	2	*	1
1	4	2	3	4	2
1	*	0	*	3	*
1	4	4	4	*	3

Number of *? ... too restrictive

Number of *? ... too restrictive

Number of rows where * occur (row)

– k small a few new users in the Netflix setting

Number of *? ... too restrictive

Number of rows where * occur (row)

– k small a few new users in the Netflix setting

• Number of **columns** where * occur (**col**)

- k small a few new movies in the Netflix setting

Number of *? ... too restrictive

Number of rows where * occur (row)

– k small a few new users in the Netflix setting

• Number of **columns** where * occur (**col**)

– k small a few new movies in the Netflix setting

- Number of columns and rows covering all * (comb)
 - Better than col and row

Results

- Rank Minimization vs. Distinct Row Minimization
 - Opinion poll: Which is harder?

	row	col	comb
<i>p</i> -RMC			
<i>p</i> -DRMC			

Results

- Rank Minimization vs. Distinct Row Minimization
 - Opinion poll: Which is harder?

	row	col	comb
<i>p</i> -RMC	FPT *	FPT	FPT_R^{\star}
<i>p</i> -DRMC	FPT	FPT	FPT [*]

- * explicitly proven results (others follow)
- *R* randomized
- Also works when *p* is considered a parameter

 Graph representation of compatibilities between rows in (p-)DRMC instances

Small treewidth (p-)DRMC can be solved efficiently - DRMC solution (p-)DRMC can be solved efficiently Minimum Clique-Cover in graph - row, col and comb (k + pk)

• Can permute rows and columns as above

- Step 1: Branch into (in)dependent rows in R
 - Also branch to determine dependency factors in R
 - Same for C

• **Step 2**: Verify branch (are dependent rows ok?)

- **Step 2**: Verify branch (are dependent rows ok?)
 - Solving a set of linear/quadratic equations
 - Linear equations: Preprocess to remove
 - Quadratic equations: Only few, admit p^{k^2} algorithm

• Step 3: Output branch with the least independent rows/columns among C and R

What about higher domains (p)?

Rank Minimization vs. Distinct Row Minimization

- **Opinion poll**: Which is harder?

	row	col	comb
<i>p</i> -RMC	FPT *	FPT	FPT_R^{\star}
<i>p</i> -DRMC	FPT	FPT	FPT*
RMC	XP*		
DRMC	FPT *		

What about higher domains (p)?

• Rank Minimization vs. Distinct Row Minimization

- **Opinion poll**: Which is harder?

	row	col	comb
<i>p</i> -RMC	FPT *	FPT	$\operatorname{FPT}_R^{\star}$
<i>p</i> -DRMC	FPT	FPT	FPT*
RMC	XP*	ХР	XP_R^{\star}
DRMC	FPT *	paraNP-h*	paraNP-h

MC: Advanced Measures

• Example:

0	1	1	0	0	1
0	1	1	1	0	0
1	1	1	1	0	1
0	*	*	*	1	1

- 1 means user (row) likes an item (column)
- How would you complete the missing entries?

MC: Advanced Measures

• Example:

0	1	1	0	0	1
0	1	1	1	0	0
1	1	1	1	0	1
0	1	1	1	1	1

- 1 means user (row) likes an item (column)
- How would you complete the missing entries?
 - For **DRMC** and **RMC** it doesn't matter...
 - To capture this intuition, we need *clustering*
 - Complete matrix so as to get only "a few, similar" clusters

Matrix Completion: Clustering

- Input:
 - − Boolean Matrix M (can be lifted to fixed domain)
 - number of clusters k
 - Hamming (or arithmetic) distance within cluster r
 comb (or row or col)
- Actually 3 problems (based on Clustering variant)
 - IN-Clustering: Partition rows into k clusters, each made of rows with distance ≤r from a center (a row in M)
 - ANY-Clustering: Same, but centers need not be in M
 - PAIR-Clustering: No centers, r bounds pairwise distance

Matrix Clustering

- Unlike DRMC and RMC, all 3 clustering variants are NP-hard even if all entries are known
 - Luckily, both k (desired # of clusters) and r (distances) are well-motivated parameters

Parameter:	k	r
IN-CLUSTERING	W[2]-c	paraNP-c
Any/Pair-Clustering	paraNP-c	paraNP-c

Matrix Clustering

- Unlike DRMC and RMC, all 3 clustering variants are NP-hard even if all entries are known
 - Luckily, both k (desired # of clusters) and r (distances) are well-motivated parameters

Parameter:	k	r	k + r
IN-CLUSTERING	W[2]-c	paraNP-c	FPT
Any/Pair-Clustering	paraNP-c	paraNP-c	FPT

- Much harder than the previous two algorithms
- Here: just a brief, high-level sketch showing the ideas
- Equivalent to graph problems on powers of (induced subgraphs of) hypercubes
- Technique: Kernelization

• Step 1: Reduce degree

Irrelevant "vertex" technique

- Step 1: Reduce degree
 - Irrelevant "vertex" technique
 - Sunflower Lemma

- Outcome: each row has at most f(r+k)-many rows at distance ≤r
 - For IN-Clustering: Red-Blue Dominating Set

- Step 2:
 - If #rows is too large, reject (because of Step 1)
 - If **#rows** is parameter-bounded... consider:

- Because of *connectivity*, two rows cannot differ in many coordinates
 - Stronger claim: the # of "important coordinates" is bounded
- Outcome: (exponential) kernel

Matrix Completion to Clustering

Parameter:	k	r	k + r
In-Clustering	W[2]-c	paraNP-c	FPT
Any/Pair-Clustering	paraNP-c	paraNP-c	FPT

Matrix Completion to Clustering

• By extending these techniques, we get:

Parameter:	k	r	k + r
In-Clustering	W[2]-c	paraNP-c	FPT
Any/Pair-Clustering	paraNP-c	paraNP-c	FPT

Matrix Completion to Clustering

• By extending these techniques, we get:

Parameter:	k	r	k + r	k + r + cover
IN-CLUSTERING ANY/PAIR-CLUSTERING	W[2]-c paraNP-c	paraNP-c paraNP-c	FPT FPT	N/A N/A
In/Any/Pair-Clustering ^{\Box}	paraNP-c	paraNP-c	paraNP-c	FPT

Concluding Notes

- Matrix Completion is very well-studied in other fields
 - Google hits:

Matrix Completion: ± 273,000 Vertex Cover: ± 261,000 Hamiltonian cycle: ± 177,000

- Would be interesting to see some practical work on MC
 - Lots done on finding/approximating the "right measure"
 - But how about efficiently solving the problem for simple measures?
 - Low-rank Matrix Completion well studied, but others...?

Concluding Notes

	row	col	comb
<i>p</i> -RMC	FPT *	FPT	FPT_R^{\star}
<i>p</i> -DRMC	FPT	FPT	FPT*
RMC	XP*	ХР	XP_R^{\star}
DRMC	FPT *	paraNP-h*	paraNP-h

- No lower bounds for **RMC**
- Can we derandomize?
 - Requires a deterministic algorithms for k quadratic equations over many variables...

Thank you for

your attention

Questions?

	row	col	comb
<i>p</i> -RMC	FPT *	FPT	FPT_R^\star
<i>p</i> -DRMC	FPT	FPT	FPT*
RMC	XP*	ХР	XP_R^{\star}
DRMC	FPT *	paraNP-h*	paraNP-h