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Matrix Completion: Basic Measures

• Input: Matrix over GF(p) with missing entries

– General Task: Fill in entries to minimize some measure

• Exploits expected similarities between rows of the matrix
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Matrix Completion: Basic Measures

• Input: Matrix over GF(p) with missing entries

– Task 1: Fill in entries to minimize the rank

• Rank Matrix Completion Problem (RMC)

– Task 2: Fill in entries to minimize the # of distinct rows

• Distinct Row Matrix Completion Problem (DRMC)
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Motivation

• Fundamental problems, well studied

– Especially in ML and recommender systems

• Example 1: Netflix Problem

– Entries are movie ratings

– constant-size p

• Example 2: Triangulation from Incomplete Data

– Entries represent distances, large p

p-RMC, p-DRMC

RMC, DRMC



Aim

• Understanding the complexity of (p-)RMC, (p-)DRMC

– What really makes the problems hard?

– When can they be solved more efficiently?

NP-complete!

fine-grained

• Exact algorithms
• Worst-case complexity
• Runtime guarantees

Parameterized Complexity?



Considered Parameters
0 0 2 1 2 1

1 4 0 2 * 1

1 4 2 3 4 2

1 * 0 * 3 *

1 4 4 4 * 3

Number of *?
... too restrictive



Considered Parameters

• Number of rows where * occur (row)

– k small             a few new users in the Netflix setting

0 0 2 1 2 1

1 4 0 2 * 1

1 4 2 3 4 2

1 * 0 * 3 *

1 4 4 4 * 3

Number of *?
... too restrictive



Considered Parameters

• Number of rows where * occur (row)

– k small             a few new users in the Netflix setting

• Number of columns where * occur (col)

– k small             a few new movies in the Netflix setting

0 0 2 1 2 1

1 4 0 2 * 1

1 4 2 3 4 2

1 * 0 * 3 *

1 4 4 4 * 3

Number of *?
... too restrictive



Considered Parameters

• Number of rows where * occur (row)

– k small             a few new users in the Netflix setting

• Number of columns where * occur (col)

– k small             a few new movies in the Netflix setting

• Number of columns and rows covering all * (comb)

– Better than col and row
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1 * 0 * 3 *

1 4 4 4 * 3

Number of *?
... too restrictive
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Results

• Rank Minimization vs. Distinct Row Minimization

– Opinion poll: Which is harder?

• ★ – explicitly proven results (others follow)

• R – randomized

• Also works when p is considered a parameter



Proof Technique: DRMC

• Graph representation of compatibilities between 
rows in (p-)DRMC instances

Small treewidth         (p-)DRMC can be solved efficiently

– DRMC solution             Minimum Clique-Cover in graph

– row, col and comb           bounded treewidth (𝑘 + 𝑝𝑘)



Proof Technique: RMC

• Can permute rows and columns as above

Some *
Some 

*

All known
Some 

*

R

C
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Proof Technique: RMC

• Step 1: Branch into (in)dependent rows in R

– Also branch to determine dependency factors in R

– Same for C

Dependent

Independent



Proof Technique: RMC

• Step 2: Verify branch (are dependent rows ok?)

Dependent

Independent



Proof Technique: RMC

• Step 2: Verify branch (are dependent rows ok?)

– Solving a set of linear/quadratic equations

– Linear equations: Preprocess to remove

– Quadratic equations: Only few, admit 𝑝𝑘
2

algorithm

Dependent

Independent Linear equation

Quadratic equation



Proof Technique: RMC

• Step 3: Output branch with the least 
independent rows/columns among C and R

Dependent

Independent
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MC: Advanced Measures

• Example:

– 1 means user (row) likes an item (column)

– How would you complete the missing entries?

0 1 1 0 0 1

0 1 1 1 0 0

1 1 1 1 0 1

0 * * * 1 1



MC: Advanced Measures

• Example:

– 1 means user (row) likes an item (column)

– How would you complete the missing entries?

• For DRMC and RMC it doesn’t matter…

• To capture this intuition, we need clustering

– Complete matrix so as to get only “a few, similar” clusters

0 1 1 0 0 1
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1 1 1 1 0 1

0 1 1 1 1 1



Matrix Completion: Clustering

• Input: 

– Boolean Matrix M (can be lifted to fixed domain)

– number of clusters k

– Hamming (or arithmetic) distance within cluster r

– comb (or row or col)

• Actually 3 problems (based on Clustering variant)

– IN-Clustering: Partition rows into k clusters, each made 
of rows with distance ≤r from a center (a row in M)

– ANY-Clustering: Same, but centers need not be in M

– PAIR-Clustering: No centers, r bounds pairwise distance



Matrix Clustering

• Unlike DRMC and RMC, all 3 clustering variants are 
NP-hard even if all entries are known

– Luckily, both k (desired # of clusters) and r (distances) 
are well-motivated parameters
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Matrix Clustering[r+k]

• Much harder than the previous two algorithms

• Here: just a brief, high-level sketch showing the ideas

• Equivalent to graph problems on powers of (induced 
subgraphs of) hypercubes

• Technique: Kernelization
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Matrix Clustering[r+k]

• Step 1: Reduce degree

– Irrelevant “vertex” technique

– Sunflower Lemma

• Outcome: each row has at most f(r+k)-many rows at 
distance ≤r

– For IN-Clustering: Red-Blue Dominating Set



Matrix Clustering[r+k]

• Step 2:

– If #rows is too large, reject (because of Step 1) 

– If #rows is parameter-bounded… consider:

– Because of connectivity, two rows cannot differ in many 
coordinates

• Stronger claim: the # of “important coordinates” is bounded

• Outcome: (exponential) kernel

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1
. . .
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Concluding Notes

• Matrix Completion is very well-studied in other fields

– Google hits:

• Would be interesting to see some practical work on MC

– Lots done on finding/approximating the “right measure”

– But how about efficiently solving the problem for simple 
measures?

• Low-rank Matrix Completion well studied, but others…?

Matrix Completion: ± 273,000
Vertex Cover: ± 261,000
Hamiltonian cycle: ± 177,000



Concluding Notes

• No lower bounds for RMC

• Can we derandomize?

– Requires a deterministic algorithms for k quadratic 
equations over many variables…



Thank you for

your attention

Questions?


