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The Traveling Salesman Problem

TSP
Given a complete graph with edge weights, find the shortest round trip
that visits all vertices exactly once.
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TSP History

Who? When What Runtime

Menger ’30 TSP O(n!)

Held–Karp,
Bellmann ’62 TSP O(2nn2)
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Euclidean TSP

Euclidean TSP
Given n points in Rd, find the shortest round trip that visits all of them.
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Applications

• Logistics
• Microchips (printing/drilling)
• Astronomy (pointing the telescope)
• Robotics
• ...
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Solving TSP

• Exact methods in practice (e.g., ILP’s, matching upper and lower
bound heuristics, . . . )
• Approximation: PTAS by Arora and by Mitchell, improved by Rao

and Smith (’98-’99)
• This talk focus on worst case time of exact algorithms
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Computational model

How hard is it to test for integers a1, . . . , ar , b1, . . . , bs if

r∑

i=1

√
ai ≤

s∑

j=1

√
bj

?????????????????????????????????????????
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Exact Euclidean TSP

Who? When What Runtime R2, (Rd)

Menger ’30 TSP O(n!)

Held–Karp,
Bellmann ’62 TSP O(2nn2)

Kann,
Hwang–Chang–Lee ’92-’93 ETSP R2 nO(

√
n)

Smith–Wormald ’98 ETSP Rd nO(
√
n), (nO(n1−1/d))
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Contribution

Earlier: nO(n1−1/d) = 2O(n1−1/d logn) algorithm and 2Ω(n1−1/d−ε ) lower bound.

We have settled the asymptotics of the exponent under the Exponential
Time Hypothesis (ETH).

ETH: there is no 2o(n) algorithm for 3SAT.

Theorem (Main)

For any fixed d, there is a 2O(n1−1/d) algorithm for Euclidean TSP in Rd.
All algorithms need 2Ω(n1−1/d) time under ETH.

Theorem
There is a 2O(

√
n) algorithm for Euclidean TSP in R2.

All algorithms need 2Ω(
√
n) time under ETH.
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On the lower bounds

Theorem (Main)

For any fixed d, all algorithms for Euclidean TSP in Rd need 2Ω(n1−1/d)

time under ETH.

Follows from B–B–K–Marx–v.d.Zanden ’18 for Ham. Cycle in Zd.

1. ETH with sparsification
2. Embedding of 3-SAT formula in d-dimensional space, and
3. modifying existing NP-hardness proof of Hamiltonian Circuit: 3-SAT

in d-dimensional space → HC in d-dim space
4. Building / modifying gadgets
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Contribution

Theorem (Main)

For any fixed d, there is a 2O(n1−1/d) algorithm for Euclidean TSP in Rd.
All algorithms need 2Ω(n1−1/d) time under ETH.

Main ideas:

1. Balanced separating point set with a square (or cube)
2. Recursively separating gives tree structure
3. Packing property guarantees that ‘few edges in solution cross cube

boundary’
4. Bounding the number of candidate sets of edges across a separator:

twiggling square
5. Bounding the number of ways endpoints of these edges are

connected (matchings): small representative set with rank based
approach
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The packing property

Could this tour be optimal?

Definition

A segment set has the packing property
if for any square σ , there are only O(1)
segments of length at least
SideLen(σ )/2 intersected by int(σ ).

Si
de

Le
n(

σ)

σ
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Using the packing property

Lemma
The segments of an optimal TSP tour in Rd have the packing property.

Already observed by Kann (’92) and Smith-Wormald (’98).

Idea behind algorithm:
• Find separator square σ intersected by O(

√
n) tour segments

• Solve subproblems recursively
From Packing property: such separator exists!
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The separator approach (in R2)

σ

p

q

1. Find a square σ such that
(a) σ partitions P into subsets Pin and Pout in a balanced way and
(b) σ intersects O(

√
n) segments of the (unknown) optimal tour

2. For each possible set S of tour segments intersecting σ
(possible guesses of S are the candidate sets)

3. For all matchings outside, recursively solve inside
4. For all matchings inside, recursively solve outside

Running time: # of candidate sets × # of matchings
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Bottleneck 1: number of candidate sets

Running time: # of candidate sets × # of matchings

σ intersects O(
√
n) tour segments.

We have
'
( (n

2
)

c
√
n

)
= 2Θ(

√
n logn) candidate sets...

This is tight for known separator theorems.
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Resolving Bottleneck 1:
Pushing the packing property further

σ

1

S has the packing property.

Split S into length classes:

Si :=
{
s ∈ S

∣∣∣∣
2i−1
√
n
≤ s < 2i√

n

}

Guess each Si separately.

Si is inside annulus of width 2i+1
√
n .

Few guesses for Si ⇔ few pts in the
i-th annulus.
We need sparse annuli around σ .
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The separator theorem in R2

Pi := pts of P at distance ≤ 2i/
√
n from σ

σ
P−1

σ
P0

σ
P1

Theorem

Given P ⊂ R2, there is a balanced separator σ such that |Pi(σ )| ≤ ci
√
n,

and σ can be found in polynomial time.
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Only 2O(
√
n) candidates

Theorem

For any set of n points in R2, there is a balanced separator σ such that
(i) each candidate set S contains O(

√
n) segments

(ii) there are 2O(
√
n) candidate sets.

Moreover, σ and the candidates can be computed in 2O(
√
n) time.

Bottleneck 1 X
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Bottleneck 2: number of matchings

Running time: # of candidate sets × # of matchings

σ σ

p

q

p

q

There are 2Θ(
√
n logn) matchings on c

√
n points...

Resolution: adapt Rank Based Approach (’15) by Bodlaender et al.
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Rank based approach

• Introduced for solving connectivity problems like Hamiltonian Circuit,
Steiner Tree, Connected Dominating Set, . . . in O(2O(tw)n) time on
graphs of small treewidth tw by B, Cygan, Nederlof, Kratsch (2015)
• Application, better rank bound for HC-like problems by Cygan,

Nederlof, Kratsch (2018)
• Experimental evaluation for Steiner tree by Fafianie, B, Nederlof

(2015)
• Experimental evaluation for Hamiltonian Circuit by Pilipczuk, Ziobp

(2019)
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Back to Hamiltonian Circuit on Graphs

If we have two of these in a table, we do not need the third!
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The rank based approach

We can drop a row, when for each 1 in the row, another row has also a 1
in that column
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The rank based approach

The connectivity matrix

We can drop a row, when for each 1 in the row, another row has also a 1
in that column: a sufficient condition is that the row is a linear
combination mod2 of other rows
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Rank based approach scheme for HC on graphs of small
treewidth

• Do a ‘usual’ DP on the tree decomposition, BUT
• If a table has more rows that the rank of the connectivity matrix,

then REDUCE

REDUCE:
Build the part of the connectivity matrix with

rows: the entries in the current table
colums: a basis of the connectivity matrix

Sweep with Gauss elimination (compute mod2)
Remove every row with only 0’s
Gives ‘representative set’, and we end with at most rank(M) number of
table entries
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Ranks

Connectivity matrix: columns and rows are partitions; 1 if closure of both
partition connects all elements, 0 otherwise
Connectivity matrix for matchings: rows and columns are a matching; 1 if
combination gives one cycle, 0 otherwise

Theorem (BCKN (see also Lovasz), CKN)
The rank of the connectivity matrix for k elements is 2k−1. The rank of
the connectivity matrix for matchings on k elements in 2k/2−1.

25 / 29



Picture from paper by Cygan, Nederlof, Kratsch
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Weighted solutions

Sort the rows with respect to non-decreasing cost
Gaussian elimination top-to-bottom: eliminate rows that are a linear
combination of ‘cheaper’ rows
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Using the rank based approach here

At each step in the recursion:
• For each candidate set of edges across the separating square:
• We have n1−1/d endpoints of the candidate set that can be matched

inside and outside
• Recursively, build representative set of matchings inside
• Recursively, build representative set of matchings outside

• Make all combinations of inside and outside
In 2d, one can also use that matchings are non-overlapping and use
Catalan structures

This resolves Bottleneck 2.
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Conclusion

We can solve Euclidean TSP exactly for constant d in 2O(n1−1/d) time.
This is tight under ETH.

• Rank=-based approach can give practical and theoretical faster
algorithms on tree decompositions and similar structures

• Treewidth-like techniques in geometrc settings
• Computational model . . .
• Open: Log shaving the Rectilinear Steiner tree?

(nO(n1−1/d) → 2O(n1−1/d))
• Open: Separators with optimal constants?

(optimal tradeoffs between balance and size?)
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