The Maximum Independent Set Problem is Easy

Darren Strash

Shonan Meeting 144 | March 5, 2019

Shonan Meeting 144: March 5, 2019

1

The Maximum Independent Set Problem is Easy (Except When it Isn't)

Darren Strash

Shonan Meeting 144 | March 5, 2019

Shonan Meeting 144: March 5, 2019

1

Applications

Computer vision:

 \rightarrow Image segmentation

† http://www.ntu.edu.sg/home/asjfcai/Benchmark_Website/benchmark_index.html

2 Shonan Meeting 144: March 5, 2019

Applications

Computer vision:

 \rightarrow Image segmentation

† http://www.ntu.edu.sg/home/asjfcai/Benchmark_Website/benchmark_index.html

Map labeling:

 \rightarrow Maximize nonoverlapping labels

2 Shonan Meeting 144: March 5, 2019

Applications

Computer vision:

 \rightarrow Image segmentation

† http://www.ntu.edu.sg/home/asjfcai/Benchmark_Website/benchmark_index.html

*

Map labeling:

 \rightarrow Maximize nonoverlapping labels

Tracking submarines:

\rightarrow Coordinate information from multiple sensors

* By Rama [CeCILL (http://www.cecill.info/licences/Licence_CeCILL_V2-en.html) or CC BY-SA 2.0 fr (https://creativecommons.org/licenses/by-sa/2.0/fr/deed.en)], from Wikimedia Commons

Shonan Meeting 144: March 5, 2019

Graphs with millions/billions of nodes and "structure"

- \rightarrow social networks, web-crawl graphs, co-citation networks
- \rightarrow sparse, many low-degree vertices

3 Shonan Meeting 144: March 5, 2019

Graphs with millions/billions of nodes and "structure"

- \rightarrow social networks, web-crawl graphs, co-citation networks
- \rightarrow sparse, many low-degree vertices

Branch-and bound is limited to hundreds (maybe thousands) of vertices

 \rightarrow graph C4000.5 solved with 1 year of computation!

3 Shonan Meeting 144: March 5, 2019

Graphs with millions/billions of nodes and "structure"

- \rightarrow social networks, web-crawl graphs, co-citation networks
- \rightarrow sparse, many low-degree vertices

Branch-and bound is limited to hundreds (maybe thousands) of vertices

 \rightarrow graph C4000.5 solved with 1 year of computation! Sparse graphs should be worse...

Shonan Meeting 144: March 5, 2019

3

 $\alpha(G)$ is (roughly) linear for sparse graphs...

 \rightarrow linear search depth is infeasible for branch and bound

4 Shonan Meeting 144: March 5, 2019

 $\alpha(G)$ is (roughly) linear for sparse graphs...

 \rightarrow linear search depth is infeasible for branch and bound

...enter inexact algorithms!

Graph		EvoMIS		
Name	n	Avg.	Max.	Min.
enron	69 244	62 811	62 811	62 811
gowalla	196 591	112 369	112 369	112 369
citation	268 495	150 380	150 380	150 380
cnr-2000*	325 557	229 981	229 991	229 976
google	356 648	174072	174072	174 072
coPapers	434 102	47 996	47 996	47 996
skitter*	554930	328 519	328 520	328 519
amazon	735 323	309 774	309 778	309 769
in-2004*	1 382 908	896 581	896 585	896 580

4 Shonan Meeting 144: March 5, 2019

Branch and Reduce

[Akiba and Iwata, 2016]

5 Shonan Meeting 144: March 5, 2019

Branch-and-reduce algorithms

6 Shonan Meeting 144: March 5, 2019

Branch-and-reduce algorithms

 \rightarrow Effective in theory: $O^*(1.1996^n)$ [Xiao and Nagamochi, 2017]

6 Shonan Meeting 144: March 5, 2019

7 Shonan Meeting 144: March 5, 2019

7 Shonan Meeting 144: March 5, 2019

7 Shonan Meeting 144: March 5, 2019

7 Shonan Meeting 144: March 5, 2019

7

And more...

[Akiba and Iwata, 2016]

Reductions

• LP-relaxation

 \rightarrow Maximize $\sum x_v$ where $x_u + x_v \leq 1$. If $x_v = 1$, then in some MIS.

- Unconfined
 - \rightarrow Some MIS exists without "unconfined" vertices
- Twin
 - \rightarrow Generalization of vertex folding
- Diamond, alternative, ...

And more...

[Akiba and Iwata, 2016]

Reductions

• LP-relaxation

 \rightarrow Maximize $\sum x_v$ where $x_u + x_v \leq 1$. If $x_v = 1$, then in some MIS.

- Unconfined
 - \rightarrow Some MIS exists without "unconfined" vertices
- Twin
 - \rightarrow Generalization of vertex folding
- Diamond, alternative, ...

Other techniques

- Packing constraints
 - \rightarrow Maintain constraints that update throughout recursion
- Branching rules, vertex ordering, ...
- 8 Shonan Meeting 144: March 5, 2019

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:
 - Citation networks (\approx 200,000 vertices)
 - Web crawl graphs (\approx 500,000 vertices)
 - Social networks (\approx 3,000,000 vertices)

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:
 - Citation networks (\approx 200,000 vertices)
 - Web crawl graphs (\approx 500,000 vertices)
 - Social networks (\approx 3,000,000 vertices)
- Some take much longer:
 - as-skitter (big) (1,170,580 vertices) **48 min**
 - web-Stanford (163,390 vertices) **13 hours**
 - Many networks remain **unsolved**

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:
 - Citation networks (\approx 200,000 vertices)
 - Web crawl graphs (\approx 500,000 vertices)
 - Social networks (\approx 3,000,000 vertices)
- Some take much longer:
 - as-skitter (big) (1,170,580 vertices) 48 min
 - web-Stanford (163,390 vertices) 13 hours
 - Many networks remain **unsolved**

9 Shonan Meeting 144: March 5, 2019

Darren Strash

 \rightarrow why?

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:
 - Citation networks (\approx 200,000 vertices)
 - Web crawl graphs (\approx 500,000 vertices)
 - Social networks (\approx 3,000,000 vertices)
- Some take much longer:
 - as-skitter (big) (1,170,580 vertices) 48 min
 - web-Stanford (163,390 vertices) 13 hours
 - Many networks remain **unsolved**
 - \rightarrow what can be done about it?

9 Shonan Meeting 144: March 5, 2019

Darren Strash

 \rightarrow why?

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:

 - Citation networks (≈200,000 vertices)
 Web crawl graphs (≈500,000 vertices)
 Social networks (≈3,000,000 vertices)
- Some take much longer:
 - as-skitter (big) (1,170,580 vertices) **48 min**
 - web-Stanford (163,390 vertices) 13 hours
 - Many networks remain **unsolved**

 \rightarrow what can be done about it? **Remove redundant computation Combine reductions and heuristic search**

Shonan Meeting 144: March 5, 2019 9

Darren Strash

 \rightarrow why?

The power of simple reductions

[Strash, 2016]

10 Shonan Meeting 144: March 5, 2019

An explanation

- Solves in less than 1 second:
 - Citation networks (\approx 200,000 vertices)
 - Web crawl graphs (\approx 500,000 vertices)
 - Social networks (\approx 3,000,000 vertices)

Darren Strash

An explanation

- Solves in less than 1 second:
 - Citation networks (\approx 200,000 vertices)
 - Web crawl graphs (\approx 500,000 vertices)
 - Social networks (\approx 3,000,000 vertices)

 \rightarrow After reductions, nearly all graphs are empty.

11 Shonan Meeting 144: March 5, 2019

Darren Strash

An explanation

- Solves in less than 1 second:
 - Citation networks (\approx 200,000 vertices)
 - Web crawl graphs (\approx 500,000 vertices)
 - Social networks (\approx 3,000,000 vertices)
- \rightarrow After reductions, nearly all graphs are empty.
 - 80% instances solved with two reductions (< 1 sec)
 - Vertex folding
 - Isolated clique removal

11 Shonan Meeting 144: March 5, 2019

Darren Strash

Combining reductions and inexact algorithms

12 Shonan Meeting 144: March 5, 2019

Heuristic: Guess "likely candidates" [Lamm et al. 2016]

 \bullet Branch-and-reduce selects **one solution vertex** at a time \rightarrow Limits the number of reductions in next recursion call

13 Shonan Meeting 144: March 5, 2019

Heuristic: Guess "likely candidates" [Lamm et al. 2016]

 \bullet Branch-and-reduce selects **one solution vertex** at a time \rightarrow Limits the number of reductions in next recursion call

- Can we guess **many vertices** that are likely in an MIS?
 - \rightarrow Remove and continue applying reductions

13 Shonan Meeting 144: March 5, 2019

Evolutionary algorithm [EvoMIS] [Lamm et al. 2015]

- Start with an initial independent set ${\cal I}$
- Swap whole blocks of independent set nodes using separators and graph partitioning

Update solutions to A and B with local search

 \rightarrow next generation

14 Shonan Meeting 144: March 5, 2019

Evolutionary algorithm [EvoMIS] [Lamm et al. 2015]

- Start with an initial independent set ${\cal I}$
- Swap whole blocks of independent set nodes using separators and graph partitioning

Update solutions to A and B with **local search**

 \rightarrow next generation

• Finds large independent sets in large sparse networks.

14 Shonan Meeting 144: March 5, 2019

Evolutionary algorithm [EvoMIS] [Lamm et al. 2015]

- Start with an initial independent set ${\cal I}$
- Swap whole blocks of independent set nodes using separators and graph partitioning

Update solutions to A and B with **local search**

 \rightarrow next generation

• Finds large independent sets in large sparse networks.

Idea: Select low-degree vertices from "fittest" independent set.

14 Shonan Meeting 144: March 5, 2019

ReduMIS: Near-optimal on "difficult networks"

- Finds exact MIS faster, when exact algorithm is slow:
 - as-skitter (big) 48 min \rightarrow 21 min
 - $\bullet \ \text{web-Stanford} \quad 13 \ hours \rightarrow 5 \ min$
 - bcsstk30 8.6 hours \rightarrow 2.4 sec
 - brack2 1
- 13 min
 ightarrow 9.4 sec
 - col $2 \text{ hours} \rightarrow 28 \text{ sec}$

15 Shonan Meeting 144: March 5, 2019
ReduMIS: Near-optimal on "difficult networks"

- Finds exact MIS faster, when exact algorithm is slow:
 - as-skitter (big) 48 min \rightarrow 21 min
 - $\bullet \ \text{web-Stanford} \quad 13 \ hours \to 5 \ min$
 - bcsstk30 8.6 hours \rightarrow 2.4 sec
 - brack2 13 min \rightarrow 9.4 sec
 - col $2 \text{ hours} \rightarrow 28 \text{ sec}$
- Finds exact MIS, for large networks with known MIS size

15 Shonan Meeting 144: March 5, 2019

ReduMIS: Near-optimal on "difficult networks"

- Finds exact MIS faster, when exact algorithm is slow:
 - as-skitter (big) 48 min \rightarrow 21 min
 - $\bullet \ \text{web-Stanford} \quad 13 \ hours \to 5 \ min$
 - bcsstk30 8.6 hours \rightarrow 2.4 sec
 - brack2 13 min \rightarrow 9.4 sec
 - col $2 \text{ hours} \rightarrow 28 \text{ sec}$
- Finds exact MIS, for large networks with known MIS size
- Consistently finds same value for **large** graphs with unknown MIS size
 - cnr-2000 \rightarrow **230,036**
 - $\bullet~$ skitter $~~\rightarrow~$ 328,626
 - ullet amazon \rightarrow **309,794**
 - ny ightarrow 131,502
- 15 Shonan Meeting 144: March 5, 2019

ReduMIS: Finds larger solutions faster

• Consistently finds larger solutions on social, Web, and road networks

16 Shonan Meeting 144: March 5, 2019

ReduMIS: Finds larger solutions faster

• Consistently finds larger solutions on social, Web, and road networks

16 Shonan Meeting 144: March 5, 2019

ReduMIS: Finds larger solutions faster

- Consistently finds larger solutions on social, Web, and road networks
 - \rightarrow averaged over 5 runs.

- Consistent, even as we scale to graphs on 10M to 100M nodes
- However, finds worse solutions for huge meshes

16 Shonan Meeting 144: March 5, 2019

Iterated Local Search [ARW] [Andrade et al. 2012]

- Start with some maximal independent set
- (1,2)-swaps \rightarrow remove one vertex, add two
- avoid swapping "recently" swapped vertices
- When not possible, perturb the solution

Iterated Local Search [ARW] [Andrade et al. 2012]

- Start with some maximal independent set
- (1,2)-swaps \rightarrow remove one vertex, add two
- avoid swapping "recently" swapped vertices
- When not possible, perturb the solution

17 Shonan Meeting 144: March 5, 2019

• **Problem:** Too much time to wait for high-quality solution.

18 Shonan Meeting 144: March 5, 2019

- Problem: Too much time to wait for high-quality solution.
- **Solution:** Speed up local search with online reductions, and removing high-degree vertices.

18 Shonan Meeting 144: March 5, 2019

- Problem: Too much time to wait for high-quality solution.
- **Solution:** Speed up local search with online reductions, and removing high-degree vertices.

18 Shonan Meeting 144: March 5, 2019

- **Problem:** Too much time to wait for high-quality solution.
- **Solution:** Speed up local search with online reductions, and removing high-degree vertices.

18 Shonan Meeting 144: March 5, 2019

Problem: Vertex folding is slow with high-degree neighbors

19 Shonan Meeting 144: March 5, 2019

Problem: Vertex folding is slow with high-degree neighbors

19 Shonan Meeting 144: March 5, 2019

Problem: Vertex folding is slow with high-degree neighbors

Repeat: Add small degree vertex to solution + reduce

19 Shonan Meeting 144: March 5, 2019

20 Shonan Meeting 144: March 5, 2019

Problem: Effective reductions are slow

Graph		LinearTime		NearLinear		VCSolver	
name	n	$ \mathcal{K} $	time	$ \mathcal{K} $	time	$ \mathcal{K} $	time
uk-2002	19M	11.7M	1.5	4.0M	28.0	0.2M	336.9
arabic-2005	23M	15.6M	2.6	6.7M	246.1	0.6M	1 0 3 3.2
gsh-2015-tpd	31M	2.0M	11.6	1.2M	97.4	0.4M	372.3
uk-2005	39M	28.2M	2.5	5.9M	60.5	0.8M	541.4
it-2004	41M	27.1M	3.3	11.3M	1 544.6	1.6M	6 749.0
sk-2005	51M	*	*	*	*	3.2M	10 010.5
uk-2007-05	106M	*	*	*	*	3.5M	18 829.4
webbase-2001	118M	51.7M	13.0	17.3M	121.1	0.7M	4207.8
asia.osm	12M	626.7K	0.8	594.4K	1.4	15.2K	204.7
road_usa	24M	2.5M	2.5	2.4M	4.1	0.2M	310.0
europe.osm	51M	1 500.0K	4.1	1 329.9K	6.1	8.4K	302.4
rgg26	67M	67.1M	1.0	51.3M	172.6	49.6M	9 887.7
rhg	100M	*	*	*	*	0	124.0
del24	17M	16.8M	0.2	15.6M	12.7	12.4M	4 789.5
del26	67M	67.1M	0.7	62.5M	53.3	49.9M	20 728.7
		-		-		-	

21 Shonan Meeting 144: March 5, 2019

Problem: Effective reductions are slow

Graph		LinearTime		NearLinear		VCSolver	
name	n	$ \mathcal{K} $	time	$ \mathcal{K} $	time	$ \mathcal{K} $	time
uk-2002	19M	11.7M	1.5	4.0M	28.0	0.2M	336.9
arabic-2005	23M	15.6M	2.6	6.7M	246.1	0.6M	1 0 3 3.2
gsh-2015-tpd	31M	2.0M	11.6	1.2M	97.4	0.4M	372.3
uk-2005	39M	28.2M	2.5	5.9M	60.5	0.8M	541.4
it-2004	41M	27.1M	3.3	11.3M	1 544.6	1.6M	6 749.0
sk-2005	51M	*	*	*	*	3.2M	10010.5
uk-2007-05	106M	*	*	*	*	3.5M	18 829.4
webbase-2001	118M	51.7M	13.0	17.3M	121.1	0.7M	4207.8
asia.osm	12M	626.7K	0.8	594.4K	1.4	15.2K	204.7
road_usa	24M	2.5M	2.5	2.4M	4.1	0.2M	310.0
europe.osm	51M	1 500.0K	4.1	1 329.9K	6.1	8.4K	302.4
rgg26	67M	67.1M	1.0	51.3M	172.6	49.6M	9 887.7
rhg	100M	*	*	*	*	0	124.0
del24	17M	16.8M	0.2	15.6M	12.7	12.4M	4 789.5
del26	67M	67.1M	0.7	62.5M	53.3	49.9M	20 728.7
		•		•		•	

21 Shonan Meeting 144: March 5, 2019

Solutions:

Only check parts of graph that change

22 Shonan Meeting 144: March 5, 2019

Solutions:

Only check parts of graph that change

Parallelize

22 Shonan Meeting 144: March 5, 2019

Solutions:

Only check parts of graph that change

Stop reductions if they are ineffective

22 Shonan Meeting 144: March 5, 2019

NearLinear		VCSolver		ParFastKer		
$ \mathcal{K} $	time	$ \mathcal{K} $	time	$ \mathcal{K} $	time	su
4.0M	28.0	0.2M	336.9	0.3 M	11.8	28.4
6.7M	246.1	0.6M	1 0 3 3.2	0.6M	25.7	40.2
1.2M	97.4	0.4M	372.3	0.5M	32.0	11.7
5.9M	60.5	0.8M	541.4	0.9M	53.3	10.1
11.3M	1 5 4 4.6	1.6M	6749.0	1.7M	151.8	44.4
*	*	3.2M	10010.5	3.5M	178.3	56.1
*	*	3.5M	18829.4	3.7M	372.4	50.6
17.3M	121.1	0.7M	4 207.8	0.9M	54.9	76.6
594.4K	1.4	15.2K	204.7	34.9K	1.2	169.8
2.4M	4.1	0.2M	310.0	0.2M	4.1	76.0
1 329.9K	6.1	8.4K	302.4	14.2K	4.9	61.3
51.3M	172.6	49.6M	9887.7	49.8M	150.3	65.8
*	*	0	124.0	16	64.6	1.9
15.6M	12.7	12.4M	4789.5	12.9M	51.5	93.1
62.5M	53.3	49.9M	20728.7	51.7M	179.0	115.8

23 Shonan Meeting 144: March 5, 2019

The weighted case

24 Shonan Meeting 144: March 5, 2019

Weighted variant

> 2 months ago:

Cannot solve on graphs with 500 vertices One LP reduction — untested

25 Shonan Meeting 144: March 5, 2019

New reductions [Lamm et al. 2019]

heaviest

26 Shonan Meeting 144: March 5, 2019

New reductions [Lamm et al. 2019] sum heavier, but each lighter heaviest. heaviest. U Contract into single vertex

26 Shonan Meeting 144: March 5, 2019

New reductions [Lamm et al. 2019] sum heavier, but each lighter heaviest. heaviest. U Contract into single vertex heaviest.

26 Shonan Meeting 144: March 5, 2019

New reductions [Lamm et al. 2019] sum heavier, but each lighter heaviest. heaviest. U Contract into single vertex heaviest.

sum heavier, but sum of 2 lighter

26 Shonan Meeting 144: March 5, 2019

New reductions [Lamm et al. 2019] sum heavier, but each lighter heaviest. heaviest. U Contract into single vertex heaviest. sum heavier, but sum of 2 lighter ????

26 Shonan Meeting 144: March 5, 2019

27 Shonan Meeting 144: March 5, 2019

27 Shonan Meeting 144: March 5, 2019

27 Shonan Meeting 144: March 5, 2019

27 Shonan Meeting 144: March 5, 2019

Practice / Application: Viability for map labeling

	В&	R_{full}
Graph	t_{\max}	w_{\max}
alabama-AM2	0.79	174309
alabama-AM3	80.78	185707
district-of-columbia-AM1	4.13	196475
district-of-columbia-AM2	233.70	147450
district-of-columbia-AM3	918.07	92714
florida-AM2	0.02	230595
florida-AM3	324.38	226767
georgia-AM3	14.35	214918
greenland-AM3	47.25	13069
hawaii-AM2	10.89	125284
hawaii-AM3	1177.95	129812
idaho-AM3	61.26	76831
kansas-AM3	18.99	87925
kentucky-AM2	42.05	97 397
kentucky-AM3	3346.94	96634
louisiana-AM3	20.17	60024
maryland-AM3	11.08	45496
massachusetts-AM2	0.48	140095
massachusetts-AM3	23.97	145631
mexico-AM3	289.14	97 663
new-hampshire-AM3	8.75	116060
north-carolina-AM3	11.55	49562
oregon-AM2	0.09	165047
oregon-AM3	474.15	164941
pennsylvania-AM3	38.76	143870
rhode-island-AM2	16.79	184543
rhode-island-AM3	931.05	163080
utah-AM3	285.22	98847
vermont-AM3	443.88	55577
virginia-AM2	0.77	$\mathbf{295867}$
virginia-AM3	786.05	233572
washington-AM2	2.20	$305 \ 619$
washington-AM3	532.25	271747
west-virginia-AM3	854.73	47927

28 Shonan Meeting 144: March 5, 2019

Practice / Application: Viability for map labeling

Graph

	В&	R_{full}
Graph	t_{\max}	w_{\max}
alabama-AM2	0.79	174309
alabama-AM3	80.78	185707
district-of-columbia-AM1	4.13	196475
district-of-columbia-AM2	233.70	147450
district-of-columbia-AM3	918.07	92714
florida-AM2	0.02	230595
florida-AM3	324.38	226767
georgia-AM3	14.35	214918
greenland-AM3	47.25	13069
hawaii-AM2	10.89	125284
hawaii-AM3	1177.95	129812
idaho-AM3	61.26	76831
kansas-AM3	18.99	87925
kentucky-AM2	42.05	97397
kentucky-AM3	3346.94	96634
louisiana-AM3	20.17	60024
maryland-AM3	11.08	45496
massachusetts-AM2	0.48	$\mathbf{140095}$
massachusetts-AM3	23.97	145631
mexico-AM3	289.14	97 663
new-hampshire-AM3	8.75	116060
north-carolina-AM3	11.55	49562
oregon-AM2	0.09	165047
oregon-AM3	474.15	164941
pennsylvania-AM3	38.76	143870
rhode-island-AM2	16.79	184543
rhode-island-AM3	931.05	163080
utah-AM3	285.22	98847
vermont-AM3	443.88	55577
virginia-AM2	0.77	295867
virginia-AM3	786.05	233572
washington-AM2	2.20	305619
washington-AM3	532.25	271747
west-virginia-AM3	854.73	47927

28

and	more
gra	aphs

as-skitter	746.93	123904741
ca-AstroPh	0.03	796556
ca-CondMat	0.02	1143480
ca-GrQc	0.00	289481
ca-HepPh	0.02	579675
ca-HepTh	0.01	560662
email-Enron	0.03	2457547
email-EuAll	0.19	25330331
p2p-Gnutella04	0.01	667539
p2p-Gnutella05	0.01	556559
p2p-Gnutella06	0.01	547591
p2p-Gnutella08	0.01	435893
p2p-Gnutella09	0.01	568472
p2p-Gnutella24	0.02	1970329
p2p-Gnutella25	0.02	1697310
p2p-Gnutella30	0.03	2785957
p2p-Gnutella31	0.04	4750671
roadNet-CA	774.56	111408830
roadNet-PA	32.06	61686106
roadNet-TX	33.49	78606965
soc-Epinions1	0.11	5668401
soc-LiveJournal1	270.96	$\mathbf{283948671}$
soc-Slashdot0811	0.18	5650791
soc-Slashdot0902	0.21	5953582
soc-pokec-relationships	1404.57	75717984
web-BerkStan	831.75	43766431
web-Google	3.16	56313384
web-NotreDame	28.11	25957800
web-Stanford	4.69	17799469
wiki-Talk	3.36	235875181
wiki-Vote	0.06	500436

B & R_{full}

 $t_{\rm max}$

 w_{\max}

Shonan Meeting 144: March 5, 2019

Conclusion

Reduction efficiency is important in practice

Reductions are effective in practice

Reductions + heuristics are a winning combination

Next? \rightarrow transfer to theory

Reduction efficiency is important in practice

Reductions are effective in practice

Reductions + heuristics are a winning combination

Next? \rightarrow transfer to theory

Thank you!

29 Shonan Meeting 144: March 5, 2019