The Maximum Independent Set Problem is Easy

Darren Strash

Shonan Meeting 144 | March 5, 2019

all images (C) jorge cham
Shonan Meeting 144: March 5, 2019
Darren Strash

The Maximum Independent Set Problem is Easy

 (Except When it Isn't)
Darren Strash

Shonan Meeting 144 | March 5, 2019

all images (C) jorge cham
Shonan Meeting 144: March 5, 2019
Darren Strash

Applications

Computer vision:

\rightarrow Image segmentation

\dagger http://www.ntu.edu.sg/home/asjfcai/Benchmark_Website/benchmark_index.html

Applications

Computer vision:

\rightarrow Image segmentation

† http://www.ntu.edu.sg/home/asjfcai/Benchmark_Website/benchmark_index.html

Map labeling:

\rightarrow Maximize nonoverlapping labels

Shonan Meeting 144: March 5, 2019
Darren Strash

Applications

Computer vision:

\rightarrow Image segmentation

\dagger http://www.ntu.edu.sg/home/asjfcai/Benchmark_Website/benchmark_index.html
Map labeling:
\rightarrow Maximize nonoverlapping labels

Tracking submarines:
\rightarrow Coordinate information from multiple sensors

* By Rama [CeCILL (http://www.cecill.info/licences/Licence_CeCILL_V2-en.html) or CC

BY-SA 2.0 fr (https://creativecommons.org/licenses/by-sa/2.0/fr/deed.en)], from Wikimedia Commons

Shonan Meeting 144: March 5, 2019
Darren Strash

Large real-world networks
Graphs with millions/billions of nodes and "structure" \rightarrow social networks, web-crawl graphs, co-citation networks \rightarrow sparse, many low-degree vertices

Large real-world networks
Graphs with millions/billions of nodes and "structure"
\rightarrow social networks, web-crawl graphs, co-citation networks
\rightarrow sparse, many low-degree vertices

Branch-and bound is limited to hundreds (maybe thousands) of vertices
\rightarrow graph C4000.5 solved with 1 year of computation!

Darren Strash

Large real-world networks
Graphs with millions/billions of nodes and "structure"
\rightarrow social networks, web-crawl graphs, co-citation networks
\rightarrow sparse, many low-degree vertices

Branch-and bound is limited to hundreds (maybe thousands) of vertices
\rightarrow graph C4000.5 solved with 1 year of computation! Sparse graphs should be worse...

Darren Strash

Large real-world networks
$\alpha(G)$ is (roughly) linear for sparse graphs...
\rightarrow linear search depth is infeasible for branch and bound

Large real-world networks
$\alpha(G)$ is (roughly) linear for sparse graphs...
\rightarrow linear search depth is infeasible for branch and bound
...enter inexact algorithms!

Graph		EvoMIS		
Name	n	Avg.	Max.	Min.
enron	69244	62811	$\mathbf{6 2 8 1 1}$	62811
gowalla	196591	112369	$\mathbf{1 1 2 3 6 9}$	112369
citation	268495	150380	$\mathbf{1 5 0 3 8 0}$	150380
cnr-2000*	325557	229981	$\mathbf{2 2 9 9 9 1}$	229976
google	356648	174072	$\mathbf{1 7 4 0 7 2}$	174072
coPapers	434102	47996	$\mathbf{4 7 9 9 6}$	47996
skitter*	554930	328519	328520	328519
amazon	735323	309774	309778	309769
in-2004*	1382908	896581	$\mathbf{8 9 6 5 8 5}$	896580

4 Shonan Meeting 144: March 5, 2019
Darren Strash

Branch and Reduce

[Akiba and Iwata, 2016]

Branch-and-reduce algorithms

4 Undo reductions, backtrack

Branch: Select vertex, remove neighbors

Branch-and-reduce algorithms

4. Undo reductions, backtrack

Branch: Select vertex, remove neighbors

\rightarrow Effective in theory: $O^{*}\left(1.1996^{n}\right)$ [Xiao and Nagamochi, 2017]

Reduction rules

Degree 0

Reduction rules

Degree 0

Reduction rules

Degree 0

-

Degree 1

Reduction rules

Degree 0

Degree 1

Degree 2

Reduction rules

Degree 0

Degree 2
vertex folding

Contract into single vertex

Reductions

- LP-relaxation
\rightarrow Maximize $\sum x_{v}$ where $x_{u}+x_{v} \leq 1$. If $x_{v}=1$, then in some MIS.
- Unconfined
\rightarrow Some MIS exists without "unconfined" vertices
- Twin
\rightarrow Generalization of vertex folding
- Diamond, alternative, ...

Reductions

- LP-relaxation
\rightarrow Maximize $\sum x_{v}$ where $x_{u}+x_{v} \leq 1$. If $x_{v}=1$, then in some MIS.
- Unconfined
\rightarrow Some MIS exists without "unconfined" vertices
- Twin
\rightarrow Generalization of vertex folding
- Diamond, alternative, ...

Other techniques

- Packing constraints
\rightarrow Maintain constraints that update throughout recursion
- Branching rules, vertex ordering, ...

Shonan Meeting 144: March 5, 2019
Darren Strash

Works well!

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:
- Citation networks ($\approx 200,000$ vertices)
- Web crawl graphs ($\approx 500,000$ vertices)
- Social networks ($\approx 3,000,000$ vertices)

Works well!

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:
- Citation networks ($\approx 200,000$ vertices)
- Web crawl graphs ($\approx 500,000$ vertices)
- Social networks ($\approx 3,000,000$ vertices)
- Some take much longer:
- as-skitter (big) (1,170,580 vertices) 48 min
- web-Stanford (163,390 vertices) 13 hours
- Many networks remain unsolved

Works well!

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:
- Citation networks ($\approx 200,000$ vertices)
- Web crawl graphs ($\approx 500,000$ vertices)
- Social networks ($\approx 3,000,000$ vertices)
- Some take much longer:
- as-skitter (big) (1,170,580 vertices) 48 min
- web-Stanford (163,390 vertices) 13 hours
- Many networks remain unsolved

Works well!

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:
- Citation networks ($\approx 200,000$ vertices)
- Web crawl graphs ($\approx 500,000$ vertices)
- Social networks ($\approx 3,000,000$ vertices)
- Some take much longer:
- as-skitter (big) (1,170,580 vertices) 48 min
- web-Stanford (163,390 vertices) 13 hours
- Many networks remain unsolved
\rightarrow what can be done about it?

9 Shonan Meeting 144: March 5, 2019
Darren Strash

Works well!

On LAW, SNAP, KONECT graphs...

- Solves in less than 1 second:
- Citation networks ($\approx 200,000$ vertices)
- Web crawl graphs ($\approx 500,000$ vertices)
reductions are powerful
- Social networks ($\approx 3,000,000$ vertices)
- Some take much longer:
- as-skitter (big) (1,170,580 vertices) 48 min
- web-Stanford (163,390 vertices) 13 hours
- Many networks remain unsolved
\rightarrow what can be done about it?
Remove redundant computation
Combine reductions and heuristic search
9 Shonan Meeting 144: March 5, 2019
Darren Strash

The power of simple reductions

[Strash, 2016]

An explanation

- Solves in less than 1 second:

$$
\rightarrow \text { why? }
$$

- Citation networks ($\approx 200,000$ vertices)
- Web crawl graphs ($\approx 500,000$ vertices)
- Social networks ($\approx 3,000,000$ vertices)

An explanation

- Solves in less than 1 second:
- Citation networks ($\approx 200,000$ vertices)
- Web crawl graphs ($\approx 500,000$ vertices)
- Social networks ($\approx 3,000,000$ vertices)
\rightarrow After reductions, nearly all graphs are empty.

An explanation

- Solves in less than 1 second:
- Citation networks ($\approx 200,000$ vertices)
- Web crawl graphs ($\approx 500,000$ vertices)
- Social networks ($\approx 3,000,000$ vertices)
\rightarrow After reductions, nearly all graphs are empty.
- 80% instances solved with two reductions ($<1 \mathrm{sec}$)
- Vertex folding
- Isolated clique removal

11 Shonan Meeting 144: March 5, 2019

Darren Strash

Combining reductions and inexact algorithms

Heuristic: Guess "likely candidates" [Lamm et al. 2016]

- Branch-and-reduce selects one solution vertex at a time \rightarrow Limits the number of reductions in next recursion call

Heuristic: Guess "likely candidates" [Lamm et al. 2016]

- Branch-and-reduce selects one solution vertex at a time \rightarrow Limits the number of reductions in next recursion call

- Can we guess many vertices that are likely in an MIS?
\rightarrow Remove and continue applying reductions

Evolutionary algorithm [EvoMIS][Lamm et al. 2015]

- Start with an initial independent set I
- Swap whole blocks of independent set nodes using separators and graph partitioning

Update solutions to A and B with local search
\rightarrow next generation

Evolutionary algorithm [EvoMIS][Lamm et al. 2015]

- Start with an initial independent set I
- Swap whole blocks of independent set nodes using separators and graph partitioning

Update solutions to A and B with local search
\rightarrow next generation

- Finds large independent sets in large sparse networks.

Evolutionary algorithm [EvoMIS][Lamm et al. 2015]

- Start with an initial independent set I
- Swap whole blocks of independent set nodes using separators and graph partitioning

Update solutions to A and B with local search
\rightarrow next generation

- Finds large independent sets in large sparse networks.

Idea: Select low-degree vertices from "fittest" independent set.

14 Shonan Meeting 144: March 5, 2019
Darren Strash

ReduMIS: Near-optimal on "difficult networks"

- Finds exact MIS faster, when exact algorithm is slow:
- as-skitter (big) $48 \mathrm{~min} \rightarrow 21 \mathrm{~min}$
- web-Stanford 13 hours $\rightarrow 5$ min
- bcsstk30 8.6 hours $\rightarrow 2.4$ sec
- brack2 13 min $\rightarrow 9.4$ sec
- col 2 hours $\rightarrow 28$ sec

ReduMIS: Near-optimal on "difficult networks"

- Finds exact MIS faster, when exact algorithm is slow:
- as-skitter (big) $48 \mathrm{~min} \rightarrow 21 \mathrm{~min}$
- web-Stanford 13 hours $\rightarrow 5$ min
- bcsstk30 8.6 hours $\rightarrow 2.4$ sec
- brack2 $13 \mathrm{~min} \rightarrow 9.4 \mathrm{sec}$
- col

2 hours $\rightarrow 28$ sec

- Finds exact MIS, for large networks with known MIS size

ReduMIS: Near-optimal on "difficult networks"

- Finds exact MIS faster, when exact algorithm is slow:
- as-skitter (big) $48 \mathrm{~min} \rightarrow 21 \mathrm{~min}$
- web-Stanford 13 hours $\rightarrow 5$ min
- bcsstk30 8.6 hours $\rightarrow 2.4$ sec
- brack2 $13 \mathrm{~min} \rightarrow 9.4 \mathrm{sec}$
- col

2 hours $\rightarrow 28$ sec

- Finds exact MIS, for large networks with known MIS size
- Consistently finds same value for large graphs with unknown MIS size
- cnr-2000 \rightarrow 230,036
- skitter \rightarrow 328,626
- amazon \rightarrow 309,794
- ny $\rightarrow \mathbf{1 3 1 , 5 0 2}$

15 Shonan Meeting 144: March 5, 2019

ReduMIS: Finds larger solutions faster

- Consistently finds larger solutions on social, Web, and road networks
\rightarrow averaged over 5 runs.

ReduMIS: Finds larger solutions faster

- Consistently finds larger solutions on social, Web, and road networks
\rightarrow averaged over 5 runs.

ReduMIS: Finds larger solutions faster

- Consistently finds larger solutions on social, Web, and road networks
\rightarrow averaged over 5 runs.

- Consistent, even as we scale to graphs on 10M to 100M nodes
- However, finds worse solutions for huge meshes

Iterated Local Search [ARW] [Andrade et al. 2012]

- Start with some maximal independent set
- (1,2)-swaps \rightarrow remove one vertex, add two
- avoid swapping "recently" swapped vertices
- When not possible, perturb the solution

Iterated Local Search [ARW] [Andrade et al. 2012]

- Start with some maximal independent set
- (1,2)-swaps \rightarrow remove one vertex, add two
- avoid swapping "recently" swapped vertices
- When not possible, perturb the solution

Accelerating Local Search [Dahlum et al. 2016]

- Problem: Too much time to wait for high-quality solution.

Accelerating Local Search [Dahlum et al. 2016]

- Problem: Too much time to wait for high-quality solution.
- Solution: Speed up local search with online reductions, and removing high-degree vertices.

Accelerating Local Search [Dahlum et al. 2016]

- Problem: Too much time to wait for high-quality solution.
- Solution: Speed up local search with online reductions, and removing high-degree vertices.

Shonan Meeting 144: March 5, 2019
Darren Strash

Accelerating Local Search [Dahlum et al. 2016]

- Problem: Too much time to wait for high-quality solution.
- Solution: Speed up local search with online reductions, and removing high-degree vertices.

Shonan Meeting 144: March 5, 2019
Darren Strash

Linear-time reductions [Chang et al. 2017]

Problem: Vertex folding is slow with high-degree neighbors

Linear-time reductions [Chang et al. 2017]

Problem: Vertex folding is slow with high-degree neighbors

Solution: Avoid it...

Linear-time reductions [Chang et al. 2017]

Problem: Vertex folding is slow with high-degree neighbors

Solution: Avoid it...

Repeat: Add small degree vertex to solution + reduce

Shonan Meeting 144: March 5, 2019
Darren Strash

Linear-time reductions [Chang et al. 2017]

Scalable Reductions [Hespe et al. 2018]

Problem: Effective reductions are slow

Graph			LinearTime		NearLinear		VCSolver	
name	n	$\|\mathcal{K}\|$	time	$\|\mathcal{K}\|$	time	$\|\mathcal{K}\|$	time	
uk-2002	19 M	11.7 M	1.5	4.0 M	28.0	0.2 M	336.9	
arabic-2005	23 M	15.6 M	2.6	6.7 M	246.1	0.6 M	1033.2	
gsh-2015-tpd	31 M	2.0 M	11.6	1.2 M	97.4	0.4 M	372.3	
uk-2005	39 M	28.2 M	2.5	5.9 M	60.5	0.8 M	541.4	
it-2004	41 M	27.1 M	3.3	11.3 M	1544.6	1.6 M	6749.0	
sk-2005	51 M	$*$	$*$	$*$	$*$	3.2 M	10010.5	
uk-2007-05	106 M	$*$	$*$	$*$	$*$	3.5 M	18829.4	
webbase-2001	118 M	51.7 M	13.0	17.3 M	121.1	0.7 M	4207.8	
asia.osm	12 M	626.7 K	0.8	594.4 K	1.4	15.2 K	204.7	
road_usa	24 M	2.5 M	2.5	2.4 M	4.1	0.2 M	310.0	
europe.osm	51 M	1500.0 K	4.1	1329.9 K	6.1	8.4 K	302.4	
rgg26	67 M	67.1 M	1.0	51.3 M	172.6	49.6 M	9887.7	
rhg	100 M	$*$	$*$	$*$	$*$	0	124.0	
del24	17 M	16.8 M	0.2	15.6 M	12.7	12.4 M	4789.5	
del26	67 M	67.1 M	0.7	62.5 M	53.3	49.9 M	20728.7	

21 Shonan Meeting 144: March 5, 2019
Darren Strash

Scalable Reductions [Hespe et al. 2018]

Problem: Effective reductions are slow

Graph			LinearTime		NearLinear		VCSolver	
name	n	$\|\mathcal{K}\|$	time	$\|\mathcal{K}\|$	time	$\|\mathcal{K}\|$	time	
uk-2002	19 M	11.7 M	1.5	4.0 M	28.0	0.2 M	336.9	
arabic-2005	23 M	15.6 M	2.6	6.7 M	246.1	0.6 M	1033.2	
gsh-2015-tpd	31 M	2.0 M	11.6	1.2 M	97.4	0.4 M	372.3	
uk-2005	39 M	28.2 M	2.5	5.9 M	60.5	0.8 M	541.4	
it-2004	41 M	27.1 M	3.3	11.3 M	1544.6	1.6 M	6749.0	
sk-2005	51 M	$*$	$*$	$*$	$*$	3.2 M	10010.5	
uk-2007-05	106 M	$*$	$*$	$*$	$*$	3.5 M	18829.4	
webbase-2001	118 M	51.7 M	13.0	17.3 M	121.1	0.7 M	4207.8	
asia.osm	12 M	626.7 K	0.8	594.4 K	1.4	15.2 K	204.7	
road_usa	24 M	2.5 M	2.5	2.4 M	4.1	0.2 M	310.0	
europe.osm	51 M	1500.0 K	4.1	1329.9 K	6.1	8.4 K	302.4	
rgg26	67 M	67.1 M	1.0	51.3 M	172.6	49.6 M	9887.7	
rhg	100 M	$*$	$*$	$*$	$*$	0	124.0	
del24	17 M	16.8 M	0.2	15.6 M	12.7	12.4 M	4789.5	
del26	67 M	67.1 M	0.7	62.5 M	53.3	49.9 M	20728.7	

21 Shonan Meeting 144: March 5, 2019
Darren Strash

Scalable Reductions [Hespe et al. 2018]

Solutions:

Only check parts of graph that change

Scalable Reductions [Hespe et al. 2018]

Solutions:

Only check parts of graph that change

22 Shonan Meeting 144: March 5, 2019
Darren Strash

Scalable Reductions [Hespe et al. 2018]

Solutions:

Only check parts of graph that change

Stop reductions if they are ineffective

Scalable Reductions [Hespe et al. 2018]

NearLinear		VCSolver		ParFastKer		
$\|\mathcal{K}\|$	time	$\|\mathcal{K}\|$	time	$\|\mathcal{K}\|$	time	su
4.0 M	28.0	0.2 M	336.9	$\mathbf{0 . 3 M}$	11.8	28.4
6.7 M	246.1	0.6 M	1033.2	$\mathbf{0 . 6 M}$	25.7	40.2
1.2 M	97.4	0.4 M	372.3	$\mathbf{0 . 5 M}$	32.0	11.7
5.9 M	60.5	0.8 M	541.4	$\mathbf{0 . 9 M}$	53.3	10.1
11.3 M	1544.6	1.6 M	6749.0	$\mathbf{1 . 7 M}$	151.8	44.4
$*$	$*$	3.2 M	10010.5	3.5 M	178.3	56.1
$*$	$*$	3.5 M	18829.4	$\mathbf{3 . 7 M}$	372.4	50.6
17.3 M	121.1	0.7 M	4207.8	$\mathbf{0 . 9 M}$	54.9	76.6
594.4 K	1.4	15.2 K	204.7	$\mathbf{3 4 . 9 K}$	1.2	169.8
2.4 M	4.1	0.2 M	310.0	$\mathbf{0 . 2 M}$	4.1	76.0
1329.9 K	6.1	8.4 K	302.4	$\mathbf{1 4 . 2 K}$	4.9	61.3
51.3 M	172.6	49.6 M	9887.7	$\mathbf{1 9 . 8 M}$	150.3	65.8
$*$	$*$	0	124.0	$\mathbf{1 6}$	64.6	1.9
15.6 M	12.7	12.4 M	4789.5	12.9 M	51.5	93.1
62.5 M	53.3	49.9 M	20728.7	51.7 M	179.0	115.8

23 Shonan Meeting 144: March 5, 2019
Darren Strash

The weighted case

Weighted variant

>2 months ago:
Cannot solve on graphs with 500 vertices
One LP reduction - untested

New reductions [Lamm et al. 2019]

New reductions [Lamm et al. 2019]

Contract into single vertex

New reductions [Lamm et al. 2019]

Contract into single vertex

New reductions [Lamm et al. 2019]

Contract into single vertex

sum heavier, but sum of 2 lighter

New reductions [Lamm et al. 2019]

Contract into single vertex

sum heavier, but sum of 2 lighter
????

Shonan Meeting 144: March 5, 2019

Meta-reductions

Theorem. u

Meta-reductions

Theorem.

Meta-reductions

Theorem.

$$
w(u) \geq w(\mathcal{I}) ?
$$

Choose u

Theorem.
u
$w(u)<w(\mathcal{I}) ?$

Shonan Meeting 144: March 5, 2019
Darren Strash

Meta-reductions

Theorem.

$$
w(u) \geq w(\mathcal{I}) ?
$$

Choose u

Theorem.

Practice / Application: Viability for map labeling

	$B \& \mathrm{R}_{\text {full }}$	
Graph	$t_{\text {max }}$	$w_{\text {max }}$
alabama-AM2	0.79	174309
alabama-AM3	80.78	185707
district-of-columbia-AM1	4.13	196475
district-of-columbia-AM2	233.70	147450
district-of-columbia-AM3	918.07	92714
florida-AM2	0.02	230595
florida-AM3	324.38	226767
georgia-AM3	14.35	214918
greenland-AM3	47.25	13069
hawaii-AM2	10.89	125284
hawaii-AM3	1177.95	129812
idaho-AM3	61.26	76831
kansas-AM3	18.99	87925
kentucky-AM2	42.05	97397
kentucky-AM3	3346.94	96634
louisiana-AM3	20.17	60024
maryland-AM3	11.08	45496
massachusetts-AM2	0.48	140095
massachusetts-AM3	23.97	145631
mexico-AM3	289.14	97663
new-hampshire-AM3	8.75	116060
north-carolina-AM3	11.55	49562
oregon-AM2	0.09	165047
oregon-AM3	474.15	164941
pennsylvania-AM3	38.76	143870
rhode-island-AM2	16.79	184543
rhode-island-AM3	931.05	163080
utah-AM3	285.22	98847
vermont-AM3	443.88	55577
virginia-AM2	0.77	295867
virginia-AM3	786.05	233572
washington-AM2	2.20	305619
washington-AM3	532.25	271747
west-virginia-AM3	854.73	47927

Practice / Application: Viability for map labeling

	B \& $\mathrm{R}_{\text {full }}$	
Graph	$t_{\max } w_{\max }$	
alabama-AM2	0.79174309	
alabama-AM3	80.78185707	
district-of-columbia-AM1	4.13196475	
district-of-columbia-AM2	$233.70 \quad 147450$	
district-of-columbia-AM3	$918.07 \quad 92714$	
florida-AM2	0.02230595	
florida-AM3	$324.38 \quad 226767$	
georgia-AM3	$14.35 \quad 214918$	
greenland-AM3	47.2513069	
hawaii-AM2	10.89125284	
hawaii-AM3	1177.95129812	
idaho-AM3	$61.26 \quad 76831$	
kansas-AM3	18.9987925	
kentucky-AM2	$42.05 \quad 97397$	
kentucky-AM3	$3346.94 \quad 96634$	ana More
louisiana-AM3	$20.17 \quad 60024$	
maryland-AM3	11.0845496	oraphs
massachusetts-AM2	0.48140095	8
massachusetts-AM3	23.97145631	
mexico-AM3	$289.14 \quad 97663$	
new-hampshire-AM3	8.75116060	
north-carolina-AM3	11.5549562	
oregon-AM2	0.09165047	
oregon-AM3	474.15164941	
pennsylvania-AM3	38.76143870	
rhode-island-AM2	16.79184543	
rhode-island-AM3	931.05163080	
utah-AM3	$285.22 \quad \mathbf{9 8 8 4 7}$	
vermont-AM3	$443.88 \quad 55577$	
virginia-AM2	0.77295867	
virginia-AM3	786.05233572	
washington-AM2	2.20305619	
washington-AM3	$532.25 \quad 271747$	
west-virginia-AM3	$854.73 \quad \mathbf{4 7 9 2 7}$	

	B \& $\mathrm{R}_{\text {full }}$	
Graph	$t_{\text {max }}$	$w_{\text {max }}$
as-skitter	746.93	123904741
ca-AstroPh	0.03	796556
ca-CondMat	0.02	1143480
ca-GrQc	0.00	289481
ca-HepPh	0.02	579675
ca-HepTh	0.01	560662
email-Enron	0.03	2457547
email-EuAll	0.19	25330331
p2p-Gnutella04	0.01	667539
p2p-Gnutella05	0.01	556559
p2p-Gnutella06	0.01	547591
p2p-Gnutella08	0.01	435893
p2p-Gnutella09	0.01	568472
p2p-Gnutella24	0.02	1970329
p2p-Gnutella25	0.02	1697310
p2p-Gnutella30	0.03	2785957
p2p-Gnutella31	0.04	4750671
roadNet-CA	774.56	111408830
roadNet-PA	32.06	61686106
roadNet-TX	33.49	78606965
soc-Epinions1	0.11	5668401
soc-LiveJournal1	270.96	283948671
soc-Slashdot0811	0.18	5650791
soc-Slashdot0902	0.21	5953582
soc-pokec-relationships	1404.57	75717984
web-BerkStan	831.75	43766431
web-Google	3.16	56313384
web-NotreDame	28.11	25957800
web-Stanford	4.69	17799469
wiki-Talk	3.36	235875181
wiki-Vote	0.06	500436

Conclusion

Reduction efficiency is important in practice
Reductions are effective in practice
Reductions + heuristics are a winning combination
Next? \rightarrow transfer to theory

Conclusion

Reduction efficiency is important in practice
Reductions are effective in practice
Reductions + heuristics are a winning combination
Next? \rightarrow transfer to theory

Thank you!

