
Separator-based
Pruned Dynamic Programming

for Steiner Tree

Yoichi Iwata (NII)

Takuto Shigemura (U-Tokyo)

1

appeared in AAAI 2019

https://www.aaai.org/Papers/AAAI/2019/AAAI-IwataY.4578.pdf

Steiner Tree Problem

Various applications:

 VLSI design

 fiber-optic network design

 team formulation in social networks

2

Steiner tree problem
Input: graph 𝐺, terminals 𝐴 ⊆ 𝑉(𝐺)
Output: minimum-weight tree connecting 𝐴

𝐴

𝑇

PACE Challenge 2018

Track 1: small number of terminals (𝐴 ≤ 136)

 𝑂 3|𝐴|𝑛 + 2|𝐴| 𝑚 + 𝑛 log 𝑛 by DP [Erickson-Monma-Veinott 87]

 EMV + 𝐴∗-search [Hougardy-Silvanus-Vygen 17]

Track 2: small tree-width (𝑤 ≤ 47)

 𝑤𝑂 𝑤 𝑚 by DP

 2𝑂 𝑤 𝑚 by a rank-based DP [Bodlaender-Cygan-Kratsch-
Nederlof 15]

Track 3: heuristic

3

https://pacechallenge.wordpress.com/pace-2018/

Results

Track 1: small number of terminals

1. Our team solved 95/100 by pruned DP

2. Maziarz and Polak solved 94/100 by HSV

3. Koch and Rehfeldt solved 93/100 by ILP

Track 2: small tree-width

1. Koch and Rehfeldt solved 92/100 by ILP

2. Our team solved 77/100 by pruned DP + 𝑤𝑤-DP

3. Tom van der Zanden solved 58/100 by rank-based DP

4

https://pacechallenge.org/files/PACE18-report.pdf

for public instances:
pruned DP alone solved 81/100
𝑤𝑤-DP alone solved 44/100
combined solved 84/100

Outline

1. EMV Algorithm

2. Separator-based Pruning

3. Other techniques

4. Experiments

5

Dynamic Programming [Dreyfus-Wagner 71]

For 𝑆 ⊆ 𝑉, let opt 𝑆 ≔ weight of min Steiner tree for
terminals 𝑆.

opt 𝑆 ∪ {𝑢}

= minቐ
opt 𝑆′ ∪ {𝑢} + opt 𝑆 ∖ 𝑆′ ∪ {𝑢} 𝑆′ ⊆ 𝑆

opt 𝑆 ∪ {𝑣} + 𝑤 𝑣𝑢 𝑣𝑢 ∈ 𝐸 𝐺

6

𝑢𝑆′
𝑆
∖
𝑆

′

𝑣𝑆 𝑢

EMV Algorithm [Erickson-Monma-Veinott 87]

𝑑 𝑆, 𝑢 = ∞ for ∀𝑆 ⊆ 𝐴 and ∀𝑢 ∈ 𝑉

𝑑 𝑎 , 𝑎 = 0 for ∀𝑎 ∈ 𝐴

for 𝑆 ⊆ 𝐴 in ascending order of |𝑆|

update 𝑑(𝑆, 𝑢) for ∀𝑢 by Dijkstra

for 𝑆′ ⊆ 𝐴 ∖ 𝑆

update 𝑑(𝑆 ∪ 𝑆′, 𝑢) for ∀𝑢

7

𝑂 3|𝐴|𝑛 + 2|𝐴| 𝑚 + 𝑛 log 𝑛 time

Can we avoid computing all 𝑑(𝑆, 𝑢)?
→ Yes, for special instances. [EMV 87]

Special Case [Erickson-Monma-Veinott 87]

If the graph if planar and all the terminals are on a
single face, the running time is improved to
𝑂(𝐴 3𝑛 + 𝐴 2𝑛 log 𝑛).

8

1

2

4 3

𝐴

Special Case [Erickson-Monma-Veinott 87]

If the graph if planar and all the terminals are on a
single face, the running time is improved to
𝑂(𝐴 3𝑛 + 𝐴 2𝑛 log 𝑛).

But, of course, this is too special to apply in practice…

9

1

2

4 3

𝐴
Steiner tree for {1, 3} always separates
{2, 4}. So we can skip the computation
of 𝑑(1,3 ,∗).

In general, we only need to compute
𝑑(𝑖, 𝑖 + 1,… , 𝑗 ,∗)

Outline

1. EMV Algorithm

2. Separator-based Pruning

3. Other techniques

4. Experiments

10

Important Partial Solution

A Steiner tree 𝑇 for 𝑆 ∪ {𝑢} is called important if
there is a Steiner tree 𝑇′ for 𝐴 ∖ 𝑆 ∪ {𝑢} s.t. 𝑇 + 𝑇′

is a minimum Steiner tree for 𝐴.

11

𝑢

𝐴

𝑇

important

𝑢

𝐴

𝑇

unimportant

Important Partial Solution

A Steiner tree 𝑇 for 𝑆 ∪ {𝑢} is called important if
there is a Steiner tree 𝑇′ for 𝐴 ∖ 𝑆 ∪ {𝑢} s.t. 𝑇 + 𝑇′

is a minimum Steiner tree for 𝐴.

In EMV algorithm, we can safely skip computations
for unimportant 𝑆, 𝑢 .

But how can we check the importance?

12

Necessary Condition of Importance

13

Key Lemma:
A Steiner tree 𝑇 for 𝑆 ∪ {𝑢} is not important if
there is an (𝐴 ∖ 𝑆)-separator 𝐶 such that for
every 𝑣 ∈ 𝐶, there is a Steiner tree for 𝑆 ∪ {𝑣}
of weight strictly less than the weight of 𝑇.

𝐶

𝑢

𝐴

𝑇

𝑇′
𝑣

𝐶

𝑢

𝐴

𝑇′′

𝑇′
𝑣

𝑤 𝑇′′ < 𝑤(𝑇)

Separator Construction

After computing 𝑑(𝑆,∗), we compute the minimum 𝑥
s.t. 𝐶𝑥 ≔ 𝑢 ∈ 𝑉 𝑑 𝑆, 𝑢 ≤ 𝑥 separates 𝐴 ∖ 𝑆.

Then, 𝐶𝑥 satisfies the condition for every 𝑆, 𝑢 with
𝑑 𝑆, 𝑢 > 𝑥.

14

4 3 4 5

5 3 5 5

4 3 3 4

5 5 4 5

𝑆

Pruned DP Algorithm

15

𝑃 ← ∅ # set of processed 𝑆

while ∃unprocessed 𝑆 s.t. 𝑑 𝑆, 𝑢 ≠ ∞ for some 𝑢

pick smallest such 𝑆

update 𝑑(𝑆, 𝑢) for ∀𝑢 by Dijkstra

compute minimum 𝑥 s.t. 𝐶𝑥 separates 𝐴 ∖ 𝑆

drop (𝑆, 𝑢) from 𝑑 for ∀ 𝑆, 𝑢 s.t. 𝑑 𝑆, 𝑢 > 𝑥

for 𝑆′ ∈ 𝑃 s.t. 𝑆 ∩ 𝑆′ ≠ ∅

update 𝑑(𝑆 ∪ 𝑆′, 𝑢) for ∀𝑢

push 𝑆 into 𝑃

Restore dropped information (1)

For unimportant (𝑆, 𝑢), we may have

𝑑 𝑆, 𝑢 > opt 𝑆 ∪ 𝑢 .

This can interfere with the pruning…

16

3

3

3

𝑆
4 3 4 5

5 3 5 6

4 3 4 5

5 5 5 6

𝑆

Dijkstra

𝐶4 does not separate 𝐴 ∖ 𝑆

Restore dropped information (2)

Before running Dijkstra, we partially restore 𝑑(𝑆, 𝑢)
as follows. For each 𝑢 with 𝑑 𝑆, 𝑢 ≠ ∞, we construct
the corresponding Steiner tree 𝑇𝑢 for 𝑆 ∪ {𝑢}, and
update 𝑑 𝑆, 𝑣 with 𝑑(𝑆, 𝑢) for ∀𝑣 ∈ 𝑉(𝑇𝑢).

17

3

3

3 3

𝑆
4 3 4 5

5 3 5 5

4 3 3 4

5 5 4 5

𝑆

Dijkstra

𝐶4 separates 𝐴 ∖ 𝑆

Restore dropped information (3)

If a Steiner tree 𝑇 for 𝑆 ∪ {𝑢} is unimportant, 𝑇 + 𝑃𝑢𝑣
is also unimportant. So we can safely drop such (𝑆, 𝑣) .

18

3

3

3 3

𝑆
4 3 4 5

5 3 5 5

4 3 3 4

5 5 4 5

𝑆

Dijkstra

𝐶4 separates 𝐴 ∖ 𝑆

Restore dropped information (3)

If a Steiner tree 𝑇 for 𝑆 ∪ {𝑢} is unimportant, 𝑇 + 𝑃𝑢𝑣
is also unimportant. So we can safely drop such (𝑆, 𝑣) .

19

3

3

3 3

𝑆
4 3 4

3

4 3

𝑆

Dijkstra

𝐶4 separates 𝐴 ∖ 𝑆

Outline

1. EMV Algorithm

2. Separator-based Pruning

3. Other techniques

4. Experiments

20

Data Structure (1)

How can we apply the merge operation efficiently?

Let valid 𝑆 ≔ 𝑢 ∈ 𝑉 𝑑 𝑆, 𝑢 ≠ ∞ .

We want to find all 𝑆′ such that

1. 𝑆 ∩ 𝑆′ = ∅ and

2. valid 𝑆 ∩ valid 𝑆′ ≠ ∅

21

𝑃 ← ∅ # set of processed 𝑆

while ∃unprocessed 𝑆 s.t. 𝑑 𝑆, 𝑢 ≠ ∞ for some 𝑢

…

for 𝑆′ ∈ 𝑃 s.t. 𝑆 ∩ 𝑆′ ≠ ∅

update 𝑑(𝑆 ∪ 𝑆′, 𝑢) for ∀𝑢

push 𝑆 into 𝑃

Data Structure (2)

We maintain the set of processed 𝑆 using the
following binary trie.

Each leaf 𝑡 keeps 𝑆𝑡 ⊆ 𝐴.

Each internal node 𝑡 with leaves 𝐿𝑡 keeps

1. 𝐼𝑖 ≔ 𝑡∈𝐿𝑖ځ
𝑆𝑡

2. 𝑈𝑖 ≔ 𝑡∈𝐿𝑖ڂ
valid(𝑆𝑡)

When searching 𝑆′, we can stop if 𝑆 ∩ 𝐼𝑖 ≠ ∅ or
valid 𝑆 ∩ 𝑈𝑖 = ∅.

22

Meet in the Middle

Any Steiner tree for 𝐴 can be written as a sum of
three Steiner trees for 𝑆1, 𝑆2, 𝑆3 with 1 ≤ 𝑆1 ≤
𝑆2 ≤ 𝑆3 ≤ |𝐴|/2.

1. We can stop after processing all 𝑆 of size ≤ 𝐴 /2.

2. When merging, we can iterate only over 𝑆′ of size
at most 2 𝐴 − 2|𝑆|.

23

𝑃 ← ∅ # set of processed 𝑆

while ∃unprocessed 𝑆 s.t. 𝑑 𝑆, 𝑢 ≠ ∞ for some 𝑢

…

for 𝑆′ ∈ 𝑃 s.t. 𝑆 ∩ 𝑆′ ≠ ∅

update 𝑑(𝑆 ∪ 𝑆′, 𝑢) for ∀𝑢

push 𝑆 into 𝑃

Outline

1. EMV Algorithm

2. Separator-based Pruning

3. Other techniques

4. Experiments

24

Environment

Data set: from the DIMACS and PACE

List of Solvers:

• Pruned: the proposed pruned DP algorithm

• EMV: the classical DP algorithm

• HSV: EMV + 𝐴∗-search

• SCIP-Jack [Gamrath,Koch,Maher,Rehfeldt,Shinano 17]:
ILP solver (PACE version)

Setting: Intel Xeon E5-2670 (2.6 GHz), single thread,
time limit = 30 minutes, memory limit = 6GB

(same as PACE)
25

Comparison with EMV

 No reductions

 200 public instances from PACE

26

Power of other techniques

DS: Data Structure

MM: Meet in the Middle

27

Comparison with HSV

 No reductions

28

𝐴 is ‘better’ than 𝐵 on an instance 𝑖 if
𝐴 could solve 𝑖 but B couldn’t or
(run-time of 𝐵) > (run-time of 𝐴) × 10 + 1s.

Comparison with HSV

29

Comparison with SCIP-Jack

 Pruned used the same reductions as SCIP-Jack

 Omit too-easy instances solved by the reductions alone

30

average of 𝑘/𝑛

Comparison with SCIP-Jack

31

Conclusion and Open Problems

 Pruned DP is quite effective for Steiner Tree.

 Further speedup?
 Pruning interferes with future pruning…

 Pruning for tree-decomposition DP?

32

