From theory to practice in k-OPT heuristic for Travelling Salesman Problem

Łukasz Kowalik

(joint work with Marek Cygan, Arkadiusz Socała and Kamil Żyła)

Traveling Salesman Problem (TSP)

Input

complete undirected graph G = (V, E) and a weight function $w : E \to \mathbb{N}$.

Problem

Find a tour (Hamiltonian cycle) of minimum weight.

Traveling Salesman Problem (TSP)

Input

complete undirected graph G = (V, E) and a weight function $w : E \to \mathbb{N}$.

Problem

Find a tour (Hamiltonian cycle) of minimum weight.

The shortest tour catching all San Francisco pokemons

Łukasz Kowalik

From theory to practice in k-OPT heuristic for TSP

Solving TSP

- Problem is NP-hard
- Best exact algorithm in time $2^n n^{O(1)}$.
- No approximation possible in general (unless P=NP)
- Some nice approximation algorithm under additional assumptions
 - w is a metric: 1.5-approximation (Christofides 1976)
 - Euclidean metric: a PTAS (Arora 1996)
 - Graphic metric: 1.4-approximation (Sebo, Vygen, 2012)
- In practice: people use heuristics.

k-OPT local search heuristic

- 1. $H_0 :=$ arbitrary Hamiltonian cycle.
- 2. As long as possible, get a **better** cycle H_i by means of the k-move operation.

For a tour *H*, a *k*-move is defined by a pair (E^-, E^+) such that $|E^-| = |E^+| = k$ and $H' = H \setminus E^- \cup E^+$ is a Hamiltonian cycle. Example for k = 3:

For a tour *H*, a *k*-move is defined by a pair (E^-, E^+) such that $|E^-| = |E^+| = k$ and $H' = H \setminus E^- \cup E^+$ is a Hamiltonian cycle. Example for k = 3:

For a tour *H*, a *k*-move is defined by a pair (E^-, E^+) such that $|E^-| = |E^+| = k$ and $H' = H \setminus E^- \cup E^+$ is a Hamiltonian cycle. Example for k = 3:

For a tour *H*, a *k*-move is defined by a pair (E^-, E^+) such that $|E^-| = |E^+| = k$ and $H' = H \setminus E^- \cup E^+$ is a Hamiltonian cycle. Example for k = 3:

For a tour *H*, a *k*-move is defined by a pair (E^-, E^+) such that $|E^-| = |E^+| = k$ and $H' = H \setminus E^- \cup E^+$ is a Hamiltonian cycle. Example for k = 3:

Practice

An implementation of a variant, called Lin-Kernighan heuristic solves 80K-vertex instances optimally (Hellsgaun '09).

Theory

Interesting results (lower, upper bounds) on

- quality of local optima (e.g. Chandra et al, SICOMP'99),
- number of steps needed to find local optimum (e.g., Johnson et al, JCSS'88),
- smoothed analysis of 2-opt (e.g. Künnemann and B. Manthey, ICALP'15).

Today's question

How fast can we perform a **single step**, i.e., How fast can we find an improving *k*-move?

Łukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Today's question

*k***-OPT OPTIMIZATION**

INPUT: symmetric function $w: V^2 \to \mathbb{N}$, a Hamiltonian cycle HOUTPUT: a k-move that maximizes improvement over H.

k-OPT DETECTION

OUTPUT: Is there a k-move improving over H?

Upper bounds

• $O(n^k)$ exhaustive search,

Lower bounds

- W[1]-hard [Marx '08]
- no n^{o(k/log k)} algorithm under ETH [Guo et al. '13]
- no $o(n^2)$ algorithm for k = 2 (folklore),

Today's question

*k***-OPT OPTIMIZATION**

INPUT: symmetric function $w: V^2 \to \mathbb{N}$, a Hamiltonian cycle HOUTPUT: a k-move that maximizes improvement over H.

k-OPT DETECTION

OUTPUT: Is there a k-move improving over H?

Upper bounds

- $O(n^k)$ exhaustive search,
- ► O(n^{[2k/3]+1}) time, O(n) additional space [de Berg, Buchin, Jansen, Woeginger '16]

Lower bounds

- ▶ W[1]-hard [Marx '08]
- no n^{o(k/log k)} algorithm under ETH [Guo et al. '13]
- no o(n²) algorithm for k = 2 (folklore),
- ▶ if o(n^{2.99}) algorithm for k = 3, then APSP in time o(n^{2.99}) [de Berg et al].

(joint work with Marek Cygan and Arkadiusz Socała)

Our results

Theorem

For every fixed integer k, k-OPT OPTIMIZATION can be solved in time $O(n^{(1/4+\epsilon_k)k})$ and space $O(n^{(1/8+\epsilon_k)k})$, where $\lim_{k\to\infty} \epsilon_k = 0$.

Our results

Theorem

For every fixed integer k, k-OPT OPTIMIZATION can be solved in time $O(n^{(1/4+\epsilon_k)k})$ and space $O(n^{(1/8+\epsilon_k)k})$, where $\lim_{k\to\infty} \epsilon_k = 0$.

Values of
$$\epsilon_k$$
 (computed by a program)k345678de Berg et al. $O(n^3)$ $O(n^3)$ $O(n^4)$ $O(n^5)$ $O(n^5)$ $O(n^6)$ our algorithm00000000

Our results

Theorem

For every fixed integer k, k-OPT OPTIMIZATION can be solved in time $O(n^{(1/4+\epsilon_k)k})$ and space $O(n^{(1/8+\epsilon_k)k})$, where $\lim_{k\to\infty} \epsilon_k = 0$.

Values of ϵ_k (computed by a program)						
k	3	4	5	6	7	8
de Berg et al.						
our algorithm			$O(n^{3.4})$	$O(n^4)$	$O(n^{4.25})$	$O(n^{4\frac{2}{3}})$

Theorem

If there is $\epsilon > 0$ such that 4-OPT DETECTION admits an algorithm in time $O(n^{3-\epsilon} \cdot \text{polylog}(M))$, then there is $\delta > 0$ such that ALL PAIRS SHORTEST PATHS admits an algorithm in time $O(n^{3-\delta} \cdot \text{polylog}(M))$, assuming integer weights from $\{-M, \ldots, M\}$.

(The most intuitive) representation of k-move A pair (E^- , E^+), where $E^- \subseteq H$, $E^+ \subseteq E(G)$

(The most intuitive) representation of k-move A pair (E^- , E^+), where $E^- \subseteq H$, $E^+ \subseteq E(G)$

(The most intuitive) representation of k-move A pair (E^- , E^+), where $E^- \subseteq H$, $E^+ \subseteq E(G)$

A more useful representation: a pair (f,

▶ an embedding $f : \{1, \ldots, k\} \rightarrow \{1, \ldots, n\}$

(The most intuitive) representation of k-move A pair (E^- , E^+), where $E^- \subseteq H$, $E^+ \subseteq E(G)$

$$M = \{13, 25, 46\}$$

A more useful representation: a pair (f, M)

▶ an embedding $f : \{1, \ldots, k\} \rightarrow \{1, \ldots, n\}$

• connection pattern: a perfect matching M on $\{1, .., 2k\}$

de Berg et al.'s idea

Observation 1

Now we can specify a connection pattern M before specifying an embedding f.

Observation 2

There are only O((2k)!) connection patterns, i.e., O(1) for fixed k.

de Berg et al.'s idea

Idea

- ► For each of the O((2k)!) connection patterns M, find the embedding f_M which maximizes weight improvement.
- Fixing *M* allows for exploiting the structure of the solution.

From now on, assume M is fixed.

Key notion: the dependence graph D_M

 $V(D_M) = [k].$

Vertex *i* corresponds to the *i*-th deleted edge from the Hamiltonian cycle $e_1e_2\cdots e_n$.

$$E(D_M)={\color{black}{O}}\cup I_M,$$

where

$$O = \{12, 23, \ldots, (k-1)k\}$$

• Edge $j(j + 1) \in O$ represents the property f(j) < f(j + 1).

I_M is defined by M. Edge ij ∈ I_M means that the cost of embedding *i*-the edge depends on f(j).

$E(D_M)=O\cup I_M$

- $O = \{12, 23, \dots, (k-1)k\}$
- ► Get I_M from M by identifying 2i 1 with 2i for $i \in [k]$: $I_M = \{ij : i'j' \in M, i' \in \{2i - 1, 2i\}, j' \in \{2j - 1, 2j\}\}$

$E(D_M)=O\cup I_M$

• $O = \{12, 23, \dots, (k-1)k\}$

▶ Get I_M from M by identifying 2i - 1 with 2i for $i \in [k]$: $I_M = \{ij : i'j' \in M, i' \in \{2i - 1, 2i\}, j' \in \{2j - 1, 2j\}\}$

 $D = ([4], \mathbf{O} \cup \mathbf{I}_M)$

$$D = ([4], \mathcal{O} \cup I_M)$$

1. Find a minimum vertex cover A of I_M

$$D = ([4], O \cup I_M)$$

- 1. Find a minimum vertex cover A of I_M
- 2. Embed A in all $n^{|A|}$ ways

 $D = ([4], O \cup I_M)$

- 1. Find a minimum vertex cover A of I_M
- 2. Embed A in all $n^{|A|}$ ways
- Dependence graph of the rest D' has only some edges of O.
 D' is a collection of **paths** so we can find optimal embedding in O(nk) time using dynamic programming.

We have $|A| \leq \lfloor 2/3k \rfloor$ (worst case: I_M is a collection of 3-cycles). Hence, time is $O(n^{\lfloor 2/3k \rfloor + 1}k)$ for every connection pattern.

Another possible algorithm

 $D = ([4], \bigcirc \cup I_M)$

Łukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Another possible algorithm

$$D = ([4], \mathcal{O} \cup I_M)$$

1. Embed 2, 4, ...,
$$2\lfloor k/2 \rfloor$$
 in all $n^{\lfloor k/2 \rfloor}$ ways

Another possible algorithm

 $D = ([4], \bigcirc \cup I_M)$

- 1. Embed 2, 4, ..., $2\lfloor k/2 \rfloor$ in all $n^{\lfloor k/2 \rfloor}$ ways
- 2. Dependence graph of the rest D' has only some edges of I_M . D' is a collection of **cycles and paths** so we can find optimal embedding in $O(n^3)$ time using dynamic programming.

Hence, time is $O(n^{\lfloor k/2 \rfloor + 3})$ for every connection pattern.

Tree decomposition is a tree of **bags** (subsets of V)

Tree decomposition is a tree of **bags** (subsets of V) such that For every edge $uv \in E$ some bag contains u and v

Tree decomposition is a tree of **bags** (subsets of V) such that

- For every edge $uv \in E$ some bag contains u and v
- For every vertex v ∈ V bags containing v form nonempty subtree (connected!)

Tree decomposition is a tree of bags (subsets of V) such that
For every edge uv ∈ E some bag contains u and v
For every vertex v ∈ V bags containing v form nonempty subtree (connected!)

Width of the decomposition: maximum bag size -1 (here: 3). Treewidth of *G*: minimum width of a decomposition of *G*.

Dynamic programming

For every node t of a tree decomposition of the graph D_M :

- ► X_t = the bag at t,
- V_t = union of all bags in the subtree rooted at t.

For every node t and partial embedding $f: X_t \rightarrow [n]$, compute

$$T_t[f] = \max_{\substack{g: V_t \to [n] \\ g|_{X_t} = f}} \operatorname{gain}_M(g).$$

in the bottom-up fashion.

Dynamic programming: example

$$T_{123}[f] = w(e_{f(1)}) + w(e_{f(2)}) + w(e_{f(3)}) - w(E_{f,M}^+)$$

$$T_{23}[f] = \max_{\substack{g:\{1,2,3\}\to[n]\\g|_{\{2,3\}=f}}} T_{123}[g].$$

 $T_{234}[f] = T_{23}[f|_{\{2,3\}}] + w(e_{f(4)}) - w(E_{f,M}^+ \setminus E_{f|_{\{2,3\}},M}^+)$

Theorem

Given a connection pattern M, the best k-move (f, M) can be found in time $n^{tw(D_M)+1}k^2 + 2^k$.

Theorem (Fomin et al. 2009)

Treewidth a k-vertex graph of maximum degree 4 is bounded by $(\frac{1}{3} + \epsilon_k)k$, where $\lim_{k\to\infty} \epsilon_k = 0$.

Corollary

For every fixed integer k, k-OPT OPTIMIZATION can be solved in time $O(n^{(1/3+\epsilon_k)k})$, where $\lim_{k\to\infty} \epsilon_k = 0$.

Divide the *n* edges of the Hamiltonian cycle into $n^{1/4}$ buckets of size $s = n^{3/4}$.

$$| e_1, e_2, \dots, e_s | e_{s+1}, \dots, e_{2s} | e_{2s+1}, \dots, e_{3s} | e_{3s+1}, \dots, e_n |$$

Divide the *n* edges of the Hamiltonian cycle into $n^{1/4}$ buckets of size $s = n^{3/4}$.

Go through all assignments $b: [k] \rightarrow [n^{1/4}]$ of the k edges to buckets.

Divide the *n* edges of the Hamiltonian cycle into $n^{1/4}$ buckets of size $s = n^{3/4}$.

Go through all assignments $b: [k] \rightarrow [n^{1/4}]$ of the k edges to buckets.

Edges of O in D_M between buckets no longer needed:

Divide the *n* edges of the Hamiltonian cycle into $n^{1/4}$ buckets of size $s = n^{3/4}$.

Go through all assignments $b: [k] \rightarrow [n^{1/4}]$ of the k edges to buckets.

• Edges of O in D_M between buckets no longer needed:

$$D_{M,b} = ([4], O \cup I_M)$$

• Dynamic programming works faster, in time $O(n^{\frac{3}{4}(tw(D_{M,b})+1)})$

Divide the *n* edges of the Hamiltonian cycle into $n^{1/4}$ buckets of size $s = n^{3/4}$.

Go through all assignments $b: [k] \rightarrow [n^{1/4}]$ of the k edges to buckets.

Edges of O in D_M between buckets no longer needed:

$$D_{M,b} = ([4], O \cup I_M)$$

Dynamic programming works faster, in time O(n^{3/4}(tw(D_{M,b})+1))
 Price: many bucket assignments to consider.

Plugging in the bucketing idea gives our main result (calculations skipped).

Theorem

For every fixed integer k, k-OPT OPTIMIZATION can be solved in time $O(n^{(1/4+\epsilon_k)k})$, where $\lim_{k\to\infty} \epsilon_k = 0$.

(joint work with Marek Cygan and Kamil Żyła)

(k, t)-OPT heuristic

For every connection pattern M, find the best k-move, restricted only to the k-moves with dependence graph D_M of treewidth at most t.

tw	<i>k</i> = 2	3	4	5	6	7	8	9
1	1	0	1	0	1	0	1	0
2		1	4	11	37	106	334	1004
3			1	11	90	645	4423	29234
4				0	2	71	1444	22303
5					0	0	0	11

Some thoughts

Possible goals

- ▶ (minor:) show an improvement over 2-OPT, 3-OPT,
- (major:) add as an element of a state-of-the-art solver, check if it helps.

Some ideas

- A question to address: How one should control k, t (bound on treewidth) and n (length of a fragment of the tour) during the whole local search process? (Increase parameters when stuck?)
- Make sure space usage is relatively low (embed some edges by brute-force? use bucketing?)