
From theory to practice in k-OPT heuristic for
Travelling Salesman Problem

 Lukasz Kowalik

(joint work with Marek Cygan, Arkadiusz Soca la and Kamil Ży la)

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Traveling Salesman Problem (TSP)

Input

complete undirected graph G = (V ,E) and
a weight function w : E → N.

Problem
Find a tour (Hamiltonian cycle) of minimum weight.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Traveling Salesman Problem (TSP)

Input

complete undirected graph G = (V ,E) and
a weight function w : E → N.

Problem
Find a tour (Hamiltonian cycle) of minimum weight.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

The shortest tour catching all San Francisco pokemons

(from http://www.math.uwaterloo.ca/tsp/poke/)

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Solving TSP

I Problem is NP-hard

I Best exact algorithm in time 2nnO(1).

I No approximation possible in general (unless P=NP)
I Some nice approximation algorithm under additional

assumptions
I w is a metric: 1.5-approximation (Christofides 1976)
I Euclidean metric: a PTAS (Arora 1996)
I Graphic metric: 1.4-approximation (Sebo, Vygen, 2012)

I In practice: people use heuristics.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

k-OPT local search heuristic

1. H0 := arbitrary Hamiltonian cycle.

2. As long as possible, get a better cycle Hi by means of the
k-move operation.

→ → → · · ·

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

k-move

For a tour H, a k-move is defined by a pair (E−,E+) such that

I |E−| = |E+| = k and

I H ′ = H \ E− ∪ E+ is a Hamiltonian cycle.

Example for k = 3:

k-move is improving when w(H ′) < w(H).

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

k-OPT heuristic

Practice
An implementation of a variant, called Lin-Kernighan heuristic
solves 80K-vertex instances optimally (Hellsgaun ’09).

Theory

Interesting results (lower, upper bounds) on

I quality of local optima (e.g. Chandra et al, SICOMP’99),

I number of steps needed to find local optimum (e.g., Johnson
et al, JCSS’88),

I smoothed analysis of 2-opt (e.g. Künnemann and B. Manthey,
ICALP’15).

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Today’s question

How fast can we perform a single step,
i.e.,

How fast can we find an improving k-move?

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Today’s question

k-opt Optimization
Input: symmetric function w : V 2 → N, a Hamiltonian cycle H
Output: a k-move that maximizes improvement over H.

k-opt Detection
Output: Is there a k-move improving over H?

Upper bounds
I O(nk) exhaustive search,

I O(nb2k/3c+1) time, O(n)
additional space [de Berg,
Buchin, Jansen, Woeginger
’16]

Lower bounds
I W [1]-hard [Marx ’08]

I no no(k/ log k) algorithm under
ETH [Guo et al. ’13]

I no o(n2) algorithm for k = 2
(folklore),

I if o(n2.99) algorithm for k = 3,
then APSP in time o(n2.99) [de
Berg et al].

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Today’s question

k-opt Optimization
Input: symmetric function w : V 2 → N, a Hamiltonian cycle H
Output: a k-move that maximizes improvement over H.

k-opt Detection
Output: Is there a k-move improving over H?

Upper bounds
I O(nk) exhaustive search,

I O(nb2k/3c+1) time, O(n)
additional space [de Berg,
Buchin, Jansen, Woeginger
’16]

Lower bounds
I W [1]-hard [Marx ’08]

I no no(k/ log k) algorithm under
ETH [Guo et al. ’13]

I no o(n2) algorithm for k = 2
(folklore),

I if o(n2.99) algorithm for k = 3,
then APSP in time o(n2.99) [de
Berg et al].

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Part I: Theory
(joint work with Marek Cygan and Arkadiusz Soca la)

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Our results

Theorem
For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/4+εk)k) and space O(n(1/8+εk)k), where limk→∞ εk = 0.

Values of εk (computed by a program)
k 3 4 5 6 7 8

de Berg et al. O(n3) O(n3) O(n4) O(n5) O(n5) O(n6)

our algorithm O(n3.4) O(n4) O(n4.25) O(n4
2
3)

Theorem
If there is ε > 0 such that 4-opt Detection admits an algorithm
in time O(n3−ε · polylog(M)), then there is δ > 0 such that All
Pairs Shortest Paths admits an algorithm in time
O(n3−δ · polylog(M)), assuming integer weights from
{−M, . . . ,M}.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Our results

Theorem
For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/4+εk)k) and space O(n(1/8+εk)k), where limk→∞ εk = 0.

Values of εk (computed by a program)
k 3 4 5 6 7 8

de Berg et al. O(n3) O(n3) O(n4) O(n5) O(n5) O(n6)

our algorithm O(n3.4) O(n4) O(n4.25) O(n4
2
3)

Theorem
If there is ε > 0 such that 4-opt Detection admits an algorithm
in time O(n3−ε · polylog(M)), then there is δ > 0 such that All
Pairs Shortest Paths admits an algorithm in time
O(n3−δ · polylog(M)), assuming integer weights from
{−M, . . . ,M}.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Our results

Theorem
For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/4+εk)k) and space O(n(1/8+εk)k), where limk→∞ εk = 0.

Values of εk (computed by a program)
k 3 4 5 6 7 8

de Berg et al. O(n3) O(n3) O(n4) O(n5) O(n5) O(n6)

our algorithm O(n3.4) O(n4) O(n4.25) O(n4
2
3)

Theorem
If there is ε > 0 such that 4-opt Detection admits an algorithm
in time O(n3−ε · polylog(M)), then there is δ > 0 such that All
Pairs Shortest Paths admits an algorithm in time
O(n3−δ · polylog(M)), assuming integer weights from
{−M, . . . ,M}.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

An equivalent representation of k-move

(The most intuitive) representation of k-move

A pair (E−,E+), where E− ⊆ H,E+ ⊆ E (G)

1
2

3

4

5

6

e
4

e
3

e1

e 1
0

e
8

e7 e6

e 5

e2

e
9

f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

A more useful representation: a pair (f ,

M

)

I an embedding f : {1, . . . , k} → {1, . . . , n}

I connection pattern: a perfect matching M on {1, .., 2k}

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

An equivalent representation of k-move

(The most intuitive) representation of k-move

A pair (E−,E+), where E− ⊆ H,E+ ⊆ E (G)

1
2

3

4

5

6

e
4

e
3

e1

e 1
0

e
8

e7 e6

e 5

e2

e
9

f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

A more useful representation: a pair (f ,

M

)

I an embedding f : {1, . . . , k} → {1, . . . , n}

I connection pattern: a perfect matching M on {1, .., 2k}

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

An equivalent representation of k-move

(The most intuitive) representation of k-move

A pair (E−,E+), where E− ⊆ H,E+ ⊆ E (G)

1
2

3

4

5

6

e
4

e
3

e1

e 1
0

e
8

e7 e6

e 5

e2

e
9

f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

A more useful representation: a pair (f ,

M

)

I an embedding f : {1, . . . , k} → {1, . . . , n}

I connection pattern: a perfect matching M on {1, .., 2k}

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

An equivalent representation of k-move

(The most intuitive) representation of k-move

A pair (E−,E+), where E− ⊆ H,E+ ⊆ E (G)

1
2

3

4

5

6

e
4

e
3

e1

e 1
0

e
8

e7 e6

e 5

e2

e
9

f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

A more useful representation: a pair (f ,M)

I an embedding f : {1, . . . , k} → {1, . . . , n}
I connection pattern: a perfect matching M on {1, .., 2k}

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

de Berg et al.’s idea

1
2

3

4

5

6 f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

Observation 1
Now we can specify a connection pattern M before specifying an
embedding f .

Observation 2
There are only O((2k)!) connection patterns, i.e., O(1) for fixed k .

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

de Berg et al.’s idea

1
2

3

4

5

6 f (1) = 2
f (2) = 5
f (3) = 9

M = {13, 25, 46}

Idea

I For each of the O((2k)!) connection patterns M, find the
embedding fM which maximizes weight improvement.

I Fixing M allows for exploiting the structure of the solution.

From now on, assume M is fixed.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Key notion: the dependence graph DM

V (DM) = [k].

Vertex i corresponds to the i-th deleted edge from the Hamiltonian
cycle e1e2 · · · en.

E (DM) = O ∪ IM ,

where

O = {12, 23, . . . , (k − 1)k}

I Edge j(j + 1) ∈ O represents the property f (j) < f (j + 1).

I IM is defined by M. Edge ij ∈ IM means that the cost of
embedding i-the edge depends on f (j).

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

E (DM) = O ∪ IM

I O = {12, 23, . . . , (k − 1)k}
I Get IM from M by identifying 2i − 1 with 2i for i ∈ [k]:

IM = {ij : i ′j ′ ∈ M, i ′ ∈ {2i − 1, 2i}, j ′ ∈ {2j − 1, 2j}}

1
2

3

4

5

6

1
2

3

4

5

6

1

2

3
1 2 3

D = ([3],O ∪ IM)

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

E (DM) = O ∪ IM

I O = {12, 23, . . . , (k − 1)k}
I Get IM from M by identifying 2i − 1 with 2i for i ∈ [k]:

IM = {ij : i ′j ′ ∈ M, i ′ ∈ {2i − 1, 2i}, j ′ ∈ {2j − 1, 2j}}

1
2

3

4
5

6

7

8
1

2

3

4
5

6

7

8
1

2

3

4

1 2 3 4

D = ([4],O ∪ IM)

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4],O ∪ IM)

1. Find a minimum vertex cover A of IM

2. Embed A in all n|A| ways

3. Dependence graph of the rest D ′ has only some edges of O.
D ′ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| ≤ b2/3kc (worst case: IM is a collection of 3-cycles).

Hence, time is O(nb2/3kc+1k) for every connection pattern.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4],O ∪ IM)

1. Find a minimum vertex cover A of IM

2. Embed A in all n|A| ways

3. Dependence graph of the rest D ′ has only some edges of O.
D ′ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| ≤ b2/3kc (worst case: IM is a collection of 3-cycles).

Hence, time is O(nb2/3kc+1k) for every connection pattern.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4],O ∪ IM)

1. Find a minimum vertex cover A of IM

2. Embed A in all n|A| ways

3. Dependence graph of the rest D ′ has only some edges of O.
D ′ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| ≤ b2/3kc (worst case: IM is a collection of 3-cycles).

Hence, time is O(nb2/3kc+1k) for every connection pattern.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

The algorithm of de Berg, Buchin, Jansen and Woeginger

1 2 3 4

D = ([4],O ∪ IM)

1. Find a minimum vertex cover A of IM

2. Embed A in all n|A| ways

3. Dependence graph of the rest D ′ has only some edges of O.
D ′ is a collection of paths so we can find optimal embedding
in O(nk) time using dynamic programming.

We have |A| ≤ b2/3kc (worst case: IM is a collection of 3-cycles).

Hence, time is O(nb2/3kc+1k) for every connection pattern.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Another possible algorithm

1 2 3 4

D = ([4],O ∪ IM)

1. Embed 2, 4, . . . , 2bk/2c in all nbk/2c ways

2. Dependence graph of the rest D ′ has only some edges of IM .
D ′ is a collection of cycles and paths so we can find optimal
embedding in O(n3) time using dynamic programming.

Hence, time is O(nbk/2c+3) for every connection pattern.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Another possible algorithm

1 2 3 4

D = ([4],O ∪ IM)

1. Embed 2, 4, . . . , 2bk/2c in all nbk/2c ways

2. Dependence graph of the rest D ′ has only some edges of IM .
D ′ is a collection of cycles and paths so we can find optimal
embedding in O(n3) time using dynamic programming.

Hence, time is O(nbk/2c+3) for every connection pattern.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Another possible algorithm

1 2 3 4

D = ([4],O ∪ IM)

1. Embed 2, 4, . . . , 2bk/2c in all nbk/2c ways

2. Dependence graph of the rest D ′ has only some edges of IM .
D ′ is a collection of cycles and paths so we can find optimal
embedding in O(n3) time using dynamic programming.

Hence, time is O(nbk/2c+3) for every connection pattern.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Tree decompositions and treewidth

Graph G = (V ,E) Tree decomposition of G

c

b

a

f

e

d

i

h

g

bdef defh

abde

bcf

dhg

ehfi

Tree decomposition is a tree of bags (subsets of V)

such that
I For every edge uv ∈ E some bag contains u and v

I For every vertex v ∈ V bags containing v form nonempty
subtree (connected!)

Width of the decomposition: maximum bag size −1 (here: 3).
Treewidth of G : minimum width of a decomposition of G .

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Tree decompositions and treewidth

Graph G = (V ,E) Tree decomposition of G

c

b

a

f

e

d

i

h

g

bdef defh

abde

bcf

dhg

ehfi

Tree decomposition is a tree of bags (subsets of V) such that
I For every edge uv ∈ E some bag contains u and v

I For every vertex v ∈ V bags containing v form nonempty
subtree (connected!)

Width of the decomposition: maximum bag size −1 (here: 3).
Treewidth of G : minimum width of a decomposition of G .

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Tree decompositions and treewidth

Graph G = (V ,E) Tree decomposition of G

c

b

a

f

e

dd

i

h

g

bdef defh

abde

bcf

dhg

ehfi

bdef defh

abde dhg

Tree decomposition is a tree of bags (subsets of V) such that
I For every edge uv ∈ E some bag contains u and v
I For every vertex v ∈ V bags containing v form nonempty

subtree (connected!)

Width of the decomposition: maximum bag size −1 (here: 3).
Treewidth of G : minimum width of a decomposition of G .

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Tree decompositions and treewidth

Graph G = (V ,E) Tree decomposition of G

c

b

a

f

e

d

i

h

g

bdef defh

abde

bcf

dhg

ehfi

Tree decomposition is a tree of bags (subsets of V) such that
I For every edge uv ∈ E some bag contains u and v
I For every vertex v ∈ V bags containing v form nonempty

subtree (connected!)

Width of the decomposition: maximum bag size −1 (here: 3).
Treewidth of G : minimum width of a decomposition of G .

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Dynamic programming

For every node t of a tree decomposition of the graph DM :

I Xt = the bag at t,

I Vt = union of all bags in the subtree rooted at t.

Xt

Vt

For every node t and partial embedding f : Xt → [n], compute

Tt [f] = max
g :Vt→[n]
g |Xt=f

gainM(g).

in the bottom-up fashion.
 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Dynamic programming: example

1 2 3 4

D = ([4],O ∪ IM)

234

23

123

T123[f] = w(ef (1)) + w(ef (2)) + w(ef (3))− w(E+
f ,M)

T23[f] = max
g :{1,2,3}→[n]

g |{2,3}=f

T123[g].

T234[f] = T23[f |{2,3}] + w(ef (4))− w(E+
f ,M \ E+

f |{2,3},M
)

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

The O(n(1/3+εk)k)-time algorithm

Theorem
Given a connection pattern M, the best k-move (f ,M) can be
found in time ntw(DM)+1k2 + 2k .

Theorem (Fomin et al. 2009)

Treewidth a k-vertex graph of maximum degree 4 is bounded by
(13 + εk)k , where limk→∞ εk = 0.

Corollary

For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/3+εk)k), where limk→∞ εk = 0.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 (tw(DM,b)+1))

I Price: many bucket assignments to consider.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 (tw(DM,b)+1))

I Price: many bucket assignments to consider.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 (tw(DM,b)+1))

I Price: many bucket assignments to consider.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 (tw(DM,b)+1))

I Price: many bucket assignments to consider.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

One more idea: bucketing

Divide the n edges of the Hamiltonian cycle into n1/4 buckets of
size s = n3/4.

e1, e2, . . . , es es+1, . . . , e2s e2s+1, . . . , e3s e3s+1, . . . , en

1 2 3 4

Go through all assignments b : [k]→ [n1/4] of the k edges to buckets.

I Edges of O in DM between buckets no longer needed:

1 2 3 4

DM,b = ([4],O ∪ IM)

I Dynamic programming works faster, in time O(n
3
4 (tw(DM,b)+1))

I Price: many bucket assignments to consider.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

The O(n(1/4+εk)k)-time algorithm

Plugging in the bucketing idea gives our main result (calculations
skipped).

Theorem
For every fixed integer k , k-opt Optimization can be solved in
time O(n(1/4+εk)k), where limk→∞ εk = 0.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Part II: Practice
(joint work with Marek Cygan and Kamil Ży la)

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

A new heuristic based on theory

(k , t)-OPT heuristic

For every connection pattern M, find the best k-move, restricted
only to the k-moves with dependence graph DM of treewidth at
most t.

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Some statistics

tw k = 2 3 4 5 6 7 8 9

1 1 0 1 0 1 0 1 0
2 1 4 11 37 106 334 1004
3 1 11 90 645 4423 29234
4 0 2 71 1444 22303
5 0 0 0 11

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

Some thoughts

Possible goals

I (minor:) show an improvement over 2-OPT, 3-OPT,

I (major:) add as an element of a state-of-the-art solver, check
if it helps.

Some ideas

I A question to address: How one should control k, t (bound
on treewidth) and n (length of a fragment of the tour) during
the whole local search process? (Increase parameters when
stuck?)

I Make sure space usage is relatively low (embed some edges by
brute-force? use bucketing?)

 Lukasz Kowalik From theory to practice in k-OPT heuristic for TSP

