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Max-Cut: Definition and Example

Given G = (V ,E), find S ⊆ V such that |E(S,V \ S)| is maximum

Notation: mc(G) := max
S⊆V

|E(S,V \ S)|
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Max-Cut: Importance of Studying it

Member of Karp’s 21 NP-complete problems

Used in...

circuit layout design and statistical physics
(barahona1988application, barahona1982computational, and
chiang2007fast);
modeling social networks (harary1959measurement);
portfolio risk analysis (harary2002signed).

Motivation Analysis of Existing Work Our Contribution Results Conclusion

Sebastian Lamm – Kernelization and Max-Cut March 5, 2019 3/20

Circuit design Statistical physics Social networks



Kernelization: Definition and Example

Kernelization: Compress graph while preserving optimality
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Max-Cut: Current Research on
Kernelization

Previous work mostly of theoretical nature
Analyze problem k + mc-lowerbound(G)
Different reformulations (Etscheid and Mnich 2018, Madathil,
Saurabh, and Zehavi 2018, Prieto 2005)

Research on practicality missing
Present for other problems
INDEPENDENT SET, VERTEX COVER (Hespe, Schulz, and Strash 2018,
Akiba and Iwata 2016)
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Max-Cut: Reduction Rule 8 in Etscheid
and Mnich 2018
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Performance of Work from Etscheid and
Mnich 2018

Kernelization mostly driven by rule 8

Weak-points in practice
Reliance on clique-forest
Parameter k large in practice

Kernel size O(k) too large
O(k · |E(G)|) time too slow
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Overview of Our Contributions

Implemented and evaluated work of Etscheid and Mnich 2018
Generalized existing reduction rules

Rules not dependent on a subgraph anymore

Developed new reduction rules
Simplistic but significant improvement in practice
Identified inclusions

Efficient implementation
Timestamping system

Benchmark over a variety of instances
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Overview of Our Contributions

Five new unweighted reduction rules
Rule to compress induced 3-paths
Two rules reducing cliques (R8, S2)
Two antagonizing rules – merge and divide of cliques

Briefly investigated: Weighted path compression
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External/Internal Vertices

v1
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⇐⇒ ∈ Cext(G[S])

⇐⇒ ∈ Cint(G[S])
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Rule Generalization: R8
– “Sharing Adjacencies”
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New Reduction Rule: S2
– “Semi-Isolated Cliques”
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Techniques Used for Performance

Avoid time-intensive checks
Vertex v internal in clique: ∀w ∈ NG(v) : Deg(v) ≤ Deg(w)

Avoid checking the same reduction rules
Timestamp of most recent change in neighborhood for each vertex
Keep timestamp T for each rule:
All vertices with timestamp ≤ T already processed

Update vertex on change

Motivation Analysis of Existing Work Our Contribution Results Conclusion
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Experiments on KaGen Graphs

Random graphs by KaGen, 150 per each graph type. |V | = 2048
Total runtime: 16 sec. (68 min. by Etscheid and Mnich 2018!)

Kernelization efficiency for KaGen graphs; metric: e(G) = 1− |V(Gker)|
|V(G)|
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Experiments on KaGen Graphs

Improvement over Etscheid and Mnich 2018. |V | = 2048
Discrepancy between theory and practice

Absolute difference in efficiency: eabsDiff = e(Gnew)− e(Gold)
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Experiments on KaGen Graphs

Improvement on our results with weighted path compression

Comparison on our results

Absolute difference in efficiency: eabsDiff = e(GnewWeighted)− e(Gnew)
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Experiments – BiqMac Solver

Name |V (G)| degavg e(G) TBM(G) TBM(Gker)

ego-facebook 2888 1.03 1.00 - 0.01 [∞]

road-euroroad 1174 1.21 0.79 - - -

rt-twitter-copen 761 1.35 0.85 - 1.77 [∞]

bio-diseasome 516 2.30 0.93 - 0.07 [∞]

ca-netscience 379 2.41 0.77 - 0.67 [∞]

g000302 317 1.50 0.21 1.88 0.74 [2.53]

g001918 777 1.59 0.12 31.11 17.45 [1.78]

g000981 110 1.71 0.28 531.47 21.53 [24.68]

imgseg 105019 3548 1.22 0.93 f 13748.62 [∞]

imgseg 35058 1274 1.42 0.37 - - -

imgseg 374020 5735 1.52 0.82 f - -

Times in seconds. 10 hour time limit with 5 iterations.
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Experiments – Localsolver

Name |V (G)| degavg e(G) TLS(G) TLS(Gker)

ego-facebook 2888 1.03 1.00 20.09 0.09 [228.91]

road-euroroad 1174 1.21 0.79 - - -

rt-twitter-copen 761 1.35 0.85 - 834.71 [∞]

bio-diseasome 516 2.30 0.93 - 4.91 [∞]

ca-netscience 379 2.41 0.77 - 956.03 [∞]

g000302 317 1.50 0.21 0.58 0.49 [1.17]

g001918 777 1.59 0.12 1.47 1.41 [1.04]

g000981 110 1.71 0.28 10.73 4.73 [2.27]

imgseg 105019 3548 1.22 0.93 234.01 22.68 [10.32]

imgseg 35058 1274 1.42 0.37 34.93 24.71 [1.41]

imgseg 374020 5735 1.52 0.82 1739.11 72.23 [24.08]

Times in seconds. 10 hour time limit with 5 iterations.
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Experiments – Localsolver

Solution size over time by Localsolver: initial vs. kernelized
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Conclusion

Summary

Previous work: Good in theory, bad in practice

Set of new (unweighted) reduction rules

Sparse graphs highly reducible

Significant benefits for existing solvers

Future Work

Add parallelism?

New (weighted) reduction rules?

Hybrid approach: Use solver for reductions?
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