

A Practical Analysis of Kernelization Techniques for the Maximum Cut Problem

NII Shonan Meeting | March 5, 2019

Damir Ferizovic, Sebastian Lamm, Matthias Mnich, Christian Schulz, Darren Strash

DEPARTMENT OF INFORMATICS: INSTITUTE OF THEORETICAL INFORMATICS

• Given G = (V, E), find $S \subseteq V$ such that $|E(S, V \setminus S)|$ is maximum

• Notation:
$$mc(G) := \max_{S \subseteq V} |E(S, V \setminus S)|$$

Motivation	Analysis of Existing Work
•0 0	000

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm – Kernelization and Max-Cut

March 5, 2019

Given G = (V, E), find S ⊆ V such that |E(S, V \ S)| is maximum
Notation: mc(G) := max |E(S, V \ S)|

Motivation	Analysis of Existing Work
0 00	000
Sebastian Lamm - Ke	ernelization and Max-Cut

Our Contribution

Results

Conclusion O

March 5, 2019

Given G = (V, E), find S ⊆ V such that |E(S, V \ S)| is maximum
 Notation: mc(G) := max |E(S, V \ S)|

Motivation	Analysis of Existing Work
•00	000

Our Contribution

Results

Conclusion O

Sebastian Lamm – Kernelization and Max-Cut

March 5, 2019

Given G = (V, E), find S ⊆ V such that |E(S, V \ S)| is maximum
 Notation: mc(G) := max |E(S, V \ S)|

 Motivation
 Analysis of Existing Work

 ●○○
 ○○○

Our Contribution

Results

Conclusion O

Sebastian Lamm – Kernelization and Max-Cut

March 5, 2019

- Given G = (V, E), find $S \subseteq V$ such that $|E(S, V \setminus S)|$ is maximum
- Notation: $mc(G) := \max_{S \subseteq V} |E(S, V \setminus S)|$

 Motivation
 Analysis of Existing Work

 •OO
 OOO

 Sebastian Lamm – Kernelization and Max-Cut

Our Contribution

Results

Conclusion O

March 5, 2019

Given G = (V, E), find S ⊆ V such that |E(S, V \ S)| is maximum
 Notation: mc(G) := max |E(S, V \ S)|

 Motivation
 Analysis of Existing Work

 ●○○
 ○○○

Our Contribution

Results

Conclusion O

Sebastian Lamm – Kernelization and Max-Cut

March 5, 2019

Given G = (V, E), find S ⊆ V such that |E(S, V \ S)| is maximum
 Notation: mc(G) := max |E(S, V \ S)|

 Motivation
 Analysis of Existing Work

 ●○○
 ○○○

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm – Kernelization and Max-Cut

March 5, 2019

Max-Cut: Importance of Studying it

- Member of Karp's 21 NP-complete problems
- Used in...

Circuit design

Statistical physics

Social networks

 Motivation
 Analysis of Existing Work

 ○●○
 ○○○

Our Contribution

Results 000000 Conclusion

Sebastian Lamm – Kernelization and Max-Cut

March 5, 2019

Kernelization: Compress graph while preserving optimality

 Motivation
 Analysis of

 ○○●
 ○○○

Analysis of Existing Work

Our Contribution

Results 000000 Conclusior O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Kernelization: Compress graph while preserving optimality

 Motivation
 Analysis of E

 ○○●
 ○○○

Analysis of Existing Work

Our Contribution

Results 000000 Conclusior O

Sebastian Lamm – Kernelization and Max-Cut

March 5, 2019

Kernelization: Compress graph while preserving optimality

Sebastian Lamm -	 Kernelization and Max-Cut 		March 5, 2019	4/20
000	000	000000	000000	0
Motivation	Analysis of Existing Work	Our Contribution	Results	Conclus

Kernelization: Compress graph while preserving optimality

Motivation	Analysis of Existing Work
000	000
Sebastian Lamm - Kernel	ization and Max-Cut

Our Contribution

Results 000000 Conclusion O

March 5, 2019

Kernelization: Compress graph while preserving optimality

Motivation	Analysis o
000	000

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm – Kernelization and Max-Cut

Existing Work

March 5, 2019

Max-Cut: Current Research on Kernelization

Previous work mostly of theoretical nature

- Analyze problem k + mc-lowerbound(G)
- Different reformulations (Etscheid and Mnich 2018, Madathil, Saurabh, and Zehavi 2018, Prieto 2005)

Research on practicality missing

- Present for other problems
- INDEPENDENT SET, VERTEX COVER (Hespe, Schulz, and Strash 2018, Akiba and Iwata 2016)

Motivation Analysis of Existing Work

Our Contributio

Results 000000 Conclusion O

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

1
$$N_G(x) \cap S = N_G(X) \cap S$$
2 $|X| > \frac{|K| + |N_G(X) \cap S|}{2} \ge 1$

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

1
$$N_G(x) \cap S = N_G(X) \cap S \checkmark$$
2 $|X| > \frac{|K| + |N_G(X) \cap S|}{2} \ge 1 \checkmark$

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

1
$$N_G(x) \cap S = N_G(X) \cap S \checkmark$$
2 $|X| > \frac{|K| + |N_G(X) \cap S|}{2} \ge 1 \checkmark$

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

 $I N_G(x) \cap S = N_G(X) \cap S$ 2 $|X| > \frac{|K| + |N_G(X) \cap S|}{2} \ge 1$

Motivation

Analysis of Existing Work 000

Our Contribution

Results

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Performance of Work from Etscheid and Mnich 2018

- Kernelization mostly driven by rule 8
- Weak-points in practice
 - Reliance on clique-forest
 - Parameter k large in practice
 - Kernel size O(k) too large
 - $O(k \cdot |E(G)|)$ time too slow

Motivation An.

Analysis of Existing Work

Our Contribution

Results

Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Overview of Our Contributions

- Implemented and evaluated work of Etscheid and Mnich 2018
- Generalized existing reduction rules
 - Rules not dependent on a subgraph anymore

Developed new reduction rules

- Simplistic but significant improvement in practice
- Identified inclusions

Efficient implementation

- Timestamping system
- Benchmark over a variety of instances

Motivation 000 Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Overview of Our Contributions

Five new unweighted reduction rules

- Rule to compress induced 3-paths
- Two rules reducing cliques (R8, S2)
- Two antagonizing rules merge and divide of cliques
- Briefly investigated: Weighted path compression

Sebastian Lamm - Kernelization and Max-Cut

```
March 5, 2019
```

External/Internal Vertices

Motivation 000 Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Rule Generalization: R8 – "Sharing Adjacencies"

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

- "Sharing Adjacencies"

Motivation 000 Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

2 $|X| > \max\{|N_G(X)|, 1\}$

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

2 $|X| > \max\{|N_G(X)|, 1\}$

Motivation 000 Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

- "Sharing Adjacencies"

(1) $N_G(X) \cup X = N_G(x) \cup \{x\} \checkmark$ (2) $|X| > \max\{|N_G(X)|, 1\} \checkmark$

Motivation 000 Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Motivation 000 Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm – Kernelization and Max-Cut

March 5, 2019

Motivation 000 Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

New Reduction Rule: S2 - "Semi-Isolated Cliques" • Clique G[S] with $|C_{ext}(G[S])| \leq \left\lceil \frac{|S|}{2} \right\rceil \checkmark$

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

• Clique G[S] with $|C_{ext}(G[S])| \leq \left\lceil \frac{|S|}{2} \right\rceil \checkmark$

Motivation

Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Techniques Used for Performance

Avoid time-intensive checks

• Vertex *v* internal in clique: $\forall w \in N_G(v) : Deg(v) \leq Deg(w)$

Avoid checking the same reduction rules

- Timestamp of most recent change in neighborhood for each vertex
- Keep timestamp *T* for each rule: All vertices with timestamp ≤ *T* already processed
- Update vertex on change

Motivation 000 Analysis of Existing Work

Our Contribution

Results 000000 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Experiments on KaGen Graphs

Random graphs by KaGen, 150 per each graph type. |V| = 2048
 Total runtime: 16 sec. (68 min. by Etscheid and Mnich 2018!)

Kernelization efficiency for KaGen graphs; metric: $e(G) = 1 - \frac{|V(G_{ker})|}{|V(G)|}$

Experiments on KaGen Graphs

- Improvement over Etscheid and Mnich 2018. |V| = 2048
- Discrepancy between theory and practice

Absolute difference in efficiency: $e_{absDiff} = e(G_{new}) - e(G_{old})$

Experiments on KaGen Graphs

Improvement on our results with weighted path compression

Experiments – BiqMac Solver

Name	V(G)	<i>deg</i> avg	e(G)	$T_{BM}(G)$	$T_{\rm BM}(G_{\rm ker})$
ego-facebook	2888	1.03	1.00	-	0.01 [∞]
road-euroroad	1174	1.21	0.79	-	
rt-twitter-copen	761	1.35	0.85	-	1.77 [∞]
bio-diseasome	516	2.30	0.93	-	0.07 [∞]
ca-netscience	379	2.41	0.77	-	0.67 [∞]
g000302	317	1.50	0.21	1.88	0.74 [2.53]
g001918	777	1.59	0.12	31.11	17.45 [1.78]
g000981	110	1.71	0.28	531.47	21.53 [24.68]
imgseg_105019	3548	1.22	0.93	f	13748.62 [∞]
imgseg_35058	1274	1.42	0.37	-	
imgseg_374020	5735	1.52	0.82	f	

Times in seconds. 10 hour time limit with 5 iterations.

Motivation

Analysis of Existing Work

Our Contribution

Results 000●00 Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Experiments – Localsolver

Name	V(G)	<i>deg</i> _{avg}	<i>e</i> (<i>G</i>)	$T_{LS}(G)$	T _{LS} (G _{ker})
ego-facebook	2888	1.03	1.00	20.09	0.09	[228.91]
road-euroroad	1174	1.21	0.79	-	-	-
rt-twitter-copen	761	1.35	0.85	-	834.71	$[\infty]$
bio-diseasome	516	2.30	0.93	-	4.91	$[\infty]$
ca-netscience	379	2.41	0.77	-	956.03	$[\infty]$
g000302	317	1.50	0.21	0.58	0.49	[1.17]
g001918	777	1.59	0.12	1.47	1.41	[1.04]
g000981	110	1.71	0.28	10.73	4.73	[2.27]
imgseg_105019	3548	1.22	0.93	234.01	22.68	[10.32]
imgseg_35058	1274	1.42	0.37	34.93	24.71	[1.41]
imgseg_374020	5735	1.52	0.82	1739.11	72.23	[24.08]

Times in seconds. 10 hour time limit with 5 iterations.

Motivation

Analysis of Existing Work

Our Contribution

Results ○○○○●○ Conclusion O

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019

Experiments – Localsolver

Motivation	Analysis of Existing Work	Our Contribution	Results	Conclusion
000	000	000000	00000	0
Sebastian Lamm -	Kernelization and Max-Cut		March 5, 2019	19/20

Conclusion

Summary

- Previous work: Good in theory, bad in practice
- Set of new (unweighted) reduction rules
- Sparse graphs highly reducible
- Significant benefits for existing solvers

Future Work

- Add parallelism?
- New (weighted) reduction rules?
- Hybrid approach: Use solver for reductions?

Motivation 000 Analysis of Existing Work

Our Contribution

Results 000000 Conclusion

Sebastian Lamm - Kernelization and Max-Cut

March 5, 2019