Karlsruhe Institute of Technology

A Practical Analysis of Kernelization Techniques for the Maximum Cut Problem

NII Shonan Meeting | March 5, 2019
Damir Ferizovic, Sebastian Lamm, Matthias Mnich, Christian Schulz, Darren Strash

DEPARTMENT OF INFORMATICS: INSTITUTE OF THEORETICAL INFORMATICS

Max-Cut: Definition and Example

- Given $G=(V, E)$, find $S \subseteq V$ such that $|E(S, V \backslash S)|$ is maximum
- Notation: $m c(G):=\max _{S \subseteq V}|E(S, V \backslash S)|$

Max-Cut: Definition and Example

- Given $G=(V, E)$, find $S \subseteq V$ such that $|E(S, V \backslash S)|$ is maximum
- Notation: $m c(G):=\max _{S \subseteq V}|E(S, V \backslash S)|$

Max-Cut: Definition and Example

- Given $G=(V, E)$, find $S \subseteq V$ such that $|E(S, V \backslash S)|$ is maximum
- Notation: $m c(G):=\max _{S \subseteq V}|E(S, V \backslash S)|$

Max-Cut: Definition and Example

- Given $G=(V, E)$, find $S \subseteq V$ such that $|E(S, V \backslash S)|$ is maximum
- Notation: $m c(G):=\max _{S \subseteq V}|E(S, V \backslash S)|$

Max-Cut: Definition and Example

- Given $G=(V, E)$, find $S \subseteq V$ such that $|E(S, V \backslash S)|$ is maximum
- Notation: $m c(G):=\max _{S \subseteq V}|E(S, V \backslash S)|$

Max-Cut: Definition and Example

- Given $G=(V, E)$, find $S \subseteq V$ such that $|E(S, V \backslash S)|$ is maximum
- Notation: $m c(G):=\max _{S \subseteq V}|E(S, V \backslash S)|$

Max-Cut: Definition and Example

- Given $G=(V, E)$, find $S \subseteq V$ such that $|E(S, V \backslash S)|$ is maximum
- Notation: $m c(G):=\max _{S \subseteq V}|E(S, V \backslash S)|$

Max-Cut: Importance of Studying it

Karisruhe Institute of Technology

- Member of Karp's 21 NP-complete problems
- Used in...

Circuit design

Statistical physics

Social networks

Kernelization: Definition and Example

- Kernelization: Compress graph while preserving optimality

$$
G_{0}=G:
$$

Kernelization: Definition and Example

- Kernelization: Compress graph while preserving optimality

$$
G_{0}=G:
$$

Kernelization: Definition and Example

- Kernelization: Compress graph while preserving optimality
G_{1} :

$$
m c\left(G_{0}\right)=m c\left(G_{1}\right)+2
$$

Kernelization: Definition and Example

- Kernelization: Compress graph while preserving optimality
G_{1} :

$$
\begin{aligned}
& m c\left(G_{0}\right)=m c\left(G_{1}\right)+2 \\
& m c\left(G_{1}\right)=6
\end{aligned}
$$

Kernelization: Definition and Example

- Kernelization: Compress graph while preserving optimality

$$
G_{0}=G:
$$

$$
m c\left(G_{0}\right)=6+2=8
$$

Max-Cut: Current Research on Kernelization

- Previous work mostly of theoretical nature
- Analyze problem $k+m c$-lowerbound (G)
- Different reformulations (Etscheid and Mnich 2018, Madathil, Saurabh, and Zehavi 2018, Prieto 2005)
- Research on practicality missing
- Present for other problems
- independent set, Vertex Cover (Hespe, Schulz, and Strash 2018, Akiba and Iwata 2016)

Max-Cut: Reduction Rule 8 in Etscheid and Mnich 2018

Karlsruhe Institute of Technology

Max-Cut: Reduction Rule 8 in Etscheid and Mnich 2018

Karisruhe Institute of Technology

Max-Cut: Reduction Rule 8 in Etscheid and Mnich 2018

Karlsruhe Institute of Technology

(1) $N_{G}(x) \cap S=N_{G}(X) \cap S$
(2) $|X|>\frac{|K|+\left|N_{G}(X) \cap S\right|}{2} \geq 1$

Max-Cut: Reduction Rule 8 in Etscheid and Mnich 2018

(1) $N_{G}(x) \cap S=N_{G}(X) \cap S$
(2) $|X|>\frac{|K|+\left|N_{G}(X) \cap S\right|}{2} \geq 1 X$

Max-Cut: Reduction Rule 8 in Etscheid and Mnich 2018

(1) $N_{G}(x) \cap S=N_{G}(X) \cap S \checkmark$
(2) $|X|>\frac{|K|+\left|N_{G}(X) \cap S\right|}{2} \geq 1 \checkmark$

Max-Cut: Reduction Rule 8 in Etscheid and Mnich 2018

Karlsruhe Institute of Technology

(1) $N_{G}(x) \cap S=N_{G}(X) \cap S$
(2) $|X|>\frac{|K|+\left|N_{G}(X) \cap S\right|}{2} \geq 1$

Performance of Work from Etscheid and Mnich 2018

- Kernelization mostly driven by rule 8
- Weak-points in practice
- Reliance on clique-forest
- Parameter k large in practice
- Kernel size $O(k)$ too large
- $O(k \cdot|E(G)|)$ time too slow

Overview of Our Contributions

- Implemented and evaluated work of Etscheid and Mnich 2018
- Generalized existing reduction rules
- Rules not dependent on a subgraph anymore
- Developed new reduction rules
- Simplistic but significant improvement in practice
- Identified inclusions
- Efficient implementation
- Timestamping system
- Benchmark over a variety of instances

Overview of Our Contributions

- Five new unweighted reduction rules
- Rule to compress induced 3-paths
- Two rules reducing cliques (R8, S2)
- Two antagonizing rules - merge and divide of cliques
- Briefly investigated: Weighted path compression

External/Internal Vertices

Rule Generalization: R8
 - "Sharing Adjacencies"

Rule Generalization: R8
 - "Sharing Adjacencies"

Rule Generalization: R8
 - "Sharing Adjacencies"

(1) $N_{G}(X) \cup X=N_{G}(x) \cup\{x\}$
(2) $|X|>\max \left\{\left|N_{G}(X)\right|, 1\right\}$

Rule Generalization: R8
 - "Sharing Adjacencies"

(1) $N_{G}(X) \cup X=N_{G}(x) \cup\{x\} \checkmark$
(2) $|X|>\max \left\{\left|N_{G}(X)\right|, 1\right\} \checkmark$

Rule Generalization: R8
 - "Sharing Adjacencies"

(1) $N_{G}(X) \cup X=N_{G}(x) \cup\{x\} \checkmark$
(2) $|X|>\max \left\{\left|N_{G}(X)\right|, 1\right\} \checkmark$

New Reduction Rule: S2
 - "Semi-Isolated Cliques"

- Clique $G[S]$ with $\left|C_{\text {ext }}(G[S])\right| \leq\left\lceil\frac{|S|}{2}\right\rceil$

New Reduction Rule: S2
 - "Semi-Isolated Cliques"

- Clique $G[S]$ with $\left|C_{\text {ext }}(G[S])\right| \leq\left\lceil\frac{|S|}{2}\right\rceil$

New Reduction Rule: S2
 - "Semi-Isolated Cliques"

C Clique $G[S]$ with $\left|C_{e x t}(G[S])\right| \leq\left\lceil\frac{|S|}{2}\right\rceil \sqrt{ }$

New Reduction Rule: S2
 - "Semi-Isolated Cliques"

- Clique $G[S]$ with $\left|C_{\text {ext }}(G[S])\right| \leq\left\lceil\frac{|S|}{2}\right\rceil \checkmark$

New Reduction Rule: S2
 - "Semi-Isolated Cliques"

- Clique $G[S]$ with $\left|C_{\text {ext }}(G[S])\right| \leq\left\lceil\frac{|S|}{2}\right\rceil \checkmark$

Techniques Used for Performance

- Avoid time-intensive checks
- Vertex v internal in clique: $\forall w \in N_{G}(v): \operatorname{Deg}(v) \leq \operatorname{Deg}(w)$
- Avoid checking the same reduction rules
- Timestamp of most recent change in neighborhood for each vertex
- Keep timestamp T for each rule:

All vertices with timestamp $\leq T$ already processed

- Update vertex on change

Experiments on KaGen Graphs

- Random graphs by KaGen, 150 per each graph type. $|V|=2048$
- Total runtime: 16 sec. (68 min . by Etscheid and Mnich 2018!)

Kernelization efficiency for KaGen graphs; metric: $e(G)=1-\frac{\left|V\left(G_{\text {rer }}\right)\right|}{|V(G)|}$

Experiments on KaGen Graphs

- Improvement over Etscheid and Mnich 2018. $|V|=2048$
- Discrepancy between theory and practice

Absolute difference in efficiency: $e_{\text {absDiff }}=e\left(G_{\text {new }}\right)-e\left(G_{\text {old }}\right)$

Experiments on KaGen Graphs

- Improvement on our results with weighted path compression

Absolute difference in efficiency: $e_{\text {absDiff }}=e\left(G_{\text {newWeighted }}\right)-e\left(G_{\text {new }}\right)$

Experiments - BiqMac Solver

Name	$\|V(G)\|$	deg $_{\text {avg }}$	$e(G)$	$T_{\mathrm{BM}}(G)$	$T_{\text {BM }}\left(G_{\text {ker }}\right)$	
ego-facebook	2888	1.03	1.00	-	0.01	$[\infty]$
road-euroroad	1174	1.21	0.79	-	-	-
rt-twitter-copen	761	1.35	0.85	-	1.77	$[\infty]$
bio-diseasome	516	2.30	0.93	-	0.07	$[\infty]$
ca-netscience	379	2.41	0.77	-	0.67	$[\infty]$
g000302	317	1.50	0.21	1.88	$0.74 \quad[2.53]$	
g001918	777	1.59	0.12	31.11	$17.45 \quad[1.78]$	
g000981	110	1.71	0.28	531.47	$21.53[24.68]$	
imgseg_105019	3548	1.22	0.93	f	13748.62	$[\infty]$
imgseg_35058	1274	1.42	0.37	-	-	-
imgseg_374020	5735	1.52	0.82	f	-	-

Times in seconds. 10 hour time limit with 5 iterations.

Experiments - Localsolver

Name	$\|V(G)\|$	deg $_{\text {avg }}$	$e(G)$	$T_{\text {LS }}(G)$	$T_{\text {LS }}\left(G_{\text {ker }}\right)$	
ego-facebook	2888	1.03	1.00	20.09	0.09	$[228.91]$
road-euroroad	1174	1.21	0.79	-	-	-
rt-twitter-copen	761	1.35	0.85	-	834.71	$[\infty]$
bio-diseasome	516	2.30	0.93	-	4.91	$[\infty]$
ca-netscience	379	2.41	0.77	-	956.03	$[\infty]$
g000302	317	1.50	0.21	0.58	0.49	$[1.17]$
g001918	777	1.59	0.12	1.47	1.41	$[1.04]$
g000981	110	1.71	0.28	10.73	4.73	$[2.27]$
imgseg_105019	3548	1.22	0.93	234.01	22.68	$[10.32]$
imgseg_35058	1274	1.42	0.37	34.93	24.71	$[1.41]$
imgseg_374020	5735	1.52	0.82	1739.11	72.23	$[24.08]$

Times in seconds. 10 hour time limit with 5 iterations.

Experiments - Localsolver

Solution size over time by Localsolver: initial vs. kernelized

Conclusion

Summary

- Previous work: Good in theory, bad in practice
- Set of new (unweighted) reduction rules
- Sparse graphs highly reducible
- Significant benefits for existing solvers

Future Work

- Add parallelism?
- New (weighted) reduction rules?
- Hybrid approach: Use solver for reductions?

