Exact Algorithms for Finding Well-Connected 2-Clubs in Sparse Real-World Graphs: Theory and Experiments

André Nichterlein
Algorithmics and Computational Complexity, Faculty IV, TU Berlin

Shonan Meeting 144, March 5th
Based on joint work with Christian Komusiewicz, Rolf Niedermeier, and Marten Picker appearing in European Journal of Operational Research, 2019.

2-Club Problem

Input: An undirected graph $G=(V, E)$.
Task: Find the maximum size 2-club (= diameter-two subgraph) in G.

- proposed as clique relaxation in social network analysis
[Mokken; Quality and Quantity, 1979]
- NP-hard [Balasundaram, Butenko, Trukhanov; Journal of Combinatorial Optimization, 2005]
- NP-hard to approximate within a factor $|V|^{1 / 2-\epsilon}$
[Asahiro, Doi, Miyano, Samizo, Shimizu; Algorithmica, 2018]

2-Club is hard? Not in practice!

Existing implementation: [Hartung, Komusiewicz, N.; Journal of Graph Algorithms and Applications, 2015] Data set: Graphs from clustering and coauthor category of the 10th DIMACS challenge Implementation: Written in Java Machine: CPU 3.60 GHz (Xeon); 64 GB main memory

Analysis: 2-Club size

\rightsquigarrow Almost optimal algorithm:

Return a maximum degree vertex with its neighbors

2-Club extensions

Definition ([Veremyev, Boginski; Eur J Oper Res, 2012])
t-robust 2-club G :
Any pair of vertices is connected by t internally vertex-disjoint paths of length at most two.

Definition ([Pattillo, Youssef, Butenko; Eur J Oper Res, 2013]) t-hereditary 2-club G :
$G-U$ is a 2-club for all $U \subset V(G)$ where $|U| \leq t$. \Longleftrightarrow any pair of nonadjacent vertices has $t+1$
 common neighbors.

Definition ([Pattillo, Youssef, Butenko; Eur J Oper Res, 2013]) t-connected 2-club G :
G is a 2-club and t-vertex-connected.

Example: A $K_{3,3}$ is a

- 1-robust 2-club
- 2-hereditary 2 -club
- 3-connected 2-club

Our results

Goal:

transfer algorithmic work (theoretical \& practical) from 2-Club to t-robust / t-hereditary / t-connected 2-Club

Results:

- "unifying view" on all three considered models
- FPT algorithms
- competitive implementation

Simple search tree

Example: Find largest 2-hereditary 2-club (deleting any 2 vertices yields a 2 -club)

Observation: At most one red vertex in a solution.

Generic Search tree:

FindSolution (G)

1. If G is a solution then return G
2. $u, v \leftarrow$ two "incompatible" vertices

3. Return $\max \{$ FindSolution $(G-v)$, FindSolution $(G-u)\}$

\rightsquigarrow running time $O\left(2^{\ell} n m\right) \quad \ell \ldots$ number of vertices not in a solution
Note: no $2^{(1-\varepsilon) \ell} n^{O(1)}$ algorithm for any $\varepsilon>0$, unless SETH fails
[Hartung, Komusiewicz, N.; Journal of Graph Algorithms and Applications, 2015]

Compatible vertices - unifying view

Definition

Two vertices v and w in a graph are called compatible

- for t-robust 2-clubs if they are adjacent and have at least $t-1$ common neighbors, or if they have at least t common neighbors,
- for t-hereditary 2-clubs if they are adjacent or if they have at least $t+1$ common neighbors,
- for t-connected 2-clubs if they are at distance at most two and are connected by at least t internally vertex-disjoint paths.

Turing Kernelization

1. sol $\leftarrow \emptyset$
2. foreach $v \in V$ do
3. $\quad T \leftarrow$ all vertices at distance ≥ 2 from v
4. $\quad S \leftarrow$ largest solution in T that contains v
5. if S is larger than sol then sol $\leftarrow S$
6. delete v
7. return sol

Turing kernelization - practical effect

$$
\begin{aligned}
& -*-n \\
& -\infty \\
& -\infty-\text { maximum degree } \\
& -*-\text { average degree } \\
& -\infty \text { maximum 2-neighborhood } \\
& -*-\text { average 2-neighborhood } \\
& \rightarrow-h_{2} \text {-index }
\end{aligned}
$$

Advantage:

Turing kernelization allows to store data for each pair of vertices (e.g. number of common neighbors)

Data reduction \& lower bounds

Reduction Rule

Remove vertices whose degree is too low.
Incompatibility graph:
Two vertices are adjacent in the the incompatibility graph iff they are not compatible.

input graph

incompatibility graph

Observation:

The size of a maximum independent set in the incompatibility graph is an upper bound on the solution size in the input graph.
\rightsquigarrow upper bound worse than best previously found solution \Rightarrow discard current Turing kernel

Experiments I

Data set: Graphs from clustering and coauthor category of the 10th DIMACS challenge Implementation: Written in Java Machine: CPU 3.60 GHz (Xeon); 64 GB main memory

Experiments II

Data set: Graphs from clustering and coauthor category of the 10th DIMACS challenge Implementation: Written in Java Machine: CPU 3.60 GHz (Xeon); 64 GB main memory

Experiments III

$$
\begin{aligned}
& \rightarrow(t-1) \text {-hereditary } * t \text {-robust } \\
& -t \text {-connected }
\end{aligned}
$$

Graph: coPapersCiteseer

Experiments IV

$$
\begin{aligned}
& \rightarrow(t-1) \text {-hereditary } * t \text {-robust } \\
& \rightarrow-t \text {-connected }
\end{aligned}
$$

Graph: coAuthorsCiteseer

Summary \& Outlook

Key results:

- Unifying approach for several 2-club variants.
- Efficient implementation (= data reduction + Turing kernelization + search tree).

Work in progress: γ-relative robust 2-club S :
$0<\gamma \leq 1$: Any pair of vertices connected by at least $\gamma \cdot|S|$ paths of length at most two.
Example: $\gamma=0.5$

input graph

incompatibility graph

input graph
\square
incompatibility graph

Open Question: Is t-robust / t-hereditary / t-connected 2-club fixed parameter tractable with respect to the solution size?

Thank you!

