
Parameterized Complexity of Integer Linear
Programming (ILP)

Sebastian Ordyniak

Parameterized Graph Algorithms & Data Reduction
(Shonan Meeting 144, 2019)

1 / 62

Integer Linear Programming (ILP)

archetypical problem for
NP-complete optimization
problems

very general and successful
paradigm for solving intractable
optimization problems in practice

2 / 62

Applications

process scheduling

planning

vehicle routing

packing

. . .

3 / 62

Problem Formulation: ILP

maximize c · x
subject to Ax ≤ b

x ∈ Zn

maximize c · x
subject to Ax = b

l ≤ x ≤ u; x ∈ Zn

(where A ∈ Zm×n, b ∈ Zm, and c ∈ Zn)

4 / 62

Problem Formulation: ILP

maximize c · x
subject to Ax ≤ b

x ∈ Zn

maximize c · x
subject to Ax = b

l ≤ x ≤ u; x ∈ Zn

(where A ∈ Zm×n, b ∈ Zm, and c ∈ Zn)

4 / 62

ILP: Example

maximize
∑

1≤i≤n cixi

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n


×



x1

x2

x3
...

xn


=



b1

b2

b3
...

bm



5 / 62

ILP: Example

maximize
∑

1≤i≤n cixi

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n


×



x1

x2

x3
...

xn


=



b1

b2

b3
...

bm



columns ≈ variables

5 / 62

ILP: Example

maximize
∑

1≤i≤n cixi



a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n


×



x1

x2

x3
...

xn


=



b1

b2

b3
...

bm



rows ≈ constraints

5 / 62

ILP: Example

maximize
∑

1≤i≤n cixi



a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n


×



x1

x2

x3
...

xn


=



b1

b2

b3
...

bm



`A ≈ the maximum coefficient in A

5 / 62

ILP: Example

maximize
∑

1≤i≤n cixi

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n


×



x1

x2

x3
...

xn


=



b1

b2

b3
...

bm



maximization function; (maximum value ≈ maximum value
of the maximization function for any feasible assignment)

5 / 62

ILP: Example

maximize
∑

1≤i≤n xi

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n


×



x1

x2

x3
...

xn


=



b1

b2

b3
...

bm



without optimization function, we talk about ILP-feasibility

5 / 62

State-of-the-art

ILP and ILP-feasibility are NP-complete and until recently only
very few tractable cases have been known:

totally unimodular matrices (Papadimitriou, Steiglitz 1982),

fixed number of variables (Lenstra 1983),

6 / 62

State-of-the-art: Block Matrices

Recently, various tractable classes based on block matrices have
been introduced:

n-fold, 2-stage stochastic, and 4-block N -fold ILP with fixed
sized blocks and max coefficient (Hemmecke et al., 2010 and
2013;De Loera et al., 2013),

tree-fold and multi-stage stochastic ILPs (Chen and Marx,
2018; Aschenbrenner and Hemmecke 2007)

7 / 62

State-of-the-art: Structural Restrictions

In parallel, various tractable classes based on restrictions on
graphical representations of the constraint matrix have been
introduced.

Namely, similar to SAT and CSP the following three graphical
representations have been considered:

primal graph,

dual graph,

incidence graph

8 / 62

Structural Parameters

fracture number,

treedepth,

treewidth,

clique-width,

rank-width

9 / 62

Block Matrices vs. Structural Parameters

interestingly all tractable fragments defined via block matrices
can be defined in terms of structural restrictions . . .

. . . while the reverse does not hold,

the fragments obtained using structural restrictions are usually
more natural/flexible and also allow the simple recognition
and computation of the parameters,

10 / 62

Main Novel Tractable Classes
(Using Blockmatrices)

11 / 62

Block Matrices vs. Fracture Number

 A B

C D


N

=



A B B · · · B

C D 0 · · · 0

C 0 D · · · 0

...
...

...

C 0 0 · · · D



12 / 62

Block Matrices vs. Fracture Number

 A B

C D


N

=



A B B · · · B

C D 0 · · · 0

C 0 D · · · 0

...
...

...

C 0 0 · · · D


4-block n-fold ∼ fracture number

Theorem (Hemmecke et al., 2010)

ILP is XP parameterized by `A and the max. number of
rows/columns in A,B,C,D.

12 / 62

Block Matrices vs. Fracture Number

 A B

C D


N

=



A B B · · · B

C D 0 · · · 0

C 0 D · · · 0

...
...

...

C 0 0 · · · D


n-fold ∼ constraint fracture number

Theorem (De Loera et al., 2013)

ILP is FPT parameterized by `A and the max. number of
rows/columns in B,D.

12 / 62

Block Matrices vs. Fracture Number

 A B

C D


N

=



A B B · · · B

C D 0 · · · 0

C 0 D · · · 0

...
...

...

C 0 0 · · · D


2-stage stochastic ∼ variable fracture number

Theorem (Hemmecke et al., 2013)

ILP is FPT parameterized by `A and the max. number of
rows/columns in C,D.

12 / 62

Block Matrices vs. Fracture Number

 A B

C D


N

=



A B B · · · B

C D 0 · · · 0

C 0 D · · · 0

...
...

...

C 0 0 · · · D


Essentially, these are ILPs with few global variables and/or global
constraints that interact uniformly with the rest.

Several applications (e.g. for scheduling, social choice, closest
string etc.).

12 / 62

Tree-fold and Multi-stage Stochastic ILPs



B1B2B3
...

...
. . .

B1B2 B3
...

. . .
B1 B2B3

...
...

. . .
B1 B2 B3


Multi-stage Stochastic ∼ treedepth of primal graph

Theorem (Koutechy, Levin, Onn (2018))

Multi-stage Stochastic ILP is FPT parameterized by `A, the
number of rows of Bi, and the total number of columns of
B1, . . . , Bl.

13 / 62

Tree-fold and Multi-stage Stochastic ILPs

B1 · · ·B1 · · ·B1 · · ·B1

B2 · · ·B2

B3

. . .
B3

. . .
B2 · · ·B2

B3

. . .
B3


tree-fold ∼ treedepth of dual graph

Theorem (Koutechy, Levin, Onn (2018))

Tree-fold ILP is FPT parameterized by `A, the number of columns
of Bi, and the total number of rows of B1, . . . , Bl.

13 / 62

Recent Applications

Scheduling:

Scheduling Meets n-Fold Integer Programming (Knop,
Koutechy 2018),

Empowering the Configuration-IP – New PTAS Results for
Scheduling with Setup Times (Jansen et al. 2019)

Social Choice and Combinarial Optimization (e.g. Closest String):

Combinatorial n-Fold Integer Programming and Applications
(Knop, Koutechy, Mnich 2017),

Voting and Bribing in Single-Exponential Time (Knop,
Koutechy, Mnich 2017)

Travelling Salesman Problem:

Covering a Tree with rooted subtrees Parameterized
Approximation Algorithms (Chen, Marx 2018)

14 / 62

Primal Graph: An
illustrative Example

15 / 62

Primal Graph

A :=


* * 0 0 0

0 * * 0 0

0 0 * * *



The primal graph of an ILP instance I, denoted by P(I), has:

one vertex for every variable of I,

an edge between two variables x and y iff x and y occur
together in a constraint of I.

16 / 62

Primal Graph: State-of-the-Art

Using structural restrictions of the primal graph leads to two main
fixed-parameter tractable cases for ILP:

treewidth and domain,

treedepth and `A (a.k.a. multi-stage stochastic ILP).

All other combinations can be shown to be para-NP-hard.

17 / 62

Primal Graph: State-of-the-Art

Using structural restrictions of the primal graph leads to two main
fixed-parameter tractable cases for ILP:

treewidth and domain,

treedepth and `A (a.k.a. multi-stage stochastic ILP).

All other combinations can be shown to be para-NP-hard.

17 / 62

An Algorithm using Treewidth and Domain

Theorem (Jansen and Kratsch, 2015)

ILP is fixed-parameter tractable parameterized by treewidth and
the maximum absolute domain value D of any variable
(O((2D + 1)tw|I|).

dynamic programming algorithm
on a tree decomposition of the
primal graph,

For each bag of the tree
decomposition stores which of the
at most (2D + 1)tw many
assignments of the variables in the
bag can be extended to a feasible
assignment for the subinstance
represented by the current subtree.

X(t)T(t)

18 / 62

An Algorithm using Treedepth

Theorem (Koutechy, Levin, Onn (2018))

ILP is fixed-parameter tractable parameterized by the treedepth of
the primal graph and `A.

19 / 62

Multi-stage Stochastic ILPs

Given:

A tree T of height ω with root r and

ω integer matrices B1, . . . , Bω with l rows and n1, . . . , nω
columns, respectively

The constraint matrix Ar of a multi-stage stochastic ILP is defined
inductively by setting:

Al = Bω for every leaf l of T and

Av =


BdAc1

Bd Ac2
... . . .

Bd Acn


for an inner node v with depth d and children c1, . . . , cn in T .

20 / 62

Multi-stage Stochastic ILPs: Example

· · ·


B1B2

B1 B2
... . . .

B1 B2



21 / 62

Multi-stage Stochastic ILPs: Example

· · ·

· · · · · ·

B1 B2B3
...

...
. . .

B1 B2 B3
...

. . .
B1 B2 B3

...
...

. . .
B1 B2 B3

22 / 62

Multi-stage Stochastic ILPs

Theorem (Koutechy, Levin, Onn (2018))

Multi-stage stochastic ILP is fixed-parameter tractable
parameterized by `A, l, n1, . . . , nω.

Remark
Fixed-parameter tractability has been known before, however, the
algorithm improved upon the polynomial factor.

23 / 62

Treedepth

a well-known structural parameter more restrictive than
treewidth and pathwidth,

many equivalent characterizations, e.g.:

- treedepth ≈ “length of a longest path”,
- treedepth = cycle-rank,
- treedepth is bounded if and only if there is a bounded width

tree decomposition whose tree has bounded height

24 / 62

Treedepth decomposition

Definition
A graph G has treedepth at most k if and only if there is a rooted
tree T on V (G) of height at most k such that every edge in G is
between ancestors and descendants of T .

The tree T is called a treedepth decomposition of G.

25 / 62

Treedepth decomposition

26 / 62

Treedepth decomposition

26 / 62

Treedepth decomposition

26 / 62

Treedepth decomposition

/ / /

26 / 62

Treedepth and Matrices

a

b1 bn
· · ·


A1B1

A2 B2
... . . .

An Bn



27 / 62

Treedepth and Matrices

a

b1

c1 cn

bn

d1 dn

· · ·

· · · · · ·

A1 B1
1 C1

...
...

. . .
An Bn

1 Cn
...

. . .
A∗ B1

nD1
...

...
. . .

An2
Bn

n Dn

28 / 62

From Treedepth to Multi-stage stochastic ILPs

A1 B1
1 C1

...
...

. . .

An Bn
1 Cn

...
. . .

A∗ B1
n D1

...
...

. . .

An2
Bn

n Dn

B1 B2 B3
...

...
. . .

B1 B2 B3
...

. . .

B1 B2 B3
...

...
. . .

B1 B2 B3

29 / 62

From Treedepth to Multi-stage stochastic ILPs

A1 B1
1 C1

...
...

. . .

An Bn
1 Cn

...
. . .

A∗ B1
n D1

...
...

. . .

An2
Bn

n Dn

B1 B2 B3
...

...
. . .

B1 B2 B3
...

. . .

B1 B2 B3
...

...
. . .

B1 B2 B3

Remark
Apart from using different matrices for variables at the same
depth, this is almost the same as multi-stage stochastic ILPs.

29 / 62

From Treedepth to Multi-stage stochastic ILPs

Observation
Since every root-to-leaf path in T contains at most ω variables, we
obtain that:

(2`A + 1)ω

is the maximum number of constraints on the variables of such a
path.

Since we are only interested in an fpt-algorithm w.r.t. ω and
`A, we can add all possible such constraints for every root to
leaf path in the ILP,

After doing so the block matrices associated to every
root-to-leaf path are identical,

(actually all block matrices become identical)

30 / 62

From Treedepth to Multi-stage stochastic ILPs

A1 B1
1 C1

...
...

. . .

An Bn
1 Cn

...
. . .

A∗ B1
n D1

...
...

. . .

An2
Bn

n Dn

B1 B2 B3
...

...
. . .

B1 B2 B3
...

. . .

B1 B2 B3
...

...
. . .

B1 B2 B3

Hence, to model arbitrary ILPs with bounded treedepth, we only
need to find a way to turn off constraints.

31 / 62

From Treedepth to Multi-stage stochastic ILPs

A1 B1
1 C1

...
...

. . .

An Bn
1 Cn

...
. . .

A∗ B1
n D1

...
...

. . .

An2
Bn

n Dn

B1 B2 B3
...

...
. . .

B1 B2 B3
...

. . .

B1 B2 B3
...

...
. . .

B1 B2 B3

Hence, to model arbitrary ILPs with bounded treedepth, we only
need to find a way to turn off constraints.

31 / 62

From Treedepth to Multi-stage stochastic ILPs

We can turn off constraints by adding a slack variable (occurring
with coefficient 1) for every constraint:

if the constraint needs to be turned on, we force the
corresponding slack variable to be 0 by setting its lower bound
and upper bound to 0,

if the constraint needs to be turned off, we set the lower
bound and upper bound of the corresponding slack variable to
−∞ and ∞, respectively

To achieve this, we only need to change the matrix Bω to (Bω|I),
where I is the identity matrix with (2`A + 1)ω rows and columns.

32 / 62

From Treedepth to Multi-stage stochastic ILPs



B1 B2B3|I
...

...
. . .

B1 B2 B3|I
...

. . .
B1 B2 B3|I

...
...

. . .
B1 B2 B3|I



33 / 62

From Treedepth to Multi-stage stochastic ILPs

Recall
Multi-stage stochastic ILP is fixed-parameter tractable
parameterized by `A, l, n1, . . . , nω.

Because:

`A did not change,

l = (2`A + 1)ω, and

n1 = · · · = nω−1 = 1 and nω = l + 1

we obtain:

Theorem (Koutechy, Levin, Onn (2018)

ILP is fixed-parameter tractable parameterized by the treedepth of
the primal graph (ω) and `A.

34 / 62

Solving Multi-stage Stochastic ILPs
(or solving ILPs via Graver Best Oracles)

35 / 62

Graver Basis

Definition (partial order: v)

x v y for x, y ∈ Zn if:

xiyi ≥ 0 for every i ∈ [n], i.e., x
and y lie in the same orthant and

xi ≤ yi for every i ∈ [n].

Remarks

“Natural order in each orthant of Zn”,

It is well-known that every subset of Zn has finitely many
v-minimal elements.

36 / 62

Graver Basis

Definition (Graver basis)

The Graver basis of an m× n-matrix A is the finite set
G(A) ⊂ Zn of v-minimal elements in {x ∈ Zn | Ax = 0,x 6= 0 }.

Intuition
The Graver basis contains all ”important” directions (separated by
orthant) that preserve feasiblility of a solution w.r.t. constraint
matrix.

37 / 62

Graver-best Step

Let (A,b, l,u, c) be an ILP-instance having a feasible solution x.

We say that h ∈ Zn is:

a feasible step if x + h is feasible,

an augmenting step if it is a feasible step and c(x+h) ≥ cx,

a Graver-best step if it is an augmenting step and
c(x + h) ≥ c(x + λg) for every g ∈ G(A) and every λ ∈ Z.

Intuition
A Graver-best Step gives the best improvement that can be
obtained by any step of the form λg, where g ∈ G(A).

38 / 62

Graver-best Oracle

Definition
A Graver-best Oracle returns a Graver-best step h for a given
ILP instance (A,b, l,u, c) and feasible solution x.

Theorem
ILP with a Graver-best oracle can be solved in strongly
polynomial-time.

39 / 62

Graver-best Augmentation Procedure

Graver-best augmentation procedure

1 if there is no graver-best step for x, return x as the optimum,

2 otherwise, set x to x + h and go to 1.

Theorem (Graver-best augmentation procedure)

The Graver-best augmentation procedure finds an optimum
solution for I in at most (2n− 2) logF steps, where
F = cx− cx∗ and x∗ is any optimum solution.

40 / 62

Finding a Graver-best Step/Oracle

The general procedure to find a Graver-best step involves the
following steps:

(S1) show a bound on the elements in G(A),

(S2) use the bound to compute a set of “interesting” step-lengths,
i.e., step-lengths that can lead to a Graver-best step,

(S3) for every such step-length formulate an ILP whose optimum
solution provides a Graver-best step w.r.t. to that step-length,

(S4) solve the ILP using the bound obtained in (S1) and additional
structural insight

41 / 62

Example: Multi-stage Stochastic ILP (Step 1)

Lemma (Aschenbrenner and Hemmecke, 2007)

g∞(A) ≤ f(`A, l, n1, . . . , nω)

for any Multi-stage stochastic constraint matrix A.

Remark

g∞(A) = max
g∈G(A)

max
i
|gi|

42 / 62

Example: Multi-stage Stochastic ILP (Step 2)
A step-length is interesting if it can be used to obtain a
Graver-best step. Denote by Λ(x) the set of interesting
step-lengths for a feasible solution x. Then:

Lemma
A set Λ of size at most 2(2M + 1)n such that Λ(x) ⊆ Λ can be
constructed in time O(Mn), where M = g∞(A).

Proof

any Graver-best step λg must be tight in at least one
coordinate i, i.e., either (λ+ 1)gi + xi < li or
(λ+ 1)gi + xi > ui,

for every m ∈ Z and every coordinate i there are at most two
step-legths say λL(m, i) and λU (m, i) that are tight for the
i-th coordinate,

Hence the set Λ is given by the set
{λL(m, i), λU (m, i) | −M ≤ m ≤M ∧ 1 ≤ i ≤ n }.

43 / 62

Example: Multi-stage Stochastic ILP (Step 3)
Finding a Graver-best step for a step-length λ ∈ Λ(x) is equivalent
to solving:

maximize λc · g
subject to Ag = 0

l ≤ x + λg ≤ u
−M ≤ g ≤M
g ∈ Zn

Since the above ILP has bounded domain, it can be solved using
the fpt-algorithm for treewidth and domain by using the following
observation:

Observation

tw(A) ≤ td(A) ≤
ω∑

i=1

ni

for any Multi-stage stochastic constraint matrix A.

44 / 62

Example: Multi-stage Stochastic ILP (Step 3)
Finding a Graver-best step for a step-length λ ∈ Λ(x) is equivalent
to solving:

maximize λc · g
subject to Ag = 0

l ≤ x + λg ≤ u
−M ≤ g ≤M
g ∈ Zn

Since the above ILP has bounded domain, it can be solved using
the fpt-algorithm for treewidth and domain by using the following
observation:

Observation

tw(A) ≤ td(A) ≤
ω∑

i=1

ni

for any Multi-stage stochastic constraint matrix A.
44 / 62

Example: Multi-stage Stochastic ILP

Theorem (Koutechy, Levin, Onn (2018))

Multi-stage stochastic ILP is fixed-parameter tractable
parameterized by `A, l, n1, . . . , nω.

45 / 62

Summary: Primal Graph

Using structural restrictions of the primal graph leads to two main
fixed-parameter tractable cases for ILP:

treewidth and domain,

treedepth and `A (a.k.a. multi-stage stochastic ILP).

All other combinations can be shown to be para-NP-hard.

46 / 62

Incidence Graph

47 / 62

Incidence Graph

A :=


* * 0 0 0

0 * * 0 0

0 0 * * *


v1

v2

v3

v4

v5

C1

C2

C3

The incidence graph of an ILP instance I, denoted by I(I), has:

one vertex for every variable of I,

one vertex for every constraint of I, and

an edge between a variable x and a constraint c iff x occurs
(has a non-zero coefficient) in c.

48 / 62

Incidence Graph vs. Primal Graph

the incidence graph contains more information about the ILP
instance,

the treewidth of the incidence graph is always at most the
treewidth of the primal graph plus one; but it can be arbitrary
smaller,

the main difference between incidence and primal treewidth is
that incidence treewidth can be small even for instances with
large arity

49 / 62

Incidence Graph: State-of-the-art

Using structural restrictions of the incidence graph leads to two
main tractable cases for ILP:

FPT: treewidth and Γ,

XP: fracture number and `A (a.k.a. 4-block N-fold ILP).

All other combinations can be shown to be para-NP-hard.

50 / 62

Incidence Graph: State-of-the-art

Using structural restrictions of the incidence graph leads to two
main tractable cases for ILP:

FPT: treewidth and Γ,

XP: fracture number and `A (a.k.a. 4-block N-fold ILP).

All other combinations can be shown to be para-NP-hard.

50 / 62

An Algorithm using incidence Treewidth (Main Idea)

Question?
Which information do we need to
store for feasible assignments τ
of I(t)?

Answer:

For the variables in X(t) it is
again sufficient to store their
assignments since ”future”
constraints only share the
variables in X(t) with V (t).

However, since the
constraints in X(t) can be
over variables both inside
and outside of V (t), we
need to know all possible
values they can evaluate to.

T(t)

51 / 62

An Algorithm using incidence Treewidth (Main Idea)

Question?
Which information do we need to
store for feasible assignments τ
of I(t)?

Answer:

For the variables in X(t) it is
again sufficient to store their
assignments since ”future”
constraints only share the
variables in X(t) with V (t).

However, since the
constraints in X(t) can be
over variables both inside
and outside of V (t), we
need to know all possible
values they can evaluate to.

T(t)

51 / 62

An Algorithm using incidence Treewidth (Main Idea)

Question?
Which information do we need to
store for feasible assignments τ
of I(t)?

Answer:

For the variables in X(t) it is
again sufficient to store their
assignments since ”future”
constraints only share the
variables in X(t) with V (t).

However, since the
constraints in X(t) can be
over variables both inside
and outside of V (t), we
need to know all possible
values they can evaluate to.

T(t)

51 / 62

An Algorithm using Incidence Treewidth

Definition
For a constraint C and a (partial) assignment τ of (some of) the
variables of C, let C(τ) denote the evaluation of C under τ .

Example

Let C = 2x1 + 3x2 + 5x3 = 8 and let τ(x1) = 5 and τ(x3) = 2,
then:

C(τ) = 2τ(x1) + 5τ(x3) = 2 · 5 + 5 · 2 = 20

Definition
Let Γ(I) be the maximum absolute value C(τ) over any constraint
C of I and any feasible partial assignment τ of I.

52 / 62

An Algorithm using Incidence Treewidth

Definition
For a constraint C and a (partial) assignment τ of (some of) the
variables of C, let C(τ) denote the evaluation of C under τ .

Example

Let C = 2x1 + 3x2 + 5x3 = 8 and let τ(x1) = 5 and τ(x3) = 2,
then:

C(τ) = 2τ(x1) + 5τ(x3) = 2 · 5 + 5 · 2 = 20

Definition
Let Γ(I) be the maximum absolute value C(τ) over any constraint
C of I and any feasible partial assignment τ of I.

52 / 62

Discussion of the Algorithm

Theorem (Ganian, O., and Ramanujan, 2017)

An ILP instance I with n variables and m constraints can be
solved in time:

O(Γ(I)tw(I)(n+m))

Remark
Because Γ(I) ≤ `A ×D × n, it follows that ILP can be solved in
polynomial-time for bounded incidence treewidth provided that
both ` and D are polynomially bounded in the input size.

Remark
Our previous hardness results for primal treewidth show that ILP
becomes NP-complete again if only one of ` or D are allowed to
grow exponentially in the input size.

53 / 62

Discussion of the Algorithm

Theorem (Ganian, O., and Ramanujan, 2017)

An ILP instance I with n variables and m constraints can be
solved in time:

O(Γ(I)tw(I)(n+m))

Remark
Because Γ(I) ≤ `A ×D × n, it follows that ILP can be solved in
polynomial-time for bounded incidence treewidth provided that
both ` and D are polynomially bounded in the input size.

Remark
Our previous hardness results for primal treewidth show that ILP
becomes NP-complete again if only one of ` or D are allowed to
grow exponentially in the input size.

53 / 62

Discussion of the Algorithm

Theorem (Ganian, O., and Ramanujan, 2017)

An ILP instance I with n variables and m constraints can be
solved in time:

O(Γ(I)tw(I)(n+m))

Remark
Because Γ(I) ≤ `A ×D × n, it follows that ILP can be solved in
polynomial-time for bounded incidence treewidth provided that
both ` and D are polynomially bounded in the input size.

Remark
Our previous hardness results for primal treewidth show that ILP
becomes NP-complete again if only one of ` or D are allowed to
grow exponentially in the input size.

53 / 62

Discussion of the Algorithm

Remark
If we want to find an fpt-algorithm parameterized by ` and some
additional structural parameter of the incidence graph, we need to
employ a more restrictive parameter than treewidth.

A natural candidate would be treedepth, however:

Theorem (Eiben et. al., IPCO 2019)

ILP-feasibility is NP-complete even if the incidence graph has
treedepth at most 5 and the maximum absolute value of any
coefficient is 1.

Nevertheless, we can show such a result for a slightly more
restrictive parameter than treedepth, which we call the fracture
number.

54 / 62

Summary: Incidence Graph

Using structural restrictions of the incidence graph leads to two
main polynomial-time tractable cases for ILP:

FPT: treewidth and Γ

XP: fracture number and `A (a.k.a. N-fold 4-block ILP).

All other combinations can be shown to be para-NP-hard.

55 / 62

Dual Graph

56 / 62

Dual Graph (Transpose of Primal Graph)

A :=



* 0 0

* * 0

0 * *

0 0 *

0 0 *


The dual graph of an ILP instance I, denoted by D(I), has:

one vertex for every constraint of I,

an edge between two constraints x and y iff x and y have a
common variable.

57 / 62

Dual Graph vs. Primal Graph and Incidence Graph

the dual graph is the transpose of the primal graph,

the treewidth of the incidence graph is always at most the
treewidth of the dual graph plus one; but it can be arbitrary
smaller,

the main difference between incidence and dual treewidth is
that incidence treewidth can be small even for instances where
variables occur in many constraints

58 / 62

Dual Graph: State-of-the-art

Using structural restrictions of the dual graph leads to two main
fixed-parameter tractable cases for ILP:

treewidth and Γ,

treedepth and `A (a.k.a. tree-fold ILP).

All other combinations can be shown to be para-NP-hard.

59 / 62

Dual Graph: State-of-the-art

Using structural restrictions of the dual graph leads to two main
fixed-parameter tractable cases for ILP:

treewidth and Γ,

treedepth and `A (a.k.a. tree-fold ILP).

All other combinations can be shown to be para-NP-hard.

59 / 62

Summary and Conclusions

great potential for novel meta-theorems for NP-complete
optimization problems,

various recent applications of the results for problems in
routing, scheduling, and social choice,

the study of ILP w.r.t. to structural restrictions on the
constraint matrix is still in its infancy.

Topics not covered here:

Unary ILPs and stronger structural parameters such as
fracture number,

extension of tractable classes to Mixed ILP (e.g.
torso-width), and

algorithms using signed clique-width,

60 / 62

Summary and Conclusions

great potential for novel meta-theorems for NP-complete
optimization problems,

various recent applications of the results for problems in
routing, scheduling, and social choice,

the study of ILP w.r.t. to structural restrictions on the
constraint matrix is still in its infancy.

Topics not covered here:

Unary ILPs and stronger structural parameters such as
fracture number,

extension of tractable classes to Mixed ILP (e.g.
torso-width), and

algorithms using signed clique-width,

60 / 62

Open Problems and Future Work

What is the practical relevance of the obtained algorithms?

How can they be implemented to obtain the best results (in
combination with known ILP solvers),

Can the ideas be used to guide ILP-solvers?

61 / 62

Thank You!

62 / 62

