Finding Hamiltonian Cycle in Graphs of Bounded Treewidth: Experimental Evaluation¹

Marcin Pilipczuk, Michał Ziobro

March 12, 2019

¹Supported by the "Recent trends in kernelization: theory and experimental evaluation" project, carried out within the Homing programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Marcin Pilipczuk, Michał Ziobro

◆□ > ◆□ > ◆三 > ◆三 > 三 - つへぐ

Marcin Pilipczuk, Michał Ziobro

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Marcin Pilipczuk, Michał Ziobro

イロト イヨト イヨト イヨト

2

same vertex degrees \Rightarrow one class

Marcin Pilipczuk, Michał Ziobro

э

same vertex degrees \Rightarrow one class k vertices of degree $1 \Rightarrow k!!$ possible fingerprints

Marcin Pilipczuk, Michał Ziobro

<u>tree decomposition</u> — set of separators covering whole graph <u>treewidth</u> — size of largest separator in the tree decomposition (one with the smallest largest separator)

 $\frac{\text{tree decomposition}}{\text{treewidth}} - \text{size of largest separator in the tree decomposition} (one with the smallest largest separator)}$

Basic idea:

- fingerprint set for trivial separator
- fingerprint set for $S' \sim S \Rightarrow$ fingerprint set for S

 $\frac{\text{tree decomposition}}{\text{treewidth}} - \text{size of largest separator in the tree decomposition} (one with the smallest largest separator)}$

Basic idea:

- fingerprint set for trivial separator
- fingerprint set for $S' \sim S \Rightarrow$ fingerprint set for S

FPT dynamic algorithm with running time $2^{O(t \ln t)}O(n^c)$, where t = treewidth

イロト 不得 トイヨト イヨト

э.

Marcin Pilipczuk, Michał Ziobro

 $\underline{\text{class}} - \text{tuple of degrees of vertices, } \in \{0, 1, 2\}^S$ fingerprint — a class plus a matching on deg-1 vtcs

number of classes is small (3^t)

Marcin Pilipczuk, Michał Ziobro

 $\underline{\text{class}} - \text{tuple of degrees of vertices, } \in \{0, 1, 2\}^S$ fingerprint — a class plus a matching on deg-1 vtcs

number of classes is small (3^t)

bottleneck - size of a class (k!!)

 $\frac{\text{class}}{\text{fingerprint}} - \text{tuple of degrees of vertices, } \in \{0, 1, 2\}^S$

number of classes is small (3^t)

bottleneck - size of a class (k!!)

representative set F' of $F : f \in F$ fits $g \Rightarrow \exists_{f' \in F'} f'$ fits g

 $\frac{\text{class}}{\text{fingerprint}} - \text{tuple of degrees of vertices, } \in \{0, 1, 2\}^S$

number of classes is small (3^t)

bottleneck - size of a class (k!!)

representative set F' of $F : f \in F$ fits $g \Rightarrow \exists_{f' \in F'} f'$ fits g

Marcin Pilipczuk, Michał Ziobro

 $\frac{\text{class}}{\text{fingerprint}} - \text{tuple of degrees of vertices, } \in \{0, 1, 2\}^{S}$

number of classes is small (3^t)

bottleneck - size of a class (k!!)

representative set F' of $F : f \in F$ fits $g \Rightarrow \exists_{f' \in F'} f'$ fits g

イロト 不得 トイヨト イヨト

I naa

Marcin Pilipczuk, Michał Ziobro

 $\frac{\text{class}}{\text{fingerprint}} - \text{tuple of degrees of vertices, } \in \{0, 1, 2\}^{S}$

number of classes is small (3^t)

```
bottleneck - size of a class (k!!)
```

representative set F' of $F : f \in F$ fits $g \Rightarrow \exists_{f' \in F'} f'$ fits g

both are *rank-based* approaches \Rightarrow size of representative set bounded by rank of certain matrix

イロト イポト イヨト イヨト

3

 $\frac{\text{class}}{\text{fingerprint}} - \text{tuple of degrees of vertices, } \in \{0, 1, 2\}^{S}$

number of classes is small (3^t)

bottleneck - size of a class (k!!)

representative set F' of $F : f \in F$ fits $g \Rightarrow \exists_{f' \in F'} f'$ fits g

2^{k-1} (Bodleander et al., 2012) (rank-based 1)
2^{k/2-1} (Cygan et al., 2013) (rank-based 2)

both are *rank-based* approaches \Rightarrow size of representative set bounded by rank of certain matrix

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

randomized

algebraic

theoretically fastest

Marcin Pilipczuk, Michał Ziobro

- randomized
- algebraic
- theoretically fastest

Evaluation of a poly over large field of characteristic 2:

 $\sum_{(R,B)\in\mathcal{C}}\prod_{e\in R\cup B}x_e$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Marcin Pilipczuk, Michał Ziobro

- randomized
- algebraic
- theoretically fastest

Evaluation of a poly over large field of characteristic 2:

Marcin Pilipczuk, Michał Ziobro

■ 4^t states, deg-1 vertices red or blue,

Marcin Pilipczuk, Michał Ziobro

■ 4^t states, deg-1 vertices red or blue,

• evaluate some polynomial over $GF(2^s)$,

Marcin Pilipczuk, Michał Ziobro

- 4^t states, deg-1 vertices red or blue,
- evaluate some polynomial over $GF(2^s)$,
- monomials from non-solutions cancel out, from solutions stay,

- 4^t states, deg-1 vertices red or blue,
- evaluate some polynomial over $GF(2^s)$,
- monomials from non-solutions cancel out, from solutions stay,

< 回 > < 回 > < 回 >

3

• Schwarz-Zippel: random values, from $GF(2^{64})$,

- 4^t states, deg-1 vertices red or blue,
- evaluate some polynomial over $GF(2^s)$,
- monomials from non-solutions cancel out, from solutions stay,

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- Schwarz-Zippel: random values, from $GF(2^{64})$,
- naive join nodes: 9^t,

Marcin Pilipczuk, Michał Ziobro

- 4^t states, deg-1 vertices red or blue,
- evaluate some polynomial over $GF(2^s)$,
- monomials from non-solutions cancel out, from solutions stay,

イロト イポト イヨト イヨト

3

- Schwarz-Zippel: random values, from *GF*(2⁶⁴),
- naive join nodes: 9^t,
- transform at join nodes: 4^t , but problems with $GF(2^{64})$.

FHCP Challenge - 1001 instances

Marcin Pilipczuk, Michał Ziobro

FHCP Challenge - 1001 instances 623 instances with treewidth below 10 (*fill-in* heuristic)

Marcin Pilipczuk, Michał Ziobro

FHCP Challenge - 1001 instances 623 instances with treewidth below 10 (*fill-in* heuristic) 19 instances with treewidth between 17 and 29 (heuristic by Ben Strasser, 2nd place on PACE 2017)

Marcin Pilipczuk, Michał Ziobro

FHCP Challenge - 1001 instances623 instances with treewidth below 10 (*fill-in* heuristic)19 instances with treewidth between 17 and 29 (heuristic by Ben Strasser, 2nd place on PACE 2017)

A - instances with small treewidth from FHCP Challenge

イロト 不得 トイヨト イヨト

э.

B - randomly sampled subset of A (for adjusting hyperparameters)

FHCP Challenge - 1001 instances623 instances with treewidth below 10 (*fill-in* heuristic)19 instances with treewidth between 17 and 29 (heuristic by Ben Strasser, 2nd place on PACE 2017)

- A instances with small treewidth from FHCP Challenge
- B randomly sampled subset of A (for adjusting hyperparameters)
- C instances with treewidth between 17 and 29 from FHCP Challenge

ヘロト ヘロト ヘヨト ヘヨト

3

- D subset of C which were solved by at least one of our algorithms (for adjusting hyperparameters)
- E our few random instances

Small treewidth results

- **1st rank-based**: 18.59% times slower than naive,
- 2nd rank-based: 10.97% faster,
- **cut-and-count**: solved 499 from 623 instances (TL: 600s)

test	V	tw	naive	rank-based 1	rank-based 2	c&c
0556	3274	9	20.655	27.794	28.024	128.231
0728	4170	9	30.861	38.578	38.823	279.871
0947	6598	9	128.733	143.144	142.427	467.181
0584	3411	9	105.371	114.240	73.291	-
0746	4286	9	631.261	619.601	381.351	-
0778	4561	8	17.468	16.974	13.069	-
0950	6620	9	196.572	206.482	124.641	-

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = ∽0�?

Marcin Pilipczuk, Michał Ziobro

Large treewidth results

test	V	tw	naive	rank-based 1	rank-based 2	င&င
0074	462	28	38.737	109.655	110.040	-
0253	1578	29	93.343	167.458	167.440	-
0268	1644	25	36.449	70.157	69.111	-
0272	1662	25	554.271	1260.329	1230.722	-
0298	1806	23	10.035	18.611	18.492	-
0172	1002	25	1.156	1.298	.554	-
0199	1200	25	13.513	15.419	3.369	-
E0002	600	18	204.197	-	28.882	-
E0003	700	20	-	-	711.778	-
E0007	360	15	1575.475	-	328.191	-

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Marcin Pilipczuk, Michał Ziobro

Even on tests with small treewidth rank-based approach can help, but please use 2nd rank-based approach.

- Even on tests with small treewidth rank-based approach can help, but please use 2nd rank-based approach.
- For sparse graphs with a large treewidth a cost of dividing fingerprints into families is often greater than gain from reducing number of them.

イロト イポト イヨト イヨト

э

- Even on tests with small treewidth rank-based approach can help, but please use 2nd rank-based approach.
- For sparse graphs with a large treewidth a cost of dividing fingerprints into families is often greater than gain from reducing number of them.

イロト イポト イヨト イヨト

• Cut-and-count approach is impractical.

Marcin Pilipczuk, Michał Ziobro

- Even on tests with small treewidth rank-based approach can help, but please use 2nd rank-based approach.
- For sparse graphs with a large treewidth a cost of dividing fingerprints into families is often greater than gain from reducing number of them.
- Cut-and-count approach is impractical.
- Conjecture: reducing only classes with 4 vertices of degree one may be the best.

イロト イポト イヨト イヨト