Finding Hamiltonian Cycle in Graphs of Bounded Treewidth: Experimental Evaluation

Marcin Pilipczuk, Michał Ziobro

March 12, 2019

1Supported by the “Recent trends in kernelization: theory and experimental evaluation” project, carried out within the Homing programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.
Separator
Separator
Fingerprints

\[\text{same vertex degrees} \Rightarrow \text{one class} \]
\[k \text{ vertices of degree 1} \Rightarrow k!! \text{ possible fingerprints} \]
Fingerprints

\[\text{same vertex degrees} \Rightarrow \text{one class} \]

\[k \text{ vertices of degree 1} \Rightarrow k!! \text{ possible fingerprints} \]
same vertex degrees \Rightarrow one class
same vertex degrees ⇒ one class

k vertices of degree 1 ⇒ $k!!$ possible fingerprints
Naive algorithm

tree decomposition — set of separators covering whole graph

Treewidth — size of largest separator in the tree decomposition
(one with the smallest largest separator)
tree decomposition — set of separators covering whole graph
treewidth — size of largest separator in the tree decomposition
(one with the smallest largest separator)

Basic idea:
- fingerprint set for trivial separator
- fingerprint set for $S' \sim S \Rightarrow$ fingerprint set for S
Naive algorithm

Tree decomposition — set of separators covering whole graph

Treewidth — size of largest separator in the tree decomposition (one with the smallest largest separator)

Basic idea:
- fingerprint set for trivial separator
- fingerprint set for $S' \sim S \Rightarrow$ fingerprint set for S

FPT dynamic algorithm with running time $2^{O(t \ln t)}O(n^c)$, where $t = \text{treewidth}$
Representative sets

class — tuple of degrees of vertices, $\in \{0, 1, 2\}^S$
fingerprint — a class plus a matching on deg-1 vtcs

number of classes is small (3^t)
Representative sets

class — tuple of degrees of vertices, $\in \{0, 1, 2\}^S$
fingerprint — a class plus a matching on deg-1 vtcs

number of classes is small (3^t)

bottleneck - size of a class ($k!!$)
Representative sets

class — tuple of degrees of vertices, \(\in \{0, 1, 2\}^S \)
fingerprint — a class plus a matching on deg-1 vtc{s}

number of classes is small \((3^t)\)

bottleneck - size of a class \((k!!)\)

representative set \(F'\) of \(F\) : \(f \in F\) fits \(g\) \(\Rightarrow \exists f' \in F', f'\) fits \(g\)
Representative sets

class — tuple of degrees of vertices, $\in \{0, 1, 2\}^S$
fingerprint — a class plus a matching on deg-1 vtc

number of classes is small (3^t)

bottleneck - size of a class ($k!!$)

representative set F' of F: $f \in F$ fits $g \Rightarrow \exists f' \in F': f'$ fits g
Representative sets

class — tuple of degrees of vertices, ∈ \{0, 1, 2\}^S
fingerprint — a class plus a matching on deg-1 vtc

number of classes is small (3^t)

bottleneck - size of a class (k!!)

representative set F' of F : f ∈ F fits g ⇒ ∃f'∈F', f' fits g

- 2^{k-1} (Bodleander et al., 2012)
- 2^{k/2-1} (Cygan et al., 2013)
Representative sets

class — tuple of degrees of vertices, $\in \{0, 1, 2\}^S$

fingerprint — a class plus a matching on deg-1 vtcs

number of classes is small (3^t)

bottleneck - size of a class ($k!!$)

representative set F' of F : $f \in F$ fits $g \Rightarrow \exists f' \in F', f' \text{ fits } g$

- 2^{k-1} (Bodleander et al., 2012)
- $2^{k/2-1}$ (Cygan et al., 2013)

both are rank-based approaches \Rightarrow size of representative set bounded by rank of certain matrix
Representative sets

class — tuple of degrees of vertices, $\in \{0, 1, 2\}^S$
fingerprint — a class plus a matching on deg-1 vtc
class

number of classes is small (3^t)
bottleneck - size of a class ($k!!$)

representative set F' of $F : f \in F$ fits $g \Rightarrow \exists f' \in F', f'$ fits g

- 2^{k-1} (Bodleander et al., 2012) (rank-based 1)
- $2^{k/2-1}$ (Cygan et al., 2013) (rank-based 2)

both are rank-based approaches \Rightarrow size of representative set
bounded by rank of certain matrix
Cut-and-count approach

- randomized
- algebraic
- theoretically fastest
Cut-and-count approach

- randomized
- algebraic
- theoretically fastest

Evaluation of a poly over large field of characteristic 2:

$$\sum_{(R,B) \in C} \prod_{e \in R \cup B} x_e$$
Cut-and-count approach

- randomized
- algebraic
- theoretically fastest

Evaluation of a poly over large field of characteristic 2:

$$\sum_{(R,B) \in C} \prod_{e \in R \cup B} x_e$$
Cut-and-count approach

4^t states, deg-1 vertices red or blue,
Cut-and-count approach

- 4^t states, deg-1 vertices red or blue,
- evaluate some polynomial over $GF(2^s)$,
Cut-and-count approach

- 4^t states, deg-1 vertices red or blue,
- evaluate some polynomial over $GF(2^s)$,
- monomials from non-solutions cancel out, from solutions stay,
Cut-and-count approach

- 4^t states, deg-1 vertices red or blue,
- evaluate some polynomial over $GF(2^s)$,
- monomials from non-solutions cancel out, from solutions stay,
- Schwarz-Zippel: random values, from $GF(2^{64})$.
4^t states, deg-1 vertices red or blue,
evaluate some polynomial over $GF(2^s)$,
monomials from non-solutions cancel out, from solutions stay,
Schwarz-Zippel: random values, from $GF(2^{64})$,
naive join nodes: 9^t,
Cut-and-count approach

- 4^t states, deg-1 vertices red or blue,
- evaluate some polynomial over $GF(2^s)$,
- monomials from non-solutions cancel out, from solutions stay,
- Schwarz-Zippel: random values, from $GF(2^{64})$,
- naive join nodes: 9^t,
- transform at join nodes: 4^t, but problems with $GF(2^{64})$.
Data sets

FHCP Challenge - 1001 instances

623 instances with treewidth below 10 (fill-in heuristic)

19 instances with treewidth between 17 and 29 (heuristic by Ben Strasser, 2nd place on PACE 2017)

A - instances with small treewidth from FHCP Challenge

B - randomly sampled subset of A (for adjusting hyperparameters)

C - instances with treewidth between 17 and 29 from FHCP Challenge

D - subset of C which were solved by at least one of our algorithms (for adjusting hyperparameters)

E - our few random instances
Data sets

FHCP Challenge - 1001 instances
623 instances with treewidth below 10 (*fill-in* heuristic)
Data sets

FHCP Challenge - 1001 instances
623 instances with treewidth below 10 (fill-in heuristic)
19 instances with treewidth between 17 and 29 (heuristic by Ben Strasser, 2nd place on PACE 2017)
Data sets

FHCP Challenge - 1001 instances
623 instances with treewidth below 10 (*fill-in* heuristic)
19 instances with treewidth between 17 and 29 (heuristic by Ben Strasser, 2nd place on PACE 2017)

- A - instances with small treewidth from FHCP Challenge
- B - randomly sampled subset of A (for adjusting hyperparameters)
Data sets

FHCP Challenge - 1001 instances
623 instances with treewidth below 10 (*fill-in* heuristic)
19 instances with treewidth between 17 and 29 (heuristic by Ben Strasser, 2nd place on PACE 2017)

- A - instances with small treewidth from FHCP Challenge
- B - randomly sampled subset of A (for adjusting hyperparameters)
- C - instances with treewidth between 17 and 29 from FHCP Challenge
- D - subset of C which were solved by at least one of our algorithms (for adjusting hyperparameters)
- E - our few random instances
Small treewidth results

- **1st rank-based**: 18.59% times slower than naive,
- **2nd rank-based**: 10.97% faster,
- **cut-and-count**: solved 499 from 623 instances (TL: 600s)

| test | $|V|$ | tw | naive | rank-based 1 | rank-based 2 | c&c |
|------|-----|------|-----------|---------------|--------------|-----|
| 0556 | 3274 | 9 | 20.655 | 27.794 | 28.024 | 128.231 |
| 0728 | 4170 | 9 | 30.861 | 38.578 | 38.823 | 279.871 |
| 0947 | 6598 | 9 | 128.733 | 143.144 | 142.427 | 467.181 |
| 0584 | 3411 | 9 | 105.371 | 114.240 | 73.291 | - |
| 0746 | 4286 | 9 | 631.261 | 619.601 | 381.351 | - |
| 0778 | 4561 | 8 | 17.468 | 16.974 | 13.069 | - |
| 0950 | 6620 | 9 | 196.572 | 206.482 | 124.641 | - |
Large treewidth results

| test | $|V|$ | tw | naive | rank-based 1 | rank-based 2 | c&c |
|-----------|-----|------|--------|--------------|--------------|-----|
| 0074 | 462 | 28 | 38.737 | 109.655 | 110.040 | - |
| 0253 | 1578| 29 | 93.343 | 167.458 | 167.440 | - |
| 0268 | 1644| 25 | 36.449 | 70.157 | 69.111 | - |
| 0272 | 1662| 25 | 554.271| 1260.329 | 1230.722 | - |
| 0298 | 1806| 23 | 10.035 | 18.611 | 18.492 | - |
| 0172 | 1002| 25 | 1.156 | 1.298 | .554 | - |
| 0199 | 1200| 25 | 13.513 | 15.419 | 3.369 | - |
| E0002 | 600 | 18 | 204.197| - | 28.882 | - |
| E0003 | 700 | 20 | - | - | 711.778 | - |
| E0007 | 360 | 15 | 1575.475| - | 328.191 | - |
Conclusions

- Even on tests with small treewidth rank-based approach can help, but please use 2nd rank-based approach.
Conclusions

- Even on tests with small treewidth rank-based approach can help, but please use 2nd rank-based approach.
- For sparse graphs with a large treewidth a cost of dividing fingerprints into families is often greater than gain from reducing number of them.
Conclusions

- Even on tests with small treewidth rank-based approach can help, but please use 2nd rank-based approach.
- For sparse graphs with a large treewidth a cost of dividing fingerprints into families is often greater than gain from reducing number of them.
- Cut-and-count approach is impractical.
Conclusions

- Even on tests with small treewidth rank-based approach can help, but please use 2nd rank-based approach.
- For sparse graphs with a large treewidth a cost of dividing fingerprints into families is often greater than gain from reducing number of them.
- Cut-and-count approach is impractical.
- **Conjecture**: reducing only classes with 4 vertices of degree one may be the best.