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Fixed-Cardinality Optimization

Input: A graph G = (V ,E), an objective function φ ∶ G → Z, k ∈N.
Task: Find S ⊆ V such that

∣S ∣ = k , and

φ(G [S]) is maximum.

Examples:

φ(H) = ∣E(H)∣ ↝ Densest-k-Subgraph

φ(H) =

⎧⎪⎪
⎨
⎪⎪⎩

1 H is 2-regular and connected,

0 otherwise.

↝ Induced k-Cycle
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Previous Work

FPT Algorithm for (∆, k) where ∆ is the maximum degree of G :

Theorem (K. & Sorge, Discr Appl Math 2015)

If φ(H) = −∞ for all nonconnected graphs H, and φ(H) can be
evaluated in T (k) time, then Fixed-Cardinality Optimization
can be solved in O((e(∆ − 1))k−1(∆ + k) ⋅ n) ⋅T (k) time.

Algorithm:

Enumerate all connected induced subgraphs G [S] of order k ,

evaluate φ(G [S]) for each,

output the best set S .

↝ Implementation for Connected Densest-k-Subgraph
[K., Stahl & Sorge, SEA ’15]

Aim: Implement & engineer general algorithm
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Connected Subgraph Enumeration

General approach: starting from a single vertex, grow a
connected subgraph by adding neighbors of current subgraph

Variants:

Simple: Try each neighbor u of P [Wernicke, WABI ’15]

Kavosh: Try each Q ⊆ N(P) such that ∣Q ∣ ≤ k − ∣P ∣

[Kashani et al., BMC Bioinformatics ’09]

Pivot: P = {p1,p2, . . . ,p∣P ∣}, first add neighbors of p1, then
neighbors of p2, ... [K. & Sorge, IPEC ’12]
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Connected Subgraph Enumeration: Experiments
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Theoretical guarantee: Simple and Pivot have worst-case
delay O(k2∆) [K. & Sommer, SOFSEM ’18]

C. Komusiewicz and F. Sommer A generic solver for fixed-cardinality optimization 5



Experimental Setup

Test problems:

Dense: Densest-k-Subgraph, Max-Min-Degree-Subgraph

Sparse: Min-Max-Degree-Subgraph, Acyclic Subgraph,
Triangle-Free Subgraph, Max-Diameter Subgraph

Degree-Constraint: 2-Regular Subgraph,
(2,5)-Degree Constrained Subgraph

Data:

30 sparse real-world networks,
n ∈ [27,541 000], m ∈ [78,16 ⋅ 106]

20 Gn,p graphs, n ∈ [100,1000], p ∈ {0.1,0.2}

k ∈ [3,10]

Implementation: Python + igraph

Timeout: 60s per instance
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Implementation of Objective Functions

def evaluate(graph):

global problem

global parameters

if problem == Fco.DENSEST: # densest k-subgraph

return graph.ecount()

elif problem == Fco.MINDEG: # maximize min-degree

min deg = graph.vcount()

for i in range(graph.vcount()):

min deg = min(graph.degree(i),min deg)

return min deg

elif problem == Fco.MINMAXDEG: # minimize max-degree

return -graph.maxdegree()

elif problem == Fco.ACYCLIC: # find an acyclic graph

if graph.ecount() == graph.vcount() - 1:

return 1

else:

return 0

...
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Pruning Rules and Problem Properties

Approach: For each P, compute whether P may be extended to an
optimal solution. If not, return to parent node of the search tree.

Problem: φ is unknown

Idea: use properties that are shared by many natural φ’s.

vertex-addition-bounded φ: by adding one vertex to H, the
value of φ may increase by at most x

edge-monotonicity: adding an edge to H does not decrease
the value of φ(H)

edge-removal-monotonicity: removing an edge from H does
not decrease the value of φ(H) (if we maintain connectivity)
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Clique Join Rule
z : current upper bound

C. Komusiewicz and F. Sommer A generic solver for fixed-cardinality optimization 9



Clique Join Rule
z : current upper bound

C. Komusiewicz and F. Sommer A generic solver for fixed-cardinality optimization 9



Clique Join Rule
z : current upper bound
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Vertex Addition Bounds

Assumption: φ is addition-bounded by x

Rule: If φ(G [P]) + (∣P ∣ − k)x ≤ z , then discard P.
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Vertex Addition Bounds and Objective Functions

Acyclic / Triangle-free Subgraph:

φ(H) =

⎧⎪⎪
⎨
⎪⎪⎩

1 H is acyclic / triangle-free,

0 otherwise.
x = 0

Min-Max-Degree Subgraph:

φ(H) = − max
v∈V (H)

{deg(v)}, x = 0

Max-Diameter Subgraph:

φ(H) = diam(H), x = 1
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Universal Graph Rule
Rule: For each graph H of order k − ∣P ∣, try all possibilities to add
edges between H and G [P]. If φ(G [H ′]) ≤ z for all resulting H ′,
then discard P.
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Kavosh vs. Pivot
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ILP & Tractable k

Name n m Kavosh Pivot Simple ILP

ucidata-zachary 34 78 8 9 8 8
dolphins 62 159 9 9 8 10
adjnoun adjacency 112 425 6 7 6 10
inf-USAir97 332 2 126 4 5 4 7
bio-celegans 453 2 025 5 6 5 7
soc-wiki-Vote 889 2 914 6 6 6 5
inf-euroroad 1 174 1 417 8 8 7 2
ca-CSphd 1 882 1 740 6 6 5 2
inf-openflights 2 939 15 677 4 6 5 2
inf-power 4 941 6 594 7 7 7 2

bio-dmela 7 393 25 569 5 4 4 2
ca-AstroPh 17 903 196 972 4 4 4 2
coAuthorsCiteseer 227 320 814 134 5 4 4 2
soc-twitter-follows 404 719 713 319 3 2 2 2
coPapersDBLP 540 486 15 245 729 3 3 3 2
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Outlook

To-Do List:

Data reduction: twin removal, domination rules

Greedy initialization of upper bounds, searching for cliques for
edge-monotone properties

Further specialized data reduction rules: restricted versions of
universal graph rule for edge-removal-monotonicity

Theory:

Further improvement of the enumeration delay

Generic tractability results for smaller parameters than ∆

Improved running time bounds for (∆, k)

Practice:

Further pruning rules and objective function properties

Framework for user-specified upper bounds

Extension to weighted, directed, and colored graph variants
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