Towards an efficient generic solver for fixed-cardinality optimization in graphs

Christian Komusiewicz and Frank Sommer

NII Shonan Meeting No. 144

Parameterized Graph Algorithms & Data Reduction: Theory Meets Practice

March 2019

C. Komusiewicz and F. Sommer

A generic solver for fixed-cardinality optimization

Fixed-Cardinality Optimization

Input: A graph G = (V, E), an objective function $\phi : \mathcal{G} \to \mathbb{Z}$, $k \in \mathbb{N}$. **Task:** Find $S \subseteq V$ such that

- $\blacksquare |S| = k, \text{ and }$
- $\phi(G[S])$ is maximum.

Fixed-Cardinality Optimization

Input: A graph G = (V, E), an objective function $\phi : \mathcal{G} \to \mathbb{Z}$, $k \in \mathbb{N}$. **Task:** Find $S \subseteq V$ such that

- |S| = k, and
- $\phi(G[S])$ is maximum.

Examples:

•
$$\phi(H) = |E(H)| \rightsquigarrow \text{Densest-}k\text{-Subgraph}$$

Fixed-Cardinality Optimization

Input: A graph G = (V, E), an objective function $\phi : \mathcal{G} \to \mathbb{Z}$, $k \in \mathbb{N}$. **Task:** Find $S \subseteq V$ such that

 $\blacksquare |S| = k, \text{ and }$

• $\phi(G[S])$ is maximum.

Examples:

■
$$\phi(H) = |E(H)| \sim \text{Densest-}k\text{-Subgraph}$$

■ $\phi(H) = \begin{cases} 1 & H \text{ is 2-regular and connected,} \\ 0 & \text{otherwise.} \end{cases}$
 $\sim \text{Induced }k\text{-Cycle}$

FPT Algorithm for (Δ, k) where Δ is the maximum degree of G:

Theorem (K. & Sorge, Discr Appl Math 2015)

If $\phi(H) = -\infty$ for all nonconnected graphs H, and $\phi(H)$ can be evaluated in T(k) time, then **Fixed-Cardinality Optimization** can be solved in $\mathcal{O}((e(\Delta - 1))^{k-1}(\Delta + k) \cdot n) \cdot T(k)$ time.

FPT Algorithm for (Δ, k) where Δ is the maximum degree of G:

Theorem (K. & Sorge, Discr Appl Math 2015)

If $\phi(H) = -\infty$ for all nonconnected graphs H, and $\phi(H)$ can be evaluated in T(k) time, then **Fixed-Cardinality Optimization** can be solved in $\mathcal{O}((e(\Delta - 1))^{k-1}(\Delta + k) \cdot n) \cdot T(k)$ time.

Algorithm:

- Enumerate all connected induced subgraphs G[S] of order k,
- evaluate $\phi(G[S])$ for each,
- output the best set S.

FPT Algorithm for (Δ, k) where Δ is the maximum degree of G:

Theorem (K. & Sorge, Discr Appl Math 2015)

If $\phi(H) = -\infty$ for all nonconnected graphs H, and $\phi(H)$ can be evaluated in T(k) time, then **Fixed-Cardinality Optimization** can be solved in $\mathcal{O}((e(\Delta - 1))^{k-1}(\Delta + k) \cdot n) \cdot T(k)$ time.

Algorithm:

- Enumerate all connected induced subgraphs G[S] of order k,
- evaluate $\phi(G[S])$ for each,
- output the best set S.
- → Implementation for Connected Densest-k-Subgraph

[K., Stahl & Sorge, SEA '15]

FPT Algorithm for (Δ, k) where Δ is the maximum degree of G:

Theorem (K. & Sorge, Discr Appl Math 2015)

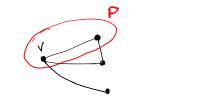
If $\phi(H) = -\infty$ for all nonconnected graphs H, and $\phi(H)$ can be evaluated in T(k) time, then **Fixed-Cardinality Optimization** can be solved in $\mathcal{O}((e(\Delta - 1))^{k-1}(\Delta + k) \cdot n) \cdot T(k)$ time.

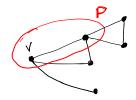
Algorithm:

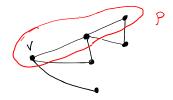
- Enumerate all connected induced subgraphs G[S] of order k,
- evaluate $\phi(G[S])$ for each,
- output the best set S.
- → Implementation for Connected Densest-k-Subgraph

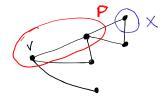
[K., Stahl & Sorge, SEA '15]

Aim: Implement & engineer general algorithm

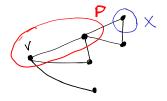








General approach: starting from a single vertex, grow a connected subgraph by adding neighbors of current subgraph



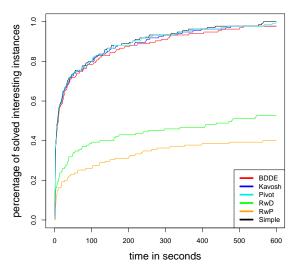
Variants:

- Simple: Try each neighbor *u* of *P* [Wernicke, WABI '15]
- Kavosh: Try each $Q \subseteq N(P)$ such that $|Q| \leq k |P|$

[Kashani et al., BMC Bioinformatics '09]

Pivot: P = {p₁, p₂,..., p_{|P|}}, first add neighbors of p₁, then neighbors of p₂, ... [K. & Sorge, IPEC '12]

Connected Subgraph Enumeration: Experiments



Theoretical guarantee: Simple and Pivot have worst-casedelay $\mathcal{O}(k^2\Delta)$ [K. & Sommer, SOFSEM '18]

C. Komusiewicz and F. Sommer

A generic solver for fixed-cardinality optimization

Experimental Setup

Test problems:

- Dense: Densest-k-Subgraph, Max-Min-Degree-Subgraph
- Sparse: Min-Max-Degree-Subgraph, Acyclic Subgraph, Triangle-Free Subgraph, Max-Diameter Subgraph
- Degree-Constraint: 2-Regular Subgraph, (2,5)-Degree Constrained Subgraph

Data:

Implementation: Python + igraph

Timeout: 60s per instance

2}

Implementation of Objective Functions

```
def evaluate(graph):
     global problem
     global parameters
     if problem == Fco.DENSEST: # densest k-subgraph
          return graph.ecount()
     elif problem == Fco.MINDEG: # maximize min-degree
          min_deg = graph.vcount()
          for i in range(graph.vcount()):
               min_deg = min(graph.degree(i),min_deg)
          return min_deg
     elif problem == Fco.MINMAXDEG: # minimize max-degree
          return -graph.maxdegree()
     elif problem == Fco.ACYCLIC: # find an acyclic graph
          if graph.ecount() == graph.vcount() - 1:
               return 1
          else:
               return 0
```

C. Komusiewicz and F. Sommer

. . .

Pruning Rules and Problem Properties

Approach: For each P, compute whether P may be extended to an optimal solution. If not, return to parent node of the search tree.

Problem: ϕ is unknown

Pruning Rules and Problem Properties

Approach: For each P, compute whether P may be extended to an optimal solution. If not, return to parent node of the search tree.

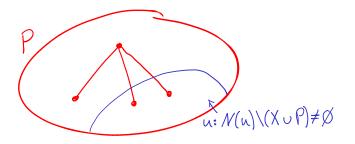
Problem: ϕ is unknown

Idea: use properties that are shared by many natural ϕ 's.

- vertex-addition-bounded φ: by adding one vertex to H, the value of φ may increase by at most x
- edge-monotonicity: adding an edge to *H* does not decrease the value of $\phi(H)$
- edge-removal-monotonicity: removing an edge from H does not decrease the value of $\phi(H)$ (if we maintain connectivity)

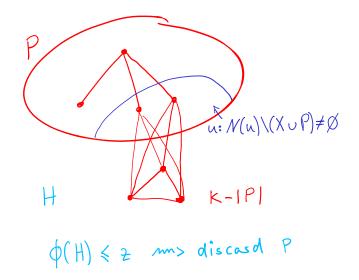
Clique Join Rule

z: current upper bound



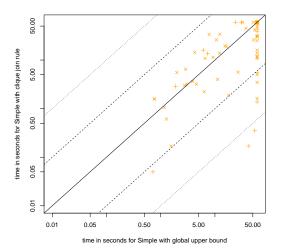
Clique Join Rule

z: current upper bound



Clique Join Rule

z: current upper bound



A generic solver for fixed-cardinality optimization

Vertex Addition Bounds

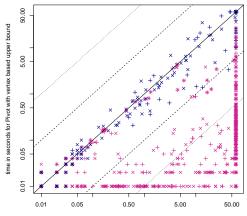
Assumption: ϕ is addition-bounded by x

Rule: If $\phi(G[P]) + (|P| - k)x \le z$, then discard *P*.

Vertex Addition Bounds

Assumption: ϕ is addition-bounded by x

Rule: If $\phi(G[P]) + (|P| - k)x \le z$, then discard *P*.



time in seconds for Pivot with global upper bound

A generic solver for fixed-cardinality optimization

Vertex Addition Bounds and Objective Functions

Acyclic / Triangle-free Subgraph:

$$\phi(H) = \begin{cases} 1 & H \text{ is acyclic / triangle-free,} \\ 0 & \text{otherwise.} \end{cases} \qquad x = 0$$

Min-Max-Degree Subgraph:

$$\phi(H) = -\max_{v \in V(H)} \{\deg(v)\}, \qquad x = 0$$

Max-Diameter Subgraph:

 $\phi(H) = \operatorname{diam}(H), \qquad x = 1$

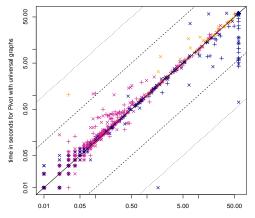
C. Komusiewicz and F. Sommer

Universal Graph Rule

Rule: For each graph *H* of order k - |P|, try all possibilities to add edges between *H* and *G*[*P*]. If $\phi(G[H']) \leq z$ for all resulting *H'*, then discard *P*.

Universal Graph Rule

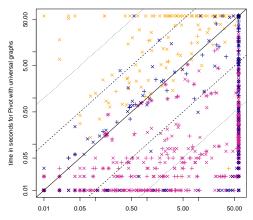
Rule: For each graph H of order k - |P|, try all possibilities to add edges between H and G[P]. If $\phi(G[H']) \leq z$ for all resulting H', then discard P.



time in seconds for Pivot with vertex based upper bound

A generic solver for fixed-cardinality optimization

Kavosh vs. Pivot



time in seconds for Kavosh with universal graphs

A generic solver for fixed-cardinality optimization

ILP & Tractable k

Name	n	т	Kavosh	Pivot	Simple	ILP
ucidata-zachary	34	78	8	9	8	8
dolphins	62	159	9	9	8	10
adjnoun_adjacency	112	425	6	7	6	10
inf-USAir97	332	2 1 2 6	4	5	4	7
bio-celegans	453	2 0 2 5	5	6	5	7
soc-wiki-Vote	889	2914	6	6	6	5
inf-euroroad	1174	1 417	8	8	7	2
ca-CSphd	1882	1740	6	6	5	2
inf-openflights	2 9 3 9	15677	4	6	5	2
inf-power	4941	6 594	7	7	7	2
bio-dmela	7 393	25 569	5	4	4	2
ca-AstroPh	17 903	196 972	4	4	4	2
coAuthorsCiteseer	227 320	814 134	5	4	4	2
soc-twitter-follows	404 719	713 319	3	2	2	2
coPapersDBLP	540 486	15245729	3	3	3	2

Outlook

To-Do List:

- Data reduction: twin removal, domination rules
- Greedy initialization of upper bounds, searching for cliques for edge-monotone properties
- Further specialized data reduction rules: restricted versions of universal graph rule for edge-removal-monotonicity

Theory:

- Further improvement of the enumeration delay
- \blacksquare Generic tractability results for smaller parameters than Δ
- Improved running time bounds for (Δ, k)

Practice:

- Further pruning rules and objective function properties
- Framework for user-specified upper bounds
- Extension to weighted, directed, and colored graph variants