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Mandatory slide

Current research (and my stay here) is a part of projects that have
received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 714704.

Experimental work (later in the talk) supported by the Recent trends in
kernelization: theory and experimental evaluation project, carried out
within the Homing programme of the Foundation for Polish Science
co-financed by the European Union under the European Regional
Development Fund.
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What does it mean sparse?

For the purpose of this talk we focus on graphs.

Q: What does it mean that a graph is sparse?

Positive ex: Bounded max degree, planar, bounded treewidth, ...
Negative ex: Cliques, bicliques, ...

Attempt 1. Edge density bounded by a constant:

density(G ) :=
|E (G )|
|V (G )|

6 c .

Note: density(G ) is half of the average degree.

Problem: Take a clique of size n plus n2 − n isolated vertices.

This has density < 1
2
.

Issue: Although the density is small, contains a dense substructure.
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What does it mean sparse?

Attempt 2. Every subgraph of G has bounded edge density:

max
H⊆G
{density(H)} 6 c .

Remark: This is essentially equivalent to degeneracy or arboricity.

Problem: Take a clique Kn with each edge subdivided once.

In every subgraph of this graph, the number of edges is at most
twice the number of vertices.
Issue: We see a dense structure “at depth” 1.
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Shallow minors

Need: notion of embedding that looks at constant “depth”.

Graph H is a minor of G if there is a minor model φ of H in G .

Model φ maps vertices u ∈ V (H) to pairwise disjoint connected
subgraphs φ(u) of G , called branch sets.
If uv ∈ E(H), then there should be an edge between φ(u) and φ(v).

Graph H is a depth-d minor of G if there is a minor model of H in
G where each branch set has radius at most d .

Idea: Replace subgraphs with shallow minors in the def. of sparsity.

H G

φ

H G

φ
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Sparsity, formally

Note: Sparsity is a property of a graph class, not of a single graph.

Notation: COd = {depth-d minors of graphs from C}.

Ex: CO0 is the closure of C under subgraphs.

Bounded expansion

A class of graphs C has bounded expansion if there is a function
f : N→ N such that density(H) 6 f (d) for all d ∈ N and H ∈ COd .

Nowhere dense

A class of graphs C is nowhere dense if there is a function t : N→ N
such that Kt(d) /∈ COd for all d ∈ N.

Equivalently, COd 6= Graphs for all d ∈ N.

Intuition: At every constant depth we see a sparse class, but the
parameters can deteriorate with increasing depth.

Note: Nowhere dense classes are also sparse.

If H ∈ COd , then H has Oε,d(n1+ε) edges, for any ε > 0.
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Hierarchy of sparsity

Star forests

Bounded treedepth

Bounded treewidth
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Figure by Felix Reidl
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Theory of sparsity

Developed by Nešeťril and Ossona de Mendez since 2005.

Monograph Sparsity presents the field as of 2012.

Many concepts appeared already much earlier.

Earliest definition of nowhere denseness:
Podewski and Ziegler in 1976.

In summary:

Bounded expansion and nowhere denseness are fundamental
concepts that have multiple equivalent characterizations.
Each characterization yields a different viewpoint and a tool.
Applications for combinatorics, algorithms, and logic.
Nowhere denseness delimits tractability for many basic problems.
Toolbox seems much more suitable than using decomposition
theorems for classes excluding a fixed (topological) minor.
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Developed by Nešeťril and Ossona de Mendez since 2005.

Monograph Sparsity presents the field as of 2012.

Many concepts appeared already much earlier.

Earliest definition of nowhere denseness:
Podewski and Ziegler in 1976.

In summary:

Bounded expansion and nowhere denseness are fundamental
concepts that have multiple equivalent characterizations.
Each characterization yields a different viewpoint and a tool.
Applications for combinatorics, algorithms, and logic.
Nowhere denseness delimits tractability for many basic problems.
Toolbox seems much more suitable than using decomposition
theorems for classes excluding a fixed (topological) minor.

Marcin Pilipczuk Sparsity 8/38



Theory of sparsity
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Characterizations

Sparsity of shallow minors

Sparsity of shallow topological minors

Degeneracy

Weak coloring number

Generalized coloring numbers

Uniform quasi-wideness

A

Neighborhood complexity

A

Low treedepth colorings

Fraternal augmentations

k-Helly property

Neighborhood covers

Splitter game
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Applications

Our definition of sparsity is based on local contractions, so we
should study local problems in this framework.

What (meta-)class of problems is famously local on graphs?

FO model-checking

Input Graph G , FO sentence ϕ
Question Does G |= ϕ?

In general graphs, there is an O(n‖ϕ‖)-time algorithm.

Goal: runtime f (ϕ) · nc for a fixed constant c and some function f .

Called fixed-parameter tractable, or FPT, parameterized by ‖ϕ‖.

No such algorithm on general graphs, unless FPT = AW[?].

FPT algorithms for bounded degree, planar, H-minor-free, ...
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FO model-checking dichotomy

Theorem [Grohe et al., Dvǒrák et al.]

Let C be a monotone graph class (closed under taking subgraphs). Then:

If C is nowhere dense, then FO model-checking can be done in time
f (ϕ) · n1+ε on graphs from C, for any ε > 0.

If C is somewhere dense, then FO model-checking is AW[?]-complete
on graphs from C.

Nowhere denseness exactly characterizes monotone classes where
FO model-checking is tractable from the parameterized viewpoint.

Provides a natural barrier for locality-based methods.
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Gaifman normal form

Gaifman normal form

Every FO sentence on graphs is equivalent to a boolean combination of
basic local sentences, each having the following form:

There exist u1, u2, . . . , uk that are pairwise at distance > 2r ,
and ψr (ui ) holds for each i = 1, . . . , k.

where r is some integer and ψr (x) is an r-local formula, i.e. satisfaction
of ψr (u) depends only on the r -neighborhood of u.

Ergo, FO model-checking reduces to basic local sentences.

Roughly, the approach for bounded-degree, planar, H-minor free:

Design a procedure for checking r -local formulas.
Solve an (annotated) instance of r-Scattered Set.

Can be lifted to bounded expansion and nowhere dense classes.

Marcin Pilipczuk Sparsity 12/38



Gaifman normal form

Gaifman normal form

Every FO sentence on graphs is equivalent to a boolean combination of
basic local sentences, each having the following form:

There exist u1, u2, . . . , uk that are pairwise at distance > 2r ,
and ψr (ui ) holds for each i = 1, . . . , k.

where r is some integer and ψr (x) is an r-local formula, i.e. satisfaction
of ψr (u) depends only on the r -neighborhood of u.

Ergo, FO model-checking reduces to basic local sentences.

Roughly, the approach for bounded-degree, planar, H-minor free:

Design a procedure for checking r -local formulas.
Solve an (annotated) instance of r-Scattered Set.

Can be lifted to bounded expansion and nowhere dense classes.

Marcin Pilipczuk Sparsity 12/38



Gaifman normal form

Gaifman normal form

Every FO sentence on graphs is equivalent to a boolean combination of
basic local sentences, each having the following form:

There exist u1, u2, . . . , uk that are pairwise at distance > 2r ,
and ψr (ui ) holds for each i = 1, . . . , k.

where r is some integer and ψr (x) is an r-local formula, i.e. satisfaction
of ψr (u) depends only on the r -neighborhood of u.

Ergo, FO model-checking reduces to basic local sentences.

Roughly, the approach for bounded-degree, planar, H-minor free:

Design a procedure for checking r -local formulas.
Solve an (annotated) instance of r-Scattered Set.

Can be lifted to bounded expansion and nowhere dense classes.

Marcin Pilipczuk Sparsity 12/38



Gaifman normal form

Gaifman normal form

Every FO sentence on graphs is equivalent to a boolean combination of
basic local sentences, each having the following form:

There exist u1, u2, . . . , uk that are pairwise at distance > 2r ,
and ψr (ui ) holds for each i = 1, . . . , k.

where r is some integer and ψr (x) is an r-local formula, i.e. satisfaction
of ψr (u) depends only on the r -neighborhood of u.

Ergo, FO model-checking reduces to basic local sentences.

Roughly, the approach for bounded-degree, planar, H-minor free:

Design a procedure for checking r -local formulas.

Solve an (annotated) instance of r-Scattered Set.

Can be lifted to bounded expansion and nowhere dense classes.

Marcin Pilipczuk Sparsity 12/38



Gaifman normal form

Gaifman normal form

Every FO sentence on graphs is equivalent to a boolean combination of
basic local sentences, each having the following form:

There exist u1, u2, . . . , uk that are pairwise at distance > 2r ,
and ψr (ui ) holds for each i = 1, . . . , k.

where r is some integer and ψr (x) is an r-local formula, i.e. satisfaction
of ψr (u) depends only on the r -neighborhood of u.

Ergo, FO model-checking reduces to basic local sentences.

Roughly, the approach for bounded-degree, planar, H-minor free:

Design a procedure for checking r -local formulas.
Solve an (annotated) instance of r-Scattered Set.

Can be lifted to bounded expansion and nowhere dense classes.

Marcin Pilipczuk Sparsity 12/38



Gaifman normal form

Gaifman normal form

Every FO sentence on graphs is equivalent to a boolean combination of
basic local sentences, each having the following form:

There exist u1, u2, . . . , uk that are pairwise at distance > 2r ,
and ψr (ui ) holds for each i = 1, . . . , k.

where r is some integer and ψr (x) is an r-local formula, i.e. satisfaction
of ψr (u) depends only on the r -neighborhood of u.

Ergo, FO model-checking reduces to basic local sentences.

Roughly, the approach for bounded-degree, planar, H-minor free:

Design a procedure for checking r -local formulas.
Solve an (annotated) instance of r-Scattered Set.

Can be lifted to bounded expansion and nowhere dense classes.

Marcin Pilipczuk Sparsity 12/38



Scattered sets and dominating sets

r -Scattered Set

I Graph G , vertex subset A ⊆ V (G ), integer k
Q Is there I ⊆ A with |I | = k s.t. r -balls around vrts of I are disjoint?

r -Dominating Set

I Graph G , vertex subset A ⊆ V (G ), integer k
Q Is there D ⊆ V (G ) with |D| = k s.t. every vertex of A is

at distance 6 r from some vertex of D?

A

A

Marcin Pilipczuk Sparsity 13/38



Scattered sets and dominating sets

A

A

Note: scar (G ,A) 6 domr (G ,A)

Fact: For every class C of bounded expansion and every r ∈ N,
there is a constant c such that for each G ∈ C and A ⊆ V (G ),

scar (G ,A) 6 domr (G ,A) 6 c · scar (G ,A).

For both problems, dichotomy theorems for monotone classes:

r-ScaSet: FPT for all r on every nowhere dense class,
W[1]-hard for some r on every somewhere dense class.

r-DomSet: FPT for all r on every nowhere dense class,
W[2]-hard for some r on every somewhere dense class.

Now: runtime f (k) · |G |2 for r-ScaSet on any nowhere dense C.
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Uniform quasi-wideness

Uniform quasi-wideness

Class C is uniformly quasi-wide with margins s(·) and N(·, ·) if for every
graph G ∈ C, all r ,m ∈ N, and every vertex subset A ⊆ V (G ) of size
larger than N(r ,m), there exist sets S ⊆ V (G ) and B ⊆ A− S with
|S | 6 s(r) and |B| > m such that B is r -scattered in G − S .

Theorem [Nešeťril and Ossona de Mendez]

A class is uniformly quasi-wide iff it is nowhere dense.

Remark: For fixed C, we have N(r ,m) 6 mf (r).

Given (G ,A), sets S and B can be found in time poly(m) · |G |.
Very useful statement when working with Gaifman normal form.

A |A| > N(r,m)

B |B| > m

S |S| 6 s(r)
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Removing irrelevant candidates

Setting: Fix r ∈ N, class C, graph G ∈ C, and A ⊆ V (G ).

Goal: Is there an r -scattered set of size k contained in A?

Claim: There is some M = M(k) with the following property:

Provided |A| > M, we can find some u ∈ A such that
A contains an r -scattered set of size k iff A− {u} does.

Algorithm:

Starting from original A, remove vertices one by one until A reaches
size 6 M(k).
Then brute-force through all

(
M(k)
k

)
= f (k) subsets of size 6 k.

Variant of the irrelevant vertex technique.

Note: One may obtain M(k) = O(k1+ε) for any ε > 0.

A

u

A
|A| > M
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Removing irrelevant candidates

Fix
M(k) := N( 2r , (2r + 1)s(2r) · k ),

where s(·) and N(·, ·) are margins for uqw of C.

Step 1: If |A| > M(k), then we can find S and B ⊆ A− S with

|S | 6 s(2r) and |B| > (2r + 1)s(2r) · k,

and B being 2r -scattered in G − S .

Step 2: Classify vertices of B according to profiles towards S :

Profile of b ∈ B is the vector of distances to elements of S ,
where anything > 2r maps to +∞.
At most (2r + 1)s(2r) possible profiles
⇒ Set B ′ ⊆ B of more than k vertices with same profile.
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Removing irrelevant candidates

Step 3: We claim that any u ∈ B ′ is an irrelevant candidate.

Fix any r -scattered I ⊆ A with |I | = k ; suppose u ∈ A.

We need to find some I ′ ⊆ A− u with these properties.

2r -balls in G − S around vertices of B are pairwise disjoint.

Since |B ′| > k, we can find some v ∈ B ′, v 6= u, with no vertex of I
in the corresponding ball.

Claim: I ′ := I − u + v is still r -scattered.

Pf: If some w ∈ I − u conflicted v , then it would already conflict u.
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Neighborhood complexity

Suppose we have a graph G ∈ C for some class C, and a subset of
vertices A ⊆ V (G ).

For fixed r ∈ N, define the following equivalence relation on V (G ):

u ∼r v iff Br (u) ∩ A = Br (v) ∩ A,

where Br (x) is the r -ball with center x .

How many equivalence classes may ∼r have? In general, even 2|A|.

Thm: C has b.e. ⇒ index(∼r ) 6 cr |A| for some constant cr .

Thm: C is n.d. ⇒ for any ε > 0, index(∼r ) 6 cr ,ε|A|1+ε for some
constant cr ,ε.

Again, a very useful tool for algorithmic analysis of the instance.
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Low treedepth colorings

A p-centered coloring of G is a function c : V (G )→ [k] such that
every connected subgraph of G either uses more than p colors or has
a vertex of unique color.

The same as: every connected subgraph that uses ` 6 p colors has
treedepth at most `.

Equivalent characterization of bounded expansion a graph class G is
of bounded expansion if for every p there exists k(p) such that every
G ∈ G admits a p-centered coloring with at most k(p) colors.

Very useful for finding or counting constant-sized subgraphs.

Say we want to count the number of P4 subgraphs in G .
Take 4-centered coloring c.
For every X ⊆ [k] of size at most 4 count the number of P4s that
use exactly colors of X .
Complexity O(k4n) (without finding the coloring).
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Degeneracy

1 Graph G is d-degenerated iff every subgraph of G has vertex of
degree at most d

2 If graph is d-degenerated then its vertices can be put in order so
that every vertex has at most d edges going to left.

3 G is d-degenerated ⇒ ∇0(G ) ≤ d

4 ∇0(G ) ≤ d ⇒ G is 2d-degenerated
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Generalized coloring number

1 Weak reachability: u is weakly r-reachable from v with respect to
order σ if there exists a path P from v to u using at most r edges
whose every vertex w satisfies u ≤σ w .

2 Strong reachability: the inner vertices of P are allowed only to be
right of v .

3 Weak r -coloring number of order:
wcolr (G , σ) = max

v∈V (G)
|WReach[G , σ, v ]|

4 Weak r -coloring number of graph: wcolr (G ) = min
σ∈Π(G)

wcolr (G , σ)

5 G has bounded expansion iff there exists function f : N→ N such
that ∀r∀G∈Gwcolr (G ) ≤ f (r).
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Beyond sparsity

Obs: For every nowhere dense class C, FO model checking on the
class of complements C := {G : G ∈ C} is also FPT.

Pf: Negate all edge predicates in the input formula.
Might generalize to images under FO interpretations.

Idea 1: Characterize images of nowhere dense classes under
(simple) FO interpretations.

Given G = (V ,E) and a formula ϕ(x , y), define

Gϕ := (V , {(u, v) : G |= ϕ(u, v)}) and Cϕ := {Gϕ : G ∈ C}.

Problem: Is FO model-checking FPT on Cϕ, for each nowhere dense
C and formula ϕ(x , y)?

Issue: We are given only the graph Gϕ, without the preimage G .

On-going work: so far we are able to non-effectively characterize
images of bounded expansion classes.

Idea 2: Find a more general property of graph classes such that:

(1) restricted to monotone classes, it collapses to nowhere denseness;
(2) is closed under FO interpretations; and
(3) gives hope for fixed-parameter tractability of FO model checking.

Candidate: Stability
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Conclusions for the theory part

Theory of structural sparsity in a nutshell:

Basic definitions capture the concept of sparsity that persists under
local contractions.
An abundance of equivalent characterizations and viewpoints.
Each characterization provides a tool that can be used to study
combinatorial, algorithmic, and logical aspects.
Intuition: Delimits the border of tractability for “local” problems.

Intriguing connections to stability.

Rather a transfer of concepts, techniques, and proof strategies,
than concrete results.
Still largely unexplored.

If interested, see lecture notes:
https://www.mimuw.edu.pl/~mp248287/sparsity/
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Experiments

Is this theory anywhere close to being practical?

Are real-world graphs of bounded expansion or nowhere dense? How
good are the parameters?

How good are our algorithmic primitives?

weak coloring numbers
uniform quasi-wideness
low treedepth colorings

Evaluate one complete algorithm.

Kernelization for Dominating Set
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Experiments: literature

Are real-world graphs of bounded expansion or nowhere
dense? How good are the parameters?

Demaine, Reidl, Rossmanith, Sanchez Villaamil, Sikdar, Sullivan,
arXiv:1406.2587

Analysis of a number of random graph models, proving sparsity
properties.

Analysis of low treedepth coloring numbers for a number of
real-world graphs.
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DRRSSS results
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Counting small subgraphs

O’Brien, Sullivan, arXiv:1712.06690

Compared with NXVF2 on a number of random graphs from sparse
models.

Punchline: too slow, low treedepth colorings have too many colors.

Outperform NXVF2 only on artificially prepared data.

The NCSU group is working on new implementation of pattern
counting with a new algorithm based on weak coloring numbers.
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Wcols: Determining good orders

1 Determining good degeneracy orders - easy!

2 Determining good generalized coloring numbers orders - hard!

3 Nadara, P., Rabinovich, Reidl, Siebertz, SEA 2018.
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Tested approaches

1 Distance-constrained transitive fraternal augmentations

2 Flat decompositions

3 Treedepth heuristic

4 Treewidth heuristic
5 Two greedy approaches

1 Left-to-right, take vertex maximizing current size of the WReach set
2 Right-to-left, take vertex minimizing current size of the SReach set

6 Other simple heuristics
1 Sorting by descending degree
2 Degeneracy ordering
3 Doing these on graph G r (where

V (G) = V (G r ), uv ∈ E(G r )⇔ distG (u, v) ≤ r)

7 Local search applied on top of any produced result
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Test data

1 Selection of tests from KONECT base (modelling various real-world
data: graphs of collaborations, airlines connections, political
blogosphere, neural networks etc.)

2 Random planar graphs generated by LEDA library

3 Tests from Parameterized Algorithms and Computational
Experiments Challenge 2016 competition — Feedback Vertex Set
track

4 Graphs generated by random models producing graphs of bounded
expansion: stochastic blocks model, Chung-Lu model and Chung-Lu
model with households

We partitioned all tests into small, medium, big and huge based on
number of edges (respectively
[0, 103), [103, 104), [104, 4, 8 · 104), [4, 8 · 104,∞)).
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Comparison of all approaches
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Local search
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UQW: Tested approaches

1 Distance trees (variants denoted by tree1, tree2, ld it)

2 From weak coloring numbers to uniform quasi-wideness (variants
mfcs, new1, new2, new ld)

3 Naive approach of removing vertices with biggest degrees and
greedily computing independent set in r -th power of remaining
graph (denoted as ld)

Marcin Pilipczuk Sparsity 34/38



Comparing different outputs

1 Different outputs can greatly vary. How to compare? UQW is a
two-dimensional measure.

2 We want best tradeoff between number of deleted vertices and size
of r -independent set.

3 Biggest class of r -independent vertices when grouped by r -distance
profiles!
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Results
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Conclusions for the experimental part

Low treedepth colorings seem too inefficient.

Recommended for wcol: right-to-left greedy with local search on top.

Recommended for UQW: delete a few high degree vertices and get
greedy.

Missing explanation for the performance of the best algorithms.

Nadara: applied UQW to Dominating Set kernelization,
compared to old experiments in planar graphs (Alber, Fellows,
Niedermeier, J.ACM 2004 and Alber, Betzler, Niedermeier, Annals
OR 2006).

The sparsity-based reduction does not add any power over the known
simple neighborhood rules.

Thank you for your attention!
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