Computing sparsity stuff in real world graphs

Marcin Pilipczuk
a lot of slides by Wojciech Nadara and Michat Pilipczuk

Institute of Informatics, University of Warsaw, Poland

Shonan Village Center

4th March 2019

Marcin Pilipczuk Sparsity



Mandatory slide
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What does it mean sparse?

For the purpose of this talk we focus on graphs.

@ Q: What does it mean that a graph is sparse?

o Positive ex: Bounded max degree, planar, bounded treewidth, ...
o Negative ex: Cliques, bicliques, ...

Attempt 1. Edge density bounded by a constant:

_IE(G)]
4]

density(G) : <ec
Note: density(G) is half of the average degree.

Problem: Take a clique of size n plus n?> — n isolated vertices.

o This has density < %
e Issue: Although the density is small, contains a dense substructure.
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What does it mean sparse?

o Attempt 2. Every subgraph of G has bounded edge density:

. <ec
max {density(H)} < ¢

@ Remark: This is essentially equivalent to degeneracy or arboricity.
@ Problem: Take a clique K, with each edge subdivided once.

o In every subgraph of this graph, the number of edges is at most
twice the number of vertices.
o Issue: We see a dense structure “at depth” 1.
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Shallow minors

Need: notion of embedding that looks at constant “depth”.

Graph H is a minor of G if there is a minor model ¢ of H in G.
o Model ¢ maps vertices u € V(H) to pairwise disjoint connected

subgraphs ¢(u) of G, called branch sets.
o If uv € E(H), then there should be an edge between ¢(u) and ¢(v).

Graph H is a depth-d minor of G if there is a minor model of H in
G where each branch set has radius at most d.

Idea: Replace subgraphs with shallow minors in the def. of sparsity.
o . TP

H
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Sparsity, formally

@ Note: Sparsity is a property of a graph class, not of a single graph.
o Notation: Cvd = {depth-d minors of graphs from C}.
o Ex: CVO is the closure of C under subgraphs.

Bounded expansion

A class of graphs C has bounded expansion if there is a function
f: N — N such that density(H) < f(d) for all d € N and H € CVd.

.
Nowhere dense

A class of graphs C is nowhere dense if there is a function t: N — N
such that K4y ¢ CVd for all d € N.

Equivalently, CVd # Graphs for all d € N.

@ Intuition: At every constant depth we see a sparse class, but the
parameters can deteriorate with increasing depth.
@ Note: Nowhere dense classes are also sparse.
o If Hc Cvd, then H has O, 4(n'™®) edges, for any £ > 0.

Marcin Pilipczuk Sparsity 6/38



Hierarchy of sparsity
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Theory of sparsity

@ Developed by Negetfil and Ossona de Mendez since 2005.
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Theory of sparsity

@ Developed by Neget¥il and Ossona de Mendez since 2005.

Monograph Sparsity presents the field as of 2012.

@ Many concepts appeared already much earlier. T

Earliest definition of nowhere denseness:
Podewski and Ziegler in 1976.

@ In summary:

Bounded expansion and nowhere denseness are fundamental
concepts that have multiple equivalent characterizations.

Each characterization yields a different viewpoint and a tool.
Applications for combinatorics, algorithms, and logic.

Nowhere denseness delimits tractability for many basic problems.
Toolbox seems much more suitable than using decomposition
theorems for classes excluding a fixed (topological) minor.
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Characterizations

soosoddadiGibon @
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Characterizations

soosoddadiGibon @

Fraternal augmentations
_ TeeRtees

Low treedepth colorings

Uniform quasi-wideness — Neighborhood complexity

Splitter game
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Applications

@ Our definition of sparsity is based on local contractions, so we
should study local problems in this framework.
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Applications

@ Our definition of sparsity is based on local contractions, so we
should study local problems in this framework.

@ What (meta-)class of problems is famously local on graphs?

FO model-checking

Input Graph G, FO sentence ¢
Question Does G | ¢?

In general graphs, there is an O(nll#ll)-time algorithm.

Goal: runtime f(y) - n° for a fixed constant ¢ and some function f.
o Called fixed-parameter tractable, or FPT, parameterized by ||¢||.

No such algorithm on general graphs, unless FPT = AW[x].

FPT algorithms for bounded degree, planar, H-minor-free, ...
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FO model-checking dichotomy

[Grohe et al., Dvotak et al.]

Let C be a monotone graph class (closed under taking subgraphs). Then:
@ If C is nowhere dense, then FO model-checking can be done in time
f(¢) - n'*< on graphs from C, for any £ > 0.
e If C is somewhere dense, then FO model-checking is AW[*]-complete
on graphs from C.
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FO model-checking dichotomy

[Grohe et al., Dvotak et al.]

Let C be a monotone graph class (closed under taking subgraphs). Then:
@ If C is nowhere dense, then FO model-checking can be done in time
f(¢) - n'*< on graphs from C, for any £ > 0.
e If C is somewhere dense, then FO model-checking is AW[*]-complete
on graphs from C.

@ Nowhere denseness exactly characterizes monotone classes where
FO model-checking is tractable from the parameterized viewpoint.

@ Provides a natural barrier for locality-based methods.
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Gaifman normal form

Gaifman normal form

Every FO sentence on graphs is equivalent to a boolean combination of
basic local sentences, each having the following form:

There exist uy, o, ..., U, that are pairwise at distance > 2r,
and " (u;) holds for each i =1,... k.

where r is some integer and ¥"(x) is an r-local formula, i.e. satisfaction
of " (u) depends only on the r-neighborhood of w.
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Gaifman normal form

Gaifman normal form

Every FO sentence on graphs is equivalent to a boolean combination of
basic local sentences, each having the following form:

There exist uy, o, ..., U, that are pairwise at distance > 2r,
and " (u;) holds for each i =1,... k.

where r is some integer and ¥"(x) is an r-local formula, i.e. satisfaction
of " (u) depends only on the r-neighborhood of w.

@ Ergo, FO model-checking reduces to basic local sentences.
@ Roughly, the approach for bounded-degree, planar, H-minor free:

o Design a procedure for checking r-local formulas.
o Solve an (annotated) instance of r-SCATTERED SET.

@ Can be lifted to bounded expansion and nowhere dense classes.
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Scattered sets and dominating sets

r-Scattered Set

| Graph G, vertex subset A C V(G), integer k
Q Is there | C A with |/| = k s.t. r-balls around vrts of | are disjoint?

r-Dominating Set

| Graph G, vertex subset A C V(G), integer k
Q Isthere D C V(G) with |D| = k s.t. every vertex of A is
at distance < r from some vertex of D?
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o Fact: For every class C of bounded expansion and every r € N,
there is a constant ¢ such that for each G € C and A C V(G),

sca,(G,A) < dom,(G, A) < c¢-sca, (G, A).

@ For both problems, dichotomy theorems for monotone classes:
r-SCASET: FPT for all r on every nowhere dense class,
W][1]-hard for some r on every somewhere dense class.
r-DOMSET: FPT for all r on every nowhere dense class,
W(2]-hard for some r on every somewhere dense class.

Marcin Pilipczuk Sparsity 14/38



Scattered sets and dominating sets

e Note: sca,(G,A) < dom,(G, A)
o Fact: For every class C of bounded expansion and every r € N,
there is a constant ¢ such that for each G € C and A C V(G),

sca,(G,A) < dom,(G, A) < c¢-sca, (G, A).

@ For both problems, dichotomy theorems for monotone classes:
r-SCASET: FPT for all r on every nowhere dense class,
W][1]-hard for some r on every somewhere dense class.
r-DOMSET: FPT for all r on every nowhere dense class,
W]2]-hard for some r on every somewhere dense class.

e Now: runtime f(k) - |G|? for r-SCASET on any nowhere dense C.
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Class C is uniformly quasi-wide with margins s(-) and N(:,-) if for every
graph G € C, all r,m € N, and every vertex subset A C V/(G) of size
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graph G € C, all r,m € N, and every vertex subset A C V/(G) of size
larger than N(r, m), there exist sets S C V/(G) and B C A— S with

|S| < s(r) and |B| > m such that B is r-scattered in G — S.

Theorem [NesetFil and Ossona de Mendez]

A class is uniformly quasi-wide iff it is nowhere dense.

e Remark: For fixed C, we have N(r, m) < mf(r),
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graph G € C, all r,m € N, and every vertex subset A C V/(G) of size
larger than N(r, m), there exist sets S C V/(G) and B C A— S with

|S| < s(r) and |B| > m such that B is r-scattered in G — S.

Theorem [NesetFil and Ossona de Mendez]

A class is uniformly quasi-wide iff it is nowhere dense.

e Remark: For fixed C, we have N(r,m) < m(".
e Given (G, A), sets S and B can be found in time poly(m) - |G].
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Uniform quasi-wideness

Uniform quasi-wideness

Class C is uniformly quasi-wide with margins s(-) and N(:,-) if for every
graph G € C, all r,m € N, and every vertex subset A C V/(G) of size
larger than N(r, m), there exist sets S C V/(G) and B C A— S with

|S| < s(r) and |B| > m such that B is r-scattered in G — S.

Theorem [NesetFil and Ossona de Mendez]

A class is uniformly quasi-wide iff it is nowhere dense.

e Remark: For fixed C, we have N(r,m) < m(".
e Given (G, A), sets S and B can be found in time poly(m) - |G].

o Very useful statement when working with Gaifman normal form.
A |Al > N(r, m)

(o) B [Bl > m

WS IsI<s()
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Removing irrelevant candidates

@ Setting: Fix r € N, class C, graph G € C, and A C V(G).
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Removing irrelevant candidates

@ Setting: Fix r € N, class C, graph G € C, and A C V(G).
o Goal: Is there an r-scattered set of size k contained in A?
@ Claim: There is some M = M(k) with the following property:
Provided |A| > M, we can find some u € A such that
A contains an r-scattered set of size k iff A— {u} does.

e Algorithm:

e Starting from original A, remove vertices one by one until A reaches
size < M(k).
o Then brute-force through all (")) = f(k) subsets of size < k.

@ Variant of the irrelevant vertex technique.
e Note: One may obtain M(k) = O(k'*¢) for any ¢ > 0.
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Removing irrelevant candidates

e Fix
M(k) = N(2r , (2r +1)5C") . k),

where s(-) and N(-,-) are margins for uqw of C.
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where s(-) and N(-,-) are margins for uqw of C.
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Removing irrelevant candidates

o Fix
M(k) = N(2r , (2r +1)5C") . k),
where s(-) and N(-,-) are margins for uqw of C.
e Step 1. If |A] > M(k), then we can find S and B C A— S with

S| <s(2r) and  |B| > (2r +1)5C") .k,

and B being 2r-scattered in G — S.
o Step 2: Classify vertices of B according to profiles towards S:
o Profile of b € B is the vector of distances to elements of S,
where anything > 2r maps to +oc0.

o At most (2r + 1)*G”) possible profiles
= Set B’ C B of more than k vertices with same profile.
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Removing irrelevant candidates

@ Step 3: We claim that any u € B’ is an irrelevant candidate.
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in the corresponding ball.
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@ Step 3: We claim that any u € B’ is an irrelevant candidate.
e Fix any r-scattered | C A with |/| = k; suppose u € A.
o We need to find some I” C A — u with these properties.

2r-balls in G — S around vertices of B are pairwise disjoint.

Since |B’| > k, we can find some v € B, v # u, with no vertex of /
in the corresponding ball.

Claim: /" := | — u+ v is still r-scattered.
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Removing irrelevant candidates

@ Step 3: We claim that any u € B’ is an irrelevant candidate.
e Fix any r-scattered | C A with |/| = k; suppose u € A.
o We need to find some I” C A — u with these properties.

2r-balls in G — S around vertices of B are pairwise disjoint.

Since |B’| > k, we can find some v € B, v # u, with no vertex of /
in the corresponding ball.

Claim: I’ := | — u + v is still r-scattered.

Pf: If some w € | — u conflicted v, then it would already conflict u.
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Neighborhood complexity

@ Suppose we have a graph G € C for some class C, and a subset of
vertices A C V(G).
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Neighborhood complexity

@ Suppose we have a graph G € C for some class C, and a subset of
vertices A C V(G).

@ For fixed r € N, define the following equivalence relation on V/(G):
ueropv iff B, (u)yNA=B,(v)NA,

where B, (x) is the r-ball with center x.

s
2

Marcin Pilipczuk Sparsity 19/38



Neighborhood complexity

@ Suppose we have a graph G € C for some class C, and a subset of
vertices A C V(G).

o For fixed r € N, define the following equivalence relation on V/(G):
uer, v iff B (u)yNA=B,(v)NA,

where B, (x) is the r-ball with center x.

e How many equivalence classes may ~, have? In general, even 2/4l.

s
2

Marcin Pilipczuk Sparsity 19/38



Neighborhood complexity

@ Suppose we have a graph G € C for some class C, and a subset of
vertices A C V(G).
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vertices A C V(G).

o For fixed r € N, define the following equivalence relation on V/(G):
uer, v iff B (u)yNA=B,(v)NA,

where B, (x) is the r-ball with center x.
e How many equivalence classes may ~, have? In general, even 2/4I.
@ Thm: C has b.e. = index(~,) < ¢,|A| for some constant c,.

e Thm: Cis n.d. = for any € > 0, index(~,) < ¢, |A]** for some
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Neighborhood complexity

@ Suppose we have a graph G € C for some class C, and a subset of
vertices A C V(G).

o For fixed r € N, define the following equivalence relation on V/(G):
uer, v iff B (u)yNA=B,(v)NA,

where B, (x) is the r-ball with center x.
e How many equivalence classes may ~, have? In general, even 2/4I.
@ Thm: C has b.e. = index(~,) < ¢,|A| for some constant c,.

e Thm: Cis n.d. = for any € > 0, index(~,) < ¢, .|A]** for some
constant ¢, ..

@ Again, a very useful tool for algorithmic analysis of the instance.

s
2

Marcin Pilipczuk Sparsity 19/38



Low treedepth colorings

@ A p-centered coloring of G is a function ¢ : V(G) — [k] such that
every connected subgraph of G either uses more than p colors or has
a vertex of unique color.
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Low treedepth colorings

@ A p-centered coloring of G is a function ¢ : V(G) — [k] such that
every connected subgraph of G either uses more than p colors or has
a vertex of unique color.

@ The same as: every connected subgraph that uses ¢ < p colors has
treedepth at most /.

@ Equivalent characterization of bounded expansion a graph class G is
of bounded expansion if for every p there exists k(p) such that every
G € G admits a p-centered coloring with at most k(p) colors.

@ Very useful for finding or counting constant-sized subgraphs.

e Say we want to count the number of P4 subgraphs in G.

Take 4-centered coloring c.

For every X C [k] of size at most 4 count the number of Pss that
use exactly colors of X.

Complexity O(k*n) (without finding the coloring).
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@ Graph G is d-degenerated iff every subgraph of G has vertex of
degree at most d
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@ Graph G is d-degenerated iff every subgraph of G has vertex of
degree at most d

@ |If graph is d-degenerated then its vertices can be put in order so
that every vertex has at most d edges going to left.
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@ Graph G is d-degenerated iff every subgraph of G has vertex of
degree at most d

@ |If graph is d-degenerated then its vertices can be put in order so
that every vertex has at most d edges going to left.
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@ G is d-degenerated = V(G) < d
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@ Graph G is d-degenerated iff every subgraph of G has vertex of
degree at most d

@ |If graph is d-degenerated then its vertices can be put in order so
that every vertex has at most d edges going to left.

—000000000000000 >
@ G is d-degenerated = V(G) < d
Q@ Vo(G) < d= G is 2d-degenerated
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Generalized coloring number

© Weak reachability: v is weakly r-reachable from v with respect to
order ¢ if there exists a path P from v to u using at most r edges
whose every vertex w satisfies u <, w.

u € WReachs[G, o, ]

000000000 @®0C00 (e}e} o000 000000 >

u v
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© Weak reachability: v is weakly r-reachable from v with respect to
order ¢ if there exists a path P from v to u using at most r edges
whose every vertex w satisfies u <, w.

u € WReachs[G, o, ]
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@ Strong reachability: the inner vertices of P are allowed only to be
right of v.
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Generalized coloring number

© Weak reachability: v is weakly r-reachable from v with respect to
order ¢ if there exists a path P from v to u using at most r edges
whose every vertex w satisfies u <, w.
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@ Strong reachability: the inner vertices of P are allowed only to be
right of v.

© Weak r-coloring number of order:

weol, (G, o) = mva(>é;)| WReach[G, o, v]|
ve

Marcin Pilipczuk Sparsity 22/38



Generalized coloring number

Weak reachability: u is weakly r-reachable from v with respect to
order ¢ if there exists a path P from v to u using at most r edges
whose every vertex w satisfies u <, w.

B m
CO0O000000O0 O 00 (e} OO0OUTO0OO0O00DOOOO 7 -

u B

Strong reachability: the inner vertices of P are allowed only to be
right of v.

Weak r-coloring number of order:
weol,(G,0) = max |WReach|[G, o, V]|
veV(G)
Weak r-coloring number of graph: wcol,(G) = min wcol,(G, o)

o€el(G)
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Generalized coloring number

© Weak reachability: v is weakly r-reachable from v with respect to
order ¢ if there exists a path P from v to u using at most r edges
whose every vertex w satisfies u <, w.

B m
CO0O000000O0 O 00 (e} OO0OUTO0OO0O00DOOOO 7 -

u B

@ Strong reachability: the inner vertices of P are allowed only to be
right of v.

© Weak r-coloring number of order:

weol, (G, o) = mva(>é;)| WReach[G, o, v]|
ve

@ Weak r-coloring number of graph: weol,(G) = rrll_li(nc)wco/,(G, o)
[e4S]

© G has bounded expansion iff there exists function f : N — N such
that V,Vgegweol,(G) < f(r).
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Beyond sparsity

@ Obs: For every nowhere dense class C, FO model checking on the
class of complements C := {G: G € C} is also FPT.
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Beyond sparsity

@ Obs: For every nowhere dense class C, FO model checking on the
class of complements C := {G: G € C} is also FPT.
o Pf: Negate all edge predicates in the input formula.
o Might generalize to images under FO interpretations.
@ Idea 1: Characterize images of nowhere dense classes under
(simple) FO interpretations.
e Given G = (V,E) and a formula ¢(x, y), define

G? = (V,{(u,v): G Ep(u,v)}) and C? ={G¥: GeC}.

o Problem: Is FO model-checking FPT on C¥, for each nowhere dense
C and formula p(x,y)?
o Issue: We are given only the graph G¥, without the preimage G.
o On-going work: so far we are able to non-effectively characterize
images of bounded expansion classes.
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Beyond sparsity

@ Obs: For every nowhere dense class C, FO model checking on the
class of complements C := {G: G € C} is also FPT.
o Pf: Negate all edge predicates in the input formula.
o Might generalize to images under FO interpretations.
@ Idea 1: Characterize images of nowhere dense classes under
(simple) FO interpretations.
e Given G = (V,E) and a formula ¢(x, y), define

G? = (V,{(u,v): G Ep(u,v)}) and C? ={G”: GeC}.
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@ Idea 1: Characterize images of nowhere dense classes under
(simple) FO interpretations.
e Given G = (V,E) and a formula ¢(x, y), define

G? = (V,{(u,v): G Ep(u,v)}) and C? ={G”: GeC}.

o Problem: Is FO model-checking FPT on C¥, for each nowhere dense
C and formula p(x,y)?
o Issue: We are given only the graph G¥, without the preimage G.
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@ Obs: For every nowhere dense class C, FO model checking on the
class of complements C := {G: G € C} is also FPT.
o Pf: Negate all edge predicates in the input formula.
o Might generalize to images under FO interpretations.
@ Idea 1: Characterize images of nowhere dense classes under
(simple) FO interpretations.
e Given G = (V,E) and a formula ¢(x, y), define

G? = (V,{(u,v): G Ep(u,v)}) and C? ={G”: GeC}.

o Problem: Is FO model-checking FPT on C¥, for each nowhere dense
C and formula ¢(x,y)?
o Issue: We are given only the graph G¥, without the preimage G.

o On-going work: so far we are able to non-effectively characterize
images of bounded expansion classes.
o Idea 2: Find a more general property of graph classes such that:

(1) restricted to monotone classes, it collapses to nowhere denseness;
(2) is closed under FO interpretations; and
(3) gives hope for fixed-parameter tractability of FO model checking.

o Candidate: Stability
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Conclusions for the theory part

@ Theory of structural sparsity in a nutshell:
o Basic definitions capture the concept of sparsity that persists under
local contractions.
o An abundance of equivalent characterizations and viewpoints.
o Each characterization provides a tool that can be used to study
combinatorial, algorithmic, and logical aspects.
o Intuition: Delimits the border of tractability for “local” problems.

@ Intriguing connections to stability.

o Rather a transfer of concepts, techniques, and proof strategies,
than concrete results.
o Still largely unexplored.

@ If interested, see lecture notes:
https://www.mimuw.edu.pl/~mp248287/sparsity/
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@ Are real-world graphs of bounded expansion or nowhere dense? How
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Is this theory anywhere close to being practical?
@ Are real-world graphs of bounded expansion or nowhere dense? How
good are the parameters?
@ How good are our algorithmic primitives?

o weak coloring numbers
e uniform quasi-wideness
o low treedepth colorings

@ Evaluate one complete algorithm.
o Kernelization for DOMINATING SET
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Experiments: literature

@ Are real-world graphs of bounded expansion or nowhere
dense? How good are the parameters?

@ Demaine, Reidl, Rossmanith, Sanchez Villaamil, Sikdar, Sullivan,
arXiv:1406.2587

@ Analysis of a number of random graph models, proving sparsity
properties.

@ Analysis of low treedepth coloring numbers for a number of
real-world graphs.
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DRRSSS results
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Figure 2: Comparison of 4-centered coloring numbers on real-world networks (red diamonds)
compared to synthetic graphs (blue violins) with the same degree distribution. Each violin
represents 10 random instances generated with the configuration model, with median and
quartiles marked with dashed and dotted lines. Networks are partitioned into three groups by
size (indicated on the left) to enable rescaling axes. See Table 2 for data sources.
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Counting small subgraphs

O'Brien, Sullivan, arXiv:1712.06690

Compared with NXVF2 on a number of random graphs from sparse
models.

Punchline: too slow, low treedepth colorings have too many colors.

Outperform NXVF2 only on artificially prepared data.

The NCSU group is working on new implementation of pattern
counting with a new algorithm based on weak coloring numbers.
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Wecols: Determining good orders

@ Determining good degeneracy orders -
@ Determining good generalized coloring numbers orders - hard!
© Nadara, P., Rabinovich, Reidl, Siebertz, SEA 2018.
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Tested approaches

00 0060

©

Distance-constrained transitive fraternal augmentations
Flat decompositions
Treedepth heuristic
Treewidth heuristic

Two greedy approaches
@ Left-to-right, take vertex maximizing current size of the WReach set
@ Right-to-left, take vertex minimizing current size of the SReach set
Other simple heuristics

@ Sorting by descending degree
@ Degeneracy ordering
© Doing these on graph G" (where
V(G) = V(G"),uv € E(G") & distg(u,v) < r)

Local search applied on top of any produced result
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Test data

@ Selection of tests from KONECT base (modelling various real-world
data: graphs of collaborations, airlines connections, political
blogosphere, neural networks etc.)

@ Random planar graphs generated by LEDA library

© Tests from Parameterized Algorithms and Computational
Experiments Challenge 2016 competition — Feedback Vertex Set
track

@ Graphs generated by random models producing graphs of bounded
expansion: stochastic blocks model, Chung-Lu model and Chung-Lu
model with households

We partitioned all tests into small, medium, big and huge based on
number of edges (respectively
[0,10%),[103,10%), [10%, 4,8 - 10%), [4,8 - 10%, 00)).
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Comparison of all approaches

tests 1 dif flat treedepth treewidth  degree sort SReach
2 1275 00474 1.289 1.514 1.202 1.267 155 0:00.06
3 1513 0:0418 1307 1.516 1.186 1.276 107 0:00.02
smal 4607 00470 1346 "0 fagg 00957 ypgy 00035 g 0:0032 075 0:00.03
5 1749 0:0561 1.382 1.440 1.187 1.290 084 0:00.07
2 1326 0:2041 1.541 2.474 1.751 1.285 191 0:00.98
3 1440 0:4433 1.655 2.240 1.513 1.271 104 0:00.96
medium 3 oog 11108 Loz "0 foza T 13ag 01836 g5 010085 058 0:01.14
5 1777 1:37.55 1.660 1.816 1.232 1.294 040 0:0134
2 1304 — 1706 = 2.773 1.400 202 0:11.32
. 3 1528 - 179 = 2.452 1356 185 0:12.40
big 4 - — sy M7 1.862 1382 00228 117 0:16.02
5 — - - 1.495 1.329 042 0:24.80
2 - - 21 - - 1.432 B -
3 - - 2618 = = 1.342 = -
huge T e 41s1 T - B — ey 0691 B B
5 — — 2389 - - 1.234 - - N -

Table 3. Gray columns: Comparison of the main approaches and their average approximation ratio to the best found coloring number. Some of the approaches
did not finish in time on larger graphs or ran out of memory. White columns: Total running time of the main approaches. Note that for some approaches the
ordering (and thus running time) is independent of the radius.
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Local search

tests  radius dtf flat treedepth treewidth degree sort WReach SReach
2 1.155 1.060 1.172 1.087 1.053 1.069 1.063
3 1.256 1.100 1.263 1.122 1.065 1.053 1.041 .,
small 4 1.343 16.7% 1.105 16.9% 1.299 15.2% 1.145 7.0% 1.066 16.2% 1.096 6.7% 1.032 7.3%
5 1.480 1.148 1.325 1.165 1.100 1.136 1.056
2 1.207 1.151 1.224 1.149 1.024 1.070 1.012
. 3 1.249 1.159 , 1354 , 1167 , 1.062 . L1110 . 1.011 .
medium 4 1.530 13.9% 1.359 21.4% 1.440 30.9% 1.216 15.3% 1.087 17.1% 1.108 2.8% 1.006 9.9%
5 1.582 1.424 1.505 1.226 1.118 1.161 1.021
2 1.172 1.196 = 1.268 1.091 1.087 1.023
. 3 1321 1.239 ., - 1415 L, 1.097 L, 1105 . 1.019 .
big 4 _ - 1.390 24.4% _ 1.434 24.3% 1,145 18.5% 1123 1.6% 1.020 11.5%
5 = 1.438 = 1.387 1.164 1.177 1.010

Table 4. Gray columns: Comparison of average approximation ratio after local search. White columns: Relative improvement of local search for ordering output
by the studied approaches.
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UQW: Tested approaches

@ Distance trees (variants denoted by treel, tree2, 1d_it)

@ From weak coloring numbers to uniform quasi-wideness (variants
mfcs, newl, new2, new_1d)

© Naive approach of removing vertices with biggest degrees and
greedily computing independent set in r-th power of remaining
graph (denoted as 1d)

Marcin Pilipczuk Sparsity 34/38



Comparing different outputs

@ Different outputs can greatly vary. How to compare? UQW is a
two-dimensional measure.
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Comparing different outputs

@ Different outputs can greatly vary. How to compare? UQW is a
two-dimensional measure.

@ We want best tradeoff between number of deleted vertices and size
of r-independent set.

© Biggest class of r-independent vertices when grouped by r-distance
profiles!
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r algorithm start with whole V(G) start with 20% of V(&)
deleted independent score time deleted independent score time

nfcs 5076 11471 2153 0:01.25 1922 3459 1135 0:00.48
newl 78 2345 2211 (0:37.53 49 1192 1159 0:29.96
new2 84 3820 3673 0:34.34 49 2132 2096 0:23.36

3 new_ld 5 2926 2873 11:10.63

" treetl 7 6072 5686 0:02.77 4 2652 2598 0:00.48
tree2 5 5645 5645 0:01.00 4 2603 2603 0:00.38
1d_it 7 6136 5748 0:01.71 4 2741 2688 0:00.39
1d 5 6471 6296 0:08.13 6 2972 2871 0:02.01
nfcs 7946 15773 1164 0:01.93 4057 4396 594 0:00.67
newl 115 1623 1445 4:38.57 84 709 676 3:20.15
new2 122 2079 1888 4:19.50 103 1036 982 3:07.82

_  new_ld

7 treel 11 2088 2643 0:02.85 4 1325 1282 0:00.53
tree2 5 2603 2603 0:01.05 4 1284 1284 0:00.45
1d_it 12 3102 2752 0:01.84 5 1380 1336 0:00.64
1d 7 3192 3043 0:29.32 5 1517 1473 0:07.15
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deleted independent score time deleted independent score time

nfcs 5076 11471 2153 0:01.25 1922 3459 1135 0:00.48
newl 78 2345 2211 (0:37.53 49 1192 1159 0:29.96
new2 84 3820 3673 0:34.34 49 2132 0:23.36

3 new_ld 5 2026 11:10.63

" treetl 7 6072 5686 0:02.77 4 2652 0:00.48
tree2 5 5645 5645 0:01.00 4 2603 0:00.38
1d_it 7 6136 5748 0:01.71 4 2741 0:00.39
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newl 115 1623 1445 4:38.57 84 709 3:20.15
new2 122 2079 1888 4:19.50 103 1036 3:07.82

_  new_ld

7 treel 11 2088 2643 0:02.85 4 1325 0:00.53
tree2 5 2603 2603 0:01.05 4 1284 0:00.45
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Conclusions for the experimental part

@ Low treedepth colorings seem too inefficient.
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Conclusions for the experimental part

o Low treedepth colorings seem too inefficient.

@ Recommended for wcol: right-to-left greedy with local search on top.

@ Recommended for UQW: delete a few high degree vertices and get
greedy.

@ Missing explanation for the performance of the best algorithms.

o Nadara: applied UQW to DOMINATING SET kernelization,
compared to old experiments in planar graphs (Alber, Fellows,
Niedermeier, J. ACM 2004 and Alber, Betzler, Niedermeier, Annals
OR 2006).

o The sparsity-based reduction does not add any power over the known
simple neighborhood rules.

e Thank you for your attention!
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