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Reductions:
rules to decrease graph size, while maintaining optimality

→

solve problem on problem kernel
→ obtain solution on input graph
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Reductions:
rules to decrease graph size, while maintaining optimality

→

solve problem on problem kernel (using a heuristic)
→ obtain solution on input graph quickly



Kernelization
General Idea

2 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Reductions:
rules to decrease graph size, while maintaining optimality

→

solve problem on problem kernel
→ obtain solution on input graph

Independent Sets
evolutionary [SEA’15]
reduction + evolutionary [ALX’16]
online reductions + LS [SEA’16]
shared-mem parallel [ALX’18]
weighted exact [ALX’19]
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Reductions:
rules to decrease graph size, while maintaining optimality

→

solve problem on problem kernel
→ obtain solution on input graph

Independent Sets
...
shared-mem parallel [ALX’18]
weighted exact [ALX’19]

“Graph Partitioning” [...]
Minimum Cuts

shared-mem parallel [ALX’18]
exact minimum cut [ALX’19]
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Concrete Example
“(In)exact Reductions” in Minimum Cuts

joint work with
M. Henzinger,
A. Noe,
D. Strash
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Cut: A cut in a multigraph is a partition of V = C ∪ C
→ size of the cut is weight of edges between C and C

Minimum Cut Problem:

what is the size of the minimum cut in G?
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If the size of the minimum cut is λ, then it follows
∀v ∈ V : deg(v) ≥ λ

number of edges m ≥ nλ/2

Proof: Assume ∃v ∈ V : deg(v) < λ,
then C = {v} is a cut whose size is < λ. Contradiction.
The second claim follows from the first one.
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In a multigraph G, let u and v be connected by an edge e = {x, y}

Create G/e = (V′, E′) by contracting e:
set V′ to V\{x, y} ∪ {z} (z is new)
build E′ from E by

remove all edges between u and v
replace every edge between v ∈ V\{x, y}
and x or y by an edge between v and z
keep all other edges from E

→multi-edges can be created ( practice use weights)!



Minimum Cut↔ Contraction
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A minimum cut in G/e is at least as a minimum cut in G.

Proof:
Let (K, K) be a minimum cut in G/e.
Let the size of the cut be λ.
Wlog let x and y be the vertices of e, and z ∈ K
Unpack z and leave x and y in K→ cut in G of size λ

A



Algorithm
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H ← G
while H has more than 2 nodes do

e← edge of H picked uniformly at random
H ← contract(H, e)

done
(C, C)← vertex set in G that correspond to the vertices in H

————————————————-
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H ← G
while H has more than 2 nodes do

e← edge of H picked uniformly at random
H ← contract(H, e)

done
(C, C)← vertex set in G that correspond to the vertices in H

————————————————-

The runtime of the simple minimum cut algorithm is O(n2)

Proof:
every call contract(H, e) is done in O(n)
every loop iteration reduces n by 1→ n− 2 iterations
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H ← G
while H has more than 2 nodes do

e← edge of H picked uniformly at random
H ← contract(H, e)

done
(C, C)← vertex set in G that correspond to the vertices in H

————————————————-

The algorithm finds a minimum cut with probability Ω(n−2)

Proof (sketch):
let minimum cut size be λ

probability to select a cut edge λ
|E| ≤

λ
nλ/2 = 2/n

pn probability that n-vertex graph avoids cut edges

pn ≥ (1− 2/n)pn−1 ≥ . . . = (n
2)
−1
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H ← G
while H has more than 2 nodes do

e← edge of H picked uniformly at random
H ← contract(H, e)

done
(C, C)← vertex set in G that correspond to the vertices in H

————————————————-

Standard Trick: Multiple Repetitions

non-error probability 1/n2 very low
smallest out of n2/2 is minimum with probability 1− 1/e:

(1− 2/n2)2/n2
< 1/e

 runtime O(n4)



Better Algorithm
IterContract
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H ← G
while H has more than t nodes do

e← edge of H picked uniformly at random
H ← contract(H, e)

done
return H

H still contains minimum cut with probability at least

(t
2)/(

n
2)



Karger-Stein
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if |V| ≤ 6 then C ← optimial cut by deterministic algorithm
else

t← d1 + n/
√

2e
H1 ← IterContract(G, t)
H2 ← IterContract(G, t)
C1 ← CallRecursive(H1)
C2 ← CallRecursive(H2)
C ← min(C1, C2)

done
return C

 running time O(n2 log n)

 minimum cut with probability Ω(1/ log n)

 repeat log2 n to achieve probability Ω(1/n)
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how can kernelization help?
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something better than contracting random edges?



Main Questions
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can we still obtain good cuts in practice?



Main Questions
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can we then use this to obtain better kernels?



Kernelization
Padperg-Rinaldi Tests
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deg(x) ≤ 2ω(x, y)
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ω(x, y) ≥ λ̂
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∃z : deg(x) ≤ 2{ω(x, y) + ω(x, z)} and deg(y) ≤ 2{ω(x, y) + ω(y, z)}



Kernelization
Padperg-Rinaldi Tests

14 Christian Schulz:
Shared-Memory Exact Minimum Cuts

ω(x, y) + ∑z min{ω(x, z), ω(y, z)} ≥ λ̂



Kernelization
Nagamochi, Ono, and Ibaraki
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Key Idea: a spanning tree contains at least one edge from any cut

Let λ̂ be your current bound for minimum cut
Want: smaller minimum cut
Compute λ̂− 1 maximal spanning forests (iteratively)

 edges not in forests connect vertices with connectivity ≥ λ̂

 contract all of them

Example: λ̂ = 4 compute 3 edge-disjoint spanning forests
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Key Idea: a spanning tree contains at least one edge from any cut

Let λ̂ be your current bound for minimum cut
Want: smaller minimum cut
Compute λ̂− 1 maximal spanning forests (iteratively)

 edges not in forests connect vertices with connectivity ≥ λ̂

 contract all of them

NOI define modified BFS to detect contractable edges
(more later)
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Key Idea: a spanning tree contains at least one edge from any cut

Let λ̂ be your current bound for minimum cut
Want: smaller minimum cut
Compute λ̂− 1 maximal spanning forests (iteratively)

 edges not in forests connect vertices with connectivity ≥ λ̂

 contract all of them

Note: initial λ̂ comes from minimum degree
Some of the reductions depend heavily on λ̂



Label Propagation
Cut-based, Linear Time Clustering Algorithm [Raghavan et. al]
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cut-based clustering using label propagation
start with singletons
traverse nodes in random order or smallest degree first
move node to cluster having strongest connection

Scan

... ...

→



Label Propagation
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Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Label Propagation

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Label Propagation

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Label Propagation

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Label Propagation

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Label Propagation

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Label Propagation

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Label Propagation

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Label Propagation

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Label Propagation

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration Cut [%]
0 100
1 8.96
2 6.15
3 5.66
4 5.44
5 5.28
6 5.25
7 5.21
8 5.18
... 5.09



Basic Idea
Contraction of Clusterings
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a+b+ca b
c

cluster paradigm: internally dense, externally sparse
“unlikely” to contract minimum cut edges
clustering not main goal: only perform a couple of iterations



Fast Inexact Minimum Cuts
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(Inexact) Cluster reduction + Exact reductions
Solve kernel to optimality
using Nagamochi, Ono and Ibaraki’s algorithm
→ overall linear running time, but potentially suboptimal cuts



Parallelization
Shared-memory with OpenMP
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Parallel label propagation

as brutal as: pragma openmp for and ignore conflicts on labels

Parallel Padberg-Rinaldi:
check edges independently embarassingly parallel
collect edges then contract
→ essentially linear time

Parallel contraction (not here)

run Nagamochi, Ono and Ibarakis algorithm sequentially



Random Hyperbolic Networks
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Stating the Obvious
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now ≈ 16 times faster than Matuala
NO guarantee for minimum cut, but experiments say very likely

reductions depend on bound λ̂

 PLUG IN our result into exact NOI algorithm + parallelization
 currently fastest exact minimum cut algorithm
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Key Idea: a spanning tree contains at least one edge from any cut

Let λ̂ be your current bound for minimum cut
Want: smaller minimum cut
Compute λ̂− 1 maximal spanning forests (iteratively)

 edges not in forests connect vertices with connectivity ≥ λ̂

 contract all of them

Example: λ̂ = 4 compute 3 edge-disjoint spanning forests
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Key Idea: a spanning tree contains at least one edge from any cut

Let λ̂ be your current bound for minimum cut
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Nagamochi, Ono, Ibaraki
Details
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λ(x, y) capacity of minimum cut separating x and y
λ(x, y) ≥ λ̂ ∃ no cut separating x and y with capacity ≤ λ̂

 we can contract (x, y)
but computing λ(x, y) expensive (max-flow algorithm)
NOI: compute lower bound q(e) on λ(x, y), i.e.

λ(x, y) ≥ q(e) ≥ λ̂
 can contract edge e

q(e) = # edge disjoint paths that connect x, y
q(e) via k-edge-connected subgraph following algorithm



k-edge-connected subgraph
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invariant r[v] = i smallest i s.t. Ei+1 ∪ {e} does not contain a cycle

initialize r[v] = 0
all nodes and edges are non-scanned
E1 = E2 = . . . = E|E| = ∅
while ∃ non-scanned node

u := non-scanned node v with maximal r[v]
foreach non-scanned edge e = (u, v) ∈ E do

insert e into Er(v)+1
q(e) = r(v) + 1, r(v) = r(v) + 1

 Hi = (V, Ei) is a maximal spanning forest in G \ E1 ∪ . . . ∪ Ei−1
Long story short:

Everything in Eλ̂ ∪ . . . ∪ E|E| can be contracted.
 contract e if q(e) ≥ λ̂
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invariant r[v] = i smallest i s.t. Ei+1 ∪ {e} does not contain a cycle
invariant r[v] = i incidient to first i trees
initialize r[v] = 0
all nodes and edges are non-scanned
E1 = E2 = . . . = E|E| = ∅
while ∃ non-scanned node

u := non-scanned node v with maximal r[v]
foreach non-scanned edge e = (u, v) ∈ E do

insert e into Er(v)+1
q(e) = r(v) + 1, r(v) = r(v) + 1, r(u) = r(u) + 1

 Hi = (V, Ei) is a maximal spanning forest in G \ E1 ∪ . . . ∪ Ei−1
Long story short:
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invariant r[v] = i smallest i s.t. Ei+1 ∪ {e} does not contain a cycle

initialize r[v] = 0
all nodes and edges are non-scanned
E1 = E2 = . . . = E|E| = ∅
while ∃ non-scanned node

u := non-scanned node v with maximal r[v]
foreach non-scanned edge e = (u, v) ∈ E do

insert e into Er(v)+1, . . . , Er(v)+c(e)
q(e) = r(v) + c(e), r(v) = r(v) + c(e)

 Hi = (V, Ei) is a maximal spanning forest in G \ E1 ∪ . . . ∪ Ei−1
Long story short:

Everything in Eλ̂ ∪ . . . ∪ E|E| can be contracted.
 contract e if q(e) ≥ λ̂

c(e) replaces one edge by c(e) edges
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Example
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each thread selects random start vertex
make sure each vertex scanned by exactly one worker
mark contractible edge in parallel union-find data structure

1: λ̂← VieCut(G), GC ← G
2: while GC has more than 2 vertices
3: λ̂← Parallel CAPFOREST(GC, λ̂)
4: if no edges marked contractible
5: λ̂← CAPFOREST(GC, λ̂)
6: GC, λ̂← Parallel Graph Contract(GC)
7: return λ̂
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Observation: values in PQ often higher than bound λ̂

Algorithm still correct when limiting values to λ̂

Use BucketPQ in weighted case also!

 O(1) for push, pop, and increaseKey
 Bucket implementations make a difference stack vs queue

breadth vs depth



All Graphs
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HO – original Hao, Orlin algorithm implementation
NOI-CGKLS – original NOI implementation
NOI-HNSS – our own NOI implementation
NOI:

BStack, BQueue, Heap
λ̂ – bounding PQ
*-VieCut – initialize λ̂ with VieCut



Random Hyperbolic Graphs
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HO – original Hao, Orlin algorithm implementation
NOI-CGKLS – original NOI implementation
NOI-HNSS – our own NOI implementation
NOI:

BStack, BQueue, Heap
λ̂ – bounding PQ
*-VieCut – initialize λ̂ with VieCut



Social and Web Graphs
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HO – original Hao, Orlin algorithm implementation
NOI-CGKLS – original NOI implementation
NOI-HNSS – our own NOI implementation
NOI:

BStack, BQueue, Heap
λ̂ – bounding PQ
*-VieCut – initialize λ̂ with VieCut



Scalability
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Open Things & Software
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apply heuristics on kernel
use inexact results to get better bounds for reductions
heuristic reduction to break up reduction space

Open Questions:
what about the order or reductions in practice?
MORE problems? (minimum fill, ...)
the other way around: exact reductions for multi-level schemes
integrating reductions in currently used algorithms

Software:
https://viecut.taa.univie.ac.at


