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Kernelization

General Idea

Reductions:
rules to decrease graph size, while maintaining optimality

solve problem on problem kernel
— obtain solution on input graph
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General Idea

Reductions:
rules to decrease graph size, while maintaining optimality

solve problem on problem kernel (using a heuristic)
— obtain solution on input graph quickly
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Kernelization

General Idea

Reductions:
rules to decrease graph size, while maintaining optimality

<
Independent Sets

m evolutionary [SEA’15]

reduction + evolutionary [ALX'16]
online reductions + LS [SEA’16]
shared-mem parallel [ALX"18]
weighted exact [ALX"19]

solve problem on problem kernel
— obtain solution on input graph
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Kernelization

General Idea

Reductions:
rules to decrease graph size, while maintaining optimality

‘__J

Independent Sets
L T
a shared-mem parallel [ALX18]
m weighted exact [ALX19]
solve problem on problem kernel “Graph Partitioning” |...]
— obtain solution on input graph Minimum Cuts
a shared-mem parallel [ALX"18]
® exact minimum cut [ALX"19]
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Concrete Example
“(In)exact Reductions” in Minimum Cuts

joint work with
M. Henzinger,
A. Noe

D. Strash
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Minimum Cuts

Cut: A cut in a multigraph is a partition of V = C U_E
— size of the cut is weight of edges between C and C

Minimum Cut Problem:
what is the size of the minimum cut in G?
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Basics

If the size of the minimum cut is A, then it follows
w YoeV:deg(v) > A
u number of edges m > nA/2

Proof: Assume Jv € V : deg(v) < A,
then C = {v} is a cut whose size is < A. Contradiction.
The second claim follows from the first one.
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Contraction

In a multigraph G, let u and v be connected by an edge e = {x,y}

Create G/e = (V', E) by contracting e:
w set V' to V\{x,y} U{z} (zis new)
u build E’ from E by

a remove all edges between u and v

u replace every edge between v € V\{x,y}
and x or y by an edge between v and z

a keep all other edges from E

— multi-edges can be created (~~ practice use weights)!
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Minimum Cut < Contraction

A minimum cut in G/e is at least as a minimum cut in G.

Proof:

Let (K, K) be a minimum cut in G/e.

Let the size of the cut be A.

Wilog let x and y be the vertices of ¢, and z € K
Unpack z and leave x and y in K — cutin G of size A

A
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Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H
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Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

The runtime of the simple minimum cut algorithm is O(n?)

Proof:
m every call contract(H, e) is done in O(n)
m every loop iteration reduces n by 1 — n — 2 iterations
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Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

The algorithm finds a minimum cut with probability Q(n~2)

Proof (sketch):

® let minimum cut size be A

u probability to select a cut edge é—‘ < ﬁ/z =2/n

® p, probability that n-vertex graph avoids cut edges

pu = (1= 2/m)py 1> o= ()
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Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

Standard Trick: Multiple Repetitions

m non-error probability 1/n? very low
m smallest out of #2 /2 is minimum with probability 1 —1/e:

(1—2/n2)2/" <1/e
~runtime O(n*)
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Better Algorithm

IterContract

H<+ G

while H has more than f nodes do
e < edge of H picked uniformly at random
H < contract(H, e)

done

return H

H still contains minimum cut with probability at least

()/(3)
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Karger-Stein

if |V| < 6 then C < optimial cut by deterministic algorithm
else
t e [1+n/V2]
H; + IterContract(G, t)
Hy < TterContract(G, t)
Cy1 < CallRecursive(H7)
C, + CallRecursive(H>)
C+ mil’l(C1, Cz)
done
return C

~~ running time O(n?logn)
~» minimum cut with probability )(1/ logn)
~ repeat log” 1 to achieve probability Q(1/#)
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Main Questions

how can kernelization help?

10 Christian Schulz:
Shared-Memory Exact Minimum Cuts



Main Questions

something better than contracting random edges?
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Main Questions

can we still obtain good cuts in practice?
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Main Questions

can we then use this to obtain better kernels?
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Kernelization
Padperg-Rinaldi Tests

deg(x) < 2w(x,y)

\ N . y

<
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Kernelization
Padperg-Rinaldi Tests

w(x,y) > A
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Kernelization
Padperg-Rinaldi Tests

3z : deg(x) < 2{w(x,y) + w(x,2)} and deg(y) < 2{w(x,y) + w(¥,2)}
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Kernelization
Padperg-Rinaldi Tests

w(x,y) + L, min{w(x,z), w(y,z)} > A

X
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Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut
a Want: smaller minimum cut
u Compute A — 1 maximal spanning forests (iteratively)
~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Example: A = 4 ~ compute 3 edge-disjoint spanning forests
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Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut

a Want: smaller minimum cut

u Compute A — 1 maximal spanning forests (iteratively)

~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

NOI define modified BFS to detect contractable edges
(more later)
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Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut

a Want: smaller minimum cut

u Compute A — 1 maximal spanning forests (iteratively)

~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Note: initial A comes from minimum degree
Some of the reductions depend heavily on A
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Label Propagation

Cut-based, Linear Time Clustering Algorithm [Raghavan et. al]

m cut-based clustering using label propagation
m start with singletons
a traverse nodes in random order or smallest degree first
a move node to cluster having strongest connection

Scan
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Label Propagation

Iteration | Cut [%]
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Label Propagation
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Label Propagation
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Label Propagation
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Label Propagation
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Basic Idea

Contraction of Clusterings

® cluster paradigm: internally dense, externally sparse
u “unlikely” to contract minimum cut edges
a clustering not main goal: only perform a couple of iterations
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Fast Inexact Minimum Cuts

m (Inexact) Cluster reduction + Exact reductions

m Solve kernel to optimality
using Nagamochi, Ono and Ibaraki’s algorithm

— overall linear running time, but potentially suboptimal cuts

input graph

cluster contraction

exact reductions

- repeat
solve exactly
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Parallelization
Shared-memory with OpenMP

u Parallel label propagation

@@@@@@@

2 P1 P1 Pg

m as brutal as: pragma openmp for and ignore conflicts on labels

u Parallel Padberg-Rinaldi:

m check edges independently ~~ embarassingly parallel
a collect edges then contract
— essentially linear time

m Parallel contraction (not here)

a run Nagamochi, Ono and Ibarakis algorithm sequentially
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Random Hyperbolic Networks

n=12.5K - 200K d=10% k=2
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u seqVieCut optimal in 99% of runs, Matuala optimal in 69% of runs
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Real-world Networks
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m No incorrect results (expect Karger-Stein in 36% of the cases)
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Parallelization

uk-2007-05 k=10

n=200K, d=10%, k=2

Speedup to seqVieCut

Speedup to seqVieCut .

T2 8 4 5 6 7 8 9 1011 12
Number of Threads

T2 8 4 5 6 7 8 9 101112
Number of Threads

m Average speedup using 12 cores: 6.3 (24: 7.9)
m Average speedup to next fastest (Matula): 13.2 (24: 15.8)
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Stating the Obvious

m now =~ 16 times faster than Matuala
® NO guarantee for minimum cut, but experiments say very likely
u reductions depend on bound A

~+ PLUG IN our result into exact NOI algorithm + parallelization
~- currently fastest exact minimum cut algorithm
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Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut
a Want: smaller minimum cut
u Compute A — 1 maximal spanning forests (iteratively)
~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Example: A = 4 ~ compute 3 edge-disjoint spanning forests
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Nagamochi, Ono, Ibaraki

Details

® A(x,y) capacity of minimum cut separating x and y

m A(x,y) > A ~ I no cut separating x and y with capacity < A
~~> we can contract (x, )

® but computing A(x, y) expensive (max-flow algorithm)

u NOI: compute lower bound g(e) on A(x,y), i.e.

Alxy) > q(e) > A
~+ can contract edge e

g(e) = # edge disjoint paths that connect x, y
q(e) via k-edge-connected subgraph ~- following algorithm
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k-edge-connected subgraph

invariant r[v] = i smallest i s.t. E; ;1 U {e} does not contain a cycle

initialize r[v] =0
all nodes and edges are non-scanned
Ei=E=...=E =0
while 3 non-scanned node
u = non-scanned node v with maximal r[]
foreach non-scanned edge e = (1,v) € E do
insert e into E,(4) 41
qle) =r(v) +1,r(v) = r(v) +1
~+ H; = (V, E;) is a maximal spanning forestin G\ E;U...UE; 1
Long story short:
Everything in Ej U... U E|g| can be contracted.

~~ contract e if g(e) > A
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k-edge-connected subgraph

invariant r[v] = i smallest i s.t. E; ;1 U {e} does not contain a cycle
invariant r[v] = i incidient to first i trees
initialize r[v] =0
all nodes and edges are non-scanned
Ei=E=..=Ep=0
while 3 non-scanned node
u = non-scanned node v with maximal r[]
foreach non-scanned edge e = (1,v) € E do
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k-edge-connected subgraph

invariant r[v] = i smallest i s.t. E; ;1 U {e} does not contain a cycle

initialize r[v] =0
all nodes and edges are non-scanned
Ei=E=...=E =0
while 3 non-scanned node
u = non-scanned node v with maximal r[]
foreach non-scanned edge e = (1,v) € E do
insert e into E, ()11, - - -, Er(v)4c(e)
q(e) = r(v) +cle), r(ov) = r(o) +cle)
~+ H; = (V, E;) is a maximal spanning forestin G\ E;U...UE; 1
Long story short:
Everything in Ej U... U E|g| can be contracted.

~~ contract e if g(e) > A

c(e) replaces one edge by c(e) edges
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Example
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Overall Parallel Algorithm

m each thread selects random start vertex
u make sure each vertex scanned by exactly one worker
a mark contractible edge in parallel union-find data structure

) O
QD

. A+ VieCut(G), Gc + G
while G¢ has more than 2 vertices
A « Parallel CAPFOREST(G¢, A)
if no edges marked contractible
A < CAPFOREST(Gc, A)
Gc, A « Parallel Graph Contract(G¢)
return A
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More Optimizations

m Observation: values in PQ often higher than bound A
m Algorithm still correct when limiting values to A
m Use BucketPQ in weighted case also!

wodlde (o[ e | [ o | | [*fe | [%°
0 1 A
~» O(1) for push, pop, and increaseKey
~ Bucket implementations make a difference stack vs queue
breadth vs depth
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All Graphs

1

et

« HO-CGKLS
[0-8 = NOI-CGKLS
1o ° NOIj-BStack
. ~-NOI;-BQueue
0.4 + NOI-HNSS
NOI;-Heap
0.2 = NOI-HNSS-VieCut
o NOI;-Heap-VieCut

tbest/ ta/go
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stesstennsanene Too Iarge

0 20 40 60 80
# Instances

HO - original Hao, Orlin algorithm implementation
NOI-CGKLS - original NOI implementation
NOI-HNSS - our own NOI implementation
NOL:
BStack, BQueue, Heap
A - bounding PQ
*-VieCut - initialize A with VieCut
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Random Hyperbolic Graphs

Average Node Degree: 28

oy

o - HO-CGKLS

2 o = NOI-CGKLS

2 o7 -~ NOI;-BStack

o ——NOI;-BQueue

£ + NOI-HNSS
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HO - original Hao, Orlin algorithm implementation
NOI-CGKLS - original NOI implementation
NOI-HNSS - our own NOI implementation
NOIL
BStack, BQueue, Heap
A —bounding PQ
*VieCut — initialize A with VieCut
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Social and Web Graphs

3 T
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HO - original Hao, Orlin algorithm implementation

NOI-CGKLS - original NOI implementation
NOI-HNSS - our own NOI implementation
NOIL

BStack, BQueue, Heap

A - bounding PQ

*-VieCut - initialize A with VieCut
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Scalability

twitter-2010 (A = 3) rhg 25 8_2 (A=73)
—+ParCut4{-BStack
. —=ParCut;-BQueue
4| | = ParCutj-Heap
—NOI-HNSS
—NOI;-Heap
124 8 12 240124 8 12 24
Number of Processes Number of Processes
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Open Things & Software

u apply heuristics on kernel
m use inexact results to get better bounds for reductions
m heuristic reduction to break up reduction space

Open Questions:

what about the order or reductions in practice?

u MORE problems? (minimum fill, ...)

u the other way around: exact reductions for multi-level schemes
m integrating reductions in currently used algorithms

Software:

w https://viecut.taa.univie.ac.at
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