Shared-Memory Exact Minimum Cuts

M. Henzinger, A. Noe, C. Schulz, D. Strash

General Idea

Reductions:

rules to decrease graph size, while maintaining optimality

solve problem on problem kernel \rightarrow obtain solution on input graph

General Idea

Reductions:

rules to decrease graph size, while maintaining optimality

solve problem on problem kernel (using a heuristic) \rightarrow obtain solution on input graph quickly

General Idea

Reductions:

rules to decrease graph size, while maintaining optimality

solve problem on problem kernel \rightarrow obtain solution on input graph

Independent Sets

- evolutionary [SEA'15]
- reduction + evolutionary [ALX'16]
- online reductions + LS [SEA'16]
- shared-mem parallel [ALX'18]
- weighted exact [ALX'19]

General Idea

Reductions:

rules to decrease graph size, while maintaining optimality

solve problem on problem kernel \rightarrow obtain solution on input graph

Independent Sets

• ...

- shared-mem parallel [ALX'18]
- weighted exact [ALX'19]

"Graph Partitioning" [...] Minimum Cuts

- shared-mem parallel [ALX'18]
- exact minimum cut [ALX'19]

Concrete Example "(In)exact Reductions" in Minimum Cuts

joint work with M. Henzinger, <u>A. Noe</u>, D. Strash

Minimum Cuts

Cut: A cut in a multigraph is a partition of $V = C \cup \overline{C}$ \rightarrow size of the cut is weight of edges between *C* and \overline{C}

Minimum Cut Problem:

what is the size of the minimum cut in *G*?

Basics

If the size of the minimum cut is λ , then it follows

- $\forall v \in V : deg(v) \ge \lambda$
- number of edges $m \ge n\lambda/2$

Proof: Assume $\exists v \in V : deg(v) < \lambda$, then $C = \{v\}$ is a cut whose size is $< \lambda$. Contradiction. The second claim follows from the first one.

Contraction

In a multigraph *G*, let *u* and *v* be connected by an edge $e = \{x, y\}$

Create G/e = (V', E') by contracting *e*:

- set V' to $V \setminus \{x, y\} \cup \{z\}$ (*z* is new)
- build *E*′ from *E* by
 - remove all edges between u and v
 - replace every edge between $v \in V \setminus \{x, y\}$ and x or y by an edge between v and z
 - keep all other edges from E

 \rightarrow multi-edges can be created (\rightsquigarrow practice use weights)!

Minimum Cut \leftrightarrow **Contraction**

A minimum cut in G/e is at least as a minimum cut in G.

Proof: Let (K, \overline{K}) be a minimum cut in G/e. Let the size of the cut be λ . Wlog let x and y be the vertices of e, and $z \in K$ Unpack z and leave x and y in $K \rightarrow$ cut in G of size λ

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*)

done

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*)

done

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*)

done

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*)

done

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*)

done

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

7 Christian Schulz: Shared-Memory Exact Minimum Cuts

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*)

done

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

7 Christian Schulz: Shared-Memory Exact Minimum Cuts

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*) **dome**

done

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

7 Christian Schulz: Shared-Memory Exact Minimum Cuts

 $H \leftarrow G$ while *H* has more than 2 nodes **do** $e \leftarrow edge of H$ picked uniformly at random $H \leftarrow \text{contract}(H, e)$

done

 $(C,\overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*) **done**

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

The runtime of the simple minimum cut algorithm is $O(n^2)$

Proof:

- every call contract(H, e) is done in O(n)
- every loop iteration reduces n by $1 \rightarrow n 2$ iterations

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*) **done**

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

The algorithm finds a minimum cut with probability $\Omega(n^{-2})$

Proof (sketch):

- let minimum cut size be λ
- probability to select a cut edge $\frac{\lambda}{|E|} \le \frac{\lambda}{n\lambda/2} = 2/n$
- *p_n* probability that *n*-vertex graph avoids cut edges

$$p_n \ge (1 - 2/n)p_{n-1} \ge \ldots = {\binom{n}{2}}^{-1}$$

 $H \leftarrow G$ **while** *H* has more than 2 nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*) **done**

 $(C, \overline{C}) \leftarrow$ vertex set in *G* that correspond to the vertices in *H*

Standard Trick: Multiple Repetitions

- non-error probability $1/n^2$ very low
- smallest out of $n^2/2$ is minimum with probability 1 1/e:

$$(1 - 2/n^2)^{2/n^2} < 1/e$$

 \rightsquigarrow runtime $O(n^4)$

Better Algorithm

IterContract

 $H \leftarrow G$ while *H* has more than *t* nodes **do** $e \leftarrow$ edge of *H* picked uniformly at random $H \leftarrow$ contract(*H*, *e*) **done** return *H*

H still contains minimum cut with probability at least

 $\binom{t}{2} / \binom{n}{2}$

Karger-Stein

if $|V| \le 6$ then $C \leftarrow$ optimial cut by deterministic algorithm else

 $t \leftarrow \lceil 1 + n/\sqrt{2} \rceil$ $H_1 \leftarrow \text{IterContract}(G, t)$ $H_2 \leftarrow \text{IterContract}(G, t)$ $C_1 \leftarrow \text{CallRecursive}(H_1)$ $C_2 \leftarrow \text{CallRecursive}(H_2)$ $C \leftarrow \min(C_1, C_2)$

done

return C

 \rightsquigarrow running time $O(n^2 \log n)$

 \rightsquigarrow minimum cut with probability $\Omega(1/\log n)$

 \rightsquigarrow repeat $\log^2 n$ to achieve probability $\Omega(1/n)$

⁹ Christian Schulz: Shared-Memory Exact Minimum Cuts

how can kernelization help?

something better than contracting random edges?

can we still obtain good cuts in practice?

can we then use this to obtain better kernels?

Padperg-Rinaldi Tests

11 Christian Schulz: Shared-Memory Exact Minimum Cuts

Padperg-Rinaldi Tests

12 Christian Schulz: Shared-Memory Exact Minimum Cuts

Kernelization Padperg-Rinaldi Tests

 $\exists z : \deg(x) \le 2\{\omega(x,y) + \omega(x,z)\} \text{ and } \deg(y) \le 2\{\omega(x,y) + \omega(y,z)\}$

Padperg-Rinaldi Tests

$$\omega(x,y) + \sum_{z} \min\{\omega(x,z), \omega(y,z)\} \ge \hat{\lambda}$$

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut

- Let $\hat{\lambda}$ be your current bound for minimum cut
- Want: smaller minimum cut
- Compute − 1 maximal spanning forests (iteratively)
 → edges not in forests connect vertices with connectivity ≥ Â
 → contract all of them

Example: $\hat{\lambda} = 4 \rightsquigarrow$ compute 3 edge-disjoint spanning forests

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut

- Let $\hat{\lambda}$ be your current bound for minimum cut
- Want: smaller minimum cut
- Compute − 1 maximal spanning forests (iteratively)
 → edges not in forests connect vertices with connectivity ≥ Â
 → contract all of them

Example: $\hat{\lambda} = 4 \rightsquigarrow$ compute 3 edge-disjoint spanning forests

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut

- Let $\hat{\lambda}$ be your current bound for minimum cut
- Want: smaller minimum cut
- Compute − 1 maximal spanning forests (iteratively)
 → edges not in forests connect vertices with connectivity ≥ Â
 → contract all of them

Example: $\hat{\lambda} = 4 \rightsquigarrow$ compute 3 edge-disjoint spanning forests

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut

- Let $\hat{\lambda}$ be your current bound for minimum cut
- Want: smaller minimum cut
- Compute − 1 maximal spanning forests (iteratively)
 → edges not in forests connect vertices with connectivity ≥ Â
 → contract all of them

NOI define modified BFS to detect contractable edges (more later)

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut

- Let $\hat{\lambda}$ be your current bound for minimum cut
- Want: smaller minimum cut
- Compute − 1 maximal spanning forests (iteratively)
 → edges not in forests connect vertices with connectivity ≥ Â
 → contract all of them

Note: initial $\hat{\lambda}$ comes from minimum degree Some of the reductions depend heavily on $\hat{\lambda}$

Cut-based, Linear Time Clustering Algorithm [Raghavan et. al]

- cut-based clustering using label propagation
 - start with singletons
 - traverse nodes in random order or smallest degree first
 - move node to cluster having strongest connection

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
	5.09

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
	5.09

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
	5.09

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
	5.09

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
	5.09

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
	5.09

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
	5.09

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
	5.09

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
	5.09

Iteration	Cut [%]
0	100
1	8.96
2	6.15
3	5.66
4	5.44
5	5.28
6	5.25
7	5.21
8	5.18
•••	5.09

Basic Idea

Contraction of Clusterings

- cluster paradigm: internally dense, externally sparse
- "unlikely" to contract minimum cut edges
- clustering not main goal: only perform a couple of iterations

Fast Inexact Minimum Cuts

- (Inexact) Cluster reduction + Exact reductions
- Solve kernel to optimality using Nagamochi, Ono and Ibaraki's algorithm
 - \rightarrow overall linear running time, but potentially suboptimal cuts

Parallelization

Shared-memory with OpenMP

Parallel label propagation

- as brutal as: pragma openmp for and ignore conflicts on labels
- Parallel Padberg-Rinaldi:
 - check edges independently ~→ embarassingly parallel
 - collect edges then contract
 - \rightarrow essentially linear time
- Parallel contraction (not here)
- run Nagamochi, Ono and Ibarakis algorithm sequentially

Random Hyperbolic Networks

n=12.5K - 200K d=10% k=2

seqVieCut optimal in 99% of runs, Matuala optimal in 69% of runs

Real-world Networks

• No incorrect results (expect Karger-Stein in 36% of the cases)

Parallelization

• Average speedup using 12 cores: 6.3 (24: 7.9)

• Average speedup to next fastest (Matula): 13.2 (24: 15.8)

Stating the Obvious

- now \approx 16 times faster than Matuala
- NO guarantee for minimum cut, but experiments say very likely
- reductions depend on bound $\hat{\lambda}$

PLUG IN our result into exact NOI algorithm + parallelization ~ currently fastest exact minimum cut algorithm

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut

- Let $\hat{\lambda}$ be your current bound for minimum cut
- Want: smaller minimum cut
- Compute − 1 maximal spanning forests (iteratively)
 → edges not in forests connect vertices with connectivity ≥ Â
 → contract all of them

Example: $\hat{\lambda} = 4 \rightsquigarrow$ compute 3 edge-disjoint spanning forests

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut

- Let $\hat{\lambda}$ be your current bound for minimum cut
- Want: smaller minimum cut
- Compute − 1 maximal spanning forests (iteratively)
 → edges not in forests connect vertices with connectivity ≥ Â
 → contract all of them

Example: $\hat{\lambda} = 4 \rightsquigarrow$ compute 3 edge-disjoint spanning forests

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut

- Let $\hat{\lambda}$ be your current bound for minimum cut
- Want: smaller minimum cut
- Compute − 1 maximal spanning forests (iteratively)
 → edges not in forests connect vertices with connectivity ≥ Â
 → contract all of them

Example: $\hat{\lambda} = 4 \rightsquigarrow$ compute 3 edge-disjoint spanning forests

Nagamochi, Ono, Ibaraki Details

- $\lambda(x, y)$ capacity of minimum cut separating x and y
- λ(x, y) ≥ λ̂ → ∃ no cut separating x and y with capacity ≤ λ̂
 → we can contract (x, y)
- but computing $\lambda(x, y)$ expensive (max-flow algorithm)
- NOI: compute lower bound q(e) on $\lambda(x, y)$, i.e.

 $\lambda(x, y) \ge q(e) \ge \hat{\lambda}$ \rightsquigarrow can contract edge *e*

q(e) = # edge disjoint paths that connect x, yq(e) via k-edge-connected subgraph \rightsquigarrow following algorithm

k-edge-connected subgraph

invariant r[v] = i smallest *i* s.t. $E_{i+1} \cup \{e\}$ does not contain a cycle

initialize r[v] = 0all nodes and edges are non-scanned $E_1 = E_2 = \ldots = E_{|E|} = \emptyset$ while \exists non-scanned node u := non-scanned node v with maximal r[v]foreach non-scanned edge $e = (u, v) \in E$ do insert e into $E_{r(v)+1}$ q(e) = r(v) + 1, r(v) = r(v) + 1

 \rightsquigarrow $H_i = (V, E_i)$ is a maximal spanning forest in $G \setminus E_1 \cup \ldots \cup E_{i-1}$ Long story short:

> Everything in $E_{\hat{\lambda}} \cup \ldots \cup E_{|E|}$ can be contracted. $\sim \text{ contract } e \text{ if } q(e) \ge \hat{\lambda}$

k-edge-connected subgraph

invariant r[v] = i smallest *i* s.t. $E_{i+1} \cup \{e\}$ does not contain a cycle **invariant** r[v] = i incidient to first *i* trees initialize r[v] = 0all nodes and edges are non-scanned $E_1 = E_2 = \ldots = E_{|E|} = \emptyset$ while \exists non-scanned node u := non-scanned node *v* with maximal r[v]foreach non-scanned edge $e = (u, v) \in E$ do insert *e* into $E_{r(v)+1}$ q(e) = r(v) + 1, r(v) = r(v) + 1, r(u) = r(u) + 1

 \rightsquigarrow $H_i = (V, E_i)$ is a maximal spanning forest in $G \setminus E_1 \cup \ldots \cup E_{i-1}$ Long story short:

> Everything in $E_{\hat{\lambda}} \cup \ldots \cup E_{|E|}$ can be contracted. \sim contract *e* if $q(e) \ge \hat{\lambda}$

k-edge-connected subgraph

invariant r[v] = i smallest *i* s.t. $E_{i+1} \cup \{e\}$ does not contain a cycle

initialize r[v] = 0all nodes and edges are non-scanned $E_1 = E_2 = \ldots = E_{|E|} = \emptyset$ while \exists non-scanned node u := non-scanned node v with maximal r[v]foreach non-scanned edge $e = (u, v) \in E$ do insert e into $E_{r(v)+1}, \ldots, E_{r(v)+c(e)}$ q(e) = r(v) + c(e), r(v) = r(v) + c(e)

 \rightsquigarrow $H_i = (V, E_i)$ is a maximal spanning forest in $G \setminus E_1 \cup \ldots \cup E_{i-1}$ Long story short:

> Everything in $E_{\hat{\lambda}} \cup \ldots \cup E_{|E|}$ can be contracted. \sim contract *e* if $q(e) \ge \hat{\lambda}$

c(e) replaces one edge by c(e) edges

Example

Overall Parallel Algorithm

- each thread selects random start vertex
- make sure each vertex scanned by exactly one worker
- mark contractible edge in parallel union-find data structure

- 1: $\hat{\lambda} \leftarrow \texttt{VieCut}(G), G_C \leftarrow G$
- 2: while G_C has more than 2 vertices
- 3: $\hat{\lambda} \leftarrow \text{Parallel CAPFOREST}(G_C, \hat{\lambda})$
- 4: **if** no edges marked contractible

5:
$$\hat{\lambda} \leftarrow \text{CAPFOREST}(G_C, \hat{\lambda})$$

6: $G_C, \hat{\lambda} \leftarrow \text{Parallel Graph Contract}(G_C)$

7: return $\hat{\lambda}$

More Optimizations

- Observation: values in PQ often higher than bound $\hat{\lambda}$
- Algorithm still correct when limiting values to $\hat{\lambda}$
- Use BucketPQ in weighted case also!

 $\rightsquigarrow O(1)$ for push, pop, and increaseKey \rightsquigarrow Bucket implementations make a difference

stack vs queue breadth vs depth

All Graphs

HO – original Hao, Orlin algorithm implementation NOI-CGKLS – original NOI implementation NOI-HNSS – our own NOI implementation NOI:

BStack, BQueue, Heap $\hat{\lambda}$ – bounding PQ *-VieCut – initialize $\hat{\lambda}$ with VieCut

31 Christian Schulz:

Shared-Memory Exact Minimum Cuts

Random Hyperbolic Graphs

Average Node Degree: 2^8

HO – original Hao, Orlin algorithm implementation NOI-CGKLS – original NOI implementation NOI-HNSS – our own NOI implementation NOI:

BStack, BQueue, Heap $\hat{\lambda}$ – bounding PQ *-VieCut – initialize $\hat{\lambda}$ with VieCut

32 Christian Schulz:

Shared-Memory Exact Minimum Cuts

Social and Web Graphs

HO – original Hao, Orlin algorithm implementation NOI-CGKLS – original NOI implementation NOI-HNSS – our own NOI implementation NOI:

BStack, BQueue, Heap $\hat{\lambda}$ – bounding PQ *-VieCut – initialize $\hat{\lambda}$ with VieCut

33 Christian Schulz:

Shared-Memory Exact Minimum Cuts

Scalability

34 Christian Schulz: Shared-Memory Exact Minimum Cuts

Open Things & Software

- apply heuristics on kernel
- use inexact results to get better bounds for reductions
- heuristic reduction to break up reduction space

Open Questions:

- what about the order or reductions in practice?
- MORE problems? (minimum fill, ...)
- the other way around: exact reductions for multi-level schemes
- integrating reductions in currently used algorithms

Software:

https://viecut.taa.univie.ac.at

