Shared-Memory Exact Minimum Cuts

M. Henzinger, A. Noe, C. Schulz, D. Strash

Kernelization

General Idea

Reductions:
rules to decrease graph size, while maintaining optimality

solve problem on problem kernel
— obtain solution on input graph

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

General Idea

Reductions:
rules to decrease graph size, while maintaining optimality

solve problem on problem kernel (using a heuristic)
— obtain solution on input graph quickly

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

General Idea

Reductions:
rules to decrease graph size, while maintaining optimality

<
Independent Sets

m evolutionary [SEA’15]

reduction + evolutionary [ALX'16]
online reductions + LS [SEA’16]
shared-mem parallel [ALX"18]
weighted exact [ALX"19]

solve problem on problem kernel
— obtain solution on input graph

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

General Idea

Reductions:
rules to decrease graph size, while maintaining optimality

‘__J

Independent Sets
L T
a shared-mem parallel [ALX18]
m weighted exact [ALX19]
solve problem on problem kernel “Graph Partitioning” |...]
— obtain solution on input graph Minimum Cuts
a shared-mem parallel [ALX"18]
® exact minimum cut [ALX"19]

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Concrete Example
“(In)exact Reductions” in Minimum Cuts

joint work with
M. Henzinger,
A. Noe

D. Strash

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Minimum Cuts

Cut: A cut in a multigraph is a partition of V = C U_E
— size of the cut is weight of edges between C and C

Minimum Cut Problem:
what is the size of the minimum cut in G?

3 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Basics

If the size of the minimum cut is A, then it follows
w YoeV:deg(v) > A
u number of edges m > nA/2

Proof: Assume Jv € V : deg(v) < A,
then C = {v} is a cut whose size is < A. Contradiction.
The second claim follows from the first one.

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Contraction

In a multigraph G, let u and v be connected by an edge e = {x,y}

Create G/e = (V', E) by contracting e:
w set V' to V\{x,y} U{z} (zis new)
u build E’ from E by

a remove all edges between u and v

u replace every edge between v € V\{x,y}
and x or y by an edge between v and z

a keep all other edges from E

— multi-edges can be created (~~ practice use weights)!

5 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Minimum Cut < Contraction

A minimum cut in G/e is at least as a minimum cut in G.

Proof:

Let (K, K) be a minimum cut in G/e.

Let the size of the cut be A.

Wilog let x and y be the vertices of ¢, and z € K
Unpack z and leave x and y in K — cutin G of size A

A

6 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

7 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

7 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

7 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

7 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

7 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

7 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

7 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

7 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

The runtime of the simple minimum cut algorithm is O(n?)

Proof:
m every call contract(H, e) is done in O(n)
m every loop iteration reduces n by 1 — n — 2 iterations

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

The algorithm finds a minimum cut with probability Q(n~2)

Proof (sketch):

® let minimum cut size be A

u probability to select a cut edge é—‘ < ﬁ/z =2/n

® p, probability that n-vertex graph avoids cut edges

pu = (1= 2/m)py 1> o= ()

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Algorithm
Exibit A
H<+ G
while H has more than 2 nodes do
e < edge of H picked uniformly at random
H <+ contract(H, e)
done
(C,C) <+ vertex set in G that correspond to the vertices in H

Standard Trick: Multiple Repetitions

m non-error probability 1/n? very low
m smallest out of #2 /2 is minimum with probability 1 —1/e:

(1—2/n2)2/" <1/e
~runtime O(n*)

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Better Algorithm

IterContract

H<+ G

while H has more than f nodes do
e < edge of H picked uniformly at random
H < contract(H, e)

done

return H

H still contains minimum cut with probability at least

()/(3)

8 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Karger-Stein

if |V| < 6 then C < optimial cut by deterministic algorithm
else
t e [1+n/V2]
H; + IterContract(G, t)
Hy < TterContract(G, t)
Cy1 < CallRecursive(H7)
C, + CallRecursive(H>)
C+ mil’l(C1, Cz)
done
return C

~~ running time O(n?logn)
~» minimum cut with probability)(1/ logn)
~ repeat log” 1 to achieve probability Q(1/#)

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Main Questions

how can kernelization help?

10 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Main Questions

something better than contracting random edges?

10 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Main Questions

can we still obtain good cuts in practice?

10 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Main Questions

can we then use this to obtain better kernels?

10 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization
Padperg-Rinaldi Tests

deg(x) < 2w(x,y)

\ N . y

<

11 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization
Padperg-Rinaldi Tests

w(x,y) > A

12 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization
Padperg-Rinaldi Tests

3z : deg(x) < 2{w(x,y) + w(x,2)} and deg(y) < 2{w(x,y) + w(¥,2)}

13 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization
Padperg-Rinaldi Tests

w(x,y) + L, min{w(x,z), w(y,z)} > A

X

14 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut
a Want: smaller minimum cut
u Compute A — 1 maximal spanning forests (iteratively)
~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Example: A = 4 ~ compute 3 edge-disjoint spanning forests

15 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut
a Want: smaller minimum cut
u Compute A — 1 maximal spanning forests (iteratively)
~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Example: A = 4 ~ compute 3 edge-disjoint spanning forests

15 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut
a Want: smaller minimum cut
u Compute A — 1 maximal spanning forests (iteratively)
~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Example: A = 4 ~ compute 3 edge-disjoint spanning forests

15 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut

a Want: smaller minimum cut

u Compute A — 1 maximal spanning forests (iteratively)

~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

NOI define modified BFS to detect contractable edges
(more later)

15 Christian Schulz:
Shared-Memory Exact Minimum Cuts

15

Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut

a Want: smaller minimum cut

u Compute A — 1 maximal spanning forests (iteratively)

~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Note: initial A comes from minimum degree
Some of the reductions depend heavily on A

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Label Propagation

Cut-based, Linear Time Clustering Algorithm [Raghavan et. al]

m cut-based clustering using label propagation
m start with singletons
a traverse nodes in random order or smallest degree first
a move node to cluster having strongest connection

Scan

16 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Label Propagation

Iteration | Cut [%]

100
8.96
6.15
5.66
5.44
5.28
525
521
5.18
5.09

OG- WN RO

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Label Propagation

]

Cut [O/o

Iteration

O WO LN O <H 0L — O N
S9N~
00 O 16 16 16 16 16 16 15
O-HANMHIO\ODNW®

Christian Schulz:

17

Shared-Memory Exact Minimum Cuts

Label Propagation

Iteration | Cut [%]

100
8.96
6.15
5.66
5.44
5.28
525
521
5.18
5.09

XU WPN~O

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Label Propagation

]

Cut [O/o

Iteration

PRAVAS

15
.66
44
28
25
21

100
8.96
6
5
5
5
5
5

.18
09

5
5

O — AN oh <t 1O O DN

[oe]

Christian Schulz:

17

Shared-Memory Exact Minimum Cuts

17

Label Propagation

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Iteration | Cut [%]

XU WD~ O

100
8.96
6.15
5.66
5.44
5.28
525
521
5.18
5.09

Label Propagation

]

Cut [O/o

Iteration

PRAVAS

15
.66
44
28
25
21

100
8.96
6
5
5
5
5
5

.18
09

5
5

O =AM <t I O DN

Christian Schulz:

17

Shared-Memory Exact Minimum Cuts

Label Propagation

]

Cut [O/o

Iteration

15
.66
44
28
25
21

100
8.96
6
5
5
5
5
5

.18
09

5
5

O — AN M < 1O © DN

Christian Schulz:

17

Shared-Memory Exact Minimum Cuts

Label Propagation

]

Cut [O/o

Iteration

PRAVAS

15
.66
44
28
25
21

100
8.96
6
5
5
5
5
5

.18
09

5
5

O — AN M < 1O O I~

[oe]

Christian Schulz:

17

Shared-Memory Exact Minimum Cuts

Label Propagation

Iteration | Cut [%]

100
8.96
6.15
5.66
5.44
5.28
525
521
5.18
5.09

I WN P~ O

17 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Label Propagation

]

Cut [O/o

Iteration

PRAVAS

15
.66
44
28
25
21

100
8.96
6
5
5
5
5
5

.18
09

5
5

O — AN M < 1O O DN

Christian Schulz:

17

Shared-Memory Exact Minimum Cuts

Basic Idea

Contraction of Clusterings

® cluster paradigm: internally dense, externally sparse
u “unlikely” to contract minimum cut edges
a clustering not main goal: only perform a couple of iterations

18 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Fast Inexact Minimum Cuts

m (Inexact) Cluster reduction + Exact reductions

m Solve kernel to optimality
using Nagamochi, Ono and Ibaraki’s algorithm

— overall linear running time, but potentially suboptimal cuts

input graph

cluster contraction

exact reductions

- repeat
solve exactly

19 Christian Schulz:
Shared-Memory Exact Minimum Cuts

20

Parallelization
Shared-memory with OpenMP

u Parallel label propagation

@@@@@@@

2 P1 P1 Pg

m as brutal as: pragma openmp for and ignore conflicts on labels

u Parallel Padberg-Rinaldi:

m check edges independently ~~ embarassingly parallel
a collect edges then contract
— essentially linear time

m Parallel contraction (not here)

a run Nagamochi, Ono and Ibarakis algorithm sequentially

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Random Hyperbolic Networks

n=12.5K - 200K d=10% k=2

512
B KS —+—
A
+ HOA *
HOB *
256
& HOC .
% Matula
2 . NOI —=
128 “~seqVieCut —=
o ™~ ~
o ~
Q — .
E - n
6
(2]
£
C
c
3
i
32 o ——
- .
«—
16 550025000 50000 150000 200000

100000 .
Number of Vertices

u seqVieCut optimal in 99% of runs, Matuala optimal in 69% of runs

21 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Real-world Networks

» KS +
ot | v HO, x|
HOp
& . HO O
3| NOI m |
2 B3
§ i + @@ @ Matula
I N L
g 2 f o ok n" I
2 [] x ¥ [
n é X [
= am =
ol I = £ u]
% *
K
90
107 10°® 10° 10'

Number of Edges

m No incorrect results (expect Karger-Stein in 36% of the cases)

22 Christian Schulz:
Shared-Memory Exact Minimum Cuts

23

Parallelization

uk-2007-05 k=10

n=200K, d=10%, k=2

Speedup to seqVieCut

Speedup to seqVieCut .

T2 8 4 5 6 7 8 9 1011 12
Number of Threads

T2 8 4 5 6 7 8 9 101112
Number of Threads

m Average speedup using 12 cores: 6.3 (24: 7.9)
m Average speedup to next fastest (Matula): 13.2 (24: 15.8)

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Stating the Obvious

m now =~ 16 times faster than Matuala
® NO guarantee for minimum cut, but experiments say very likely
u reductions depend on bound A

~+ PLUG IN our result into exact NOI algorithm + parallelization
~- currently fastest exact minimum cut algorithm

24 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut
a Want: smaller minimum cut
u Compute A — 1 maximal spanning forests (iteratively)
~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Example: A = 4 ~ compute 3 edge-disjoint spanning forests

25 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut
a Want: smaller minimum cut
u Compute A — 1 maximal spanning forests (iteratively)
~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Example: A = 4 ~ compute 3 edge-disjoint spanning forests

25 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Kernelization

Nagamochi, Ono, and Ibaraki

Key Idea: a spanning tree contains at least one edge from any cut
m Let A be your current bound for minimum cut
a Want: smaller minimum cut
u Compute A — 1 maximal spanning forests (iteratively)
~~ edges not in forests connect vertices with connectivity > A
~ contract all of them

Example: A = 4 ~ compute 3 edge-disjoint spanning forests

25 Christian Schulz:
Shared-Memory Exact Minimum Cuts

26

Nagamochi, Ono, Ibaraki

Details

® A(x,y) capacity of minimum cut separating x and y

m A(x,y) > A ~ I no cut separating x and y with capacity < A
~~> we can contract (x,)

® but computing A(x, y) expensive (max-flow algorithm)

u NOI: compute lower bound g(e) on A(x,y), i.e.

Alxy) > q(e) > A
~+ can contract edge e

g(e) = # edge disjoint paths that connect x, y
q(e) via k-edge-connected subgraph ~- following algorithm

Christian Schulz:
Shared-Memory Exact Minimum Cuts

k-edge-connected subgraph

invariant r[v] = i smallest i s.t. E; ;1 U {e} does not contain a cycle

initialize r[v] =0
all nodes and edges are non-scanned
Ei=E=...=E =0
while 3 non-scanned node
u = non-scanned node v with maximal r[]
foreach non-scanned edge e = (1,v) € E do
insert e into E,(4) 41
qle) =r(v) +1,r(v) = r(v) +1
~+ H; = (V, E;) is a maximal spanning forestin G\ E;U...UE; 1
Long story short:
Everything in Ej U... U E|g| can be contracted.

~~ contract e if g(e) > A

27 Christian Schulz:
Shared-Memory Exact Minimum Cuts

k-edge-connected subgraph

invariant r[v] = i smallest i s.t. E; ;1 U {e} does not contain a cycle
invariant r[v] = i incidient to first i trees
initialize r[v] =0
all nodes and edges are non-scanned
Ei=E=..=Ep=0
while 3 non-scanned node
u = non-scanned node v with maximal r[]
foreach non-scanned edge e = (1,v) € E do
insert e into E,(4) 41
gle) =r(v)+1,r(v)=r(v)+1,r(u) =r(u)+1
~+ H; = (V, E;) is a maximal spanning forestin G\ E;U...UE; 1
Long story short:
Everything in Ej U.... U E|g| can be contracted.

~~ contract e if g(e) > A

27 Christian Schulz:
Shared-Memory Exact Minimum Cuts

27

k-edge-connected subgraph

invariant r[v] = i smallest i s.t. E; ;1 U {e} does not contain a cycle

initialize r[v] =0
all nodes and edges are non-scanned
Ei=E=...=E =0
while 3 non-scanned node
u = non-scanned node v with maximal r[]
foreach non-scanned edge e = (1,v) € E do
insert e into E, ()11, - - -, Er(v)4c(e)
q(e) = r(v) +cle), r(ov) = r(o) +cle)
~+ H; = (V, E;) is a maximal spanning forestin G\ E;U...UE; 1
Long story short:
Everything in Ej U... U E|g| can be contracted.

~~ contract e if g(e) > A

c(e) replaces one edge by c(e) edges

Christian Schulz:
Shared-Memory Exact Minimum Cuts

Example

28 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Overall Parallel Algorithm

m each thread selects random start vertex
u make sure each vertex scanned by exactly one worker
a mark contractible edge in parallel union-find data structure

) O
QD

. A+ VieCut(G), Gc + G
while G¢ has more than 2 vertices
A « Parallel CAPFOREST(G¢, A)
if no edges marked contractible
A < CAPFOREST(Gc, A)
Gc, A « Parallel Graph Contract(G¢)
return A

29 Christian Schulz:
Shared-Memory Exact Minimum Cuts

AU o e

N

More Optimizations

m Observation: values in PQ often higher than bound A
m Algorithm still correct when limiting values to A
m Use BucketPQ in weighted case also!

wodlde (o[e | [o | | [*fe | [%°
0 1 A
~» O(1) for push, pop, and increaseKey
~ Bucket implementations make a difference stack vs queue
breadth vs depth

30 Christian Schulz:
Shared-Memory Exact Minimum Cuts

All Graphs

1

et

« HO-CGKLS
[0-8 = NOI-CGKLS
1o ° NOIj-BStack
. ~-NOI;-BQueue
0.4 + NOI-HNSS
NOI;-Heap
0.2 = NOI-HNSS-VieCut
o NOI;-Heap-VieCut

tbest/ ta/go

0

stesstennsanene Too Iarge

0 20 40 60 80
Instances

HO - original Hao, Orlin algorithm implementation
NOI-CGKLS - original NOI implementation
NOI-HNSS - our own NOI implementation
NOL:
BStack, BQueue, Heap
A - bounding PQ
*-VieCut - initialize A with VieCut
31 Christian Schulz:
Shared-Memory Exact Minimum Cuts

Random Hyperbolic Graphs

Average Node Degree: 28

oy

o - HO-CGKLS

2 o = NOI-CGKLS

2 o7 -~ NOI;-BStack

o ——NOI;-BQueue

£ + NOI-HNSS

A NOI;-Heap

o 2)

£ = NOI-HNSS-VieCut
s o-NOI;-Heap-VieCut
& Aeeoog

— 25 ® B -

i .

°

220 22 1 222 223 224 225
Number of Vertices

HO - original Hao, Orlin algorithm implementation
NOI-CGKLS - original NOI implementation
NOI-HNSS - our own NOI implementation
NOIL
BStack, BQueue, Heap
A —bounding PQ
*VieCut — initialize A with VieCut
32 Christian Schulz:
Shared-Memory Exact Minimum Cuts

33

Social and Web Graphs

3 T

2 v + 5

92 o &% 1
g -

5 1 % K X& X C;rg'

2 X® M I X 7
k: FCRE wd g d
n . » Om n i‘.‘

2 oL

] = =] \
108 10°

Number of Edges

HO - original Hao, Orlin algorithm implementation

NOI-CGKLS - original NOI implementation
NOI-HNSS - our own NOI implementation
NOIL

BStack, BQueue, Heap

A - bounding PQ

*-VieCut - initialize A with VieCut
Christian Schulz:
Shared-Memory Exact Minimum Cuts

HO—-CGKLS
NOI-CGKLS
NOI-HNSS
NOI{—Heap
NOI5—BStack
NOI&—BQueue

NOI-HNSS—VieCut
NOIX—Heap—VieCut

WX X+

> @

Scalability

twitter-2010 (A = 3) rhg 25 8_2 (A=73)
—+ParCut4{-BStack
. —=ParCut;-BQueue
4| | = ParCutj-Heap
—NOI-HNSS
—NOI;-Heap
124 8 12 240124 8 12 24
Number of Processes Number of Processes

34 Christian Schulz:
Shared-Memory Exact Minimum Cuts

35

Open Things & Software

u apply heuristics on kernel
m use inexact results to get better bounds for reductions
m heuristic reduction to break up reduction space

Open Questions:

what about the order or reductions in practice?

u MORE problems? (minimum fill, ...)

u the other way around: exact reductions for multi-level schemes
m integrating reductions in currently used algorithms

Software:

w https://viecut.taa.univie.ac.at

Christian Schulz:
Shared-Memory Exact Minimum Cuts

