
Date
created (2)

Price
updated

Delivery
block rel.

Billing
block rel.

Last change Date
created

Return Order

Sales Order

Date
created

Return Delivery

Date
created (2)

Inv. date
updated

Clearing
date (2)

Delivery Invoice

Date
created (3)

Picking
date (3)

2 2

1

1 1
(2)

Xixi Lu, Dirk Fahland : TU/e
Dennis van de Wiel, Marijn Nagelkerke : KPMG IT Advisory N.V., Eindhoven, The Netherlands

Process Mining for ERP Systems
The Artifact-Centric Approach

Documents Changes
 Change id Date changed Reference id Table name Change type Old Value New Value

1 17-5-2020 S1 SD Price updated 100 80
2 19-5-2020 S1 SD Delivery block released X -
3 19-5-2020 S1 SD Billing block released X -
4 10-6-2020 B1 BD Invoice date updated 20-6-2020 21-6-2020

Billing documents (BD)
BD id Date created Document type Clearing date

B1 20-5-2020 Invoice 31-5-2020
 B2 24-5-2020 Invoice 5-6-2020

Delivery documents (DD)
DD id Date created Reference SD id Reference BD Document type Picking date

D1 18-5-2020 S1 B1 Delivery 31-5-2020
D2 22-5-2020 S1 B2 Delivery 5-6-2020
D3 25-5-2020 S2 B2 Delivery 5-6-2020
D4 12-6-2020 S3 null Return Delivery NULL

Sales documents (SD)
SD id Date created Reference id Document type Value Last change

S1 16-5-2020 null Sales Order 100 10-6-2020
S2 17-5-2020 null Sales Order 200 31-5-2020
S3 10-6-2020 S1 Return Order 10 NULL

F1

F2

F4

F3

Sales Order S1
created on 16-5

Delivery D1
created on 18-5

Delivery D2
created on 22-5

Invoice B1
created on 20-5

Delivery D3
created on 25-5

Invoice B2
created on 24-5

Return Order S3
created on 10-6

Return Delivery D4
created on 12-6

Sales Order S2
created on 17-5

Invoice B2
created on 24-5

15-5 20-5 25-5 9-6

all events related to Sales Order S2

all events related to Sales Order S1

1

1

1

2

1

2

2

1

1

Order Created
2

Delivery Created
3

Invoice Created
3

Return order Created
1

Return Delivery created
1

S1
S2

B1,B2 (in S1)
B2 (in S2)

D1,D2 (in S1)
D3 (in S2)

S3 (in S1)

D4 (in S1)

Process Mining

Extracting Artifact Interactions

Classical Log Extraction

Extracting Artifact Types

Mining Artifact Life-Cycles + Interactions

Event Data in a Relational Database

Analysis of SAP Order-to-Cash

To analyze the events using process mining techniques, pick a case
identifier for the process, for example the Sales Order id.
Any timestamp related to a value of the case identifier becomes an
event of that case; sort events by their timestamp.
In case of many-to-many relations between events coming from dif-
ferent tables, two phenomena arise.

We identify clusters of connected tables linked by 1-to-1 relations
only. Intuitively, each cluster describes a schema of similar business
objects; within a business object, convergence and divergence can-
not arise.

The artifact type definitions allow to fully automatically extract one
event log for each artifact type. From this a life-cycle model for each
artifact can be discovered with a classical process mining technique.

The 1-to-many and many-to-many relations between clusters and artifact
types describe their interactions.

We split each schema of business ob-
jects into one or more artifact types
describing a specific business object.
A discriminating condition distinguish-
es artifact types of the same schema.

The user may refine
the clusters, for in-
stance by allowing
that several busi-
ness objects share
the same table.

We analyzed 2 months
of data of an SAP Order-
to-Cash process, focus-
ing on all document
headers.
We identified and ex-
tracted event data for
18 artifact types.

The resulting artifact-centric model highlights the main flows across the
different objects; object life-cycles can be expanded (here for the Order ar-
tifact) or collapsed to focus on specific aspects.

An artifact type
may contain event
types from all ta-
bles of the schema.
The user can choose
which event types
to include.
Event types can be
refined by a dis-
criminating condi-
tion.

Joining two direct
interactions at their
target artifact yields
an indirect interac-
tion (Sales Order to
Invoice).

The user can choose
which direct or indi-
rect interactions to
include.

A standard process mining technique then
returns an end-to-end process across all the
business objects touched by the process.
In this case the process related to all Sales
Orders.

Divergence leads to false
edges and skews statistics.
Only invoice B2 was created

before its delivery D3, but
the model suggest this hap-

pened twice.

Enterprise Resource Planning (ERP) systems - and many other informa-
tion systems - record events about changes to information such as crea-
tion or update of a business object.
Often, the objects are in complex 1-to-many or many-to-many relations -
and so are the recorded events.
The changes to business objects of the Order to Cash (OTC) process
shown below are a typical example of event data embedded in a complex
structure. Divergence. Events of different

instances of the same object
are in the same case.

Convergence. Duplication of
the same event into different
cases.

Convergence leads to more
events and flows in the

model than actually are in
the data.

There have only been two
invoices created, but the

model shows three.

SalesOrder
id
Value
Date created
Last change

ReturnOrder
id
reference ID
Value
Date created
Last change

Delivery
id
reference SD id
reference BD id
Date created
Picking date

Return Delivery
id
reference SD id
reference BD id
Date created
Picking date

Invoice
id
Date created
Invoice date
Clearing date

n

1 1

n

1

n
n

n

1

SD
id
Date created
reference ID
Document Type
Value
Last change

DD
id
Date created
reference SD id
reference BD id
Document Type
Picking date

BD
idd
Date created
Document Type
Clearing date

0..1 1

1..2
0..2

1

1

Changes
id
Date changed
reference ID
Table name
Change type
Old Value
New Value

1

0..3 0

0

1

0..1

Artifact Id
Condition

… …

[DD id]
SD.[Document type] = 'Return Delivery'

Event type DateCreated

Artifact Return Delivery

Artifact Id
Condition

Event id [SD id]
Timestamp [date created]
Condition

Event id [SD id]
Timestamp [last change]
Condition

Event id [Change id]
Timestamp [Date changed]

Condition
Changes.[Change type] =
'Price updated'

Event id [Change id]
Timestamp [Date changed]

Condition
Changes.[Change type] =
'Delivery block released'

Event id [Change id]
Timestamp [Date changed]

Condition
Changes.[Change type] =
'Billing block released'

Artifact Sales Order
[SD id]

DateCreated

Event type BillingBlockReleased

SD.[Document type] = 'Sales Order'

LastChange

Event type

Event type

Event type PriceUpdated

Event type DeliveryBlockReleased

Artifact Id
Condition

Event id [SD id]
Timestamp [date created]
Condition

Artifact Return Order
[SD id]
SD.[Document type] = 'Return Order'

Event type DateCreated

Artifact Id
Condition

… …

[DD id]
SD.[Document type] = 'Delivery'

Event type DateCreated

Artifact Delivery

Artifact Id
Condition

… …

[BD id]

Event type DateCreated

Artifact Invoice

The primary key of the “main table” of
the schema becomes the case id of

the artifact type.
Each timestamp attribute in the

schema becomes an event type
of the artifact.

SalesOrder
id

ReturnOrder
id
reference ID Return Delivery

id
reference SD id
reference BD id

Delivery
id
reference SD id
reference BD id

Invoice
id

1:1

1:1

2:3 2:3

2:2

Invoice B1 Invoice B2
Return Del. D4

Date created
16-5-2020

Sales Order

Delivery D1 ... Delivery D3

S1

Price updated
17-5-2020

Del. block rel.
19-5-2020

Bil. block rel.
19-5-2020

Date created
17-5-2020

Sales Order S2

Last change
10-6-2020

Last change
31-5-2020

Date created
10-6-2020

Return Order S3

Each relation between to artifact types defines a direct
structural interaction whihch we visualize in the artifact
interaction graph:
3 instances of the Invoice artifact interact with 2 instances
of the Delivery artifact.

Each structural interaction between two
artifacts defines the artifact instances

that interact with each other.

Date created
18-5-2020 Date created

20-5-2020

Inv. date upd.
10-6-2020

Date created
22-5-2020 Date created

24-5-2020 Date created
25-5-2020

Delivery D1 Invoice B1

Delivery D2 Delivery D3Invoice B2

Picking date
31-5-2020

Picking date
5-6-2020

Picking date
5-6-2020

Clearing date
31-5-2020

Clearing date
5-6-2020

Date created of Deliv-
ery interacts with Date
created of Invoice.

To identify which events inter-
act with each other, we merge

the event logs of interacting
instances.

We add the aggregate interactions between
events as interaction flows between activi-

ties of the artifact life-cyclde models

The underlying conceptual data model
comprises 5 business objects.

VBAK
(Sales

documents)

LIKP
(Delivery

documents)

VBRK
(Invoice

documents)

VBAP
(Sales lines)

LIPS
(Delivery

lines)

VBRP
(Invoice lines)

BKPF
(Payment

documents)

CDHDR
(Changes
Header)

One to
many

name Table

BSID
(Open

Payment
documents)

BSAD
(Closed
Payment

documents)

CDPOS
(Changes
LINES)

Sales Tables
(VBAK - > VBAP)

Delivery Tables
(LIKP -> LIPS)

Invoice Tables
(VBRK -> VBRP)

Payment Tables
(BKPF -> BSAD)

Order

Delivery

Invoice Return order

Return delivery

Credit memo

Payment
05or15

Contract

Credit m.
req.

Debit m. req.

Credit memo
cancellation

Post in
AR

Pro forma
invoice

Debit memo

Invoice
cancellatin

direct

Intercompany
Invoice

Intercompany
Creditmemo

Delivery Shipping
notification

indirect

artifact

From the artifact-centric model various unusual flows can
be identified automatically or by an analyst: Paymen-
t05or15 has been executed too early in some cases.
By contrast, the classical process model below has 49% false edges.

8

1

1472

1

6

341

346

53

59

142

18

17

90

108

138

1

141

13

3

257

22

65

47

2

278

1360

1

2439

23

907

1

46

620

597

1

1

212

1

1

1

2

22

10

12

6

1

2

1

15

107

78

26

31

7

12

371

316

2

11

49

9

15

22 1

89

1

3

18

1298

854

354

42

5 9

1

14

15

1140

646

39

46

55

641

14

304

271

568

734

625

4

8

49

7

5

6

Created
2581

Delivery H_Created
5118

Payment05or15_Payment Received
822

PostInAR_PostedInAR
3479

Invoice H_Created
2629

InvoiceCancellation H_Created
40

Contract H_Created
741

ProFormaInvoice H_Created
730

ReturnDelivery H_Created
1

CreditMemo H_Created
34

ReturnOrder H_Created
1

CreditMemoRequest H_Created
33

DebitMemoRequest H_Created
2

DebitMemo H_Created
14

Two events interact if they are
in different artifacts and directly

succeed each other timewise
(other criteria can be defined)
The user can filter which inter-

actions shall be considered.

Life-cycle model. Describes how each instance of a business
object evolves in the process; different instances are separated.

Interactions. Describe how different
life-cycles synchronize; allows to study
unusual flows between artifacts.

read more: http://dx.doi.org/10.1109/TSC.2015.2474358, contact: d.fahland@tue.nl

http://dx.doi.org/10.1109/TSC.2015.2474358

