Artifact-Centric Process Mining (pre-print1)

Dirk Fahland

Synonyms

Object-centric process mining, Multi-instance process mining

Definition

Artifact-centric process mining is an extension of classical process mining van der Aalst 2016 that allows to analyze event data with more than one case identifier in its entirety. It allows to analyze the dynamic behavior of (business) processes that create, read, update, and delete multiple data objects that are related to each other in relationships with one-to-one, one-to-many, and many-to-many cardinalities. Such event data is typically stored in relational databases of, for example, Enterprise Resource Planning (ERP) systems Lu et al. 2015. Artifact-centric process mining comprises artifact-centric process discovery, conformance checking, and enhancement. The outcomes of artifact-centric process mining can be used for documentation of the actual data flow in an organization, and for analyzing deviations in the data flow for performance and conformance analysis.

The input to \textit{artifact-centric process discovery} is either an event log where events carry information about the data objects and their changes, or a relational database also containing records about data creation, change, and deletion events. The output of artifact-centric process discovery are a data model of the objects (each defining its own case identifier) and relations between objects, and an artifact-centric pro-

1 This is the pre-print version of \textit{Artifact-Centric Process Mining} in \textit{Encyclopedia of Big Data Technologies, Editors: Sherif Sakr, Albert Zomaya}, Springer Cham, 2018. doi: http://dx.doi.org/10.1007/978-3-319-63962-8_93-1
An artifact-centric process model describes the dynamics of each data object on its own in an object life-cycle model, and the behavioral dependencies between the different data objects. To this end, artifact-centric process discovery integrates the control-flow analysis of event data of classical process mining with an analysis of the data structures and data records related to the events.

During artifact-centric process discovery each event is associated to one data object in the data source. From the behavioral relations between all events associated to one data object, a life-cycle model of the data object is learned using automated process discovery techniques. Each life-cycle model describes the possible changes to the object and their ordering as they have been observed in reality. From behavioral relationships between events in different related data objects, information about behavioral dependencies between changes in different data objects is discovered preserving the one-to-one, one-to-many, and many-to-many cardinalities.

Several modeling languages have been proposed to describe a complete artifact-centric model of all object life-cycles and their behavioral interdependencies. Existing behavioral modeling languages can be extended to express interdependencies of one-to-many and many-to-many cardinalities including Petri nets (van der Aalst et al. 2001) and UML (Estaño et al. 2012). Specifically designed languages including the Guard-Stage-Milestone (GSM) model (Hull et al. 2011) or Data-Centric Dynamic Systems (Hariri et al. 2013) employ both data and behavioral constructs as primary modeling concepts. The Case Management Model and Notation (CMMN) standard v1.1 incorporates several modeling concepts of GSM (OMG 2016).
Artifact-centric conformance checking compares event data to an artifact-centric model with the aim to identify where recorded events deviate from the behavior described in the artifact-centric model. Deviations may exist between observed and specified data model, between observed events and the life-cycle model of an artifact, and between observed events and the interactions of two or more artifacts.

Artifact-centric model enhancement uses event data to enrich an artifact-centric model, for example with information about the frequency of paths through a life-cycle model or interactions, or to identify infrequent behavior as outliers.

Overview

Historically, artifact-centric process mining addressed the unsolved problem of process mining on event data with multiple case identifiers and one-to-many, and many-to-many relationships by adopting the concept of a (business) artifact as an alternative approach to describing business processes.

Event data with multiple case identifiers

Processes in organizations are typically supported by information systems to structure the information handled in these processes in well-defined data objects which are often stored in relational databases. During process execution, various data objects are created, read, updated, and deleted, and various data objects are related to each other in one-to-one, one-to-many, and many-to-many relations. Figure 2 illustrates in a simplified form the data structures typically found in ERP systems. Sales, Delivery, and Billing documents are recorded in tables; relation F1 links Sales to Delivery documents in a one-to-many relation: S1 relates to D1 and D2, correspondingly F2 links Billing to Delivery documents in a one-to-many relation. Events on process steps and data access are recorded in time-stamp attributes such as Date created or in a separate Document Changes table linked to all other tables.

Convergence and divergence

Process mining requires to associate events to a case identifier in order to analyze behavioral relations between events in the same case (van der Aalst 2016). The data in Fig. 2 provides three case identifiers: SD id, DD id, and BD id. Classical process mining forces to associate all events to a single case identifier. However, this is equivalent to flattening and de-normalizing the relational structure along its one-to-many relationships.
Event data stored in a relational database.

Fig. 3 An event log (left) serializing the “create” events of the database of Fig. 2 based on the case identifier “SD id”. The resulting directly-follows relation (right) suffers convergence and divergence.

For example, associating all Create events of Fig. 2 to SD id flattens the tables into the event log of Fig. 3 (left) having two cases for S1 and S2. Due to flattening, event Create of B2 has been duplicated as it was extracted once for S1 and once for S2, also called divergence. Further, Create for B1 is followed by Create for D2 although B1 and D2 are unrelated in Fig. 2 also called convergence (Lu et al. 2015). The behavioral relations which underly automated process discovery become erroneous through convergence and divergence. For example, the directly-follows relation of the log (Fig. 3 right) states erroneously that 3 Invoice documents have been created – whereas the original data source contains only 2 – and that in 2 cases Invoice creation was followed by Delivery creation (between related data objects) – whereas in the original data source this only happened once for B2 and D3. Convergence and divergence may cause up to 50% of erroneous behavioral relations (Lu et al. 2015) in event logs. Convergence and divergence can be avoided partially by scoping extraction of event data into event logs with a single case identifier in a manual process (Jans 2017).
Artifact-centric process models

Artifact-centric process mining adopts modeling concept of a (business) artifact to analyze event data with multiple case identifiers in their entirety (Lu et al. 2015; Nooijen et al. 2012; van Eck et al. 2017). The notion of a (business) artifact was proposed by Nigam and Caswell (2003) as an alternative approach to describing business processes. This approach assumes that any process materializes itself in the (data) objects that are involved in the process, for instance, sales documents and delivery documents; these objects have properties such as the values of the fields of a paper form, the processing state of an order, or the location of a package. Typically, a data model describes the (1) classes of objects that are relevant in the process, (2) the relevant properties of these objects in terms of class attributes, and (3) the relations between the classes. A process execution instantiates new objects and changes their properties according to the process logic. Thereby, the relations between classes describe how many objects of one class are related to how many objects of another class.

An artifact-centric process model enriches the classes of the data model themselves with process logic restricting how objects may evolve during execution. More precisely, one artifact (1) encapsulates several classes of the data model (e.g., Sales Documents and Sales Document Lines), (2) provides actions that can update the classes attributes and move the artifact to a particular state, and (3) defines a life cycle. The artifacts life cycle describes when an instance of the artifact (i.e., a concrete object) is created, in which state of the instance which actions may occur to advance the instance to another state (e.g., from created to cleared), and which goal state the instance has to reach to complete a case. A complete artifact-centric process model provides a life-cycle model for each artifact in the process and describes which behavioral dependencies exist between actions and states of different artifacts (e.g., pick delivery may occur for a Delivery object only if all its Billing objects are in state cleared). Where business process models created in languages such as BPMN, EPC, or Petri nets describe a process in terms of activities and their ordering in a single case, an artifact-centric model describes process behavior in terms of creation and evolution of instances of multiple related data objects. In an artifact-centric process model, the unit of modularization is the artifact, consisting of data and behavior, whereas in an activity-centric process modeling notation, the unit of modularization is the activity, which can be an elementary task or a sub-process. A separate entry in this encyclopedia discusses the problem of automated discovery of activity-centric process models with sub-processes.

Figure 4 shows an artifact-centric process model in the notation of Proclets (van der Aalst et al. 2001) for the data model of Fig. 2. The life cycle of each document (Sales, Delivery, Billing) is described as a Petri net. Behavioral dependencies between actions in different objects are described through interface ports and asynchronous channels that also express cardinalities in the interaction. For example, the port annotation “+” specifies that Clear Invoice in Billing enables Pick Delivery in multiple related Delivery objects. Port annotation “1” specifies that Pick Delivery can occur after Clear Invoice occurred in the one Billing object related to the Delivery.
The grey part of Fig. 4 shows a more involved behavioral dependency. Whenever Update Price occurs in a Sales document, all related Delivery documents get blocked. Only after Release delivery block occurred in Sales, the Delivery document may be updated again, and Pick Delivery may occur. For the sake of simplicity, the model does not show further behavioral dependencies such as “Update price also blocks related Billing documents”.

Figure 5 shows the same model in the Guard-Stage-Milestone notation (Hull et al. 2011) (omitting some details). Each round rectangles denotes a stage that can be entered when its guard condition (diamond) holds and is left when its milestone condition (circle) holds. The guard and milestone conditions specify declarative constraints over data attributes, stages, and milestones of all artifacts in the model. For example, Picking can start when the pickDelivery event is triggered in the process, the delivery document has reached its created milestone, the billing document related to the delivery document has reached its cleared milestone (d.BD.cleared), and stage Blocking Delivery is not active in the related sales document.

Fig. 4 Example of an artifact-centric process model in the Proclet notation.

Fig. 5 Example of an artifact-centric process model in the Guard-Stage-Milestone notation.
Artifact-centric process mining

The behavior recorded in the database of Fig. 2 does not conform to the models in Figures 4 and 5.

1. Structural conformance states how well the data model describes the data records observed in reality. The proclet model of Fig. 4 structurally conforms to the data in Fig. 2 regarding objects and relations, but not regarding actions: the recorded event data shows two additional event types for the life cycle of the Sales document: Release billing block and Last Change.

2. Life-cycle conformance states how well the life-cycle model of each artifact describes the order of events observed in reality. This corresponds to conformance in classical process mining. For example, in Fig. 2, Update invoice date occurs in Billing after Clear Invoice which does not conform to the life-cycle model in Fig. 4.

3. Interaction conformance states how well the entire artifact-centric model describes the behavioral dependencies between artifacts. In Fig. 2, instance D3 of Delivery is created after its related instance B2 of Billing. This does not conform to the channels and ports specified in Fig. 4.

The objective of artifact-centric process mining is to relate recorded behavior to modeled behavior, through (1) discovering an artifact-centric process model that conforms to the recorded behavior, (2) checking how well recorded behavior and an artifact-centric model conform to each other and detecting deviations, and (3) extending a given artifact-centric model with further information based on recorded event data.

Artifact-centric process discovery is a technique to automatically or semi-automatically learn artifact-centric process models from event data. The problem is typically solved by a decomposition into the following four steps:

1. Discovering the data model of entities or tables, their attributes, and relations from the data records in the source data. This step corresponds to data schema recovery. It can be omitted if the data schema is available and correct, however in practice foreign key relations may not be documented at the data level and need to be discovered.

2. Discovering artifact types and relations from the data model and the event data. This steps corresponds to transforming the data schema discovered in step 1 into a domain model often involving undoing horizontal and vertical (anti-) partitioning in the technical data schema and grouping entities into domain-level data objects. User input or detailed information about the domain model are usually required.

3. Discovering artifact life-cycle models for each artifact type discovered in step 2. This step corresponds to automated process discovery for event data with a single case identifier, and can be done fully automatically up to parameters of the discovery algorithm.

4. Discovering behavioral dependencies between the artifact life cycles discovered in step 3 based on the relations between artifact types discovered in step 2. This
step is specific to artifact-centric process mining; several alternative, automated techniques have been proposed. User input may be required to select domain-relevant behavioral dependencies among the discovered ones.

In case the original data source is a relational database, steps 3 and 4 require to automatically extract event logs from the data source for discovering life-cycle models and behavioral dependencies. As in classical process discovery, it depends on the use case to which degree the discovered data model, life-cycle model, and behavioral dependencies shall conform to the original data.

Artifact-centric conformance checking and Artifact-centric model enhancement follow the same problem decomposition into data schema, artifact types, life cycles, and interactions as artifact-centric discovery. Depending on which models are available, the techniques may also be combined by first discovering data schema and artifact types, then extracting event logs, and then checking life-cycle and behavioral conformance for existing model, or enhancing an existing artifact model with performance information.

Figure 6 shows a possible result of artifact-centric process discovery on the event data in Fig. 2 using the technique of [Lu et al. (2015)](2015) where the model has been enhanced with information about the frequencies of occurrences of events and behavioral dependencies.

![Figure 6](image)

Fig. 6 Possible result of artifact-centric process discovery from the event data in Fig. 2

Key Research Findings

Artifact-type discovery. [Nooijen et al. (2012)](2012) provides a technique for automatically discovering artifact types from a relational database, leveraging schema summariza-
tion techniques to cluster tables into artifact types based on information entropy in a table and the strength of foreign key relations. The semi-automatic approach of Lu et al. (2015) can then be used to refine artifact types and undo horizontal and vertical (anti-)partitioning, and to discover relations between artifacts. Popova et al. (2015) shows how to discover artifact types from a rich event stream by grouping events based on common identifiers into entities, and then deriving structural relations between them.

Event log extraction. In addition to discovering artifact types, Nooijen et al. (2012) also automatically creates a mapping from the relational database to the artifact type specification. The technique of Verbeek et al. (2010) can use this mapping to generate queries for event log extraction for life-cycle discovery automatically. Jans (2017) provides guidelines for extracting specific event logs from databases through user-defined queries. The event log may also be extracted from database redo logs using the technique of de Murillas et al. (2015), and from databases through a meta-model based approach as proposed by de Murillas et al. (2016).

Life-cycle discovery. Given the event log of an artifact, artifact life-cycle discovery is a classical automated process discovery problem for which various process discovery algorithms are available, most returning models based on or similar to Petri nets. Weerdt et al. (2012) compared various discovery algorithms using real-life event logs. Lu et al. (2015) advocates the use of the Heuristics Miner of Weijters and Ribeiro (2011) and vanden Broucke and Weerdt (2017) with the aim of visual analytics. Popova et al. (2015) advocates to discover models with precise semantics and free of behavioral anomalies, that (largely) fit the event log (Leemans et al. 2013; Buijs et al. 2012) allowing for translating the result to the Guard-Stage-Milestone notation.

Behavioral dependencies. Lu et al. (2015) discovers behavioral dependencies between two artifacts by extracting an interaction event log that combines the events of any two related artifact instances into one trace. Applying process discovery on this interaction event log then allows to extract “flow edges” between activities of the different artifacts, also across one-to-many relations, leading to a model as shown in Fig. 6. This approach has been validated to return only those dependencies actually recorded in the event data, but suffers when interactions can occur in many variants, leading to many different “flow edges”.

van Eck et al. (2017) generalizes the interaction event log further and creates an integrated event log of all artifact types to be considered (two or more) where for each combination of related artifact instances, all events are merged into a single trace. From this log a composite state machine model is discovered which describes the synchronization of all artifact types. By projecting the composite state machine onto the steps of each artifact type, the life-cycle model for each artifact is obtained and the interaction between multiple artifacts can be explored interactively in a graphical user interface through their relation in the composite state machine. This approach assumes one-to-one relations between artifacts.

Popova and Dumas (2013) discovers behavioral dependencies in the form of data conditions over data attributes and states of other artifacts, similar to the notation in Fig. 5 but is limited to one-to-one relations between artifacts.
Conformance checking. Artifact life-cycle conformance can be checked through extracting artifact life-cycle event logs and then applying classical conformance checking techniques \cite{Fahland:2011}. The technique in \cite{Fahland:2011} checks interaction conformance in an artifact life-cycle model if detailed information about which artifact instances interact is recorded in the event data.

Models for artifacts. Artifact-centric process mining techniques originated and are to a large extent determined by the modeling concepts available to describe process behavior and data flow with multiple case identifiers. Several proposals have been made in this area. The procllet notation \cite{vanAalst:2001} extended Petri nets with ports that specify one-to-many and many-to-many cardinality constraints on messages exchanged over channels in an asynchronous fashion. \cite{Fahland:2011} discusses a normal form for procllet-based models akin to the second normal form in relational schemas. The Guard-Stage-Milestone (GSM) notation \cite{Hull:2011} proposes allows to specify artifacts and interactions using event-condition-actions rules over the data models of the different artifacts. Several modeling concepts of GSM were adopted by the CMMN 1.1 standard of OMG (2016). \cite{Hariri:2013} propose Data-Centric Dynamic Systems (DCDS) to specify artifact-centric behavior in terms of updates of data-base records using logical constraints. Existing industrial standards can also be extended to describe artifacts as shown by \cite{Lohmann:2011} for BPMN and by \cite{Estanol:2012} for UML. Freedom of behavioral anomalies can be verified for UML-based models \cite{Calvanese:2014} and for DCDS \cite{Montali:2016}. \cite{Meyer:2013} show how to translate between artifact-centric and activity-centric process models, and \cite{Lohmann:2011} show how to derive an activity-centric process model describing the interactions between different artifacts based on behavioral constraints.

Examples of Application

Artifact-centric process mining is designed for analyzing event data where events can be related to more than one case identifier or object, and where more than one case identifier has to be considered in the analysis.

The primary use case is in analyzing processes in information systems storing multiple, related data objects, such as Enterprise Resource Planning (ERP) systems. These systems store documents about business transactions that are related to each other in one-to-many and many-to-many relations. \cite{Lu:2015} correctly distinguish normal and outlier flows between 18 different business objects over two months of data of the Order-to-Cash process in an SAP ERP system using artifact-centric process mining. The same technique was also used for identifying outlier behavior in processes of a project management system together with end users. \cite{vanEck:2017} analyzed the personal loan and overdraft process of a Dutch financial institution. Artifact-centric process mining has also been applied successfully on software project management systems such as Jira and customer relationship management systems such as Salesforce \cite{Calvo:2017}.
Artifact-centric process mining can also be applied on event data outside information systems. One general application area is analyzing the behavior of physical objects as sensed by multiple related sensors. For instance, van Eck et al. (2016) analyzed the usage of physical objects equipped with multiple sensors. Another general application area is analyzing the behavior of software components from software execution event logs. For instance, Liu et al. (2016) follow the artifact-centric paradigm to structure events of software execution logs into different components and discover behavioral models for each software component individually.

Future Directions for Research

At the current stage, artifact-centric process mining is still under development allowing for several directions for future research.

Automatically discovering artifact types from data sources is currently limited to summarizing the structures in the available data. Mapping these structure to domain concepts still requires user input. Also the automated extraction of event logs from the data source relies on the mapping from the data source to the artifact type definition. How to aid the user in discovering and mapping the data to domain-relevant structures and reducing the time and effort to extract event logs, possibly through the use of ontologies, is an open problem. Also little research has been done for improving the queries generated for automated event log extraction to handle large amount of event data.

For discovering behavioral dependencies between artifacts, only few and limited techniques are available. The flow-based discovery of Lu et al. (2015) that can handle one-to-many relations is limited to interactions between two artifacts and suffers in the presence of many different behavioral variants of the artifacts or the interactions. The alternative approaches (Popova and Dumas 2013; van Eck et al. 2017) are currently limited to one-to-one relations between artifacts. Solving the discovery of behavioral dependencies between artifacts thereby faces two fundamental challenges.

1. Although many different modeling languages and concepts for describing artifact-centric processes have been proposed, the proposed concepts do not adequately capture these complex dynamics in an easy-to-understand form (Reijers et al. 2015). Further research is needed to identify appropriate modeling concepts for artifact interactions.
2. Systems with multiple case identifiers are in their nature complex systems, where complex behaviors and multiple variants in the different artifacts multiply when considering artifact interactions. Further research is needed on how to handle this complexity, for example through generating specific, interactive views as proposed by van Eck et al. (2017).

Although several, comprehensive conformance criteria in artifact-centric process mining have been identified, only behavioral conformance of artifact life-cycles can
currently be measured. Further research for measuring structural conformance and interaction conformance is required, not only for detecting deviations, but also to objectively evaluate the quality of artifact-centric process discovery algorithms.

Cross-References

Business process analytics, Automated process discovery, Hierarchical process discovery, Conformance checking, Multidimensional process analytics, Schema Mapping

References

Calvo HAS (2017) Artifact-centric log extraction for cloud systems. Master’s thesis, Eindhoven University of Technology, the Netherlands

Fahland D, de Leoni M, van Dongen BF, van der Aalst WMP (2011c) Many-to-many: Some observations on interactions in artifact choreographies. In: ZEUS

