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Abstract: Live sequence charts (LSC) is a visual, executable, language for the modeling of reactive systems. Each chart
depicts an inter-object scenario arising in the modeled system, partitioned into two: a monitored prechart, and
a main chart. Despite the intuitive use of the language, complications arise when one wants to implement
an LSC specification with decentralized components. In this paper, we introduce a variant of LSC, called
distributed LSC (dLSC), which is targeted for the modeling and synthesis of decentralized systems, composed
of several interacting components. While LSCs are commonly interpreted in terms of an interleaved execution
of the scenarios in a sequential run, dLSCs employ partially ordered runs. We investigate the expressive
power of dLSC compared to an established model of concurrent systems, namely, Petri nets, and show that
dLSCs are, computationally, strictly more expressive than low-level Petri nets and subsumed by higher-level
Petri nets. Specifically, we present an algorithm that synthesizes, given a dLSC specification, an equivalent
token history net, which can serve as an executable implementation of the specification. Most importantly, the
implementation is decentralized — components can be automatically extracted from the net. The synthesis of
Petri-net components from a dLSC specification is supported by a tool.

1 INTRODUCTION

The visual language of live sequence charts
(LSC) (Harel and Marelly, 2003), introduced in (Damm
and Harel, 2001), is an intuitive way of modeling re-
active systems with scenarios. It originated from the
scenario-based formalism of message sequence charts
(MSC) (ITU, 1996). Scenarios visually describe inter-
actions among components and objects of the system.
This inter-object behavior is aligned along time-lines,
corresponding explicitly to the runs of the modeled
system. In that respect, scenarios are dual to the intra-
object perspective taken in traditional system-models
such as statecharts (Harel, 1987) and Petri nets (Reisig,
1985). In the latter, the structure of the model is in
accordance with object (or component) boundaries,
while the notion of time is implicit.

Scenarios have been found to be very useful in
industry to describe system behavior, particularly at
earlier stages of system design. System-models, in
contrast, which are sometimes harder to devise, are
useful as blueprints for implementing the system in
hardware or software. Consequently, a notable chal-
lenge is to synthesize from a specification in the form

of a set of scenarios, a system-model, called an im-
plementation of the specification, which behaves as
specified in the scenarios.

In this paper, we address scenario-based modeling
of concurrent systems (Ben-Ari, 2006), and the prob-
lem of synthesizing such systems from the specifica-
tions. Concurrent systems involve several inter-related
components (or, processes) that are executed simul-
taneously, so that control is decentralized among the
components. Such systems are very common. Con-
currency may be motivated by pragmatic considera-
tions; e.g., to boost system performance, especially
in the presence of a decentralized architecture such
as a multi-core processor or a cluster of computers.
Sometimes, however, concurrency is dictated by the
underlying architecture. Examples for such systems
are web-services executed over the Internet, and em-
bedded systems composed of autonomous controllers.
Moreover, real-life processes, e.g., business processes,
carried out by several autonomous persons or units,
can be modeled and analyzed as concurrent systems.

Scenarios, which present interactions between
components in a partially ordered structure, can nat-
urally describe executions of concurrent systems. In



fact, MSCs are extensively used to describe sample
interactions in concurrent systems and distributed pro-
tocols. Yet, MSCs are essentially too weak to capture
the logic that underlies most systems. LSC enriches
the scenarios of MSC, mainly by being multi-modal,
and makes them expressive enough to become a fully-
fledged model for the system, expressively comparable
to intra-object behavioral models.

However, the language of LSC, in its present form,
is not well suited for the modeling of concurrent,
decentralized, systems. First, play-out (Harel and
Marelly, 2003), the executable semantics of LSC, de-
fines a central controller that implements the system
as a whole. Moreover, regardless of how play-out
is defined, it is shown in (Bontemps and Schobbens,
2007) that without additional coordination, some LSC
specifications cannot be distributed into components.
As we discuss in Sect. 2, the standard interpretation
of LSC (Harel and Marelly, 2003) results in implicit
dependencies between the different parts of a scenario,
which arise throughout any typical specification. As
long as the system is implemented as a single con-
troller, this raises no difficulty. However, in decen-
tralized architectures, such dependencies require more
interaction between the components than specified.

If we were to use LSC, or any other formalism,
for specifying concurrent systems, the behavior that
can be specified in that formalism must be such that
it can be exhibited by decentralized components. In
this context, it is significant to impose a restriction
on the components, that they coordinate and interact
with each other merely as described in the specifica-
tion. Otherwise, components are not as autonomous,
and the system is less decentralized than intended. In
typical LSC specifications, the amount of additional
interaction required is significant, and would result in
a major efficiency overhead.

With the intention to support the modeling of con-
current systems, we introduce a variation on the se-
mantics of LSC. It is applied on a central fragment
of the language, which includes scenarios partitioned
into a prechart and a main chart (see Sect. 2). Instead
of the traditional interpretation, presented in terms of
interleaved sequential runs, we interpret LSC speci-
fications on the basis of partially ordered runs (Pratt,
1986); i.e., traces of executions in which events are
partially ordered. In such a semantic domain, also
known as a true-concurrency semantic domain, we
adopt LSC’s prechart/main-chart distinction. As runs
are partially ordered, they convey more information
than interleaved runs, regarding the causal dependen-
cies between the events. Here, as both scenarios and
runs are partially ordered, a fragment of a scenario can
be identified with a matching sub-structure in the run.

Changing the semantic domain results in a sim-
ple variant of the language, which we refer to as dis-
tributed live sequence charts (dLSC). dLSC avoids
implicit dependencies between separate parts of a sce-
nario, and is thus, we believe, well suited for the mod-
eling of concurrent systems. Moreover, as partial or-
der runs directly correspond to the visual structure of
charts, our interpretation is simple and comprehensi-
ble, and has a rigorous mathematical basis. We demon-
strate the language and its use with a case study.

We investigate the expressive power of dLSC with
respect to a common model of concurrent systems,
namely, Petri nets (Reisig, 1985). We show that dLSC
specifications are, effectively, strictly more expressive
than low-level Petri nets in the form of place/transition
nets (Reisig, 1985). However, they do not exceed
the expressive power of high-level nets; dLSC spec-
ifications are subsumed by the class of token history
nets (van Hee et al., 2008).

We present an algorithm that synthesizes, for any
given dLSC specification S, an equivalent token his-
tory net NS . A token history net, being a particular
kind of a coloured Petri net (Jensen, 1987), is an ex-
ecutable model, and thus may serve as an implemen-
tation of the specification. Moreover, and most im-
portantly, the implementation is decentralized — the
components specified in S can be extracted from the re-
sulting net NS , and, for a large class of specifications,
no additional interaction between the components is
involved. The synthesis of Petri-net components from
a dLSC specification is supported by a prototype tool.

The paper is structured as follows. In Sect. 2, the
semantics of LSC is discussed more closely. In Sect. 3,
we introduce the variant of distributed LSC through
an example, whereas a formal representation of the
formalism and its semantics is given in Appx. A.1.
In Sect. 4, we investigate the expressive power of
dLSC. Our technique to synthesize system-models
from dLSC specifications and to extract decentralized
components from them is presented in Sect. 5 and 6,
as well as our prototype tool. We discuss related work
in Sect. 7, and conclude in Sect. 8.

2 FROM LSCs TO DISTRIBUTED
LSCs

In Fig. 1a, we illustrate a live sequence chart La. In
the chart, there are three vertical lines, called lifelines,
which correspond to three objects: A, B, and C. The
interactions between the objects are depicted by four
arrows, labeled by a, b, c, and d, which designate
events or messages. Time passes along lifelines from
top to bottom, which determines the order between
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Figure 1: A live sequence chart La

the events (namely, a through d in that exact order).
Events in LSCs are, in general, partially ordered. La is
divided into two: a prechart, depicted inside a dashed
hexagon (containing event a), and a main chart, de-
picted inside a solid rectangle (containing events b
through d). The prechart and the main chart are of
two complementary modalities: monitored versus exe-
cute. The prechart is monitored; i.e., it is matched at
run-time against the events that are executed, but does
not yield new behavior. The main chart, in contrast,
supplements runs with new behavior. If and when the
prechart is met, the main chart is enabled and thus
executed. Accordingly, in La, if and when event a
occurs, events b, c, and d are executed.

There is another multi-modal distinction in the lan-
guage of LSC, between cold behaviors, which may
happen in the system (possible), and hot behaviors,
which must happen (mandatory). In La, all events are
cold (possible), which is designated by blue dashed
arrows, and thus may be discarded in the presence of
other, conflicting, alternatives. The following observa-
tions are independent of the hot/cold distinction.

The common semantics of LSC (see, e.g., (Harel
and Marelly, 2003)) is based on an interleaved execu-
tion of LSCs; i.e, a sequential run is constructed from
the interleaving of partial order scenarios. An LSC
is one consolidated structure, in the following sense:
if any of the events that appear in the chart happens
to occur out of the order prescribed by the chart, the
scenario is violated, and should be aborted. Consider,
for example, the chart La presented in Fig. 1a, describ-
ing interactions between three objects, A, B, and C. If
event a occurs for some reason (perhaps due to some
other chart) after a, b, and c have all occurred, but
before d, then C should abort the scenario without exe-
cuting d. In order to achieve this kind of behavior, C
must be aware of occurrences of a. Thus, if the system
is to be implemented by decentralized components,
C must be notified of the executions of a (even those
coming from outside the present chart) one way or
another. There are many such implicit dependencies
in La alone. E.g., such a dependency arises also be-

tween b and d, so that C must be aware of executions
of b, and A must be aware of executions of d.

If the system is to be implemented in a decentral-
ized architecture, such dependencies introduce signif-
icant complications. They would require additional
unspecified interactions between the components, re-
sulting in communication overheads and excessive
run-time synchronization among the components. In
this paper we establish the use of LSCs, and specif-
ically the language’s prechart/main-chart distinction,
in a semantic domain that is more suited to the mod-
eling of concurrent systems. The resulting formalism
is referred to as distributed LSC (dLSC). In this paper
we address a basic, central, fragment of the language
of LSC. We consider charts, each partitioned into a
prechart and a main chart, containing cold events.

3 THE VISUAL FORMALISM OF
DISTRIBUTED LSC

We introduce distributed LSCs in the context of
an example, which involves concurrently operating
components. We model the behavior of an emergency
management procedure. The procedure involves one
or more medics, providing first-aid treatment, a clinic,
and an Emergency Management System (EMS), which
keeps track of pending emergencies and mediates be-
tween the medics and the clinic.

3.1 Scenarios

A dLSC specification is a finite set of dLSCs (and an ini-
tial run) which together describe the system’s behavior.
Fig. 2c shows an illustrative dLSC of the procedure,
denoted by L3. A dLSC is a partial ordering of events;
events are drawn as rectangles, and the ordering of
events is indicated by arrows. The horizontal dashed
line divides L3 into a monitored prechart (denoting
the precondition that enables L3) and a main chart
(denoting the behavior contributed by L3, which is to
be executed once the prechart is met). The vertical
lifelines in L3 are used to graphically align events of
the same component but have no formal meaning.

The prechart of L3 consists of two unordered
events, labeled EMS.alert and Mi.ready. Throughout
the specification, the events of the ith medic are pre-
fixed by Mi (for different concrete values of i), those of
the clinic are prefixed by C, and those of the EMS by
EMS. Event EMS.alert represents a notification from
the EMS of a pending emergency. Event Mi.ready
designates a notification by the medic that he has be-
come ready to handle emergencies. If and when the
EMS notifies of a pending emergency, and the medic
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Figure 2: Distributed LSCs of an emergency management
procedure

is ready, the execution may continue according to the
main chart as follows.

The main chart of L3 contains five events, start-
ing with Mi.go, which indicates that the medic travels
to the location of the emergency. Then, the medic
transports the patient to the clinic (Mi.transp), and,
concurrently, provides first-aid treatment (Mi.treatB).
After both events, the clinic enrolls the newly arrived
patient (C.enroll), and the medic becomes ready to
handle following emergencies (Mi.ready).

Another dLSC, L4 depicted in Fig. 2d, describes
medical treatment at the clinic. Its prechart is com-
prised of three events, two of which are ordered: the
clinic enrolls the arrival of a patient (event C.enroll)
after receiving treatment by the medic (Mi.treatB), and,
in addition, the resources of the clinic are set and ready
(C.ready). When the prechart is met, the execution
continues as indicated in the main chart: the patient
receives treatment at the clinic (C.treat), after which
the clinic’s resources are ready for the next patient
(C.ready).

The specification includes three more charts.
dLSC L2 of Fig. 2b captures situations in which first-
aid treatment by the medic is enough (Mi.treatA) after
which the medic is available again (and the patient
need not be brought to the clinic). dLSCs L2 and L3

have the same prechart. As we consider all events to

be cold (possible), we understand such scenarios as
alternatives: whenever the prechart of L2 and L3 is
met, the execution continues according to either L2

or L3.
dLSC L1 of Fig. 2a captures the arrival of emer-

gency calls to the EMS. Whenever the EMS is ready
(EMS.ready), a new emergency may arrive, result-
ing in two independent events: the EMS alerts the
medics of a pending emergency (EMS.alert), and the
EMS becomes ready again to receive more emergen-
cies (EMS.ready). Finally, a specification contains
an initial run that describes how the procedure be-
gins. It is depicted in Fig. 2e and is denoted by R0.
In our example, R0 includes four unordered (indepen-
dent) events: the events EMS.ready, two events labeled
M1.ready and M2.ready (assuming the process involves
two medics; any number of medics is supported), and
the event C.ready.

3.2 Semantics

Syntactically, a dLSCs is just an LSC drawn in a
slightly more abstract form. For instance, LSC La
of Fig. 1a can be represented as in Fig. 1b. Where
dLSCs and LSCs actually differ is in their interpreta-
tion. Instead of LSC’s interleaved semantics, we in-
terpret dLSCs on the basis of Pratt’s partially ordered
runs (Pratt, 1986), a common framework to describe
the behavior of concurrent systems.

Partially ordered runs. Fig. 3a shows a partially or-
dered run ρ1. It consists of 9 events (drawn as rectan-
gles) that are labeled and partially ordered according
to the directed arcs (the dashed vertical lines align
events graphically but have no formal meaning). A
partially ordered run captures the causal dependencies
between events — an event occurs after all its prede-
cessors have occurred. For instance, in Fig. 3a, events
EMS.ready, M1.ready, M2.ready and C.ready can all
occur in the beginning, i.e., they are mutually indepen-
dent. Once EMS.ready occurred, EMS.alert and the
second EMS.ready event occur; M1.go can only occur
after both, M1.ready and EMS.alert have occurred.

A partially ordered run ρ corresponds to a set of se-
quential runs, each being an interleaving of the events
in ρ that is consistent with the partial order in ρ. Such
an interleaving corresponds to what a global observer
overlooking the execution might see.

Scenarios describe partially ordered runs. As indi-
vidual scenarios are themselves fragments of partially
ordered runs, the latter seems a natural candidate for
the semantic domain. When executions are represented
as partially ordered runs, the ordering of events in a
scenario directly carries over to the runs, and individ-
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Figure 3: Runs of the emergency management procedure

ual scenarios can be recognized inside the run. This
perspective suggests an alternative way to interpret
LSCs.

The behavior induced by a dLSC specification S
may be briefly described as follows. The specification
is executed starting with the initial, partially ordered,
run (R0 in our example). Whenever the run ends with
a pattern that matches the prechart of some dLSC L
in S , the events in the main chart of L are locally con-
catenated. With such concatenations, partially ordered

runs are augmented, possibly ad infinitum. The ex-
act formal semantics are given in Appx A.1. In the
following, we illustrate this semantics by our running
example.

The partially ordered run in Fig. 3a, which we
denote by ρ1, is an example of an execution of the
emergency management procedure. It is obtained as
follows. Starting with the initial run R0, the prechart
of L1 is met, and so its main chart is concatenated.
This results, in particular, in the creation of the event
EMS.alert. Then, the precharts of both L2 and L3 are
met, so either one may be concatenated. ρ1 is the
result of concatenating L2. The other possibility, of
concatenating L3, appears in run ρ2 of Fig. 3b. Runs
ρ1 and ρ2 are alternatives. In ρ2, the concatenation of
L3 results, in particular, in the occurrence of the event
C.enroll. Then, the prechart of L4 is met, and so the
main chart of L4 is also concatenated.

A slightly more involved execution is ρ3 of Fig. 3c.
It contains two EMS.alert events. The first alert is
handled by M1 according to dLSC L2, and the second
alert is handled by M2 according to dLSCs L3 and L4.
Runs ρ1, ρ2, and ρ3 can be continued, possibly ad
infinitum. Note that the activities of the two medics
in ρ3 are unordered, reflecting the fact that the two
medics operate independently.

3.3 The Extended Example

We incrementally extend the emergency management
procedure with three additional dLSCs. L5, depicted
in Fig. 4a, describes another alternative to L2 and L3:
a medic reaching the patient may realize that the clinic
needs to prepare for the incoming patient. The medic
notifies the EMS of the incoming patient (Mi.notify),
which in turn notifies the clinic (EMS.notify). Accord-
ing to dLSC L6 of Fig. 4b, the clinic prepares for the
arrival of the patient (C.prepare), and then waits for
the patient (C.wait4), concurrently to the other duties
of the clinic (due to C.ready). After the patient has
enrolled in the clinic, he is treated according to dLSC
L7 (see Fig. 4c).

An execution of the extended specifications is de-
picted in Fig. 5. The run, denoted ρ4, is similar to ρ3

of Fig. 3c, but the second medical emergency is treated
according to L5. After the concatenation of L5 and L6

the prechart of L7 is matched, while the prechart of L4

is not; only the main chart of L7 can be added, after
the events C.enroll and C.wait4. dLSC L7 illustrates
the expressive power of precharts to describe behavior
across components. dLSC L4 and L7 both include the
event C.enroll in their precharts, but it is preceded by
different events (namely, Mi.treatB in L4 and Mi.treatC
in L7). Therefore, the precharts reflect different sit-
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Figure 4: Extending the emergency management procedure

Figure 5: A run ρ4 of the extended emergency management
procedure

uations. Moreover, the prechart of L7 states that the
event C.enroll corresponds to the same patient waited
for by C.wait4 because of the joint predecessor event
Mi.notify.
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Figure 6: Translating a place/transition net into a dLSC
specification

4 EXPRESSIVE POWER

We just introduced dLSC, which interprets the core
concepts of LSC in the context of partially ordered
runs. In this section, we discuss whether this core
language and interpretation are sufficiently expressive
to describe decentralized systems.

Distributed LSCs subsume Petri nets. Distributed
LSCs can be seen to subsume low-level Petri nets
in the form of place/transition nets (PTN) (Reisig,
1985; Peterson, 1977). PTNs are an abstract model
for the flow of control and information in systems,
particularly concurrent and decentralized systems.

A PTN consists of places P (drawn as circles) and
transitions T (drawn as rectangles) that are connected
by arcs from places to transitions and from transitions
to places; see, for example, PTNNb depicted in Fig. 6a.
The global state of the net is given by a marking which
puts in each place a nonnegative number of tokens; a
PTN has a dedicated initial marking. Given a marking,
a transition t is enabled if each place with an arc to t
has a token. If t is enabled, it may fire, which results
in a new marking obtained by removing a token from
each place with an arc going to t and putting a token on
each place with an arc coming from t. These notions
give rise to both an interleaved semantics, presented
in terms of sequential runs, and a true-concurrency
semantics in terms of partially ordered runs that is
consistent with the interleaved semantics (Goltz and
Reisig, 1983). The partially ordered runs of a Petri
net can be constructed by local continuations — each
firing of a transition is recorded as a local continuation.
Figure 6c shows a partially ordered run of PTN Nb



of Fig. 6a as follows: transition t1 occurred, consum-
ing a token from p1 and producing a token on p2; t3
occurred concurrently to t1, consuming from p5 and
producing on p4; transition t2 occurred after t1 and t3,
consuming from p2, p3 and p4 and producing on p3.

Next, we show that dLSC are expressive enough to
specify any place/transition Petri net. Given a PTN N ,
one can construct an equivalent dLSC specification SN .
We take Σ := T ∪P to be the set of actions in our spec-
ification, which includes both transitions and places.
Places can be considered as auxiliary actions, and can
be abstracted away from the runs induced by the spec-
ification, in case one is only interested in the events
that are due to the firing of transitions.

For each transition t ∈ T , we construct a dLSC Lt
as follows (see Fig. 6b, illustrating the dLSC corre-
sponding to transition t2 of Nb). The prechart of Lt
contains the input places of t as events. There is no
ordering between the events in the prechart. The main
chart of Lt begins with the event t, after which the
output places of t are included with no ordering be-
tween them. The dLSC specification corresponding
to the net N contains one dLSC Lt for each transition
t of N , and an initial run R0, where R0 contains for
each place p of N as many p-labeled events as there
are tokens on p in the initial marking, with no ordering
between the events. This construction also applies to
place/transition nets with arc weights, by duplicating
events representing places according to the weights.

It can be shown that the set of runs of SN is isomor-
phic to the set of partial order Petri-net runs of N . The
idea is to represent the latter on the basis of local con-
tinuations. Each continuation rule for constructing the
Petri-net runs, corresponds to a dLSC in SN . Fig. 6c
illustrates the Petri-net run of Nb, starting from the ini-
tial marking, while Fig. 6d depicts the corresponding
run of the dLSC specification SNb

.

Strictly more expressive than Petri nets. The con-
verse proposition, that each dLSC specification can
be translated into an equivalent PTN, does not hold.
Intuitively, PTNs cannot mimic the enabling condition
expressed by precharts with a complex structure. The
enabling of a Petri net transition depends only on the
availability of tokens in its preplaces and nothing else;
the enabling of a dLSC can depend on several past
events and their causal ordering. The formal proof
that establishes the greater expressive power of dLSC
compared to PTN is given in (Fahland, 2010). There,
it is shown that any instance of Post’s correspondence
problem (PCP) can be expressed as a dLSC specifica-
tion, such that a particular event occurs if and only if
the PCP instance has a solution. In PTN, the problem
of deciding whether a particular event can occur is
decidable, whereas PCP is undecidable. Therefore,

there is no algorithm to translate dLSC specifications
into equivalent PTNs.

5 SYNTHESIZING SYSTEMS

Section 4 shows that distributed LSC, our interpre-
tation of LSC in the context of partially ordered runs,
allows to specify the behavior of a large class of con-
current systems. In the remainder of the paper, we ad-
dress the following problem, which may be referred to
as the decentralized synthesis problem: given a dLSC
specification S (i.e., a set of dLSCs, in which events
are assigned to components, and an initial run), syn-
thesize an implementation consisting of decentralized
components, in a suitable system-model formalism,
which behave and interact exactly as specified in S.

Section 4 shows that this problem is not trivial,
and that the class of simple place/transition nets is not
expressive enough to capture the behavior specified in
dLSC specifications. In order to solve the decentral-
ized synthesis problem, we use a slight extension of
place/transitions nets, called token history nets (van
Hee et al., 2008), to represent the synthesized imple-
mentation. In the present section, we show how to ef-
fectively synthesize from a given dLSC specification S
an equivalent token history net NS . Then, individual
components can be easily extracted from NS , which
is discussed in Sect. 6.

The synthesis of NS is carried out as follows.
Events of S are translated into transitions in NS , and
the partial order between them is enforced in NS
through Petri-net places. To capture that the occur-
rence of some event of S depends on its preceding
events, we use the fact that tokens in NS record their
own history, in terms of the transitions that they have
passed. A transition in NS will only be enabled by to-
kens with the correct history. We first present the class
of token history nets, and then define the synthesis
of NS from S.

5.1 Token History Nets

This part gives an informal introduction to Token His-
tory Nets, the formal definitions are given in Appx. A.2.
A token history Petri net (THPN) (Van Hee et al., 2007;
van Hee et al., 2008) is a Petri net in which transition
are labeled with actions Σ or with τ 6∈ Σ; Σ are ob-
servable actions (which will represent the actions in a
dLSC specification), while τ is a silent (or, unobserv-
able) action. The main difference to place/transition
nets is that each token of a THPN is a partially ordered
run as discussed in Sect. 3.2 representing the history of
transition firings that have led it to its current place. A



firing of a transition extends the histories of the tokens
involved.

Figure 7a shows a token history net. As usual, a
circle represents a place, a rectangle represents a tran-
sition, and transition labels are inscribed. Moreover,
each transition has a guard in form of a token history
(shown for the transitions that go by the names L2 to
L5, and L7). Intuitively, a transition is only enabled if
the token histories in its pre-places together end with
the token history in the guard.

We illustrate the semantics of THPNs with a par-
tially ordered run (Goltz and Reisig, 1983) ρ of the
THPN N of Fig. 7a. Run ρ is shown in Fig. 7b as
an acyclic labeled Petri net: each place of ρ (called
a condition) with label p represents a token history
on the place p; a transition e of ρ (called an event),
with label t, represents a firing of transition t of N ;
the pre-places (post-places) of e represent the token
histories consumed (produced) by t.

For instance, in Fig. 7b, condition b3 denotes that
the place E.ready is marked with history h0 (consist-
ing only of event E.ready). In this situation, transition
L1 is enabled. Event e3 denotes the firing of L1, which
consumes h0 from E.ready and produces h1 (h0 ex-
tended with the occurrence of the silent transition L1)
on both p3 and p4, as represented by conditions b6 and
b7 in ρ. Event e5 denotes the firing of the transition la-
beled E.alert (the one consuming from p4), which con-
sumes h1 from p4, and produces h3 on place E.alert
as represented by condition b9. The run of Fig. 7b
shows how the token histories are built up event by
event, eventually joining several token histories into
one at event e6. Note that transition L2 is only enabled
because the union of histories h3 and h7 ends with
the guard of L2. Guards in a THPN can also be more
complex such as the guard of L7 which requires token
histories on C.enroll and C.wait4 to have a joint event
M1.notify.

5.2 Translating Specifications into
Token History Nets

In the execution of a THPN, each token history records
the preceding events as a partially ordered run. This
allows us to capture the semantics of dLSC specifi-
cations with token history nets. Fig. 7a, for instance,
depicts the result of the translation of the specifica-
tion of Sect. 3 into a THPN (to avoid cluttering the
figures, we show only one of the medics). The formal
translation is included in Appx. A.3.

Translating the specification. We translate a dLSC
specification S = 〈D, R0〉 over actions Σ (where D
is a set of dLSCs and R0 is the initial run) into an
equivalent THPN NS over Σ. We first translate each

chart L ∈ D into a net NL, and then, compose the
resulting nets to form the net NS of the entire specifi-
cation. The different NL’s are connected via shared
places: each maximal main-chart event labeled a of
some chart L ∈ D defines a shared place pa, on which
NL produces. For a chart L′ ∈ D, in which an event
labeled a appears maximal in the prechart, NL′ will
consume from pa.

Translating individual charts. Each dLSC L in the
specification induces a net NL. For each main-chart
event e of L, NL contains a transition te that gets the
same label as e. The partial order of L’s main chart is
encoded by places. In addition, each transition te of
NL gets a guard that ensures that te is only enabled if
the token history produced by te ends with the history
of e in L, i.e., the events preceding e in L. The initial
run R0 is translated into a net NR0

in the same way.
In Fig. 7a, the result of translating the main charts

of the specification of Sect. 3 as described above is
shown inside the shaded boxes. For instance, consid-
ering dLSC L2, the net contains a transition labeled
M1.go for the minimal event in the main chart of L2,
preceded by the activation place p5. The last event in
L2, labeled M1.ready, produces on the shared place
M1.ready. The subnet NR0

of the initial run is scat-
tered throughout between the other subnets; its activa-
tion places are p0, p1, and p2.

The transitions of NL representing the minimal
events in the main chart of L shall only be enabled
when all the maximal events in L’s prechart have oc-
curred. We formalize this by a main-chart activation
transition tL with label τ (unobservable); tL consumes
from the shared places that contain messages from L’s
prechart events and produces on places that enable
the minimal main chart events of L. In addition, tL
has a guard that enables tL only if the prechart of L
has occurred. A firing of tL will not be visible in the
resulting token history as tL has a label τ . E.g., in
Fig. 7a, the τ transition L2 is the activation transition
of dLSC L2 of Fig. 2b. When checking whether the
token histories consumed by a transition t satisfy the
guard of t, τ -labeled events in the tokens are ignored.

The synthesized net NS exhibits the same behav-
ior that is specified in S. More precisely, the partial
order runs of NS are the same as (i.e., isomorphic to)
those of S, after the events of τ -labeled transitions
are abstracted away from the net’s runs. That is, the
specified behavior is refined by unobservable actions
(more on this in Sect. 6).

As specified above, token histories can grow indef-
initely. However, guards of transitions only consider
the more recent events. Thus, token histories can be
bounded by the longest chart in the specification, by
truncating (e.g., in each transition) older events.
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Figure 7: A token history net synthesized from dLSCs L1–L7 (left), and a run ρ of this net (right).

6 EXTRACTING COMPONENTS

In Sect. 5, we introduced a technique to synthesize
from a dLSC specification S, a THPN NS with the
same behavior. In this section we proceed and extract
decentralized Petri-net components from NS . This
would complete the path from a decentralized scenario-
based model — namely, a dLSC specification S — to
Petri-net models of the components that implement it.

6.1 Components

As in our running example, we assume that in the
specification each action is performed by a particular
component, which is denoted explicitly. Specifically,
we assume a finite set of components C, such that each
action of S is of the form c.e for some component
c ∈ C and an event name e.

Each transition t in NS is then either labeled by
an action c.e, or it is a τ -labeled transition that cap-
tures the activation of the main chart of some dLSC L
(denoted by tL in Sect. 5.2). In the former case, t is
associated with the component c that performs the un-
derlying action. In the latter case, t must be assigned
to a component; this is an important matter that we
address in Sect. 6.2. Assigning transitions to compo-
nents naturally induces a decomposition of the net NS
into Petri-net components.

For each c ∈ C, a Petri-net component Nc is de-
fined to be the subnet of NS containing the transitions
assigned to c, denoted by Tc, the places Pc that are
directly connected to the transitions in Tc, and the arcs
between Tc and Pc as appears in NS . This standard
construction is formalized in Appx. A.4. A place p
belonging to more than one component is an interface
place; otherwise, p is internal.

According to such decomposition, when the com-
ponents are put together, they yield the original netNS .
Therefore, when executed, the components exhibit pre-
cisely the behavior of the net NS . As discussed in
Sect. 5, this behavior matches that prescribed in dLSC
specification S.

Considering our running example, actions are pre-
fixed by a component name: either E (the EMS), Mi

(the ith medic), or C (the clinic). Extracting compo-
nents from the synthesized net of Fig. 7a as described
above yields the components shown in Fig. 8. This
figure was obtained using our tool SAM, which is de-
scribed in the following.

6.2 Interactions between Components

When considering decentralized synthesis from spec-
ifications, the latter must impose restrictions on how
components must interact with each other. Without
any limitation in that respect, one could construct com-
ponents that interact arbitrarily. This would undermine
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Figure 10: Unobservable actions abstracted away

the autonomous nature of the components, and lend
the problem not well-defined.

In a partially ordered run, interaction is made ex-
plicit through the causal dependencies recorded in the
run. If an implementation presents exactly the same
partially ordered runs as in the specification, then by
definition the components interact exactly as speci-
fied (and exhibit no additional interaction). This is
the case for the net NS synthesized from S, up to the
τ -labeled transitions of NS that express the activation
of a main chart (see Sect. 5). In the following, we
discuss how such unobservable actions influence the
interaction between components. Then, we assign the
τ -labeled transitions of NS to components so that the
latter interact as specified in S.

Unobservable actions. Compare the partially ordered
runs of Fig. 9, which include τ -labeled events, with the
corresponding runs of Fig. 10 in which the τ -labeled
events are abstracted away and the causal dependen-

cies between the observable events remain intact. The
runs in Fig. 10, which record only observable events,
correspond to specified behavior, while the runs of
Fig. 9 correspond to the runs of an implementation
containing also unobservable transitions. In the runs,
each event, including the unobservable events, is asso-
ciated with a particular component.

A direct causal dependency between events of dif-
ferent components gives rise to an interaction between
the components. E.g., in Fig. 10a, as event c1.e directly
causes event c3.f, there is an underlying interaction be-
tween the components. Depending on how τ -labeled
actions are performed, the interaction scheme may
change: in Fig. 9a, c1 and c3 no longer interact with
each other; rather, through the τ -labeled event of com-
ponent c2, c1 interacts with c2 and c2 with c3. This
is exactly the situation that must be avoided when a
decentralized implementation contains unobservable
actions that refine the specified behavior.

Figures 9b and 9c show situations in which the
refined behavior of the implementation presents the
same interaction scheme as in the specified behavior.
In Fig. 9b and 10b, all events belong to the same com-
ponent, so no interaction is present. In Fig. 9c, there
is an interaction between c1 and c2, which is also the
case in Fig. 10c (multiple arrows from one event in
c1 to multiple events in the same component c2 count
as one interaction). These two cases illustrate suffi-
cient conditions in which unobservable events do not
change the interaction scheme: a τ -labeled event x is
termed pre-internal (post-internal) if all direct succes-
sor (predecessors) events of x are performed by the
component performing x; x is internal if it is pre- and
post-internal. In Fig. 9b, the τ -labeled event is internal,
in Fig. 9c it is pre-internal, and in Fig. 9a it is neither.

In the runs of the implementation, an unobserv-
able event that is pre- or post-internal does not change
the interaction scheme between the components com-
pared to the specification. Thus, when assigning the
τ -labeled transitions of NS to components, we have to
make sure they only yield pre- or post-internal events.
A Petri-net transition t yields only pre-internal events
if all post-places (having an arc from t) are internal
places, since the succeeding transitions belong to the
same component as t; similarly, t yields only post-
internal events if all pre-places are internal.

Assigning activation transitions. There is a class of
specifications for which there is a natural way to assign
activation transitions to components. A dLSC L is
called local choice if all the minimal events in its main
chart are of the same component c ∈ C. Intuitively, in
this case, only component c is involved when the main
chart begins, and thus the choice for an activation of
the chart can be made locally in component c. For a



Figure 11: A CPN Tools model of three components synthe-
sized by SAM

local choice dLSC L, the activation transition of L is
assigned to component c as well. A specification S is
said to be local choice if all the dLSCs in S are local
choice. E.g., the specification of our running example,
as one may easily verify, is local choice.

In local choice specifications, when activation tran-
sitions are assigned to components as indicated above,
any occurrence of a τ -labeled action in the run is pre-
internal. This can be deduced from the structure ofNS ,
as the post-places of each activation transition are in-
ternal. Therefore, the τ -labled transitions in NS do
not change the interaction scheme between the compo-
nents compared to the specification.

As for non-local choice charts, activation transi-
tions need to be explicitly assigned by the modeler.
Then, although the observable behavior is precisely as
indicated in S, interactions that are not made explicit
in the specification may be introduced. These can be
made explicit by refining the specification to become
local choice.

Tool support. Our technique for synthesizing Petri-
net components from dLSC specifications is imple-
mented in a prototype tool called SAM. The tool takes
as input a dLSC specification in a simple textual syn-
tax, describing each dLSC’s prechart and main chart
as a partial order of events. Additionally, components
can be specified as sets of event names. SAM produces
a token history net with extracted components as a
CPN Tools (Jensen et al., 2007; Ratzer et al., 2003)
model. CPN Tools implements the general class of
coloured Petri nets (Jensen, 1987), which allow to
define datatypes for token histories, and to represent
the firing rule of a THPN with operations on tokens.
This allows analyzing the resulting components using
the full grown simulation functionality of CPN Tools.
Fig. 11 shows the components appearing in Fig. 8
within CPN Tools. Our implementation currently han-
dles only specifications in which the maximal events
in a prechart are labeled differently. SAM is available
at http://www.win.tue.nl/∼dfahland/tools/sam/

7 RELATED WORK

As discussed in Sect. 2, dLSC builds on ideas from
the language of LSC (Harel and Marelly, 2003), and
implements them in a semantic domain that is more di-
rectly related to concurrent systems, based on partially
ordered runs. The change in the semantic domain al-
lows to identify scenarios with patterns that explicitly
appear in the constructed run. This contrasts with LSC,
which identifies scenarios with their interleavings.

In LSC, the concurrent execution of two charts de-
pends on the identity of their events; that is, whether
one can be executed without violating the other. If one
violates the other, the charts become alternatives (in
case of cold main chart events). In dLSC, in contrast,
causality is recorded in the run: two charts are exe-
cuted concurrently if they are enabled at two causally
independent parts of the run, and they are alternatives
if they are enabled at overlapping (or identical) parts
of the run. Thus, the semantics of dLSC corresponds
directly to that of LSC whenever violations of charts
coincide with the charts being enabled at the same
location of the run.

The semantics of dLSC somewhat resembles that
of the existential, conditional, interpretation of LSC
in (Sibay et al., 2008), which demands that whenever
a run ends with a prechart of an LSC, there exists
a run that continues with the main chart. In dLSC,
however, all possibilities to continue are induced by the
specification, and progress is assumed whenever there
is an enabled main chart.1 Moreover, again, dLSC
employs composition of partial orders whereas (Sibay
et al., 2008) interprets LSCs over sequential runs.

Distributed LSCs are closely related to
oclets (Fahland, 2009; Fahland, 2010), a scenario-
based formalism which employs the prechart/main
chart distinction of LSCs in terms of Petri nets and
their partially ordered runs. dLSC can be seen as a
reduction of the idea of oclets to a purely event-based
formalism in the context of LSCs. This adaptation
significantly simplifies the formalism, and yet dLSCs
essentially subsume oclets, as the latter can be
expressed in terms of dLSCs. Moreover, in dLSC,
as in LSC, a main chart is completely synchronized
after the prechart. This allows eliminating oclets’
notion of implied scenarios (Uchitel et al., 2001), i.e.,
additional behavior that is not explicitly specified.
The framework of oclets also allows to extract
decentralized components (Fahland, 2010) from
a specification, but it requires a different method

1One can slightly generalize the definition of dLSC to
also allow for charts for which, when enabled, progress is
not assumed. The synthesis algorithm, with trivial changes,
would still apply.



that cannot take all specifications as input, and
has exponential worst-case complexity unlike the
complete, polynomial, method proposed in this paper.

Synthesis of systems and decentralized compo-
nents from scenario-based specifications is a well-
known problem, with many contributions; (Liang et al.,
2006) provides an extensive survey. Most approaches
consider (H)MSCs or UML Sequence Diagrams as
input, and translate the specification into model struc-
tures of Statecharts or Petri nets somewhat similarly to
our technique (Liang et al., 2006), or through behav-
ioral synthesis (Uchitel et al., 2001) in the synthesized
system (Bergenthum et al., 2009). Morover, central-
ized synthesis from LSC has been studied, which suc-
ceeds by structural translations to Statecharts (Harel
and Kugler, 2002), or through game-based synthesis
techniques (Harel and Segall, 2012). However, in
all cases, synthesis introduces non-specified behavior
(i.e., implied scenarios (Liang et al., 2006)), or non-
specified synchronization among events, which makes
the extraction of decentralized components impossi-
ble. Our synthesis technique makes synchronization
information part of the exchanged messages by means
of token histories, which effectively prohibits implied
scenarios, and, for a large class of specifications, limits
the synchronization among components to the interac-
tions specified in the dLSCs.

8 CONCLUSION

In this paper, we take a fresh look at an essential
fragment of live sequence charts (LSC) and provide a
semantics in terms of partially ordered runs by means
of simple scenario composition. This variant of LSC,
called distributed LSC (dLSC), has sufficient expres-
sive power for specifying concurrent systems: the class
of systems that can be specified with dLSC strictly con-
tains the class of systems that can be modeled with
classical Petri nets. We also provide a technique to
synthesize, from any dLSC specification, an implemen-
tation in the class of token history nets (THPN). Decen-
tralized components can easily be extracted from the
THPN. The approach has polynomial time and space
complexity and is implemented in a tool.

Our work allows for much future work. One may
extend dLSC with a notion of data, such as from al-
gebraic specifications; we believe our synthesis tech-
nique still applies, as coloured Petri nets, which sup-
port data manipulation, could be similarly synthesized.
Additionally, operations on dLSC specifications, such
as scenario (de-)composition and refinement, are of
interest. They would permit to systematically develop
and reason on complex dLSC specifications.
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APPENDIX

A.1 Distributed LSC Formalized

In the following we assume a set Σ of actions. It
includes names (or, labels) for all the events that one
wishes to refer to in a specification.
Labeled Partial Orders. We begin with some prelim-
inary definitions. A labeled partial order (lpo) is a
tuple l = 〈E,<, λ〉, where E is a (possibly infinite)
set of events,< ⊆ (E×E) is a strict partial order rela-
tion on E (i.e., irreflexive and transitive)2, λ : E → Σ
is a labeling function, and, furthermore, for any event
x ∈ E, the set {y ∈ E : y ≤ x} is finite. The last
property is included to restrict the form of lpo’s so that
they correspond to realizable traces of executions.

Let l = 〈E,<, λ〉 be an lpo. For any A ⊆ E, the
restriction of l to A is defined by l|A = 〈A,< ∩ (A×
A), λ|A〉, which is again an lpo. Let l′ = 〈E′, <′, λ′〉
be another lpo. ϕ : E → E′ is an isomorphism from l
onto l′, denoted l ∼=ϕ l′, if ϕ is a one-to-one function
from E onto E′, for any events x, y ∈ E holds x < y
iff ϕ(x) <′ ϕ(y), and λ′ ◦ϕ = λ. l is isomorphic to l′,

2As usual, for all x, y ∈ E, x ≤ y denotes x < y or
x = y.

denoted l ∼= l′, if there is ϕ such that l ∼=ϕ l′. l is said
to be finite (resp., empty) if E is finite (resp., empty).

We write max(l) (reps., min(l)) for the maximal
(resp., minimal) events inE. Given a finiteA ⊆ E, we
say that A is a maximal dense set in l if max(l|A) ⊆
max(l), and for any x, y ∈ A and z ∈ E, if x <
z < y then z ∈ A. Given such A and another lpo
l′ = 〈E′, <′, λ′〉 such that E ∩ E′ = ∅, the local
concatenation of l′ after A in l, is defined by l[A]→
l′ = 〈E ∪ E′, < ∪ <′ ∪ ({x ∈ E : ∃y ∈ A : x ≤
y} × E′), λ ∪ λ′〉. It is easy to verify that it is again
an lpo. As a special case, the (global) concatenation
of l′ after l is defined by l→ l′ = l[E]→ l′.

Abstract Syntax of Distributed LSC. We are now
ready to present the abstract syntax of distributed LSCs.
A distributed LSC (dLSC) is a tuple L = 〈lp, lm〉,
where lp and lm are finite nonempty lpo’s. lp is called
the prechart of L, and lm is called the main chart of L.
As we assume complete synchronization between the
main chart and the prechart, we technically separate
the chart into two lpo’s. A dLSC specification consists
of a tuple S = 〈D, R0〉, where D is a finite set of
dLSCs, and R0 is a finite lpo called the initial run.

Semantics of Distributed LSC. We hereby turn to
the semantics of dLSC specifications. Given an lpo
l = 〈E,<, λ〉 and a dLSC L = 〈lp, lm〉, we first
define the set of all continuations of l according to
L, which is denoted by lBL. Put lm = 〈Em, <m
, λm〉, and, without loss of generality, assume that
E ∩Em = ∅ (we may always take l′m ∼= lm satisfying
this constraint). Then, lBL is the set of lpo’s of the
form l[A]→ lm, where A ⊆ E is a finite maximal
dense set in l such that l|A ∼= lp. Moreover, given
a set D of dLSCs, the set of all continuations of l
according to the charts in D is defined by

lBD =
⋃
L∈D

l BL .

Given a dLSC specification S = 〈D, R0〉, a con-
struction sequence for S is a sequence of lpo’s ρ with
domain 0 < D ≤ N (i.e., D is either the set N of all
natural numbers, or a natural number n > 0, in the
sense that D = n = {i ∈ N : i < n}), satisfying
the following: ρ0 = R0, and for all i ∈ D such that
i + 1 ∈ D holds ρi+1 ∈ ρiBD. For each i ∈ D, put
ρi = 〈Ei, <i, λi〉. Then, the value of ρ is defined to
be the lpo corresponding to the limit of the sequence,
which can be formally defined by

val(ρ) =

〈⋃
i∈D

Ei ,
⋃
i∈D

<i ,
⋃
i∈D

λi

〉
.

It is easy to verify that val(ρ) is, in turn, a (pos-
sibly infinite) lpo, and that if D is finite then val(ρ)



is the last lpo in the sequence. The construction se-
quence ρ is said to be final if also val(ρ)BD = ∅.
The (denotational) semantics of a dLSC specifica-
tion S is an lpo language defined by L(S) = {val(ρ) :
ρ is a final construction sequence for S}.

A.2 Token History Nets

Syntax. A token history (over an alphabet Σ) is a
finite lpo l = 〈E,<, λ〉 with labeling λ : E → Σ ∪
{τ}. Σ and τ will include the labels of transitions;
Σ are observable actions (which will represent the
actions in a dLSC specification), while τ is a silent (or,
unobservable) action. Let L denote the set of all token
histories over Σ.

A THPN N = 〈P, T, F,m0, λ, g, w〉 consists of
places P , transitions T (where P ∩ T = ∅), and arcs
F ⊆ (P × T ) ∪ (T × P ). The initial marking m0

assigns each place p a finite multiset m0(p) ∈ NL
of lpo’s (token histories). The labeling function λ :
T → Σ ∪ {τ} assigns each transition a label. The
function g assigns each transition a guard; here we
are only interested in a uniform guard that is uniquely
determined by an lpo, thus g : T → L. We consider
THPNs with weighted arcs, in which w : F → N \
{0} assigns positive weights to arcs. Let •t = {p ∈
P : 〈p, t〉 ∈ F} and t• = {p ∈ P : 〈t, p〉 ∈ F}
denote the pre-places and the post-places of transition
t, respectively.

A token history net is depicted in Fig. 7a. As usual,
a circle represents a place, a rectangle represents a
transition, and transition labels are inscribed. More-
over, each transition has a guarding lpo (shown for the
transitions that go by the names L2 to L5, and L7). In
the net of Fig. 7a, all arcs have weight 1.

Semantics. The semantics of THPN slightly extends
classical Petri net semantics. When a transition t fires,
it consumes tokens (i.e., token histories) from its pre-
places, merges them into a single lpo, appends a new
event labeled λ(t), and produces the resulting token
history on each post-place of t. t is only enabled if
the consumable token histories satisfy the guard g(t);
i.e., the resulting token history ends with g(t). The
technical details are as follows.

1. For two lpo’s l1, l2 ∈ L, their union is defined by
l1 ∪ l2 := 〈E1 ∪ E2, (<1 ∪ <2)+, λ1 ∪ λ2〉. In
the execution of a THPN, this operation is well
defined as the lpo’s are consistent (see (van Hee
et al., 2008)). For a finite multiset of lpo’s S =
[l1, . . . , ln], let

⋃
S := l1 ∪ . . . ∪ ln.

2. For an lpo l = 〈E,<, λ〉 ∈ L and an action a ∈ Σ,
the concatenation of l with a is defined by l→a :=
〈E ∪ {e}, < ∪{〈e′, e〉 : e′ ∈ E}, λ ∪ {〈e, a〉}〉

where e 6∈ E is assumed to be a globally fresh
event (never used before).

3. A (firing) mode of a transition t is an assign-
ment β : •t → NL, specifying for each pre-
place p of t, a multiset of token histories β(p)
s.t. |β(p)| = w(p, t), which are to be consumed.
Let S :=

⋃
p∈•t β(p) be their (multiset) union.

The expression f(t, β) :=
⋃
S→ λ(t) describes

the token history obtained when t fires in mode
β; it is the union of all consumed token histories,
extended by the action λ(t).

4. For two lpo’s l1, l2 ∈ L we say that l1 ends with
l2, written l1 ≺ l2, if there exists a maximal dense
set A in l1 (see Sect. A.1) s.t. l1|A ∼= l2.

5. For an lpo l = 〈E,<, λ〉 ∈ L, the restriction of l
to Σ, written l|Σ, is the restriction l|EΣ

of l to all
observable events EΣ = {e ∈ E : λ(e) ∈ Σ}.

6. Letm be a marking ofN . Transition t is enabled at
m in mode β if for each p ∈ •t holds β(p) ⊆ m(p)
(as multisets), and f(t, β)|Σ ≺ g(t); that is, a
firing of t would produce a token history that ends
with the guarding lpo of t (ignoring silent events
in the token history).

7. If t is enabled at m in β, then t can fire, which
results in a new marking m′. For each place
p ∈ P , first let m′′(p) := m(p) \ β(p) if
p ∈ •t, and m′′(p) := m(p) otherwise. Then,
m′(p) := m′′(p)∪w(t, p)‘f(t, β) if p ∈ t• (where
w(t, p)‘f(t, β) denotes the multiset with w(t, p)
instances of f(t, β) ), and m′(p) := m′′(p) oth-
erwise. Here, ∪ and \ denote multiset union and
subtraction as usual.

A.3 Synthesizing Token History Petri
Nets from dLSC Specifications

Translating the specification. We translate a dLSC
specification S = 〈D, R0〉 over actions Σ (where D
is a set of dLSCs and R0 is the initial run) into an
equivalent THPN NS over Σ. We first translate each
chart L ∈ D into a net NL, and then, compose the
resulting nets to form the net NS of the entire specifi-
cation. The different NL’s are connected via shared
places: each maximal main-chart event labeled a of
some chart L ∈ D defines a shared place pa, on which
NL produces. For a chart L′ ∈ D, in which an event
labeled a appears maximal in the prechart, NL′ will
consume from pa. We first define the shared places,
and then show how to translate a dLSC L ∈ D into
NL.

Shared Places. Let Σmax ⊆ Σ denote the names
(i.e., labels) of all events that are maximal in the main



charts, precharts, and the initial run, throughout the
specification S . Each a ∈ Σmax defines a shared place
pa of NS . Let Pshared denote this set of shared places.
In Fig. 7a, the shared places are denoted by E.ready,
E.alert, M1.ready, C.wait4, C.enroll, E.notify, C.treat,
and C.ready.

Auxiliary notions on dLSCs. Let L = 〈lp, lm〉 be a
dLSC. Technically, let lL := lp→ lm denote the lpo
where lm is appended to lp. Given a main-chart event
e ∈ Em, the events that precede it are Ee := {e′ ∈
EL : e′ ≤L e}. The local history of e in L is the
restriction of lL to Ee, written hL(e) := lL|Ee . More-
over, we write f lL e if f <L e and for no event
g ∈ EL holds f <L g <L e. Let preL(e) := {f ∈
EL : f lL e}, and postL(e) := {f ∈ EL : e lL f}
denote the set of direct predecessor events and direct
successor events of e in L, respectively.

Translating individual charts. Each dLSC L =
〈lp, lm〉 in the specification induces a net NL. For
each main-chart event e ∈ Em a transition te is de-
fined in NL, labeled λ(te) := λm(e) . The partial
order of lm is encoded by places.

• For any e, f ∈ Em with e l f (direct order), de-
fine a place pe,f,L “between” te and tf , and arcs
〈te, pe,f,L〉, 〈pe,f,L, tf 〉 ∈ F .

• For any e ∈ min(lm) define an activation place
p0,e,L and an arc 〈p0,e,L, te〉 ∈ F .

• For any e ∈ max (lm) define arc 〈te, pλm(e)〉 ∈ F ,
into the matching shared place.

All arcs have weight 1. Moreover, transition te has the
local history of e as the guarding lpo; i.e., g(te) :=
hL(e). This guard ensures that te is only enabled if
the tokens produced by e will indeed exactly end with
the entire local history hL(e) of e. The initial run R0

is translated into a net NR0 in the same way (treated
as a main chart of an ordinary dLSC).

The transitions of the minimal events in the main
chart of L shall only be enabled when all the maximal
events in L’s prechart have occurred. We formalize
this by a main-chart activation transition tL with label
λ(tL) := τ (unobservable).

• tL consumes from the shared places of the maxi-
mal events in L’s prechart: 〈pa, tL〉 ∈ F for each
a that is a label of an event in max (lp), with arc
weight w(〈pa, tL〉) = |{e ∈ max (lp) : λp(e) =
a}|; and

• tL produces on the activation places of the minimal
events in L’s main chart: 〈tL, p0,e,L〉 ∈ F for each
e ∈ min(lm), with arc weight 1.

Transition tL has the prechart lp as guard g(tL) := lp.
Thus, tL only synchronizes tokens that together have

seen the entire prechart of L. A firing of tL will not be
visible in the resulting token history as tL has a label
τ . E.g., in Fig. 7a, the τ transition L2 is the activation
transition of dLSC L2 of Fig. 2b.

Finally, we obtain the complete net NS , for the
entire specification S = 〈D, R0〉, by constructing the
component-wise union NS := NR0

∪
⋃
L∈DNL (as-

suming that the nets are pairwise disjoint except for
the shared places Pshared ). The initial marking m0

of NS contains an empty token history in each ac-
tivation place of NR0

; i.e., for each e ∈ min(R0),
m0(p0,e,R0

) := [〈∅, ∅, ∅〉], while other places are
empty. Note that the entire synthesis has polynomial
time and space complexity in the given specification.

A.4 Extracting Components from the
Synthesized Net

Let NS = 〈P, T, F,m0, λ, g, w〉 be the THPN syn-
thesized from a dLSC specification S over a fi-
nite set C of components. Additionally, let T =
{Tc}c∈C be a partitioning of the transitions of NS
into components; it is obtained according to the ac-
tion labels of the transitions and by further assign-
ing the τ -labeled activation transitions to compo-
nents. The component of NS induced by Tc is the
subnet of NS consisting of transitions Tc and their
pre- and post-places Pi =

⋃
t∈Ti

•t ∪ t•; i.e., the
net Ni = 〈Pi, Ti, Fi,m0|Pi , λ|Ti , g|Ti , w|Fi〉, where
Fi := F |Ti ∪ Pi .


