Modeling of Genetic Networks
with Boolean functions

1 Boolean Regulatory Networks

The behavior of a genetic network is not completely determined with their graph-
ical representations. For example, from Fig. 1 one can conclude that gene ¢y
inhibits gene g2, but the behavior of go when g, is not active is not defined.

92 01

Fig. 1. Inhibition network.

For instance, go can behave “normally” and switch off in the absence of influence
by other genes. In the real genetic networks this corresponds to the fact that the
protein that is the product of the expression of g, is subject to degradation and
as such will eventually disappear. Thus, if g; is off, regardless of its initial state
g1 will eventually switch off. Alternatively, g; can be a self-activator, which in
the absence of the inhibition by g;, eventually switches to an on state. This kind
of gene behavior is also realistic - a gene can promote its own transcription in a
positive feedback. For instance, the product of the gene is in the same time an
activator of the gene transcription.

Another situation when the graphical representation is ambiguous can be
seen in Fig. 2.

g3 | 91.

g2

Fig. 2. Ambiguous network.

Gene g3 is activated by g1 and in the same time inhibited by go. It is not clear
which influence will “win”, i.e., whether g3 will go on or off.

We can capture this kind behavior by making a Petri net model of the net-
work, as we saw this during the lectures. As the Petri net models have uniquely
defined dynamics we can deduce from it the intended behavior of our genetic
network. However, this can be quite a cumbersome way to define the behavior,
especially for complex genetic networks that have many elements.

A more direct way to specify genetic networks behavior is by boolean func-
tions. Let B = {0,1} the Boolean set that contains two elements: 1 and 0,
interpreted, respectively, as the boolean values true and false, or as the gene
being on and off. Genes from the gene set G = {g1, g2, - - - , gn } of the network can
take values from B. A state of the network is given with the valuation function
s : G — B that assigns a boolean value to each of the genes. The behavior of a
given gene g; is determined by the genes in G. In fact the behavior is affected
only by the genes that are connected to g; and possibly g; itself, but to keep it
simpler, for the time being we will assume that all genes influence g;. Then for-
mally the new value that g; will get is given by the boolean function f : B — B
that maps vectors of boolean values (i.e., the states of genes g ... gy, including
gi itself) to a boolean value (the new state) of g;. Thus the function f; which
is associated with g; completely defines the behavior of g;. For instance, in the
network in Fig. ?? we can express the fact that g2 spontaneously activates itself
when g5 is absent by defining f»(0,0) = 1. In words, when g; and g» are both off
g1 will switch on. Similarly, for the network in Fig. 2 the fact that the inhibition
by go wins over the activation by g; can be expressed with f3(1,1,0) = 0. We
define the set F' = {f1, fo} of functions that are associated to the genes.

Of course to fully define the boolean function f; we will have to assign it
a value for each combination of its arguments, i.e., each possible state. This is
usually done in a tabular form. Thus, for fo corresponding to g2 in Fig. 1 we
can have have the definition given in Tab. 1.

Table 1. Boolean function for gene g» in the Inhibition network.

9:]9:[| 291, 92)

00 1

01 0
110 1
11 0

Similrly we can define f3, corresponding to g3 in Fig. 2, for instance like in
Tab. 2:

Although in principle we can associate arbitrary value to a gene, when mod-
eling biological networks, of course, we try to assign values that can be justified
with the behavior of the real network.

We assumed for the time being that each gene g; is influenced by all other
genes. So, formally speaking we will had to include among the arguments of
function f; also the genes that according to the graphical representation have

Table 2. Boolean function for gene go in the Inhibition network.

191]92]95| F3 (91, 92, 93)]
0(0]0

OO = OO O

e e e ===
—_—_0 OO
OO = OO O -

no connection to g; and therefore no direct influence on its behavior. To avoid
this we can further associate to each gene g; the set I; = {g:,,9is,---, i, } Of
input genes that are inputs to g;. Now we can restrict the definition of f; only
to combinations of values of genes that are in I;. Note that g; can also be in
I; in case the new state of g; depends on the current one. We define the set
I={L,L,...,I,} as the set that contains all input sets. We can join the genes,
their functions and input sets to obtain a new structure (G, I, F) often referred
to as Boolean regulatory graph. To complete the specification of the system we
need to define the transitions between its states.

We assume that the behavior of the network is asynchronous and interleaved.
This means that in a given moment of time only one gene can change its state.
In other words, there is no true parallelism - no two genes can change simulta-
neously.There is always an ordering of the changes - they are interleaved. When
two or more independent changes are possible then the choice is made non-
deterministically. This is consistent with the behavior implied by the Petri-net
semantics defined during the lectures.

More formally, like for the Petri nets, we can capture the behavior (semantics)
of the network by means of its corresponding transition system (S, Sp,T'), where
S C B™ is the finite state of possible states (recall that those are mappings of
G to B), set of initial states Sp C S, and the transition relation ' C S x S.
The pair of states (s,s’) is in the transition relation T if and only if there exists
a gene g;(1 <14 < n) such that s'(g;) = fi(s(9i,),8(9i5),---,5(9:,)) and for all
9; # i it holds s'(g;) = s(g;). In other words, the new state of g; is obtained
exactly via the function f; applied to the old states of the genes that influence
g; and g; is the only gene that changes its state.

Further we can restrict ourselves to the states that are reachable from the
initial states. A state s’ is reachable from a state s iff there exists a sequence of
transitions (s, s1), (s1,52),---,(8n,s"), i.e. a sequence that transforms s into s'.
The sequence of transitions can be empty, which means that a state is trivially
reachable from itself. Having defined reachability, we can restrict our state space
to the part that is reachable from the initial state. We define the set of reachable
states S, = {s|s is reachable from sy € Sp}. Similarly the transition relation

can be restricted to T, = T'N (S, x S;), which gives us the transition system
(Sr, So,Tr) which can be much smaller than the original one.

2 Examples

We can always translate Boolean regulatory graphs to Petri nets of the type
we considered during the lectures, i.e., Petri nets that have two places per gene
and exactly one token in only one of these places. A formal translation can be
found in [1]. Conversely, each such Petri net can be translated into a boolean
regulatory graph. In what follows we give the Boolean regulatory graph versions
of some genetic networks that we modeled previously with Petri nets. Note again
that the functions f; are defined only on genes that are in the input set I;.

Consider first the inhibition network from Fig 3. The Petri net implementa-
tion too is given in Fig. 3. The implementation fully determines the behavior:
for instance, one can see that if g; is not inhibited by go, i.e., g2 = 0, then ¢y
will spontaneously activate itself.

(A1 go
o | °
lg1,90
g1 — go

.

Fig. 3. Inhibition: Network and Petri net versions.

The corresponding boolean regulatory network (G, I, F') is given by
- G ={g1,92}

- I= {Il,IQ}, where Il = {92} and IQ = @,
— F = {f1, f2}, where f1(0) = 1,f1(1) = 0, and f» = Id (Id is the identity
function, i.e., g5 is a constant defined with the initial state.

To completely specify the behavior of the whole network we give the transition
system of the network (S, So,T"). To this end we define the sates so = (0,0),s1 =
(0,1),s2 = (1,0),s3 = (1,1), where the values in the binary vector correspond
to the genes g; and gs, respectively.

— S = {80781,52733}
_Sy=8
— T = {(80782),(33;81)}

Like in the case of Petri nets we can represent the transition system with a
graph that has the states as nodes and the transitions as edges, which is left as
an exercise to the reader.

Our second example is the negative feedback genetic network given in Fig. 4.

b)

Fig. 4. Negative feedback circuit.

The corresponding Boolean regulatory network (G, I, F) is defined as

-G= {91592793}

— I ={5L,I5,I3}, where I, = {g3}, I = {91}, and I3 = {g1}.

— F = {f1, f», fs}, where f1(0) = 1,f1(1) = 0,£2(0) = (0),(f2(1) = 1,(f3(0) =
0, and f(3(1) =1.

To fully specify the behavior the corresponding transition system (S, So,T')
should be defined. Analogously to the previous example, let us define the states
the sates S0 = (0, 0, 0), S4 = (]., 0, 0), S¢ = (].,]., 0), St = (1,].,].), 83 = (0,]., 1),81 =
(0,0,1),s5 = (0,1,0),s5 = (1,0,1) where the values in the binary vector corre-
spond to the genes g1, g2, and g3, respectively.

Let us assume that the set of initial states is given as So = {so, 2, $5}- Then
all above defined states s; are reachable from some initial state and therefore,
using the denotation defined in the previous section, S = S, = {s;|0 < i < 7}.
The transition relation is given as
T= T’I‘ = {(30; 54)7 (34; 56)7 (367 57); (371 83)7 (831 31)7 (517 80)}-

The negative feedback network exhibits an oscillatory behavior and therefore
the graph representing the state transition system contains (is) a cycle. Drawing
the graph is again left as an exercise to the reader.

References

1. C. Chaouiya, E. Remy, P. Ruet, D. Thieffry, Qualitative Modelling of Genetic Net-
works: From Logical Regulatory Graphs to Standard Petri Nets, Proc. of ICATPN,
Lecture Notes in Computer Science 3099, pp. 135-156, Springer-Verlag, 2004.

