Modeling of Genetic Networks with Petri Nets

1 Introduction

Petri nets can be used in different ways to model biochemical processes. Here we
present one way of modeling of genetic networks by means of Petri nets based
on [1].

Genetic networks are of utmost importance for the functioning of the cell.
The number of genes involved in the network and their interaction is often very
complex. Therefore, by making formal models of the networks we try to take
advantage of the theory and methodology about Petri nets which is developed
in the last more than 40 years. Once we have the models we can use analytical
methods or automated verification (like model checking) in order to reason about
the behavior of the networks.

2 Quantitative Approach

Genetic networks model interactions between genes. There are two kind of in-
teractions that we need to model: activation and inhibition. Schematically the
activation of a given gene g; by some gene g5 is represented by an arrow line from
g2 to g1 as in Fig. la. The inhibition of g; by g2 is represented by a blunt-end
line from g¢» to g1 as depicted in Fig. 3a.

In the Petri net models that we consider in the sequel the genes are modeled
as places (channels) and the events are modeled as transitions (processors). If
a place contains one or more tokens this means that the corresponding gene is
active. Otherwise, the gene is inactive.

A simple way to model the activation of a given gene g; by some gene g- is
given in Fig. 1b. The arc back from transition ¢4, 4, to gene g» ensures that go
remains active after it is activated by g;. The token which is consumed from g,
in order to activate go is restored back in go after the activation. The marking
(state) after the activation is given in Fig. 2.

Similarly, the inhibition of a given gene g; by some gene g» can be modeled
by the net given in Fig. 3b. The gene g¢; is deactivated, i.e., its token is consumed
by firing the transition ¢, ,,, which is enabled by the presence of a token in g.
The state after the inhibition is given in Fig. 4.

One can see that in the marking given in Fig. 2 the transition ¢4, 4, is enabled
and can fire again. As a result we get a marking (state) with two tokens in gy
and one token in go as in Fig. 5. (Again, the initial token in go was consumed
by the firing, but it is also immediately restored.)

Obviously in this way, by repeated firing of t,, 4, one can produce an un-
limited number of tokens in g;. In this sense, one could say that the model in
Figs. 1 and 2 is quantitative. The longer we have an influence by g, on g; the
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Fig. 1. Activation (quantitative version).
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Fig. 2. Activation Petri Net after firing.
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Fig. 3. Inhibition (quantitative version).
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Fig. 5. Activation Petri Net after two firings.



more active g; becomes. The quantitative aspect can be also seen if we assume
that there is another activator gene g3 which activates g; via a new transition
tg,,95- Obviously, now we get tokens in g; both via firing of both t,, 4, and ¢4, g,.
So, the more activators we have, the more activity of the activated gen we get.

Similarly, if there were more than one tokens in the place corresponding to
gene g1 then one would need more than one steps (i.e. longer activity) by the
inhibitor g or more than one inhibitor.

3 Qualitative Approach

The kind of quantitative models from the previous section could be rather diffi-
cult to handle. After all, their state space is infinite. Also we are often interested
only in the qualitative aspects of the networks, i.e., for each gene it suffices to
know if it is active or inactive. Therefore, we introduce the slightly more complex
solution which has the nice property of having a finite state space.

The solution in case of activation is given in Fig. 6. In the new model each
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Fig. 6. Activation (qualitative version).

gene is modeled by two places g; and g; (where ¢ = 1,2). We say that g; is a
complement of g;. In the initial state if g; contains a token then g; does not and
vice versa. Thus, the sum of the tokens in g; and its complement is exactly one.
One can show that this property remains correct after any sequence of transition
firings, i.e., in any state which is reachable from the initial state. Moreover, one
can show that in all reachable states there is at most one token in each place.
For instance, the marking (state) after firing of the net in Fig. 6 is given in Fig.7.

The state space of the net is given in Fig. 8. The state space consists of four
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Fig. 7. Activation after firing.
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S={00, 01, 10, 11}
T ={(10,00), (01,11)}

Fig. 8. State space of the activation net.



states corresponding to all possible combinations of states (active or inactive) of
g1 and go. A labeling x1y>, where 0 < z1,y; < 1 of a state denotes that there
are z1 tokens in place ¢g; and zo tokens in go. (The tokens in the complementary
places are not given because they are determined by the property that the sum
of the tokens in two complementary places always equals 1.) For instance, if we
begin in the initial state 01 (given in Fig. 6) by firing ¢,, 5, We can go to the
state 11 (corresponding to Fig. 6).

Notice that if we begin with 10 as initial state, i.e., if g; is already active,
but the activator gs is inactive (Fig. 9), than we can go to the state 00. One can
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Fig. 9. Spontaneous deactivation/degradation.

interpret this as a spontaneous deactivation or chemical degradation of g;. This
is something which was not the case in the qualitative model. It turns out that
such a property could be useful for modeling of complex genetic networks.

From the state space one can also see that the states 00 and 11 are stable
(also called steady or dead) states in the sense that no transition is possible from
them. Thus, depending on the initial state, the net will eventually stabilize in
one of those two states.

The same conservation properties (at most one token per place and the sum
of tokens in complementary places exactly one) hold also for the new inhibition
model given in Fig. 10. As for the activation case one can also draw the state
space for the inhibition net. In this case, instead of spontaneous deactivation we
have spontaneous activation of g1, i.e., transition from state 00 to state 10
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Fig. 10. Inhibition (qualitative version).

4 Construction of More Complex Models

Once we have the activation and inhibition Petri nets in Figs. 6 and 10 respec-
tively, we can construct more complex nets using those two as building blocks.

The first example is a positive activation circuit given in Fig. 11. The circuit
consists of genes g1, g2, and g3 which can activate one another in a circular fash-
ion. The Petri net which is obtained by connecting three copies of the activation
net in Fig. 6 is given in Fig. 11. If we begin with the initial state 100 as given
in Fig. 11 one can reach the steady state 111, i.e., a state where all genes are
active. From that state no transition to another state is possible. We leave the
drawing of the complete state space to the reader as an exercise.

The second example is the negative circuit given in Fig. 12. Unlike in the
positive circuit above, in the negative circuit gene g3 inhibits gene g». Although at
first sight the negative circuit looks very similar to the positive one, its behavior
is quite different. Namely, beginning with the same initial state 001 one can see
a cyclic (oscillatory) behavior of the circuit and there is no steady state, i.e., a
state from which there is no transition. Again, the drawing of the complete state
space is left an exercise.
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Fig. 11. Positive circuit.
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Fig. 12. Negative circuit.



