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Abstract. The notion of bisimilarity plays an important role in concur-
rency theory. It provides formal support to the idea of processes having
“equivalent behaviour” and is a powerful tool for model reduction. Fur-
thermore, bisimilarity typically coincides with logical equivalence of an
appropriate modal logic enabling model checking to be applied on re-
duced models. Recently, notions of bisimilarity have been proposed also
for models of space, including those based on polyhedra. The latter are
central in many domains of application that exploit mesh processing and
typically consist of millions of cells, the basic components of face-poset
models, discrete representations of polyhedral models. This paper builds
on the polyhedral semantics of the Spatial Logic for Closure Spaces (SLCS)
for which the geometric spatial model checker PolyLogicA has been de-
veloped, that is based on face-poset models. We propose a novel notion
of spatial bisimilarity, called ±-bisimilarity, for face-poset models. We
show that it coincides with logical equivalence induced by SLCS on such
models. The latter corresponds to logical equivalence (based on SLCS) on
polyhedra which, in turn, coincides with simplicial bisimilarity, a notion
of bisimilarity for continuous spaces.

Keywords: Bisimulation relations · Spatial bisimilarity · Spatial logics · Logical
equivalence · Spatial model checking · Polyhedral models

1 Introduction

The notion of bisimilarity plays an important role in concurrency theory. It pro-
vides formal support to the idea of processes having “equivalent behaviour” and
is a powerful tool for model reduction. Furthermore, bisimilarity often coincides
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with logical equivalence of appropriate modal logics enabling powerful techniques
for enhancing model checking [40, 29, 30]. Recently, notions of bisimilarity have
been proposed also for models of space, including those based on polyhedra.

In this work we are following a topological approach to spatial logic and spa-
tial model checking. This approach has its origin in the early ideas by McKinsey
and Tarski [39], who gave a topological interpretation of the “necessarily” op-
erator of the S4 modal logic. The approach was extended to consider Closure
Spaces (CS) [46], a generalisation of topological spaces, covering also discrete
spaces such as general graphs, following work by Galton [26, 27] and Smyth and
Webster [43], among others. Recent work by Ciancia et al. (see [21, 22]) builds
on these theoretical developments using CSs, or better, Closure Models (CMs),
as the underlying framework for the Spatial Logic for Closure Spaces (SLCS). A
closure model is composed of a CS together with a valuation function mapping
every atomic proposition letter p of a given set into the set of points in the
space satisfying p. Based on the finite (quasi-discrete) variant of this framework
topochecker, a spatio-temporal model checker, and VoxLogicA4 a global spatial
model checker, have been developed. Spatial logic and spatial model checking
have been applied in several application domains such as collective and dis-
tributed systems [23, 38, 19, 44, 5]. VoxLogicA has been specifically optimised for
the analysis of regular point-spaces, such as pixel/voxel-based images, and has
been applied successfully in the area of medical imaging [10, 9, 7, 8].

However, for the 2D and 3D visualisation of continuous spatial objects, both
in medical imaging and virtual reality, models of continuous space are often used.
Such spatial models divide the object into suitable areas of different size. These
forms of division are known as mesh techniques and include triangular surface
meshes or tetrahedral volume meshes (see for example [34]). In [11], the theoret-
ical foundations have been developed for polyhedral model checking, including
an interpretation of SLCS on polyhedral models, a global model checking algo-
rithm for SLCS and its implementation in the PolyLogicA4 tool. A visualiser for
models and model checking results has been developed as well. Figure 1 provides
an example of the use of polyhedral model checking to visualise some part of
interest in a 3D tetrahedral volume mesh of a maze composed of 147,245 cells.
A cell (see Figure 2), is the basic element of the face-poset model, a discrete
representation of a polyhedral model. However, often images consist of a much
larger number of cells, typically several millions or more. Figure 1b highlights
the polyhedral SLCS model checking result of a set of spatial reachability prop-
erties characterising the white rooms and their connecting grey corridors from
which both a red and a green room can be reached, without passing by black
rooms. For details on the property specification and model checking experiments
see [11].

Contribution The focus of the current paper is on the development of a suitable
notion of spatial bisimulation that can be used to reduce the size of face-poset
models, still preserving the SLCS properties of polyhedral models they represent.

4 Available from the VoxLogicA repository at https://github.com/vincenzoml/VoxLogicA.
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(a) (b)

Fig. 1: (1a) 3D maze with green, white and black rooms, and one red room
somewhere in the middle. (1b) Polyhedral model checking result highlighting
white rooms and their connecting grey corridors from which both a red and a
green room can be reached without passing by black rooms. Source [11].

To that aim we introduce a novel notion of bisimilarity on face-poset models,
namely ±-bisimilarity, that is defined in terms of “compatible” ±-paths. We show
that two cells are logically equivalent according to the relational interpretation
of SLCS if and only if they are ±-bisimilar.

Further related work In the domain of geographic information systems (GIS)
simplicial complexes are used as an efficient data structure to store large geospa-
tial data sets [13] in 2D or 3D. They also form the core of several important tools
in this domain such as the GeoToolKit [6]. Polyhedral model checking techniques
could potentially enrich the spatial query languages that are currently used in
this database-oriented domain. Polyhedra are also used in the theoretical foun-
dations of real-time and hybrid model checking (see for example [33, 3, 12, 32, 4]
and references therein). In that context polyhedra, and their related notions such
as template polyhedra [42, 12] and zonotopes [28], are obtained from sets of linear
inequalities involving real-time constraints on system behaviour and are a natu-
ral representation of sets of states of such systems. However, in the present paper
we focus on spatial properties of continuous space rather than on behavioural
properties of systems. In [31], coalgebraic bisimilarity has been developed for a
general kind of models, generalising the topological ones, known as Neighbour-
hood Frames. To the best of our knowledge, the notions of path and reachability
are not part of that framework (that is, bisimilarity in neighbourhood semantics
is based on a one-step relation rather than on paths), thus the results therein,
although more general than the theory of CSs, cannot be directly reused in the
setting of our current work. In [35, 36] the spatial logic SLCS is studied from a
model-theoretic perspective. In particular, in [35] the authors focus on issues
of expressivity of SLCS in relation to topological connectedness and separation.
In [36] it is shown that the logic admits finite models for quasi-discrete neigh-
bourhood models, but it does not do it for general neighbourhood models. The
work in [37] introduces bisimulation relations that characterise spatial logics with
reachability in simplicial complexes. It uses SLCS, but with a different semantics
based on (sets of) simplexes. In the Computer Science literature, spatial logics
have been proposed that typically describe situations in which modal operators
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are interpreted syntactically against the structure of agents in a process calcu-
lus. Some classical examples can be found in [16, 15]. A recent example following
such an approach is given in [45]. It concerns model checking of security aspects
in cyber-physical systems, in a spatial context based on the idea of bigraphical
reactive systems introduced by Milner [41]. The work on spatial model checking
for logics with reachability originated in [21] and was further developed in [22],
which includes also a comparison to the work of Aiello on spatial until opera-
tors (see e.g. [1]). In [2], Aiello envisaged practical applications of topological
logics with an until operator to minimisation of images. Recent work in [18, 24]
builds on — and extends — that vision, taking CoPa-bisimilarity as a suitable
equivalence for spatial minimisation.

2 Background and Notation

We first introduce some background concepts and related notation. For a func-
tion f : X → Y , and subsets A ⊆ X and B ⊆ Y , we define f(A) and f−1(B) as
{f(a) | a ∈ A} and {a | f(a) ∈ B}, respectively. The restriction of f on A is de-
noted by f |A. The set of natural numbers and that of real numbers are denoted
by N and R, respectively. We use the standard interval notation: for x, y ∈ R
we let [x, y] be the set {r ∈ R |x ≤ r ≤ y}, [x, y) = {r ∈ R |x ≤ r < y} and so
on, where [x, y] is equipped with the Euclidean topology inherited from R. We
use a similar notation for intervals over N: for n,m ∈ N [m;n] denotes the set
{i ∈ N |m ≤ i ≤ n}, [m;n) denotes the set {i ∈ N |m ≤ i < n}, and similarly
for (m;n] and (m;n).

(a) (b) (c) (d)

Fig. 2: (2a) A simplicial complex (actually a simplex itself). (2b) Decomposed
into its simplexes as faces. (2c) Partitioned into its cells. (2d) A triangular surface
mesh of a dolphin [17].

In the sequel we introduce the notions of simplex, simplicial complex and
polyhedron. Intuitively, a polyhedron is composed by the set of points of its
simplicial complex, that, in turn, is a finite set of simplexes. Each simplex is
the convex hull of a set of affinely independent points, namely the vertices of
the simplex. A cell of a simplex is the set of points of the (relative) interior of
the simplex. For example, a triangle can be partitioned into 7 cells: its interior
(an open triangle), three open segments (sides without endpoints) and the three
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vertices (see Figure 2c). Note that the cells of a simplex can be arranged in
a partial order on the basis of the “being a face of” relation on its associated
simplex. For instance, in a triangle, each vertex is a face of two open segments
(and of the open triangle itself), and each open segment is a face of the open
triangle. The notion of cell and face-poset extends to simplicial complexes in
a natural way. A polyhedron can then be imagined as the union of the sets of
points of the elements of the simplicial complex forming the polyhedron. Figure 2
shows an example of a simplicial complex and its simplexes in the face relation
together with a small example of a triangular surface mesh of a dolphin.

Definition 1 (Simplex). A simplex σ of dimension d is the convex hull of
a finite set {v0, . . . ,vd} ⊆ Rm of d + 1 affinely independent points5, i.e. σ =

{λ0v0 + . . .+ λdvd |λ0, . . . , λd ∈ [0, 1] and
∑d

i=0 λi = 1}. •

Note that a simplex is a subset of the ambient space Rm and so it inherits
its topological structure. Given a simplex σ with vertices v0, . . . ,vd, any subset
of {v0, . . . ,vd} spans a simplex σ′ in turn: we say that σ′ is a face of σ, written
σ′ ⊑ σ. Clearly, ⊑ is a partial order relation.

Definition 2 (Relative Interior of a Simplex). Given a simplex σ with
vertices {v0, . . . ,vd} the relative interior σ̃ of σ is the following set:
{λ0v0 + . . .+ λdvd |λ0, . . . , λd ∈ (0, 1] and

∑d
i=0 λi = 1}. •

We write σ̃′ ⪯ σ̃ whenever σ′ ⊑ σ, noting that ⪯ is a partial order as well
and that σ̃′ ⪯ σ̃ if and only if σ̃′ is included in the topological closure of σ̃.

Definition 3 (Simplicial Complex and Polyhedron). A simplicial com-
plex K is a finite collection of simplexes of Rm such that: (i) if σ ∈ K and
σ′ ⊑ σ then also σ′ ∈ K; (ii) if σ, σ′ ∈ K then σ ∩ σ′ ⊑ σ and σ ∩ σ′ ⊑ σ′.
The polyhedron |K| of K is the set-theoretic union of the simplexes in K. •

Relations ⊑ and ⪯ on simplexes are inherited by simplicial complexes: rela-
tion ⊑ on simplicial complex K is the union of the face relations on the simplexes
composing K, and similarly for ⪯. Note that different simplicial complexes can
give rise to the same polyhedron and that the set K̃ = {σ̃ |σ ∈ K \ {∅}} of
non-empty relative interiors of the simplexes of a simplicial complex K forms a
partition of polyhedron |K|. The elements of K̃ are called cells and (K̃,⪯) is
the face-poset of |K|. Note that, by definition of partition, each x ∈ |K| belongs
to a unique cell in the face-poset. Finally, we recall that the polyhedron |K| is a
subset of the ambient space Rm and so inherits its topological structure.

Definition 4 (Topological and Simplicial Path). A topological path in a
topological space P is a total, continuous function π : [0, 1]→ P . Given a polyhe-
dron |K|, a topological path π : [0, 1]→ |K| is simplicial if and only if there is a
finite sequence r0 = 0 < . . . < rn = 1 of values in [0, 1] and cells σ̃1, . . . , σ̃n ∈ K̃
such that, for all i = 1, . . . , n, we have π((ri−1, ri)) ⊆ σ̃i. •
5 v0, . . . ,vd are affinely independent if v1 −v0, . . . ,vd −v0 are linearly independent.

In particular, this condition implies that d ≤ m.
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Fig. 3: An example of simplicial bisimilarity. Adapted from [11].

In the polyhedral semantics of SLCS proposed in [11], all the points of a
polyhedral model that belong to the same cell are required to satisfy the same
set of atomic proposition letters. This is reflected in the definition below.

Definition 5 (Polyhedral Model). For simplicial complex K and set of propo-
sition letters AP, a polyhedral model is a pair (|K|, V ) where V : AP → P(|K|)
is a valuation function such that, for all p ∈ AP, V (p) is a union of cells in K̃. •

The notion of simplicial bisimilarity for polyhedra is central in the theory
of the polyhedral interpretation of SLCS, together with Theorem 1 below [11].
Simplicial bisimilarity is based on the notion of topological paths and is recalled
below as well. The use of paths is reminiscent to the definition of stuttering
equivalence for Kripke structures or branching bisimilarity for process calculi [14,
25, 30]. However, here, the notion is cast in the setting of continuous space.

Definition 6 (Simplicial Bisimulation). Given a Polyhedral Model X =
(|K|, V ), a symmetric binary relation B ⊆ |K| × |K| is a simplicial bisimulation
if, for all x1, x2 ∈ |K|, B(x1, x2) implies the following:

1. V −1({x1}) = V −1({x2});
2. for each simplicial path π1 with π1(0) = x1 there is a simplicial path π2 with

π2(0) = x2 such that B(π1(t), π2(t)) for all t ∈ [0, 1]; •

In [11] it has been shown that, for any given polyhedral model the largest
simplicial bisimulation exists. We call it Simplicial Bisimilarity and we write
x1 ∼ x2 whenever x1 and x2 are simplicial bisimilar.

Example Figure 3 illustrates simplicial bisimilarity. Figure 3a shows a polyhedral
model composed of four triangles forming two adjacent squares. Atomic propo-
sition letters are represented by colours (e.g. red points satisfy red, green points
satisfy green etc.). Figure 3b shows the nine equivalence classes induced by sim-
plicial bisimilarity in the polyhedral model of Figure 3a. Different classes are
shown using different colours.6 From the figure, it is clear that, for instance, no
point x1 in the yellow class is bisimilar to any point x2 in the cyan class. This is
6 Note that the colours of the classes have only an illustrative purpose; in particular

they have nothing to do with the colours expressing the evaluation function of atomic
proposition letters.
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because there are simplicial paths π1 starting from x1 that immediately enter the
green area of Figure 3a (i.e. V −1(π1(ε)) = green for any small ε > 0) whereas
this is impossible for any simplicial path π2 starting from x2 (V −1(π2(ε)) = red

for any small ε > 0 and every such path π2). This implies that B(x1, x2) for
no simplicial bisimulation B. In fact, the second condition of Definition 6 would
be violated since B(π1(ε), π2(ε)) cannot hold for ε as above. Similarly, the only
point x3 in the orange class can immediately enter the red area of Figure 3a via
a simplicial path π3 whereas no other point satisfying gray can do that. Note in
particular that any point in the top-right segment of the polyhedron can reach
the red area via a simplicial path, but any such path must first go through part
of the top-right segment of the polyhedron and/or the green area. So, also in this
case, the second condition of Definition 6 would be violated. Figures 3c and 3d
show an example of pairs of simplicial paths that witness x ∼ y.

The following definition introduces the variant of SLCS for polyhedral models
proposed in [11]. In the present paper, we denote it by SLCSγ .

Definition 7 (SLCS on polyhedral models - SLCSγ). The abstract language
of SLCSγ is the following: Φ ::= p | ¬Φ | Φ1 ∨ Φ2 | γ(Φ1, Φ2).
The satisfaction relation of SLCSγ with respect to a given polyhedral model X =
(|K|, V ), SLCSγ formula Φ, and x ∈ |K| is defined recursively on the structure
of Φ as follows:

X , x |= p ⇔ x ∈ V (p);
X , x |= ¬Φ ⇔ X , x |= Φ does not hold;
X , x |= Φ1 ∨ Φ2 ⇔ X , x |= Φ1 or X , x |= Φ2;
X , x |= γ(Φ1, Φ2)⇔ a topological path π : [0, 1]→ |K| exists such that

π(0) = x,X , π(1) |= Φ2, and X , π(r) |= Φ1 for all r ∈(0,1).
•

Note that the above definition generalises the classical topological interpretation
of the 2 modality as interior. In fact, 2Φ is equivalent to ¬γ(¬Φ, true) (see [11]).

Example Again with reference to model X of Figure 3a, it is easy to see that
any point in the yellow class satisfies, for instance, γ(green, true), and also
γ(green, red) and red ∧ γ(green, red).

Definition 8 (SLCSγ Logical Equivalence). Given Polyhedral Model X =
(|K|, V ) and x1, x2 ∈ |K| we say that x1 and x2 are logically equivalent with
respect to SLCSγ , written x1 ≃SLCSγ x2, if and only if, for all SLCSγ formulas Φ
the following holds: M(X ), x1 |= Φ if and only if M(X ), x2 |= Φ. •

Logical equivalence coincides with simplicial bisimilarity [11]:

Theorem 1 (Corollary 6.5 of [11]). Given Polyhedral Model X = (|K|, V ),
x1, x2 ∈ |K| the following holds: x1 ≃SLCSγ x2 if and only if x1 ∼ x2. ⊓⊔

The following definition characterises the discrete representation of polyhe-
dral models we will use in the rest of the paper.



8 V. Ciancia et al.

Definition 9 (face-poset model). Given Polyhedral Model X = (|K|, V ) we
define the face-poset model M(X ) as the the Kripke model (W,⪯,V) such that:
(i) W = K̃; (ii) ⪯⊆W×W such that σ̃⪯ σ̃′ if and only if σ ⊑ σ′; (iii) σ̃ ∈ V(p)
if and only if σ̃ ⊆ V (p). •

Below, we recall the definition of ±-paths introduced in [11]. They faithfully
represent, in the face-poset model, topological paths in the polyhedral one. Con-
sider, for instance, the polyhedron consisting of a segment from point A to point
B and its related face-poset. A path starting from, say, point A can “immediately
enter” the open segment AB whereas, a path starting from a point within the
open segment cannot “immediately proceed” to A (neither to B); it has to first
traverse a fraction of the open segment AB, then ending in A (or B). This is
reflected in the face-poset by requiring that a path therein, i.e. a ±-path, cannot
perform a first step going against the partial order (going “down”), whereas in
its last step it cannot follow strictly the partial order (going “up”).

Definition 10 (±-path). Let M(X ) = (W,⪯,V) be a finite face-poset model
and let ⪯± be the relation ⪯∪⪰. We say that, for ℓ ∈ N, sequence π : [0; ℓ]→W

is a ±-path (and we indicate it by π : [0; ℓ]
±→ W ) if ℓ ≥ 2 and the following

holds: π(0)⪯π(1) ⪯± π(2) ⪯± . . . ⪯± π(ℓ− 1) ⪰ π(ℓ). •

The following definition re-interprets SLCS on finite face-posets and is based
on ±-paths [11]. In order to avoid confusion, in the sequel, we will call the
resulting logic SLCS±.

Definition 11 (SLCS on finite face-posets - SLCS±). The satisfaction rela-
tion of SLCS± with respect to a given finite face-poset modelM(X ) = (W,⪯,V),
SLCS± formula Φ, and w ∈W is defined recursively on the structure of Φ:

M(X ), w |= p ⇔ w ∈ V(p);
M(X ), w |= ¬Φ ⇔M(X ), w |= Φ does not hold;
M(X ), w |= Φ1 ∨ Φ2 ⇔M(X ), w |= Φ1 or M(X ), w |= Φ2;

M(X ), w |= γ(Φ1, Φ2)⇔ a ±-path π : [0; ℓ]
±→W exists such that π(0) = w,

M(X ), π(ℓ) |= Φ2, and
M(X ), π(i) |= Φ1 for all i ∈ (0; ℓ).

Definition 12 (Logical Equivalence). Given finite face-poset modelM(X ) =
(W,⪯,V) and w1, w2 ∈ W we say that w1 and w2 are logically equivalent with
respect to SLCS±, written w1≃SLCS±w2 if and only if, for all SLCS± formulas Φ
the following holds: M(X ), w1 |= Φ if and only if M(X ), w2 |= Φ. •

A fundamental result, see [11], follows, where with slight overloading, for
x ∈ |K|, we let M(x) denote the unique cell σ̃ ∈ K̃ such that x ∈ σ̃ (see
Figure 4 for an illustration).

Theorem 2 (Theorem 4.4 of [11]). Let X = (|K|, V ) a polyhedral model and
M(X ) the associated face-poset model as by Definition 9. For all x ∈ |K| and
formula Φ the following holds: X , x |= Φ if and only if M(X ),M(x) |= Φ. ⊓⊔
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Fig. 4: (4a) A polyhedral model X with atomic propositions red, green and
gray, and a path from a point x to vertex D. (4b) Hasse diagram of face-poset
modelM(X ) and a path (in blue) corresponding to the path in X .

The following definition introduces some notation for sequences, which ±-
paths are a particular case of, and that will be useful in the rest of the paper.

Definition 13 (Sequences). Given a set X, a sequence over X from x, of
length ℓ ∈ N, is a total function s : [0; ℓ]→ X such that s(0) = x. For sequence s
of length ℓ, we often use the notation (xi)

ℓ
i=0 where xi = s(i) for i ∈ [0; ℓ]. Given

sequences s′ = (x′
i)

ℓ′

i=0 and s′′ = (x′′
i )

ℓ′′

i=0, with x′
ℓ′ = x′′

0 , the sequentialisation
s′ · s′′ : [0; ℓ′ + ℓ′′]→ X of s′ with s′′ is the sequence from x′

0 defined as follows:

(s′ · s′′)(i) =
{
s′(i), if i ∈ [0; ℓ′],
s′′(i− ℓ′), if i ∈ [ℓ′; ℓ′ + ℓ′′].

For sequence s = (xi)
n
i=0 and k ∈ [0;n] we define the k-shift operator _↑k as

follows: s↑k = (xj+k)
n−k
j=0 and, for 0 < m ≤ n, we let s←m denote the sequence

obtained from s by inserting a copy of s(m) immediately before s(m) itself, i.e.
s←m = (s[0;m]) · ((s(m), s(m)), (s↑m)). Finally, a (non-empty) prefix of s is a
sequence s|[0; k], for some k ∈ [0;n]. •

For example, for sequence (a, b, c) of length 2 and sequence (c, d) of length 1, we
have (a, b, c)·(c, d) = (a, b, c, d), of length 3, (a)·(a, b) = (a, b), (a)·(a) = (a). Note
the difference between sequentialisation and concatenation ‘++’: for instance,
(a, b)++(c) = (a, b, c) whereas (a, b) · (c) is undefined since b ̸= c, (a)++(a)
is (a, a) whereas (a) · (a) = (a). We have (a, b, c)↑1 = (b, c) and (a, b, c)↑2 =
(c) while (a, b, c)←1 = (a, b, b, c). Sequences (a), (a, b), (a, b, c) are all the (non-
empty) prefixes of (a, b, c).

3 ±-bisimilarity and the Coincidence Result

In this section, we present the novel notion of ±-bisimulation, that is based
on the notion of ±-path compatibility, inspired by compatibility of paths in
quasi-discrete closure models introduced in [24]. We additionally show that ±-
bisimularity coincides with logical equivalence for SLCS±.

Definition 14 (±-path compatibility). Given face-poset model M(X ) =
(W,⪯,V) and binary relation B ⊆ W ×W , two ±-paths π1 = (w′

i)
k1
i=0, π2 =
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(w′′
j )

k2
j=0 are called compatible with respect to B inM(X ) if, for some N > 0, two

total monotone non-decreasing surjections z1 : [0; k1 ]→ [1;N ] and z2 : [0; k2]→
[1;N ] exist such that z1(1) = z2(1), z1(k1 − 1) = z2(k2 − 1) and B(w′

i, w
′′
j ) for

all indices i ∈ [0; k1 ] and j ∈ [0; k2] satisfying z1(i) = z2(j). •

The functions z1 and z2 are referred to as matching functions. Note that both the
number N and functions z1 and z2 need not be unique. The minimal number N >
0 for which matching functions exist is defined to be the number of zones of
the two ±-paths π1 and π2. It is easy to see that, whenever two ±-paths are
compatible, for any pair of matching function z1 and z2 the following holds,
by virtue of monotonicity and surjectivity: z1(0) = z2(0) = 1 and z1(k1) =
z2(k2) = N . Hence B(w′

0, w
′′
0 ) and B(w′

k1
, w′′

k2
), and of course B(w′

1, w
′′
1 ) and

B(w′
k1−1, w

′′
k2−1).

Given binary relation B ⊆W×W , compatibility of±-paths with respect to B
is a binary relation over ±-paths. We write π1 compBπ2 whenever ±-paths π1

and π2 are compatible with respect to B. Lemma 1 below, proved in Appendix B,
states some properties of ±-paths compatibility that turn useful in the sequel.

Lemma 1. Let M(X ) = (W,⪯,V) be a face-poset, B ⊆ W ×W a relation,
π, π1, π2 ±-paths with π of length ℓ > 0, s1 : [0; ℓ1] → W, s2 : [0; ℓ2] → W
sequences of length ℓ1, ℓ2 ∈ N respectively, m ∈ (0; ℓ). The following holds:

1. π compB(π←m).
2. If B is an equivalence relation, then:

(a) so is compB, and
(b) the sequentialisation of two sequences of equivalent elements, and non-

decreasing first step, with two compatible ±-paths results in compatible
±-paths. Formally: if π1 comp

Bπ2, sh(0)⪯sh(1) and sh(ℓh) = πh(0) for
h ∈ [1; 2], with B(s1(i), s2(j)) for all i ∈ [0; ℓ1) and j ∈ [0; ℓ2), then
s1 · π1 and s2 · π2 are ±-paths that are compatible with respect to B.

Definition 15 (±-bisimulation). LetM(X ) = (W,R,V) be a finite face-poset
model. A symmetric binary relation B ⊆ W ×W is a poset ±-bisimulation if,
for all w1, w2 ∈W , if B(w1, w2) then the following holds:

1. V−1({w1}) = V−1({w2});
2. for each ±-path π1 from w1 there is a ±-path π2 from w2 such that π1 comp

Bπ2.

We say that w1 and w2 are ±-bisimilar, written w1 ⇌± w2, if there is a ±-
bisimulation B such that B(w1, w2). •

Example With reference to the polyhedral model X of Figure 3a, in Figure 5b
the ±-bisimilarity equivalence classes are shown in different colours forM(X ). In
Figure 5a we recall the simplicial bisimilarity quotient of model X , adding some
names for reference in the sequel. There is no ±-path starting from any of the
cells in the cyan class that is compatible with ±-path πCD = (CD,CDE,CDE)
from cell CD in the yellow class as it is easy to see in Figure 4b. The same applies
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for ±-path πC = (C,CDE,CDE) from cell C.7 Similarly, let us consider cell D.
We have already seen that there is no other point in the polyhedral model that
is simplicial bisimilar to point D. Let us consider ±-path πD = (D,CD,CD).
In the sequel we show there cannot be any ±-path from any other cell satisfying
gray that is compatible with πD. In fact, any other such a ±-path π should
be such that π(1) satisfies red (this is required by the fact that zD(1) = z(1)
for any pair of matching functions for πD and π) and π(j) should not satisfy
green for any j (since no element of πD satisfies green). On the other hand,
any ±-path π′ starting from any other cell satisfying gray and reaching a cell
satisfying red is such that π′(1) does not satisfy red. Furthermore, many such
±-paths have an element that satisfies green. Thus, there is no ±-path starting
from any other gray cell that is compatible with (D,CD,CD) and D is in fact
in a different class than any other gray cell.

B

A

D

C

F

E

(a)

BA DC FE

AB BDBCAC CD DFDECE EF

BCDABC DEFCDE

(b)

Fig. 5: Equivalence classes of the polyhedral model of Figure 3a w.r.t. simplicial
bisimilarity (5a) and those of its face-poset model w.r.t. ±-bisimilarity (5b).

We are now in a position to state and prove the two main technical results of
this paper, viz. soundness of ±-bisimilarity and the fact that logical equivalence
is a ±-bisimulation.

Theorem 3. For w1, w2 in finite face-poset model M(X ), the following holds:
if w1 ⇌± w2 then w1 ≃SLCS± w2.

Proof. Let M(X ) = (W,⪯,V) be a face-poset model. We proceed by induction
on the structure of Φ in SLCS±. We only cover the case γ(Φ1, Φ2) since the others
are straightforward. Let w1 and w2 be two points ofM(X ) such that w1 ⇌± w2.
Suppose w1 |= γ(Φ1, Φ2). Let π1 = (w′

i)
k1
i=0 be a ±-path from w1 satisfying

π1(k1) |= Φ2 and π1(i) |= Φ1 for all i ∈ (0; k1). Since w1 ⇌± w2, a ±-path
π2 = (w′′

i )
k2
i=0 from w2 exists that is compatible with π1 with respect to ⇌±.

Let, for appropriate N > 0, z1 : [0; k1] → [1;N ] and z2 : [0; k2] → [1;N ] be
matching functions for π1 and π2. Without loss of generality, z−1

2 ({N}) = {k2}.
Since z1(k1) = z2(k2) = N , we have π1(k1) ⇌± π2(k2). Thus π2(k2) |= Φ2 by

Induction Hypothesis. Moreover, if j ∈ (0; k2), then z2(j) < N by assumption
and there is i ∈ (0; k1) such that z1(i) = z2(j), that is π1(i) ⇌± π2(j).
7 Recall that partial orders are transitive and reflexive.
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Since π1(i) |= Φ1, it follows that π2(j) |= Φ1 by Induction Hypothesis. There-
fore ±-path π2 witnesses w2 |= γ(Φ1, Φ2). ⊓⊔

Theorem 4. For finite face-poset model M(X ), ≃SLCS± is a ±-bisimulation.

Proof. LetM(X ) = (W,⪯,V) be a finite face-poset model. We check that ≃SLCS±

satisfies requirement (2) of Definition 15. Requirement (1) is immediate. Let, for
points x, y ∈W , the SLCS±-formula δx,y be such that δx,y is true if x ≃SLCS± y,
and x |= δx,y and y |= ¬δx,y if x ̸≃SLCS± y. Put χ(x) =

∧
y∈W δx,y. It is easy to

see that, for x, y ∈W , it holds that

y |= χ(x) if and only if x ≃SLCS± y. (1)

Let Π be the set of all finite sequences (xi)
n
i=0 over M(X ). Note that such

sequences might not be ±-paths. Furthermore, let function zones : Π → N be
such that, for sequence s = (xi)

n
i=0,

zones(s)= 1 if n = 0
zones(s)= zones(s↑1) if n > 0 and x0 ≃SLCS± x1

zones(s)= zones(s↑1) + 1 if n > 0 and x0 ̸≃SLCS± x1

A sequence s is said to have k zones, if zones(s) = k.
Claim For all k ⩾ 1, for all x1, x2 ∈ W , if x1 ≃SLCS± x2 and π1 is a ±-path
from x1 and π1 has k zones, then a ±-path π2 from x2 exists such that π2 is
compatible with π1 with respect to ≃SLCS± . The claim is proven by induction
on k.
Base case, k = 1: If x1 ≃SLCS± x2 and π1 = (x′

i)
n
i=0 is a ±-path from x1 that has

1 zone only, then x1 ≃SLCS± x′
i for all i ∈ [0;n]. Let π2 be the ±-path (x2, x2, x2).

Since x1 ≃SLCS± x2, also x2 ≃SLCS± x′
i for all i ∈ [0;n]. Hence, π2 is compatible

with π1 with respect to ≃SLCS± with matching functions z1(i) = 1 for all i ∈ [0;n]
and z2(j) = 1 for all j ∈ [0; 2].
Induction step, k+1: Suppose x1 ≃SLCS± x2 and π1 = (x′

i)
n
i=0 is a ±-path from x1

of k+1 zones. Let m > 0 be such that x1 ≃SLCS± x′
i for all i ∈ [0;m) and

x1 ̸≃SLCS± x′
m. We distinguish two cases:

Case A: m = 1 (Figure 6 shows an example for m = 1 and length n = 3).
In this case, it holds that x1 |= γ(χ(x′

1), true). Since x2 ≃SLCS± x1, we also
have x2 |= γ(χ(x′

1), true). Therefore, a ±-path π′ exists from x2 such that
π′(1) |= χ(x′

1), i.e. π′(1) ≃SLCS± x′
1 by Equation 1 (Figure 6a). Let us, first

of all, consider the sequence π′
1 = (x′

1, x
′
1) · (π1↑1), obtained by inserting a

copy of x′
1 before (π1↑1) (Figure 6b and Figure 6c). Note that π′

1 is a ±-path
of length n. In fact, π′

1(0)⪯π′
1(1), since π′

1(0) = π′
1(1) by construction. Fur-

thermore, π′
1(n − 1) = π1(n − 1)⪰π1(n) = π′

1(n), where π1(n − 1)⪰π1(n) be-
cause π1 is a ±-path. Finally, all the subsequent intermediate elements of π′

1

are in the ⪯± relation by construction. Moreover, note that π′
1 has the same

number of zones as π1↑1, that is k. So, by the Induction Hypothesis, since
π′(1) ≃SLCS± x′

1, there is a ±-path π′′ from π′(1) such that π′′ comp≃SLCS±π′
1
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π1

x′
0 x′

1 x′
2 x′

3

x1

π′
x2

π′(1)

(a)

π1↑1
x′
1 x′

2 x′
3

(b)

π′
1

x′
1 x′

1 x′
2 x′

3

π′′

π′(1)

(c)

π1

x′
0 x′

1 x′
2 x′

3

x1

π2

(d)

Fig. 6: Example illustrating the proof of Theorem 4, for n = 3, Case A: m = 1.
In the figure, different zones are shown by using different colours, and we assume
zones(π1) = 4. Dotted lines in magenta indicate pairs belonging to ≃SLCS± .

(see Figure 6c). Now, using Lemma 1.2b, for sequences π′|[0; 1] and π1|[0; 1] and
±-paths π′′ and π′

1 respectively, we get (π′|[0; 1] · π′′) comp≃SLCS± (π1|[0; 1]) · π′
1.

Finally, noting that (π1|[0; 1]) ·π′
1 is exactly π1←1 and using Lemma 1.1, we get

(π1|[0; 1])·π′
1 comp

≃SLCS±π1. Since ≃SLCS± is an equivalence relation, we finally get,
using Lemma 1.2a, (π′|[0; 1] · π′′) comp≃SLCS±π1 and we choose π2 = π′|[0; 1] · π′′

(see Figure 6d)).

Case B: m > 1. If m > 1 then it holds that x1 |= γ(χ(x1), χ(x
′
m)). Since, by

hypothesis, x2 ≃SLCS± x1 also x2 |= γ(χ(x1), χ(x
′
m)). Thus, a ±-path π′, of some

length ℓ ≥ 2, from x2 exists, such that π′(ℓ) |= χ(x′
m) and π′(j) |= χ(x1) for all

j ∈ (0; ℓ). We have that x′
m ≃SLCS± π′(ℓ) and x1 ≃SLCS± π′(j) for all j ∈ (0; ℓ),

by Equation 1. In the sequel, we focus on the case 1 < m < n. The proof for the
case 1 < m = n is straightforward and is shown in Appendix A.
Suppose m > 1 and m < n (Figure 7 shows an example for m = 2 and n = 3).
In a similar way as before, we first consider the sequence π′

1 = (x′
m, x′

m) · (π1↑m)
and let h be the length of π′

1. Note that π′
1 is a ±-path. In fact (π1↑m) =

(. . . x′
n−1, x

′
n) has length at least 1—it has at least two elements, because m < n

and the length of (x′
m, x′

m) is 1. So, by definition of sequentialisation π′
1 has

length at least 2—it has at least three elements. Moreover π′
1(0) = π′

1(1) by
construction, so π′

1(0) ⪯ π′
1(1) and π′

1(h− 1) = π1(n− 1)⪰π1(n) = π′
1(h), since

π1 is a ±-path. Finally, all the subsequent intermediate elements of π′
1 are in the

⪯± relation by construction. Note, furthermore, that π′
1 has the same number of

zones as (π1↑m), namely k. So, by the Induction Hypothesis, since π′(ℓ) ≃SLCS±
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π1

x′
0 x′

1 x′
2 x′

3

x1

π′
x2

π′(ℓ)

(a)

π1↑2
x′
2 x′

3

(b)

π′
1

x′
2 x′

2 x′
3

π′′

π′(ℓ)

(c)

π1

x′
0 x′

1 x′
2 x′

3

x1

π2

(d)

Fig. 7: Example illustrating the proof of Theorem 4, for n = 3, Case B and
1 < m < n. In the figure, different zones are shown by using different colours, and
we assume zones(π1) = 3. Dotted lines in magenta indicate pairs that belong to
≃SLCS± .

x′
m we know that there is a ±-path π′′ from π′(ℓ) such that π′′ comp≃SLCS±π′

1 (see
Figure 7c). Now, using Lemma 1.2b, for sequences π′ and π1|[0;m] and ±-paths
π′′ and π′

1 respectively, we get (π′ · π′′) comp≃SLCS± (π1|[0;m]) · π′
1. Finally, noting

that (π1|[0;m]) · π′
1 is exactly π1←m and using Lemma 1.1, we get (π1|[0;m]) ·

π′
1 comp

≃SLCS±π1. Since ≃SLCS± is an equivalence relation, we finally get, using
Lemma 1.2a, π′ · π′′ comp≃SLCS±π1 and we choose π2 = π′ · π′′ (see Figure 7d).

This proves the claim. From the claim it follows immediately that ≃SLCS±

satisfies Definition 15(2). ⊓⊔

On the basis of Theorem 3 and Theorem 4, we have that the largest±-bisimulation
exists, it is a ±-bisimilarity, it is an equivalence relation, and it coincides with
logical equivalence in the face-poset induced by SLCS±:

Corollary 1. For every finite face-poset M(X ) = (W,⪯,V), w1, w2 ∈ W , the
following holds: w1 ⇌± w2 if and only if w1 ≃SLCS± w2. ⊓⊔

Example As expected, with reference to the face-poset modelM(X ) of Figure 4b
for polyhedral model X of Figure 3a, it is easy to see that cells C and CD satisfy
γ(green, true), and also γ(green, red) and red ∧ γ(green, red).

In conclusion, recalling that for all x ∈ X and SLCSγ formula Φ, we have that
X , x |= Φ if and only ifM(X ),M(x) |= Φ, we get the following final result
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Corollary 2. For all polyhedral models X , x, x1, x2 ∈ X : x1 ∼ x2 if and only
if x1 ≃SLCSγ x2 if and only if M(x1) ⇌± M(x2) if and only if M(x1) ≃SLCS±

M(x2). ⊓⊔

Example Figure 8 shows the minimal model min(M(X )), modulo ±-bisimilarity,
ofM(X ) (see Figure 4b). Model min(M(X )) has been obtained in a similar way
as described in Proposition 1 of [20] . Note that the model is transitive and reflex-
ive, because of Corollary 1 above, and the reflexivity and idempotency axioms of
topological modal logic. Thus, in Figure 8 the model is represented by its Hasse
diagram. Each element of min(M(X )) is coloured according to the atomic propo-
sition satisfied by the members of the corresponding ±-bisimilarity class and its
border has the colour of the class (see Figure 5b). The ±-path (1, 1, 1, 1, 3) in
the minimal model corresponds to (AB,ABC,BC,BCD,D) shown in Figure 4b
and (2, 5, 2) witnesses formula red ∧ γ(green, red) in the minimal model.

4

63

782

91 5

Fig. 8: Hasse diagram of the minimal model, modulo ±-bisimilarity, of the model
of Figure 4b.

4 Conclusions and Future Work

We have introduced a novel notion of spatial bisimilarity, namely ±-bisimilarity
on face-poset models representing polyhedra models. We have shown that it
coincides with logical equivalence based on the variant of SLCS proposed in [11].
Consequently, two points in a polyhedral model are simplicial bisimilar if and
only if their corresponding cells in the face-poset are ±-bisimilar.

Part of future work will be to investigate the relationship between bisimilarity
notions developed for face-poset models, and those developed in the context of
closure models, e.g. those studied in [18, 24]. Furthermore, we plan to develop
slightly weaker notions of ±-bisimilarity, together with their associated spatial
logics. Such coarser equivalences are of interest for further model reduction. We
will follow an approach along the lines of the work in [20] for CMs. Finally,
the issue of the impact of adding a “converse” operator for γ to the logic —
in a similar vein as for other reachability operators, in e.g. [8, 18, 24] — on the
associated bisimilarity and its geometrical interpretation is another subject for
future study.
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Appendices A and B, containing some proofs, are included here for
convenience of the reviewers. They are not meant to be part of the
final version of the paper, if accepted, where a reference to a technical
report containing all the proofs will be inserted.

A Proof of Theorem 4 - Case 1 < m = n

Suppose m > 1 and m = n (Figure 9 shows an example for m = n = 3).
In this case, π2 = π′ is a ±-path that is compatible with π1. Let, in fact, z1 :
[0;n]→W and z2 : [0; ℓ]→W be defined as follows:

z1(i) =

{
1 if i ∈ [0;n),
2 if i = n.

z2(j) =

{
1 if j ∈ [0; ℓ),
2 if j = ℓ.

We have that z1(1) = z2(1), z1(n − 1) = z2(ℓ − 1), and π2(j) ≃SLCS± π1(i)
whenever z1(i) = z2(j). In fact:
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Fig. 9: Example illustrating the proof of Theorem 4, for n = 3, Case B and
1 < m = n. In the figure, different zones are shown by using different colours,
and we assume zones(π1) = 2. Dotted lines in magenta indicate pairs that are
elements of ≃SLCS± .

– π2(ℓ) ≃SLCS± π1(m), since π2(ℓ) = π′(ℓ), π1(m) = x′
m, and π′(ℓ) |= χ(x′

m);

– for i ∈ [0;n) and j ∈ [0; ℓ) we have π2(j) ≃SLCS± π1(i) since π2(j) =
π′(j) ≃SLCS± x1 ≃SLCS± π1(i), since π2(0) = x2 ≃SLCS± x1 = π1(0) by hy-
pothesis and, for j ∈ (0; ℓ) and i ∈ [0;n), as a consequence of π′(j) |= χ(x1)
π1(i) |= χ(x1), as shown above.

B Auxiliary Lemmas

Lemma 1 Let M(X ) = (W,⪯,V) be a face-poset, B ⊆ W ×W a relation,
π, π1, π2 ±-paths with π of length ℓ > 0, s1 : [0; ℓ1] → W, s2 : [0; ℓ2] → W
sequences of length ℓ1, ℓ2 ∈ N respectively, m ∈ (0; ℓ). The following holds:

1. π compB(π←m).
2. If B is an equivalence relation, then:

(a) so is compB, and
(b) the sequentialisation of two sequences of equivalent elements and non-

decreasing first step with two compatible ±-paths results in compatible
±-paths. Formally: if π1 comp

Bπ2, sh(0)⪯sh(1) and sh(ℓh) = πh(0) for
h ∈ [1; 2] with B(s1(i), s2(j)) for all i ∈ [0; ℓ1) and j ∈ [0; ℓ2), then s1 ·π1

and s2 · π2 are ±-paths that are compatible with respect to B.

Proof. For what concerns point 1 just consider functions z : [0; ℓ] → [1; ℓ + 1]
and z′ : [0; ℓ+ 1]→ [1; ℓ+ 1] defined as follows

z(i) = i+ 1. z′(j) =

{
z(j) if i ≤ m,
z(j − 1) if i > m.

It is easy to check that z and z′ are matching functions for π and π←m with
respect to B.
As far as point 2 is concerned, we only prove Point (2a), i.e. that if B is an
equivalence relation, then so is compB . The other part of the statement, i.e.
Point (2b), follows directly from the conditions on sequences s1 and s2 and the
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relevant definitions.
The proof for reflexivity and symmetry of compB is straightforward. We prove
transitivity. Let π1 : [0; ℓ1]

±→W , π2 : [0; ℓ2]
±→W , and π3 : [0; ℓ3]

±→W . Suppose
π1 comp

Bπ2 and π2 comp
Bπ3. Let f1 : [0; ℓ1] → [1, N ] and f2 : [0; ℓ2] → [1, N ]

be the relevant matching functions for π1 comp
Bπ2 and, using Lemma 2 be-

low, let f2 : [0; ℓ2] → [1, N ] and f3 : [0; ℓ3] → [1, N ] be the matching func-
tions relevant for π2 comp

Bπ3. We show that f1 and f3 are matching func-
tions for π1 comp

Bπ3. Let i1 ∈ [0; ℓ1] and i3 ∈ [0; ℓ3] s.t. f1(i1) = f3(i3). Since
π1 comp

Bπ2—and f1 is total and f2 is surjective—there is i2 s.t. f1(i1) = f2(i2),
and so B(π1(i1), π2(i2)). Moreover, since f1(i1) = f3(i3), we also get f2(i2) =
f3(i3) and, consequently, B(π2(i2), π3(i3)), given that π2 comp

Bπ3. By transitiv-
ity of B we have B(π1(i1), π3(i3)), which brings to the assert. ⊓⊔

Lemma 2. Let M(X ) = (W,⪯,V) a face-poset and B ⊆ W ×W an equiva-
lence relation. Let π1 : [0; ℓ1]

±→ W and π2 : [0; ℓ2]
±→ W such that π1 comp

Bπ2

with N zones and z1 : [0; ℓ1] → [1, N ] and z2 : [0; ℓ2] → [1, N ] be the relevant
matching functions. Let furthermore π3 : [0; ℓ3]

±→W such that π2 comp
Bπ3 with

N ′ zones and matching functions z′2 : [0; ℓ2] → [1, N ′] and z3 : [0; ℓ3] → [1, N ′].
Then N ′ = N and z′2 = z2. ⊓⊔

Proof. A sketch of the proof follows. Let π1 comp
Bπ2 with N and matching

functions z1 : [0; ℓ1] → [1;N ] and z2 : [0; ℓ2] → [1;N ], and suppose B is an
equivalence over W . By definition of matching functions and the fact that B is
an equivalence, it follows that any set Sh,k = {πh(i) | zh(i) = k}, for h ∈ [1; 2]
and k ∈ [1;N ] is a subset of an equivalence class of B. Note that such Sh,k is
zone k of πh and that such a zone is the longest subsequence of πh composed
of immediately successive (i.e. adjacent in the ±-path) elements of πh that are
equivalent w.r.t B. Suppose now π2 comp

Bπ3, with N ′ zones and z′2 : [0; ℓ2] →
[1, N ′] and z3 : [0; ℓ3] → [1, N ′]. Define S′

h,k as Sh,k, but w.r.t. π2 and π3. If
N ′ < N this would mean that in π2 there would be adjacent equivalent elements
that fall into different zones, which would contradict the fact that the number
of zones of π2 is N . Similarly, if N ′ > N then there would be a k such that S2,k

contains points that are not equivalent w.r.t. B: again a contradiction. Thus
N = N ′ and, consequently, z′2 = z2. ⊓⊔

Remark 1. Note that the reasoning in the proof of Lemma 2 above is valid
only if B is an equivalence relation. Consider for instance the following ±-
paths, πx, πy, πz, for appropriate xi, yi, zi, for i ∈ [0; 2]: πx = (x0, x1, x2), πy =
(y0, y1, y2), πz = (z0, z1, z2), where B = {(xi, yj) | i, j ∈ [0; 2]} ∪ {(yk, zk) | k ∈
[0; 2]}.

Clearly B is not an equivalence relation. If we consider πx and πy we see they
are compatible and there is only one zone. If instead we consider πy and πz, we
see that also they are compatible, but the number of zones is necessarily three.


