
Logical Methods in Computer Science
Volume 19, Issue ?, 2023, pp. ?:1–?:26
https://lmcs.episciences.org/

Submitted Mar. 15, 2022
Published ???. XX, 2023

LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT

JAN FRISO GROOTE , JAN MARTENS , AND ERIK P. DE VINK

Eindhoven University of Technology, The Netherlands
e-mail address: j.f.groote@tue.nl, j.j.m.martens@tue.nl, e.p.d.vink@tue.nl

Abstract. We provide time lowerbounds for sequential and parallel algorithms deciding
bisimulation on labelled transition systems that use partition refinement. For sequential
algorithms this is Ω((m+n) logn) and for parallel algorithms this is Ω(n), where n is the
number of states and m is the number of transitions. The lowerbounds are obtained by
analysing families of deterministic transition systems, ultimately with two actions in the
sequential case, and one action for parallel algorithms.

For deterministic transition systems with one action, bisimilarity can be decided se-
quentially with fundamentally different techniques than partition refinement. In particular,
Paige, Tarjan, and Bonic give a linear algorithm for this specific situation. We show, ex-
ploiting the concept of an oracle, that this approach is not of help to develop a faster generic
algorithm for deciding bisimilarity. For parallel algorithms there is a similar situation where
our approach can be applied, too.

1. Introduction

Strong bisimulation [Par81, Mil80] is the gold standard for equivalence on labelled transition
systems (LTSs). Deciding bisimulation equivalence among the states of an LTS is a crucial
step for tool-supported analysis and model checking of LTSs. The well-known and widely-
used partition refinement algorithm of Paige and Tarjan [PT87] has a worst-case upperbound
O(m logn) for establishing the bisimulation equivalence classes. Here, n is the number of
states and m is the number of transitions in an LTS.

The algorithm of Paige and Tarjan seeks to find, starting from an initial partition, via
refinement steps, the coarsest stable partition, that in fact is built from the bisimulation
equivalence classes that are looked for. The algorithm achieves the complexity of the
logarithm of the number of states times the number of transitions by restricting the amount
of work for refining blocks and moving states. When refining, the splitting blocks are
investigated using an intricate bookkeeping trick. Only the smaller parts of a block that
are to be moved to a new block are split off, leaving the bulk of the original block at its
place. These specific ideas go back to [Hop71] and make the difference with the earlier
O(mn) algorithm of Kanellakis and Smolka [KS90]. The algorithms by Kanellakis-Smolka
and Paige-Tarjan, with the format of successive refinements of an initial partition till a

Key words and phrases: Bisimilarity, partition refinement, labelled transition system, lowerbound.
Partially funded by the AVVA project NWO 612.001.751/TOP1.17.002.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(?:?)2023
© J.F. Groote, J.J.M. Martens, and E.P. de Vink
CC© Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-2196-6587
https://orcid.org/0000-0003-4797-7735
https://orcid.org/0000-0001-9514-2260
http://creativecommons.org/about/licenses

?:2 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

fixpoint is reached, have been leading for variations and generalisations for deciding specific
forms of (strong) bisimilarities, see e.g. [Buc99, DPP04, GVV18, WDMS20, JGKW20].

We are interested in the question whether the Paige-Tarjan algorithm is computationally
optimal. A lowerbound for a related problem is provided in [BBG17] that studies colour
refinement of graphs. Colour refinement computes, given a graph and an initial colouring,
a minimal consistent colouring such that every two equally coloured nodes have, for every
colour, the same number of neighbours of the same colour. More specifically, in that paper
it is proven that for a family of graphs with n nodes and m edges, finding the canonical
coarsest stable colouring is in Ω((m + n) log n). However, the costs for computations on
graphs for colour refinement are charged differently than those for partition refinement for
bisimulation on LTSs. The former takes edges between blocks of uniformly coloured nodes
into account, the latter focuses on the size of newly created blocks of states. In [BBG17]
it is described how the family of graphs underlying the lowerbound for colour refinement
can be transformed into a family of Kripke structures for which computing bisimulation
is Ω((m+ n) log n) when counting the numbers of edges.

In this paper we follow a different approach to obtain a lowerbound. We define the
concept of a partition refinement algorithm and articulate the complexity in terms of the
number of states that are moved. In particular, we define the notion of a valid refinement
sequence which has its counterpart in iteration sequences for colour refinement. Then,
we introduce a family of (deterministic) LTSs, called bisplitters, for which we show that
computing bisimulation requires n log n work. The family of n log n-hard LTSs that we
use to establish the lowerbound, involves an action set of log n actions. Building on this
result and exploiting ideas borrowed from [PTB85] to extend the bisimulation classes for
the states in the end structures, i.e. cycles, to the states of the complete LTS, we provide
another family of (deterministic) LTSs that have two actions only. Then we argue that for
the two-action case the complexity of deciding bisimulation is Ω((m+ n) log n). We want to
stress that the families involved consist of deterministic LTSs.

Recently, a linear time algorithm for bisimilarity was proposed for a PRAM (Parallel
Random Access Machine) using max(n,m) processors [MGH+21]. This algorithm also
employs partition refinement. This naturally raises the question whether the algorithm
is optimal, or whether it can fundamentally be improved. We answer the question in the
present paper by showing an Ω(n) lowerbound for parallel algorithms employing partition
refinement, using a family of deterministic transition systems with one action label.

We obtain our lowerbound results assuming that algorithms use partition refinement.
However, one may wonder if a different approach than partition refinement can lead to
a faster decision procedure for bisimulation. For the specific case of deterministic LTSs
with a singleton action set and state labelling, Robert Paige, Robert Tarjan and Robert
Bonic propose a sequential algorithm [PTB85] that uses linear time. We refer to it as
Roberts’ algorithm. In [CRS08] it is proven that partition refinement à la Hopcroft has a
lowerbound of Ω(n log n) in this case. Concretely, this means that in the one-letter case
Roberts’ algorithm achieves the essentially better performance by using a completely different
technique than partition refinement to determine the bisimulation equivalence classes.

Crucial for Roberts’ algorithm is the ability to identify, in linear time, the bisimilarity
classes of cycles. In this paper we show that if the alphabet consists of at least two actions,
a rapid decision on ‘cycles’ as in [PTB85] will not be of help to improve on the Paige-Tarjan
algorithm for general LTSs. We argue that the speciality in the algorithm of [PTB85], viz.
to be able to quickly decide the bisimilarity of the states on a cycle, can be captured by

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:3

means of a stronger notion, namely an oracle that provides the bisimulation classes of the
states of a so-called ‘end structure’, the counterpart in the multiple action setting of a cycle
in the single action setting. The oracle can be consulted to refine the initial partition with
respect to the bisimilarity on the end structures of the LTS for free. We show that for the
class of sequential partition refinement algorithms enhanced with an oracle as described,
thus encompassing the algorithm of [PTB85], the (m+n) log n lowerbound persists for action
sets with at least two actions.

For parallel algorithms a similar situation occurs as for deterministic Kripke structures:
an O(log n) parallel algorithm exists [JR94] to determine the bisimulation equivalence classes.
This algorithm also necessarily employs techniques that go beyond partition refinement. We
believe that these techniques cannot be used either to fundamentally improve the complexity
of determining bisimilarity on LTSs, but leave the proof as an open question.

The document is structured as follows. In Section 2 we give the necessary preliminaries on
the problem. A recap of the linear algorithm of [PTB85] is provided in Section 3. Next, we
introduce the family of LTSs Bk for which we show in Section 4 that deciding bisimilarity
is Ω(n log n) for the class of partition refinement algorithms and for which we establish in
Section 5 an Ω(n log n) lowerbound for the class of partition refinement algorithms enhanced
with an oracle for end structures. In Section 6 we introduce the family of deterministic
LTSs Ck, each involving two actions only, to take the number of transitions m into account
and establish an Ω((m + n) log n) lowerbound for partition refinement with and without
an oracle for end structures. In Section 7 we provide the Ω(n) lowerbound for parallel
refinement algorithms. In Section 8 we discuss the differences and similarities with the
lowerbound results on colour refinement of [BBG17]. We wrap up with concluding remarks.

Note The present paper is an extension the conference paper [GMV21] that appeared
in the proceedings of CONCUR 2021.

2. Preliminaries

Given a set of states S, a partition of S is a set of subsets of states π ⊆ 2S such that
∅ 6∈ π, for all B,B′ ∈ π either B ∩ B′ = ∅ or B = B′, and

⋃
B∈π B = S. The elements of

a partition are referred to as blocks. A partition π of S induces an equivalence relation
=π ⊆ S × S, where for two states s, t ∈ S, s =π t iff the states s and t are in the same
block, i.e. there is a block B ∈ π such that s, t ∈ B. A partition π′ of S is a refinement of
a partition π of S iff for every block B′ ∈ π′ there is a block B ∈ π such that B′ ⊆ B. It
follows that each block of π is the disjoint union of blocks of π′. The refinement is strict
if π 6= π′. The common refinement of two partitions π and π′ is the partition with blocks
{B ∩ B′ | B ∈ π, B′ ∈ π′ : B ∩ B′ 6= ∅ }. A sequence of partitions (π0, . . . , πn) is called a
refinement sequence iff πi+1 is a refinement of πi, for all 0 6 i < n.

Definition 2.1. A labelled transition system with initial partition (LTS) is a four-tuple
L = (S,A ,→, π0) where S is a finite set of states S, A is a finite alphabet of actions,
→ ⊆ S ×A × S is a transition relation, and π0 is a partition of the set of states S. A labelled
transition system with initial partition is called deterministic if the transition relation is a
total function S ×A → S.

Given an LTS L = (S,A ,→, π0), states s, t ∈ S, and an action a ∈ A , we write s
a−→ t

instead of (s, a, t) ∈ →. For notational convenience, we occasionally write L[U] = { t ∈ S |

?:4 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

∃s ∈ U∃a ∈ A : s
a−→ t }, and, for a deterministic LTS L, we may use L(s, a) to denote the

unique state t of L such that s
a−→ t. We say that s reaches t via a iff s

a−→ t. A state s
reaches a set U ⊆ S via action a iff there is a state in U that is reached by s via a, notation
s
a−→ U . A set of states V ⊆ S is called stable under a set of states U ⊆ S iff for all actions a,

either all states in V reach U via a, or no state in V reaches U via a. Thus, a set of states V
is not stable under U iff for two states s and t in V and an action a it holds that s

a−→ U
and t

a9 U . A partition π is stable under a set of states U iff each block B ∈ π is stable
under U . A partition π is called stable iff it is stable under all its blocks. So, for any two
blocks B and C of π and any action a ∈ A , either each state s of B has an a-transition
to C or each state s of B doesn’t have an a-transition to C.

Following [Par81, Mil80], given an LTS L, a symmetric relation R ⊆ S × S is called a
bisimulation relation iff for all (s, t) ∈ R and a ∈ A , we have that s

a−→ s′ for some s′ ∈ S
implies that t

a−→ t′ for some t′ ∈ S such that (s′, t′) ∈ R. In the setting of the present
paper, as we incorporate the initial partition in the definition of an LTS, bisimilarity is
slightly non-standard. For a bisimulation relation R, we additionally require that it respects
the initial partition π0 of L, i.e. (s, t) ∈ R implies s =π0 t. Two states s, t ∈ S are called
(strongly) bisimilar for L iff a bisimulation relation R exists with (s, t) ∈ R, notation s↔L t.
Bisimilarity is an equivalence relation on the set of states of L. We write [s]

↔
L for the

bisimulation equivalence class of the state s in L.
Note that for a deterministic LTS with a set of states S and initial partition π0 = {S},

we have that π0 itself already represents bisimilarity, contrary to LTSs in general.

Partition refinement algorithms for deciding bisimilarity on LTSs start with an initial
partition π0, which is subsequently repeatedly refined until a stable partition is reached.
Thus, unstable blocks are replaced by several smaller blocks. The stable partition that is
reached happens to be the coarsest stable partition of the LTS refining π0 and coincides
with bisimilarity [KS90, PT87].

Below we define so-called valid refinement sequences. An algorithm is called a partition
refinement algorithm iff every run of the algorithm is reflected by a valid refinement sequence
(π0, . . . , πn). All the lowerbounds that we provide apply to algorithms producing valid
partition sequences, which virtually all known bisimulation algorithms do, and as such this
is the core definition in this paper.

A partition sequence (π0, . . . , πn) is valid when the direct successor πi of a partition πi−1
in the sequence is obtained by splitting one or more unstable blocks in πi−1 using only
information available in πi−1. Furthermore, the last partition in the sequence, the partition πn,
is stable. If block B of πi−1 is replaced in πi because it is not stable under block B′ of πi−1,
then B′ is referred to as a splitter block.

Definition 2.2. Let L = (S,A ,→, π0) be an LTS, and π a partition of S. A refinement π′

of π is called a valid refinement with respect to L iff the following criteria hold.

(a) π′ is a strict refinement of π.

(b) If s 6=π′ t for s, t ∈ S, then (i) s 6=π t or (ii) s′ ∈ S exists such that s
a−→ s′ for some a ∈ A

and, for all t′ ∈ S such that t
a−→ t′, it holds that s′ 6=π t

′, or the other way around with
t replacing s.

A sequence of partitions Π = (π0, . . . , πn) is called a valid partition sequence iff every
successive partition πi, for 0 < i 6 n, is a valid refinement of πi−1, and, moreover, the
partition πn is stable.

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:5

When a partition π is refined into a partition π′, states that are in the same block but can
reach different blocks can lead to a split of the block into smaller subsets, say k subsets.
This means that a block B ∈ π is split into blocks B1, . . . , Bk ∈ π′. The least amount of
work is done for this operation if we create new blocks for the least number of states. That
means if B ∈ π is split into B1, . . . , Bk ∈ π′ and B1 is the biggest block, then the states of
B2, . . . , Bk are moved to new blocks and the states of B1 remain in the current block that
was holding B. Therefore, we define the refinement costs rc for the refinement π′ of π by

rc(π, π′) =
∑

B∈π
(
|B| −maxB′∈π′ : B′⊆B |B′|

)
.

For a sequence of refinements Π = (π0, . . . , πn) we write rc(Π) for
∑n

i=1 rc(πi−1, πi). For an
LTS L, we have

rc(L) = min{ rc(Π) | Π a valid refinement sequence for L }.

Note that this complexity measure is different from the one used in [BBG17], which counts
transitions. Our complexity measure rc is bounded from above by the former.

In various examples below we characterise the states of LTSs by sequences of bits. The
set of bits is denoted as B = {0, 1}. Bit sequences of length up to and including k are
written as B6k. The complement of a bit b is denoted by b. Thus 0 = 1 and 1 = 0. For
two bit sequences σ, σ′, we write σ ď σ′ to indicate that σ is a prefix of σ′ and write σ ≺ σ′
iff σ is a strict prefix of σ′. For a bit sequence σ ∈ Bk, for any i, j 6 k, we write σ[i] to
indicate the bit at position i starting from position 1. We write σ[i:j] = σ[i]σ[i+1] · · ·σ[j] to
indicate the subword from position i to position j. Occasionally we use, for a bit sequence σ,
the notation σBk to denote {σσ′ | σ′ ∈ Bk }, the set of all bit sequences of length |σ|+ k
having σ as prefix.

3. Roberts’ algorithm

Most algorithms to determine bisimulation for an LTS use partition refinement. However,
there are a few notable exceptions to this. For the class of deterministic LTSs that have a
singleton action alphabet, deciding the coarsest stable partition, i.e. bisimilarity, requires
linear time only; a linear algorithm is due to Robert Paige, Robert Tarjan, and Robert
Bonic [PTB85], which we therefore aptly refer to as Roberts’ algorithm.

The algorithm of [PTB85] exploits the specific structure of a deterministic LTS with
one action label. An example of such a transition system is depicted in Figure 1, where the
action label itself has been suppressed and the initial partition is indicated by single/double
circled states. In general, a deterministic LTS with one action label can be characterised as
a directed graph, possibly with self-loops, consisting of a number of cycles of one or more
states together with root-directed trees with their root on a cycle. Below we refer to a cycle
with the trees connected to it as an end structure. In a deterministic LTS with one action
label, each state belongs to a unique end structure; it is on a cycle or has a unique directed
path leading to a cycle.

In brief, Roberts’ algorithm for deterministic LTSs with one action label can be described
as follows (see [PTB85] for more details).

(1) As preparatory step, find all the end structures of the LTS, i.e. detect all cycles, and all
root-oriented trees leading to cycles.

?:6 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

c1

c2

c3

c4

c5

c6

s11

s12

s13

s14

T1

s21

s22
s23

T2

s32
s31

T3

s41

s42s43

s44

T4

s51

s52

s53

T5

Figure 1: An example of a deterministic LTS with initial partition (action label suppressed).

(2) Observe that each state s on a cycle encodes a sequence of blocks, viz. the sequence
starting from the block the state is in, and blocks encountered when following the
transitions, up to the state on the cycle that leads back to s. This sequence of blocks
forms a word w over the alphabet of the initial partition, where each block of the initial
partition is a symbol of this alphabet. The word w can be uniquely written as vk with v
of minimal length and k > 0. The string v is referred to as the repeating prefix of the
state s.

We consider the repeating prefixes of all states on the cycle and identify the lexico-
graphically least repeating prefix v. This can be done in linear time in the size of the
cycle using a string matching algorithm due to Knuth, Morris, and Pratt [KMP77]. The
lexicographically least repeating prefix v and the minimal number of transitions that is
required to reach a state t from a state that has v as repeating prefix, determines the
bisimulation equivalence class of the state t. We encode this bisimulation equivalence
class by the corresponding rotation of the prefix v. This way the bisimulation class is
established for all states on all cycles. By comparing least repeating prefixes bisimilarity
across cycles can be detected.

(3) By a backward calculation along the path leading from a state up in a tree down to
their root on a cycle, the bisimilarity equivalence classes for the remaining states can
subsequently be determined in linear time as well. The root of the tree is a state on the
cycle and therefore has been assigned a string, hence a bisimulation class. We assign
to a child the string of the parent prepended with the symbol of the initial class of the
child.

Example. The deterministic LTS of Figure 1 has a single end structure, viz. the cycle
formed by the states c1 to c6 and five trees, tree T1 with leaf s14 and rooted in c1, tree T2
with leaves s22 and s23 rooted in c2, tree T3 with leaves s31 and s32 rooted in c3, the tree T4

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:7

with leaves s42, s43, and s44 rooted in c4, and the tree T5 with leaves s51 and s53 rooted
in c5.

With the symbol A for an accepting, i.e. double-circled, state and the symbol N for
a non-accepting state, i.e. not double-circled, we associate the following sequences of A’s
and N ’s to the nodes on the cycle:

c1 : ANAANA c3 : AANAAN c5 : NAANAA
c2 : NAANAA c4 : ANAANA c6 : AANAAN .

With A preceding N , the lexicographically least repeating prefix is AAN . We assign states c1
and c4 to the bisimulation class of ANA, states c2 and c5 to the bisimulation class of NAA,
and states c3 and c6 to the bisimulation class of AAN . Here, ANA and NAA are the 1-place
and 2-place rotations of AAN , respectively.

Moving to tree T1 with root c1 having string ANA associated with it, we concatenate for
state s11 the symbol A, since s11 has been assigned in the block of accepting states initially,
followed by the string ANA of c1, forming AANA which is reduced to AAN (exploiting
the equality A(ANA)ω = (AAN)ω). Thus, we see that the states s11 and c6 are bisimilar.
Similarly, for state s12 we prepend the symbol N of the child s12 to the string AAN of
the parent s11 and obtain NAAN which is reduced to NAA (now exploiting the equality
N(AAN)ω = (NAA)ω), as for state c5. Considering in contrast the state s41, with symbol N
and which is child of state c4 with string ANA, s41 gets assigned the string NANA (which
can not be reduced, since N(ANA)ω 6= (NAN)ω). Subsequently, the states s42 to s44 get
assigned ANANA.

Roberts’ algorithm solves the so-called single function coarsest partition problem in O(n)
for a set of n elements. A striking result is that any algorithm that is based on partition
refinement requires Ω(n log n), as witnessed in [BC04, CRS08], where it is shown that
partition refinement algorithm of Hopcroft [Hop71] cannot do better than O(n log n). Thus,
Roberts’ algorithm must use other techniques than partition refinement. Below we come
back to this observation, showing that it is not possible to use the ideas in Roberts’ algorithm
to come up with a linear algorithm for computing bisimilarity for a class of LTSs that either
includes nondeterministic LTSs, or allows LTSs to involve more than one action label.

4. Bk is Ω(n log n) for partition refinement

In this section we introduce a family of deterministic LTSs called bisplitters Bk for k > 1,
on which the cost of any partition refinement algorithm is Ω(n log n), where n is the number
of states. Building on the family of Bk’s, we propose in Section 6 a family of LTSs Ck
for which the cost of partition refinement is Ω((n + m) log n), where m is the number of
transitions.

Definition 4.1. For k > 1, the bisplitter Bk is defined as the LTS with initial partition
Bk = (Bk,Ak,→, πk0) where the set of states Bk is the set of all bit strings of length k,
Ak = {a1, . . . , ak−1} is a set of k−1 actions, the transition relation is given by

{σ ai−→ σ | σ ∈ Bk, 1 6 i < k : σ[i+1] = 0 } ∪

{σ ai−→ σ[1:i−1]σ[i]0k−i | σ ∈ Bk, 1 6 i < k : σ[i+1] = 1 },

and πk0 = {B0, B1}, where B0 = 0Bk−1 and B1 = 1Bk−1, is the initial partition.

?:8 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

0 1
B1

00 01 10 11
B2

a1

a1

a1

a1

000 001 010 011

100 101 110 111

a1, a2 a1

a2

a1

a2

a1

a2

a1, a2

a2

a1

a1

a2

a1

a2

B3

Figure 2: The bisplitters B1, B2, and B3. Initial partitions are indicated by single-circled
and double circled states.

We see that the bisplitter Bk has 2k states, viz. all bit strings of length k, and k−1 different
actions. The LTS Bk is deterministic. Each state has exactly one outgoing transition for
each action ai, 1 6 i < k. Thus, Bk has (k−1)2k transitions: (i) a self-loop for bitstring σ
with label ai if the i+1-th bit σ[i+1] of σ equals 0; (ii) otherwise, i.e. when bit σ[i+1]
equals 1, the bitstring σ has a transition for label ai to the bitstring that equals the first i−1
bits of σ, flips the i-th bit of σ, and has k−i many 0’s following. The initial partition πk0
distinguishes the bit strings starting with 0 from those starting with 1.

Drawings of the first three bisplitters B1 to B3 are given in Figure 2. We see in
the picture of B3 for example for the bitstring σ = 101, an a1-transition to itself, as
σ[1+1] = σ[2] = 0 and an a2-transition to the bitstring 110, as σ[2+1] = σ[3] = 1,

σ[2] = 0 = 1, and σ[1]σ[2]0 = 110. As another illustration, for the bitstring σ = 011 we have

an a1-transition to σ[1]00 = 100 since σ[1+1] = 1 and an a2-transition to σ[1]σ[2]0 = 000

since σ[2+1] = 1.
Also note that B3 contains two copies of B2. In the copies, the action label a1 of B2

maps to the action label a2 in B3, and each state associated with a bitstring σ ∈ B2

produces two copies in B3; one copy is obtained by the mapping σ 7→ 0σ and the other
copy is obtained by the mapping σ 7→ 1σ. In general, bisplitter Bk is twice embedded in
bisplitter Bk+1 via the mappings σ 7→ 0σ and σ 7→ 1σ from Bk to Bk+1 for the states using
the mapping ai 7→ ai+1 from Ak to Ak+1 for the action labels. Note that initial partitions
are not respected.

Definition 4.2. For any string σ ∈ B6k, we define the prefix block Bσ of Bk to be the
block Bσ = {σ′ ∈ Bk | σ ď σ′ }.

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:9

The following lemma collects a number of results related to prefix blocks that we need in
our complexity analysis for computing bisimilarity for the bisplitters.

Lemma 4.3. Let k > 1 and consider the LTS with initial partition Bk = (Bk,Ak,→, πk0),
i.e. the k-th bisplitter. Let the sequence Π = (πk0 , . . . , πn) be a valid refinement sequence
for Bk. Then it holds that

(a) Every partition πi in Π contains prefix blocks only.
(b) If partition πi in Π contains a prefix block Bσ with |σ| < k, then πi is not stable.
(c) If Bσ is in πi, for 0 6 i < n, then either Bσ ∈ πi+1, or Bσ1 ∈ πi+1 and Bσ0 ∈ πi+1.

Proof. (a) Initially, for πk0 = {B0, B1}, both its blocks are prefix blocks by definition. We
prove, if partition πi, for 0 6 i < n, consists of prefix blocks only, then all blocks in πi+1 are
prefix blocks as well.

Assume, to arrive at a contradiction, that there is a block B ∈ πi+1 that is not a prefix
block. Because πi+1 is a refinement of πi, we have B ⊆ Bσ for some prefix block Bσ ∈ πi.
This means that σ is a common prefix of all elements of B. We can choose θ such that σθ is
the longest common prefix of all elements of B. Since every singleton of Bk is a prefix block,
B is not a singleton. This implies that |σθ| < k and that there are elements σ1 and σ2 of B
such that σθ0 is a prefix of σ1 and σθ1 is a prefix of σ2. Because B is not a prefix block by
assumption, there must exist a string τ ∈ Bk with prefix σθ such that τ 6∈ B. Obviously, we
have either (i) σθ0 is a prefix of τ , or (ii) σθ1 is a prefix of τ . We will show that in both
these cases τ in fact belongs to B, thus arriving at a contradiction.

(i) Suppose σθ0 is a prefix of τ . We argue that τ and σ1 belong to the same block in πi+1

since, for each aj , 1 6 j < k, the target states σ′1 and τ ′ of the transitions σ1
aj−→ σ′1

and τ
aj−→ τ ′ belong to the same block of πi. There are three cases:

• j < |σθ|: Since σθ is a prefix of both σ1 and τ , we have σ1[j+1] = τ [j+1].
– If σ1[j+1] = τ [j+1] = 0, then σ′1 = σ1 and τ ′ = τ . Obviously, both σ′1 and τ ′

belong to Bσ (since σ1 and τ belong to Bσ).

– If σ1[j+1] = τ [j+1] = 1, then both σ′1 and τ ′ are of the form %[1:j−1]%[j]0k−j

where % = σθ, and we have σ′1 = τ ′. So, they clearly belong to the same block
of πi.

• j = |σθ|: Since σ1[j+1] = τ [j+1] = 0, we have σ′1 = σ1 and τ ′ = τ , and hence both
σ′1 and τ ′ belong to Bσ.
• j > |σθ|: In this case, for a string of the form σθ%, an aj-transition leads to a string

of the form σθ%′. In particular this means that if j > |σθ| and σ1
aj−→ σ′1 and τ

aj−→ τ ′,
then σθ is a prefix of both σ′1 and τ ′, and σ′1 and τ ′ belong to Bσ in πi.

(ii) Now, suppose σθ1 is a prefix of τ . We argue that τ and σ2 belong to the same block
in πi+1 because for each aj (where 1 6 j < k) the transitions σ2

aj−→ σ′2 and τ
aj−→ τ ′

lead to the same block of πi. Also, here there are three cases:
• j < |σθ|: Similar as for (i).

• j = |σθ|: Since σ1[j+1] = τ [j+1] = 1, we have σ′1 = τ ′ = %[1:j−1]%[j]0k−1 where
% = σθ, so clearly σ′1 and τ ′ are in a same block in πi.
• j > |σθ|: Similar as for (i).
Thus, both in case (i) and in case (ii) we see that we must have τ ∈ B, contradicting
the choice for τ .

?:10 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

(b) Suppose Bσ ∈ πi and |σ| = ` < k. Let θ ∈ B∗ be such that σ1 = σ0θ and σ2 = σ1θ.

Then we have σ1
a`−→ σ1 ∈ Bσ and σ2

a`−→ σ[1:`−1]σ[`]0k−` /∈ Bσ. Thus Bσ isn’t stable, and
hence πi isn’t either.

(c) We show that for a prefix block Bσ ∈ πi, a bit b ∈ B and all θ, θ′ ∈ Bk−(|σ|+1), the states
σ1 = σbθ and σ2 = σbθ′ are not split by action aj , for 1 6 j < k, and thus are in the
same block of πi+1. Pick j, 1 6 j < k, and suppose σ1

aj−→ σ′1 and σ2
aj−→ σ′2. If j 6 |σ| and

σ[j + 1] = 0 then σ′1 = σ1 and σ′2 = σ2, hence both σ′1, σ
′
2 ∈ Bσ don’t split for aj . If j 6 |σ|

and σ[j + 1] = 1 then σ′1 = σ′2 and don’t split for aj either. If j > |σ| then both σ′1, σ
′
2 ∈ Bσ

and don’t split for aj either.

With the help of the above lemma, clarifying the form of the partitions in a valid refinement
sequence for the bisplitter family, we are able to obtain a lowerbound for any algorithm
exploiting partition refinement to compute bisimilarity.

Theorem 4.4. For any k > 1, application of partition refinement to the bisplitter Bk has
refinement costs rc(Bk) ∈ Ω(n log n) where n = 2k is the number of states of Bk.

Proof. Let Π = (πk0 , . . . , πm) be a valid refinement sequence for Bk. By items (a) and (b) of
Lemma 4.3, we have πm = { {s} | s ∈ Bk } since πm is stable and thus contains singleton
blocks only. Item (c) of Lemma 4.3 implies that in every refinement step (πi, πi+1) a block
is either kept or it is refined in two prefix blocks of equal size. The cost of refining the
block Bσ, for 1 6 |σ| 6 k−1, into Bσ0 and Bσ1 is the number of states in Bσ0 or the number

of states in Bσ1, which are the same and are equal to 1
22k−|σ|. Therefore, we have

rc(Π) =
k−1∑
`=1

2`
1

2
2k−` =

k−1∑
`=1

1

2
2k = (k−1)2k−1 .

With n the number of states of Bk, we have that n = 2k, thus k−1 = log 1
2n. Hence,

rc(Π) = 1
2n log 1

2n which is in Ω(n log n).
Thus, for every valid partition refinement sequence Π for Bk we have rc(Π) ∈ Ω(n log n).

In particular this bound applies to the valid refinement sequence of minimal cost, and hence
we conclude rc(Bk) ∈ Ω(n log n).

5. Bk is Ω(n log n) for partition refinement with an oracle

In the previous section we have shown that computing bisimilarity with partition refinement
for the family of bisplitters is Ω(n log n). The bisplitters are deterministic LTSs but have
growing actions sets. For the corner case of deterministic transition systems with a singleton
action set, Roberts’ algorithm discussed in Section 3 establishes bisimilarity inO(n). Linearity
was obtained by the trick of calculating the (lexicographically) least repeating prefix on the
cycles in the transition system.

One may wonder whether an approach different from partition refinement of establishing
bisimulation equivalence classes for transition systems with non-degenerate action sets can
provide a linear performance. In order to capture the approach of [PTB85], we augment
the class of partition refinement algorithms with an oracle. At the start of the algorithm
the oracle can be consulted to identify the bisimulation classes for designated states, viz.
for those that are in a so-called end structure, the counterpart of the cycles in Roberts’

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:11

algorithm. This results in a refinement of the initial partition; partition refinement then
starts from the updated partition.

Thus, we can ask the oracle to provide the bisimulation classes of all states in an end
structure of the input LTS, also including bisimilar states of the LTS not in an end structure.
This yields a new partition, viz. the common refinement of the initial partition, on the one
side, and the partition induced by the bisimulation equivalence classes as given by the oracle
and the complement of their union, on the other side. Hence, the work that remains to be
done is establishing the bisimulation equivalence classes, with respect to the initial partition,
for the states not bisimilar to any in an end structure.

We will establish that a partition refinement algorithm that can consult an oracle cannot
improve upon the complexity of computing bisimulation by partition refinement. We first
define the notion of an end structure of an LTS formally as well as the associated notion of
an end structure partition.

Definition 5.1. Given an LTS L = (S,A ,→, π0) with an initial partition, a non-empty
subset S′ ⊆ S is called an end structure of L iff S′ is a minimal set of states that is closed
under all transitions, L[S′] ⊆ S′ and for all S′′ ⊆ S it holds that L[S′′] ⊆ S′′ and S′ ∩S′′ 6= ∅
implies S′ ⊆ S′′. Moreover, es(L) = {S′ ⊆ S | S′ end structure of L }, ES (L) =

⋃
es(L),

and the partition πes such that

πes = { [s]
↔
L | s ∈ ES (L) } ∪ {B \

⋃
s∈ES(L) [s]

↔
L | B ∈ π0 } \ {∅}

is called the end structure partition of L.

Like the cycles exploited in Roberts’ algorithm, an LTS can have multiple end structures.
The end structure partition πes consists of all the bisimilarity equivalence classes of L that
include at least one state of an end structure, completed with blocks holding the remaining
states, if non-empty. So, for every state s of an end structure, the end structure partition
has identified all states that are bisimilar to state s and separates s and its bisimilar states
from the rest of the LTS. The other states are assigned in the end structure partition to the
blocks just as the initial partition does.

Example. In the LTS of Figure 1 the cycle of c1 to c6 is the only end structure. All states
have a path to the cycle, hence every non-empty set that is closed under transitions will
contain the cycle. Would the LTS have contained any isolated states, these would be end
structures by themselves. Thus, consultation of the oracle leads to the refinement of the
initial structure π0 that consists of the two blocks

{c1, c3, c4, c6} ∪ {s11, s13, s14} ∪ {s21, s22, s23} ∪ {s31} ∪ {s42, s43, s44} ∪ {s52}
and {c2, c5} ∪ {s12} ∪ {s32} ∪ {s41} ∪ {s51, s53}

into end structure partition πes with five blocks, viz. the three blocks

{c1, c4} ∪ {s13, s21, s52}, {c2, c5} ∪ {s12, s32}, and {c3, c6} ∪ {s11, s14, s22, s23}
consisting of the states on the cycle together with the states that are bisimilar, on the one
hand, and the two blocks with the remaining states

{s31} ∪ {s42, s43, s44} and {s41} ∪ {s51, s53}
on the other hand.

?:12 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

Lemma 5.2. Let L = (S,A ,→, π0) be a deterministic LTS.

(a) If |A | = 1 then es(L) consists of all cycles in L.
(b) Every s ∈ S has a path to an end structure of L.

Proof. (a) Since an end structure S′ is closed under transitions, S′ is a lasso. Because S′ is
minimal and non-empty, it follows that S′ is a cycle.

(b) Let U = { t ∈ S | s w−→∗ t, w ∈ A ∗ } be the set of states reachable from state s.
Then the set U is closed under transitions. The minimal non-empty subset U ′ ⊆ U which is
still closed under transitions is an end structure of L and can be reached by s.

Next we enhance the notion of a partition refinement algorithm. Now, an oracle can be
consulted for the states in the end structures. In this approach, the initial partition is
replaced by a partition in which all bisimilarity equivalence classes of states in end structures
are split off from the original blocks.

Definition 5.3. A partition refinement algorithm with end structure oracle yields for an
LTS L = (S,A ,→, π0) a valid refinement sequence Π = (π′0, π1, . . . , πn) where π′0 is the end
structure partition of L. The partition π′0 is called the updated initial partition of L.

As Roberts’ algorithm witnesses, in the case of a singleton action set the availability of an
end structure oracle results in an algorithm with linear asymptotic performance. In the
remainder of this section we confirm that in the case of more action labels the end structure
does not help. The next lemma states that the amount of work required for the bisplitter Bk

by a partition refinement algorithm enhanced with an oracle, dealing with end structures, is
at least the amount of work needed by a partition refinement algorithm without oracle for
the bisplitter Bk−2.

Lemma 5.4. For the bisplitter Bk = (S,A ,→, π0), for some k > 2, let π′0 be the updated
initial partition. Then every valid refinement sequence Π = (π′0, π2, . . . , πn) for the updated
bisplitter B′k = (S,A ,→, π′0) satisfies rc(Π) > rc(Bk−2).

Proof. Observe that there are only two end structures in Bk, viz. the singletons of the two
states 0k and 10k−1. Since all other states can reach 0k or 10k−1, these states are not in an
end structure: Choose σ ∈ Bk, σ 6= 0k, 10k−1. Then σ is of the form b0j1θ for some b ∈ B,
j > 0 and θ ∈ B∗. For j = 0 we have σ

a1−→ b0k−1 which is either 0k or 10k−1; for j > 0 we
have σ

aj+1−−−→ b0j−110k−(j+1) while b0j−110k−(j+1) reaches 0k or 10k−1 by induction.
By Lemma 4.3, every state σ ∈ Bk of Bk has its own bisimulation equivalence class {σ}.

It follows that the updated initial partition π′0 consists of the blocks {0k}, {10k−1}, Bk
0 =

B0\{0k}, and Bk
1 = B1\{10k−1}. Now, assume Π = (π′0, π1, . . . πn) is a valid refinement

sequence for Bk. We show that rc(Π) > rc(Bk−2) by constructing a valid refinement
sequence Π′ for Bk−2 satisfying rc(Π) > rc(Π′) > rc(Bk−2).

To construct Π′ from Π, we use the partial projection function p : Bk ⇀ Bk−2 that
removes the prefix 11 from a bitstring and is undefined if 11 is not a prefix. That means
p(11σ) = σ for all σ ∈ Bk−2 and p(σ′) is undefined for σ′ 6∈ 11Bk−2. A partition π of Bk is
projected to a partition of Bk−2 by projecting all the blocks of π and ignoring empty results,
thus

p(π) = { p[B] | B ∈ π } \ ∅.
In particular, p(π′0) = {{σ | σ ∈ Bk−2 }}, i.e. the unit partition of Bk−2 consisting
of the prefix block Bε only. Second, we remove repeated partitions from the sequence
(p(π′0), p(π1), . . . , p(πn)) to obtain a subsequence Π′, say Π′ = (%0, %1, . . . , %`). Thus, for

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:13

some order preserving surjection q : {1, ..., n} → {1, ..., `} it holds that p(πi) = p(πi′) iff
q(i) = q(i′), and %j = p(πi) if q(i) = j for 1 6 i 6 n, 1 6 j 6 `.

We have %0 = p(π′0) = {Bε}. Next we claim that %1 = πk−20 = {0Bk−3, 1Bk−3} the initial
partition of Bk−2, containing the prefix blocks of 0 and 1 of Bk−2: Suppose to the contrary
that bθ, bθ′ ∈ Bk−2, for a bit b ∈ B and strings θ, θ′ ∈ Bk−3, are two different states which are
not in the same block of %1. Let i, 0 6 i < n be such that p(πi) = %0 and p(πi+1) = %1. Then
11bθ and 11bθ′ have been separated when refining πi into πi+1. But no action aj witnesses

such a split: (i) Bk(11bθ, a1) = Bk(11bθ′, a1) as both equal 0k; (ii) Bk(110θ, a2) = 110θ ∈
Bk
1 , and Bk(110θ

′, a2) = 110θ′ ∈ Bk
1 ; (iii) Bk(111θ, a2) = Bk(111θ

′, a2) = 10k−1 ∈ Bk
1 ;

(iv) for j > 2 it holds that Bk(11bθ, aj),Bk(11bθ
′, aj) ∈ Bk

1 . Since %1 6= %0, %1 has at least

two blocks. Hence, these must be 0Bk−3 and 1Bk−3. Thus %1 = {0Bk−3, 1Bk−3} as claimed.
Next we prove that every refinement of %i into %i+1 of Π′, for i, 1 6 i < `, is valid

for Bk−2. We first observe that, for all σ, σ′ ∈ Bk−2, aj ∈ A , it holds that Bk−2(σ, aj) = σ′

iff Bk(11σ, aj+2) = 11σ′. This is a direct consequence of the definition of the transition
functions of Bk−2 and Bk. From this we obtain

σ =%i σ
′ ⇐⇒ 11σ =πh 11σ′ (5.1)

provided %i = p(πh), for 0 6 i 6 ` and a suitable choice of h, via the definition of the
projection function p. Now, consider the subsequent partitions %i and %i+1 in Π′, 1 6 i 6 `.
Now, let h, 0 6 h < n, be such that %i = p(πh) and %i+1 = p(πh+1). Clearly, %i+1 is a
refinement of %i; if for B ∈ πh+1 we have B =

⋃
α∈I Bα with Bα ∈ πh for α ∈ I, then

for p[B] ∈ %i+1 we have p[B] =
⋃
α∈I p[Bα] with p[Bα] ∈ %i for α ∈ I. The validity of the

refinement of %i into %i+1 is justified by the validity of πh into πh+1. If σ =%i σ
′ and σ 6=%i+1 σ

′

for σ, σ′ ∈ Bk−2, then σ, σ′ ∈ 0Bk−3 or σ, σ′ ∈ 1Bk−3 since %i is a refinement of %0. Moreover,
11σ =πh 11σ′ and 11σ 6=πh+1

11σ′ by (5.1). Hence, by validity, Bk(11σ, aj) 6=πh Bk(11σ′, aj)
for some aj ∈ A . Clearly j 6= 1, since (11σ)[2] = (11σ′)[2] = 1. Also, j 6= 2, since σ[1] = σ′[1]
we have (11σ)[3] = (11σ′)[3]. Therefore, Bk−2(σ, aj−2) 6=%i Bk−2(σ

′, aj−2), showing the
refinement of %i into %i+1 to be valid.

Finally, since every block in πn is a singleton, this is also the case for %`. Thus, %` is indeed
the coarsest stable partition for Bk−2 as required for Π′ to be a valid refinement sequence
for Bk−2. Every refinement of %i into %i+1 of Π′ is projected from a refinement of some πh
into πh+1 of Π as argued above. Therefore, since p(πh) = %i and p(πh+1) = %i+1, we have

rc(πh, πh+1) > rc(%i, %i+1), and hence rc(Π) =
∑n

h=1 rc(πh−1, πh) >
∑`

i=1 rc(%i−1, %i) =
rc(Π′). Since, by definition, rc(Bk−2) is the minimum over all valid refinement sequences
for Bk−2 it holds that rc(Π′) > rc(Bk−2). Therefore, rc(Π) > rc(Π′) > rc(Bk−2) as was to
be shown.

Next we combine the above lemma with the lowerbound provided by Theorem 4.4 in order
to prove the main result of this section.

Theorem 5.5. Any partition refinement algorithm with an end structure oracle to decide
bisimilarity for a deterministic LTS is Ω(n log n).

Proof. Let B′k be the updated bisplitter with the initial partition π′0 containing {0k},
B0\{0k}, {10k−1}, and B1\{10k−1} as given by the oracle for end structures rather than
the partition π0 containing B0 and B1. By Lemma 5.4 we have, for k > 2, that rc(B′k) >
rc(Bk−2). By Theorem 4.4 we know that rc(Bk−2) >

1
2 ñ log 1

2 ñ for ñ = 2k−2, the number

of states of Bk−2. It holds that ñ = 2k−2

2k
n = 1

4n. So rc(B′k) > 1
8n log 1

8n from which we

?:14 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

[000, 8]

[000, 7]

[000, 6]

[000, 5]

[000, 4]

[000, 3]

[000, 2]

[000, 1]

[001, 8]

[001, 7]

[001, 6]

[001, 5]

[001, 4]

[001, 3]

[001, 2]

[001, 1]

[010, 8]

[010, 7]

[010, 6]

[010, 5]

[010, 4]

[010, 3]

[010, 2]

[010, 1]

[011, 8]

[011, 7]

[011, 6]

[011, 5]

[011, 4]

[011, 3]

[011, 2]

[011, 1] [100, 1]

[100, 2]

[100, 3]

[100, 4]

[100, 5]

[100, 6]

[100, 7]

[100, 8]

[101, 1]

[101, 2]

[101, 3]

[101, 4]

[101, 5]

[101, 6]

[101, 7]

[101, 8]

[110, 1]

[110, 2]

[110, 3]

[110, 4]

[110, 5]

[110, 6]

[110, 7]

[110, 8]

[111, 1]

[111, 2]

[111, 3]

[111, 4]

[111, 5]

[111, 6]

[111, 7]

[111, 8]

〈000, ε〉 〈001, ε〉 〈010, ε〉 〈011, ε〉 〈100, ε〉 〈101, ε〉 〈110, ε〉 〈111, ε〉

000 001 010 011 100 101 110 111

` = 1

` = 2

` = 3

` = 4

` = 5

` = 6

` = 7

` = 8

tree gadgets

[000,1][000,1][001,1] [000,1][100,1]

Figure 3: The partial layered bisplitter C3 with tree gadgets, the colours represent the initial
partition.

conclude that deciding bisimilarity for Bk with the help of an oracle for the end structures
is Ω(n log n).

6. Ck is Ω((m+ n) log n) for partition refinement

We modify the bisplitter Bk, that has an action alphabet of k−1 actions, to obtain a
deterministic LTS with two actions only. The resulting LTS Ck has the action alphabet
{a, b}, for each k > 1, and is referred to as the k-th layered bisplitter. We use Ck to obtain
an Ω((n + m) log n) lowerbound for deciding bisimilarity for LTSs with only two actions,
where n is the number of states and m is the number of transitions.

In order to establish the lowerbound we adapt the construction of Bk at two places.
We introduce for each σ ∈ Bk, a stake of 2k states. Moreover, to each stake we add a tree
gadget. These gadgets have height dlog(k−12)e to accommodate d(k−1)/2e leaves in order to
encode the action alphabet Ak of Bk with k−1 actions.

Definition 6.1. Let k > 1, Bk be the k-th bisplitter, and A = {a, b} be a two-element
action set. The deterministic LTS Ck = (SC

k ,A,→C , π
C
0), over the action set A,

(a) has the set of states SC
k defined as

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:15

SC
k = { [σ, `] ∈ Bk × N | 1 6 ` 6 2k } ∪

{ 〈σ,w〉 ∈ Bk × A∗ | 0 6 |w| 6 dlog(k−12)e },
(b) has the transition relation →C given by

[σ, `]
α−→C [σ, `+ 1] for σ ∈ Bk, 1 6 ` < 2k, α ∈ A

[σ, 2k]
α−→C 〈σ, ε〉 for σ ∈ Bk, α ∈ A

〈σ,w〉 α−→C 〈σ,wα〉 for σ ∈ Bk, |w| < dlog(k−12)e, α ∈ A
〈σ,w〉 α−→C [σ′, 1] for σ ∈ Bk, |w| = dlog(k−12)e, lbl(wα) = j,

and, Bk(σ, aj) = σ′, α ∈ A,

(c) and has the initial partition πC
0 = {C `

0 , C
`
1 | 1 6 ` 6 2k } ∪ {Cε} defined as

C `
0 = { [σ, `] | σ ∈ B0 } for 1 6 l 6 2k

C `
1 = { [σ, `] | σ ∈ B1 } for 1 6 l 6 2k

Cε = { 〈σ,w〉 ∈ SC
k | σ ∈ Bk, w ∈ A∗ }.

The auxiliary labelling function lbl : A6dlog(k−1)e → N, used in item (b) is defined by
lbl(w) = min{bin(w)+1, k−1}. Here bin : A∗ → N is the binary evaluation function defined
by bin(ε) = 0, bin(wa) = 2 ∗ bin(w), and bin(wb) = 2 ∗ bin(w)+1.

We see that with each string σ ∈ Bk we associate in Ck as many as 2k stake states
[σ, 1], . . . , [σ, 2k], one for each level `, 1 6 ` 6 2k. The stake states are traversed from the
top [σ, 1] to bottom [σ, 2k] for each string σ over A of length 2k. The tree gadget, with
states [σ,w] for bit sequences σ and strings w over A, consists of a complete binary tree of
height dlog(k−12)e that hence has d(k − 1)/2e leaves. Traversal down the tree takes a left
child on action a from A, a right child on action b from A. Together with the two actions
of A, k−1 source-label pairs can be encoded, connecting the stake on top of the tree gadgets
k−1 times with other stakes. To simulate a transition σ

aj−→ σ′ of Bk in Ck from a leaf of
a tree gadget of σ to the top of the stake of σ′, we need to be at a leaf 〈σ,w〉 of the tree
gadget of σ such that the combined string wα for α ∈ A is the binary encoding according
to lbl of the index j. An α-transition thus leads from the source 〈σ,w〉 to the target [σ′, 1]
if σ

aj−→ σ′ in Bk and wα corresponds to j. The partition

πC
0 = {C `

0 , C
`
1 | 1 6 ` 6 2k } ∪ {Cε}

distinguishes, for each level `, the states at level ` of the stakes of strings starting with 0

in C`0, the states of the stakes at level ` of strings starting with 1 in C`1, and the states of
the tree gadgets collected in Cε.

Figure 3 depicts the layered 3-splitter C3. Because also B3 has an action set of size 2
the tree gadgets only consist of the root node of the form 〈σ, ε〉. In Figure 2 we see that
for bisplitter B3 we have 101

a1−→ 101 and 101
a2−→ 110. In Figure 3 we have transitions

〈101, ε〉 a−→ [101, 1] and 〈101, ε〉 b−→ [110, 1] (dotted and dashed, respectively). Colouring of
nodes is used to represent the initial partition πC

0 that contains 17 blocks: for each level `,
1 6 ` 6 23, πC

0 contains a block holding the four states of the stakes in C`0 on the left and a
block with the four stake states in C`1 on the right, and lastly one block consisting of the
eight tree states in Cε at the bottom of the picture.

The 6-th bisplitter B6 has five actions, a1 to a5. A tree gadget for the layered bisplitter C6

with corresponding outgoing transitions is drawn in Figure 4. The tree has height dlog((6−
1)/2)e = dlog 5

2e = 2, hence it has 22 = 4 leaves. Since each leaf has two outgoing transitions,

?:16 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

〈011010, ε〉

〈011010, a〉

〈011010, aa〉

[100000, 1] [000000, 1]

〈011010, ab〉

[011010, 1] [011100, 1]

〈011010, b〉

〈011010, ba〉

[011010, 1] [011010, 1]

〈011010, bb〉

[011010, 1] [011010, 1]

a

a

a b

b

a b

b

a

a b

b

a b

Figure 4: The example of the outgoing tree for C6 from the root [011010, ε] ∈ SC
6 .

one labelled a and one labelled b, the two leftmost leaves 〈σ, aa〉 and 〈σ, ab〉 are used with
the two labels a and b to simulate transitions for a1 up to a4, the two rightmost leaves 〈σ, ba〉
and 〈σ, bb〉 have together four transitions all simulating the a5-transition of σ.

The next lemma introduces three facts for the layered bisplitter Ck that we need in the
sequel. The first states that if two states at different stakes, but at the same level, are
separated during partition refinement, then all corresponding states at lower levels are
separated as well. The second fact helps to transfer witnessing transitions in Bk to the
setting of Ck. A transition σ

aj−→ σ′ of Bk is reflected by a path from [σ, 2k] through the
tree gadget of σ from root to leaf and then to the top state [σ′, 1] of the stake of σ′. The
word wα encountered going down and out the tree gadget corresponds to the action aj
according to the lbl -function. Lastly, it is shown that no two pairs of different states within
the stakes are bisimilar.

Lemma 6.2. Let Π be a valid refinement sequence for Ck and π a partition in Π.

(a) If two states [σ, `], [σ′, `] ∈ SC
k , for 1 6 ` 6 2k, are in a different block of π, then all

pairs [σ,m], [σ′,m] ∈ S, for all levels m, ` 6 m 6 2k, are in different blocks of π.

(b) If [σ1, 2
k] and [σ2, 2

k] are split for π, then there are w ∈ A∗, α ∈ A, and σ′1, σ
′
2 ∈ Bk

such that

[σ1, 2
k]

w−→∗C 〈σ1, w〉
α−→C [σ′1, 1] and [σ2, 2

k]
w−→∗C 〈σ2, w〉

α−→C [σ′2, 1]

with [σ′1, 1] and [σ′2, 1] in different blocks of π.

(c) If π is the last refinement in Π, it contains the singletons of [σ, `] for σ ∈ Bk and 1 6
` 6 2k.

Proof. (a) For a proof by contradiction, suppose the partition π is the first partition of Π
that falsifies the statement of the lemma. So π 6= πC

0 , since for the initial partition πC
0

the statement holds. Thus, π is a refinement of a partition π′ in Π. So, there are two
states [σ, `], [σ′, `] ∈ SC

k in different blocks of π while the states [σ, `+1], [σ′, `+1] are in the
same block of π and hence of π′. Since [σ, `] and [σ′, `] only have transitions to [σ, `+1]
and [σ′, `+1], respectively, that are in the same block π′, the refinement would not have
been valid. We conclude that no falsifying partition π in Π exists and that the lemma holds.

(b) We first prove, that for all w ∈ A∗, |w| 6 dlog(k−1)e − 1, if 〈σ1, w〉 and 〈σ2, w〉
are split in π, then there are v ∈ A∗ and α ∈ A such that 〈σ1, w〉

v−→∗ 〈σ1, wv〉
α−→ [σ′1, 1]

and 〈σ2, w〉
v−→∗ 〈σ2, wv〉

α−→ [σ′2, 1] with [σ′1, 1] and [σ′2, 1] in different blocks of π. We
prove this for all possible lengths |w| by reverse induction. If w has maximal length, i.e.
|w| = dlog(k−1)e − 1 this is clear. If 〈σ1, w〉 and 〈σ2, w〉 are split, for |w| < dlog(k−1)e − 1,

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:17

then either a-transitions or b-transitions lead to split states. By the induction hypothesis,
suitable paths exist from the targets of such transitions. Adding the respective transition
proves the induction hypothesis. Since [σ1, 2

k] and [σ2, 2
k] can only reach 〈σ1, ε〉 and 〈σ2, ε〉

the statement follows.
(c) Choose `, 1 6 ` 6 2k and define the relation R ⊆ SB

k × SB
k such that (σ1, σ2) ∈ R iff

the stake states [σ1, `], [σ2, `] ∈ SC
k are bisimilar for Ck. We verify that R is a bisimulation

relation for Bk. Note, that R respects πB
k , the initial partition of Bk. Now, suppose

(σ1, σ2) ∈ R and σ1
aj−→ σ′1 for some aj ∈ Ak and σ′1 ∈ SB

k . By construction of Ck we have

[σ1, `]
a2

k−`

−−−→∗ [σ1, 2
k]

a−→ 〈σ1, ε〉
w−→∗ 〈σ1, w〉

α−→ [σ′1, 1]
a`−1

−−−→∗ [σ′1, `]

where lbl(wα) = j. Since [σ1, `] and [σ2, `] are bisimilar in Ck, it follows that a corresponding
path [σ2, `] −→∗ [σ′2, `] exists in Ck with [σ′1, `] and [σ′2, `] bisimilar in Ck. From this we
derive that σ2

aj−→ σ′2 in Bk and (σ′1, σ
′
2) ∈ R. Hence, R is a bisimulation relation for Bk

indeed. It holds that bisimilarity of Bk is the identity relation. Thus, if two stake states
[σ1, `] and [σ2, `] are bisimilar for Ck, then σ1 and σ2 are bisimilar for Bk thus σ1 = σ2, and
therefore [σ1, `] = [σ2, `].

The next lemma states that the splitting of states [σ, `] ∈ SC , for each level `, has refinement
costs that are at least that of Bk.

Lemma 6.3. It holds that rc(Ck) > 2krc(Bk) for all k > 1.

Proof. Let Π = (πC
0 , π1, . . . , πn) be a valid refinement sequence for Ck. We show that for

each level `, the sequence Π induces a valid refinement sequence Π` for Bk.
For each ` ∈ N, such that 1 6 ` 6 m, we define a partial projection function p` : SC

k ⇀ Bk.

The mapping p` maps states of shape [σ, `] ∈ SC
k of Ck to σ ∈ Bk and is undefined on all other

states. A block B in a partition of Ck is mapped to the block p`[B] of Bk, by applying p` on
all elements, resulting in:

p`[B] = {σ ∈ Bk | [σ, `] ∈ B }.

A partition p`(π) of Bk is obtained by applying p` to a partition π of Ck and ignoring the
empty blocks, i.e. p`(π) = { p`[B] | B ∈ π } \ ∅. The sequence Π` = (π`0, . . . , π

`
m) is obtained

from the sequence (p`(π
C
0), p`(π1), . . . , p`(πn)) by removing possible duplicates. We verify

that Π` is a valid refinement sequence for Bk.
First, we check that π`i is a refinement of π`i−1, for 1 6 i 6 m. Choose index i arbitrarily.

Let the index h with 1 6 h 6 n be such that p`(πh−1) = π`i−1 and p`(πh) = π`i . Then we fix

a block B ∈ π`i . Since π`i = p`(πh) there is a block B′ ∈ πh such that B = p`[B
′]. Since πh

is a refinement of πh−1 there is a block B′′ ∈ πh−1 such that B′ ⊆ B′′. This implies that
p`[B

′] ⊆ p`[B′′] and since B = p`[B
′] 6= ∅ also p`[B

′′] 6= ∅. So, we conclude that p`[B
′′] ∈ π`i−1

and B ⊆ p`[B′′]. Thus π`i is a refinement of π`i−1.

Next, we verify that Π` is a valid refinement sequence for Bk. Suppose the state
σ1, σ2 ∈ SB

k are split for the refinement of π`i−1 into π`i . Then the states [σ1, `], [σ2, `] ∈ SC
k

are split for the refinement of a partition πh−1 into the partition πh for some index h, with
1 6 h 6 n. Then either (i) ` = 2k and [σ1, `] and [σ2, `] have α-transitions to different blocks,
for some α ∈ A, or (ii) ` < 2k and [σ1, `+1] and [σ2, `+1] are in different blocks of πh−1. In
the case of (ii), it follows by Lemma 6.2 that also [σ1, 2

k] and [σ2, 2
k] are in different blocks

of πh−1. Thus, the refinement of some πg−1 into πg, 1 6 g 6 h 6 n, split the two states

?:18 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

[σ1, 2
k] and [σ2, 2

k]. By Lemma 6.2 there are w ∈ A∗, α ∈ A, and σ′1, σ
′
2 ∈ Bk such that

[σ1, 2
k]

w−→∗C 〈σ1, w〉
α−→C [σ′1, 1] and [σ2, 2

k]
w−→∗C 〈σ2, w〉

α−→C [σ′2, 1]

with [σ′1, 1] and [σ′2, 1] in different blocks of πg−1. Hence, σ′1 and σ′2 are in different blocks

of π`i−1 while σ1
aj−→B σ′1 and σ2

aj−→B σ′2 for j = lbl(wα), which justifies splitting σ1 and σ2
for π`i . We conclude that Π` is a valid refinement sequence for Bk.

We have established that if Π is a valid refinement sequence for Ck, then Π` is a valid
refinement sequence for Bk. The sequence Π` is obtained from Π by sifting out the blocks
of Π’s partitions and removing repeated partitions. Therefore it holds that rc(Π) > rc(Π`).
Since the mappings p` and p`′ include pairwise distinct sets of stake states for ` 6= `′,

1 6 ` 6 2k, it follows that rc(Π) >
∑2k

`=1 rc(Π`) > 2krc(Bk). Taking the minimum over

all valid refinement sequences for Ck we conclude that rc(Ck) > 2krc(Bk) as was to be
shown.

With the above technical lemma in place, we are able to strengthen the Ω(n log n) lowerbound
of Theorem 4.4 by now taking the number of transitions into account. The improved
lowerbound is Ω((m+ n) log n), where m is the number of transitions and n the number of
states.

Theorem 6.4. Deciding bisimilarity for (deterministic) LTSs with a partition refinement
algorithm is Ω((m + n) log n), where n is the number of states and m is the number of
transitions of the LTS.

Proof. For the bisplitter Bk, we know by Theorem 4.4 that rc(Bk) > 2k−1(k−1). Thus, by
Lemma 6.3, we obtain rc(Ck) > 22k−1(k−1). In the case of Ck we have for n and m that

n = 2k(2k + 2dlog(k−1)e − 1) and m = 2n. Hence n + m ∈ Θ(22k−1) and log n ∈ Θ(k − 1),
from which it follows that rc(Ck) ∈ Ω((m+ n) log n).

Underlying the proof of the lowerbound for deciding bisimilarity for the family of layered
bisplitters Ck is the observation that each Ck can be seen as 2k stacked instances of
the ordinary bisplitters Bk, augmented with tree gadgets to handle transitions properly.
The other essential ingredient for the proof of Theorem 6.4 is the complexity of deciding
bisimilarity with a partition refinement algorithm on the Bk family. The same reasoning
applies when considering partition refinement algorithms with an oracle for end structures
from Section 5. Also with an oracle the lowerbound of Ω((m+n) log n) remains.

Theorem 6.5. Any partition refinement algorithm with an oracle for end structures that
decides bisimilarity for (deterministic) LTSs is Ω((m+ n) log n).

Proof. The proof is similar to that of Lemma 5.4 and Theorem 6.4. Consider, for some k > 2,
the layered bisplitter Ck having initial partition πC

0 . The LTS Ck has two end structures,
viz. the set S0 ⊆ SC

k containing the states of the stake and accompanying tree gadget

S0 = { [0k, `] | 1 6 ` 6 2k } ∪ { 〈0k, w〉 | w ∈ A∗, |w| 6 dlog(k−12)e} for 0k and a similar end

structure S1 ⊆ SC
k for 10k−1. The sets S0 and S1 are minimally closed under the transitions

of Ck. Other states, on the stake or tree gadget for a string σ, have a path to these sets
inherited from a path from σ to 0k or 10k in Bk. The bisimulation classes S′0 and S′1, say,
with respect to SC

k rather than πC
0 , consist of S0 and S1 themselves plus a part of the tree

gadgets for transitions in Ck leading to S0 and S1, respectively.
The update of the initial partition πC

0 with oracle information, which concerns, ignoring
the tree gadgets, the common refinement of the layers { [σ, `] | σ ∈ B0 } and { [σ, `] | σ ∈ B1 }

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:19

on the one hand, and the bisimulation classes S′0 and S′1 on the other hand, is therefore
equal to πC

0 on the stakes, and generally finer on the tree gadgets.
Next, every valid refinement sequence Π = (π′0, π2, . . . , πn) for the updated LTS C ′k =

(S,A ,→, π′0) satisfies rc(Π) > rc(Ck−2). Following the lines of the proof of Lemma 5.4, we
can show that a valid refinement sequence Π for Ck with updated initial partition π′0 induces
a valid refinement sequence Π′ for Ck−2.

The number of states in Ck−2 is Θ(n) with n the number of states of Ck, and the
number of transitions in Ck−2 is Θ(m) with m the number of transitions of Ck. Therefore,
rc(Π) > rc(Π′) > rc(Ck−2), from which we derive that any partition refinement algorithm
with an oracle for end structures involves Θ((m+n) log n) times moving a state for Ck, and
hence, the algorithm is Ω((m+n) log n).

7. An Ω(n) lowerbound for parallel partitioning algorithms

In this section we pose the question of the effect of the concept of valid refinements on parallel
partition refinement algorithms. We show an Ω(n) lowerbound. This result was already
suggested in [Kul13, Theorem 3], without making explicit which operations are allowed to
calculate the refinement. In particular, for deterministic LTSs with singleton alphabets, an
O(log n) parallel refinement algorithm [JR94] exists, defying the argumentation of [Kul13].
This latter algorithm clearly is not based on valid refinements.

Parallel bisimulation algorithms are most conveniently studied in the context of PRAMs
(Parallel Random Access Machine) [SV84], which have an unbounded number of processors
that can all access the available memory. PRAMs are approximated by GPUs (Graphical
Processing Units) that currently contain thousands of processor cores, but more interest-
ingly, in combination with the operating system, can run millions of independent threads
simultaneously.

There are a few variants of the PRAM model. The most important variation is in
what happens when multiple processors try to write to the same address in memory. In the
common scheme a write to a particular address takes place if all processors writing to this
address write the same value. Otherwise, the write fails and the address will contain an
arbitrary value. In the arbitrary scheme, one of the processors writing to the address will
win, and writes its value; the writes of other processors to the address are ignored. In the
priority scheme, the processor with the lowest index writes to the address.

A number of algorithms have been proposed to calculate bisimulation on PRAMs or
GPUs [LR94, RL98, Wij15, MGH+21], and there are also parallel algorithms developed for
networks of parallel computers [BO05]. The algorithms in [LR94, RL98] require O(n log n)
time on respectively m

logn log log n and m
n log n processors. The algorithm in [MGH+21] has

the best worst-case time complexity of O(n) and uses max(n,m) processors. All these
parallel algorithms have in common that they can be classified as partition refinement
algorithms in the sense that they all calculate a valid sequence of partitions.

Note that parallel refinement algorithms can fundamentally outperform sequential
algorithms. In order to understand why parallel algorithms achieve an upperbound of O(n)
vs. a lowerbound of Ω((m + n) log n) for sequential algorithms, we look at the algorithm
in [MGH+21] in more detail as it has the best time complexity. For the sake of exposition
we assume here that there is only one action, although the story with multiple actions is
essentially the same. In the algorithm, first an unstable block is chosen. All states reaching

?:20 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

this block are marked, which is done in constant time, by one processor per transition.
Subsequently, all marked states in each block separate themselves from the other states in
constant time using one processor per state, by employing an intricate trick where each
block is characterised by a unique ‘leader’ state in each block. Here it is essential that the
PRAM model uses the arbitrary or priority writing scheme. The algorithm does not work
in the common scheme. In [MGH+21] it is shown that at most 3n of these constant-time
splitting steps need to be performed, leading to a time complexity of O(n).

An important observation is that parallel algorithms allow to split blocks in constant
time, whereas for sequential algorithms we defined the refinement costs as the minimal
number of states that had to be moved from one block to a new block. We assume, similarly
to the sequential setting, that a new refinement can only be calculated on the basis of a
previous refinement. This makes it natural to define the notion of parallel refinement costs as
the minimal conceivable length of a valid refinement sequence and take this as the minimal
time required to calculate bisimulation using partitioning in a parallel setting.

For an LTS L and a sequence Π = (π0, . . . , πn), the parallel refinement cost is the
number of refinements in the sequence, prc(Π) = n. For an LTS L we define

prc(L) = min{ prc(Π) | Π is a valid refinement sequence for L }.

Observe that parallel refinement costs allow for extremely fast partitioning of transition
systems. Below we show an example with 2k + k states with a refinement cost of 1. The
states are given by b0, . . . , bk−1, a0, . . . , a2k−1. There is a transition from ai to bj if the j-th
bit in the binary representation of i is 1. The initial partition πinit groups all states ai in
one partition, and puts each state bj in a partition of its own. So, πinit contains k+1 blocks.
In Figure 5 this transition system is depicted for k = 3.

a0 a1 a2 a3 a4 a5 a6 a7

b0 b1 b2

Figure 5: A transition system with a parallel refinement cost of 1

The shortest valid refinement sequence is (πinit, πfinal), where in πfinal each state is in a
separate block. This refinement is valid, because in πinit there is enough information to
separate each state from any other, as can easily be checked against the definition. As
this refinement sequence has length 1, the parallel refinement cost of this transition system
is 1, indicating that it is conceivable to make a bisimulation partitioning algorithm doing
this refinement in constant time. Note that existing parallel algorithms do not achieve this
performance. For instance, the algorithm in [MGH+21] requires linear time as it checks
stability for each new block sequentially.

Although parallel partitioning can be fast, we show, using the notion of parallel refinement
costs, that calculating bisimulation in parallel requires time Ω(n). For this purpose, we
construct a family of LTSs Dn for which the length of any valid refinement sequence grows
linearly with the number of states.

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:21

Definition 7.1. For n > 2, the sequential splitter Dn = (S, {a},→, π0) is defined as the
LTS that has the set S = { 1, . . . , n } as its set of states, the relation

−→ = { (i, i+1) | 1 6 i < n} ∪ {(n, n)}

as the transition relation, and the set π0 = { {1, . . . , n−1 }, {n} } as its initial partition.

For every n > 2, the deterministic LTS Dn = (S,Σ,→, π0) has n states and n transitions.
For n = 8 the transition system is depicted in Figure 6. The set of states S = {1, . . . , n}
form a chain in which every state i ∈ {1, . . . , n−1} has an outgoing transition to the next
state (i, i+1) ∈ →. The state at the end of the chain n ∈ S has a self loop (n, n) ∈ →. In
the initial partition there are two blocks, one block containing n ∈ S and the other block
containing all other states.

1 2 3 4 5 6 7 8

Figure 6: Sequential splitter D8 with initial partition {{1, 2, 3, 4, 5, 6, 7}, {8}}

The following lemma states that for every sequential splitter Dn there is a unique valid
refinement sequence.

Lemma 7.2. For every n > 2, Dn has a unique valid refinement sequence Πn that consists
of n−1 partitions.

Proof. For n > 2 the sequential splitter Dn has a valid partition refinement sequence which
is given by ΠDn = (π1, . . . , πn−1), where πi = { {1, . . . , n−i}, {n−i+1}, {n−i+2}, . . . , {n} }.
This is proven by induction on the index i of the partition πi.

Next, we must show that this refinement sequence is unique. So, in order to obtain a
contradiction, consider some πi and assume some valid refinement π′i+1 different from πi+1

exists. This means that there must either be two states j, j′ ∈ {1, . . . , n−i−1} that are in
different blocks in π′i+1, or state n−i must be in the same block as some state j < n−i. In
the first case states j and j′ are in the same block in πi and have exactly the same transitions
to the same block in πi. Hence, the states j and j′ are in the same block in πi+1. In the
second case, all states j′ < n−i must be in the same block as j, using exactly the argument
of the first case. The state n−i is also in that same block. But then π′i+1 is not a strict
refinement of πi, making it invalid.

Thus, for each i, 1 6 i 6 n−1, no other valid refinement than πi+1 of πi exists, making Πn

the only valid refinement sequence for Dn.

The observation in Lemma 7.2 leads to the following theorem on the time complexity for
parallel partition refinement algorithms.

Theorem 7.3. Any parallel partition refinement algorithm that decides bisimilarity for an
LTS with n states has time complexity Ω(n).

Proof. For every n > 2 the LTS Dn has n states and n transitions. Any algorithm that is a
parallel partition refinement algorithm has time complexity that is at least the length of the
shortest refinement sequence. According to Lemma 7.2 Dn has a unique refinement sequence
which witnesses prc(Dn) = n−1 ∈ Ω(n).

?:22 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

The theorem puts a bound on the fastest possible parallel, partition based algorithms for
bisimulation. But it must be observed that other techniques than partition refinement can
produce faster algorithms, although it may be in more restricted settings. Concretely, the
algorithm [JR94] that is based on the sequential Roberts’ algorithm from Section 3, runs
in O(log n) parallel time for deterministic transition systems with n states and only one
transition label.

In order to obtain an idea of how these fast parallel algorithms work, we illustrate one of
the major techniques to determine a bisimulation refinement of Dn in time O(log n). In Dn

the initial partition has a small block Bsmall = {n} and a large block Blarge = {1, . . . , n−1}.
States in Blarge with a different number of steps to Bsmall cannot be bisimilar and can be
split. Note that splitting on the basis of this distance is not a valid refinement in the sense
of Definition 2.2.

1 1 1 1 1 1 1

2 2 2 2 2 2 1

4 4 4 4 3 2 1

7 6 5 4 3 2 1

Figure 7: Calculating the distance to the rightmost state in O(log n) time

Determining the distance of the states in Blarge to Bsmall can be done in O(log n) time in
parallel, cf. [HJ86]. The basic idea is explained in Figure 7. Each state in the block at the
left gets weight 1. We desire to sum up in each state the weights of all states to its right. We
do this by adding up the weight of the right neighbour and adapting the outgoing transition
to point to the state to which the right neighbour is pointing. We use dashed transitions to
stress that we are now using the transitions for another purpose. In each round k a state
contains the sum of all 2k states to its right. So, after log2 k rounds it contains the sum of
all k states to its right, which is the distance to Bsmall.

An interesting open question is whether the notion of a valid refinement sequence can be
adapted, such that the Ω(n) lowerbound would still apply when techniques such as parallel
counting formulated above would be incorporated in the bisimulation algorithm.

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:23

8. Colour refinement

As for establishing bisimilarity on labelled transition systems, partition refinement is the
standard approach for algorithms that do colour refinement. Colour refinement, also known
as naive vertex classification or 1-dimensional Weisfeiler-Lehman test, is frequently applied,
among others in the setting of deciding graph isomorphism [GN21]. Given a graph where
each node has been assigned an initial colour, colour refinement asks to find a refining
colouring with the least number of colours possible such that two nodes of the same colour
have, for all colours, the same number of neighbours of the latter colour. Also for colour
refinement, algorithms typically search for the coarsest stable colouring. See [GKMS21] for
an overview.

Colour refinement is known to be Ω((m+n) log n) with n the number of nodes and m the
number of edges. Early algorithms of complexity O((m+n) log n) include [CC82, PT87].
The lowerbound for partition refinement algorithms has been established in [Ber15, BBG17].
However, for colour refinement the costs are measured in terms of inspected edges and hence
are different from the costs for computing bisimilarity by partition refinement. The cost
function underlying the complexity of colour refinement is defined by

cost(R,S) = |{ (u, v) ∈ E | u ∈ R, v ∈ S }|,
i.e. the number of transitions between the blocks R and S (sets including all nodes of chosen
colours), where block R is recoloured in view of the colours in block S.

The paper [BBG17] provides a detailed implementation of an efficient algorithm with time
complexity O((m+n) log n), that given a graph G = (V,E) and colouring α finds the coarsest
stable colouring refining α and compares the algorithm to other proposals in the literature.
In this setting, a colouring γ : V → N of G is stable iff |N (u) ∩ γ−1(c)| = |N (v) ∩ γ−1(c)|
for all nodes u, v ∈ V and all colours c ∈ N. Here, N (u) and N (v) denote the sets of
neighbours of u and v in G, respectively. In order to establish a lowerbound, Berkholz et al.
define a family of graphs Gk for which the costs of computing the coarsest stable colouring
is Ω((m+n) log n) starting from the unit colouring assigning to all nodes the same colour.
The paper also discusses the connection of colour refinement with equivalence in 2-variable
logic and with finding bisimilarity on Kripke structures. Regarding the latter the focus
is on Kripke structures rather than labelled transition systems, as in the present paper.
In order to transfer the lowerbound result for colour refinement to a lowerbound result
for bisimilarity by partition refinement for Kripke structures, the stability requirement for
colouring mentioned above is adapted, viz. to N +(u) ∩ S = ∅ ⇐⇒ N +(v) ∩ S = ∅ for all
blocks R,S and nodes u, v in R, with N +(u) and N +(v), i.e. the directly reachable states
for u and v, respectively.

Central to the resulting family of Kripke structures Sk in [BBG17] are complete bipartite
graphs Kk,k with k2 transitions, one for each bitstring in Bk, which are dense with respect to
transitions. This is because the refinement costs incurred for colour refinement are based on
counting edges. The family of LTSs Ck presented in Section 6 has as their main components
thin stakes that are 2k states high, one for every bitstring in Bk because for partition
refinement for bisimulation the number of (moved) states is relevant.

Although the families of graphs for the lowerbounds of bisimulation and graph colouring
are definitely related, they are very different if it comes to the approach, in particular
regarding the measurement of complexity. It is unclear how to transform the Sk-family into
a family of labelled transition systems such that partition refinement takes Ω((m+n) log n)
transfers of states to a newly created block, i.e. in terms of the refinement cost rc of Section 2.

?:24 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

Still the Kripke structures Sk of [BBG17] can be interpreted as non-deterministic labelled
transition systems with a single action label and an initial partition based on the assignment
of atomic proposition. Similarly, it is not obvious how to transform the Ck-family into a
family of undirected or directed graphs such that colour refinement requires inspection of
Ω((m+n) log n) edges.

9. Conclusion

We have shown that, even when restricted to deterministic LTSs, it is not possible to
construct a sequential algorithm based on partition refinement that is more efficient than
Ω((m+n) log n). The bound obtained is preserved even when the algorithm is extended with
an oracle that can determine for specific states in constant time whether they are bisimilar
or not. The oracle proof technique enabled us to show that the algorithmic ideas underlying
Roberts’ algorithm [PTB85] for the one-letter alphabet case cannot be used to come up with
a fundamentally faster enhanced partition refinement algorithm for bisimulation.

Of course, this is not addressing a generic lower bound to decide bisimilarity on LTSs, nor
proving the conjecture that the Paige-Tarjan algorithm is optimal for deciding bisimilarity.
It is conceivable that a more efficient algorithm for bisimilarity exists that is not based
on partitioning. However, as it stands, no techniques are known to prove such a generic
algorithmic lowerbound, and all techniques that do exist make assumptions on allowed
operations, such as the well-known lowerbound on sorting.

But by relaxing the notion of a valid partition sequence, and maybe introducing
alternatives for oracles, it may very well be possible that the lower bound is extended to a
wider range of algorithmic techniques to determine bisimulation, making it very unlikely that
sequential algorithms for bisimulation with a time-complexity better than O((m+ n) log n)
exist. Note that the current lowerbound already applies to all known efficient algorithms for
bisimulation.

For the parallel setting, we showed that deciding bisimilarity by partitioning is Ω(n). In
this case a similar situation occurs. For LTSs with one action label it is possible to calculate
bisimulation in logarithmic time, cf. [JR94]. An interesting, but as yet open question is
whether the techniques used [JR94] can fundamentally improve the efficiency of determining
bisimulation in parallel, or, as we believe, the lowerbound result can be strengthened along
the lines of the sequential case to show that the techniques of [JR94] are insufficient to
obtain a sub-linear parallel time complexity to determine bisimulation for labelled transition
systems with at least two action labels.

References

[BBG17] C. Berkholz, P. Bonsma, and M. Grohe. Tight lower and upper bounds for the complexity of
canonical colour refinement. Theory of Computing Systems, 60(4):581–614, 2017. doi:10.1007/
s00224-016-9686-0.

[BC04] J. Berstel and O. Carton. On the complexity of Hopcroft’s state minimization algorithm. In
M. Domaratzki et al., editor, Proc. CIAA 2004, volume 3317 of Lecture Notes in Computer
Science, pages 35–44. Springer, 2004. doi:10.1007/978-3-540-30500-2_4.

[Ber15] C. Berkholz. Lower Bounds for Heuristic Algorithms. PhD thesis, RWTH Aachen, 2015.
[BO05] S. Blom and S. Orzan. A distributed algorithm for strong bisimulation reduction of

state spaces. Software Technology for Technology Transfer, 7(1):74–86, 2005. doi:10.1007/

s10009-004-0159-4.

https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/978-3-540-30500-2_4
https://doi.org/10.1007/s10009-004-0159-4
https://doi.org/10.1007/s10009-004-0159-4

Vol. 19:? LOWERBOUNDS FOR BISIMULATION BY PARTITION REFINEMENT ?:25

[Buc99] P. Buchholz. Exact performance equivalence: An equivalence relation for stochastic automata.
Theoretical Computer Science, 215:263–287, 1999. doi:10.1016/S0304-3975(98)00169-8.

[CC82] A. Cardon and M. Crochemore. Partioning a graph in O(|A| log2 |V |). Theoretical Computer
Science, 19(1):85–98, 1982. doi:10.1016/0304-3975(82)90016-0.

[CRS08] G. Castiglione, A. Restivo, and M. Sciortino. Hopcroft’s algorithm and cyclic automata. In
C. Mart́ın-Vide et al., editor, Proc. LATA 2008, volume 5196 of Lecture Notes in Computer
Science, pages 172–183. Springer, 2008. doi:10.1007/978-3-540-88282-4_17.

[DPP04] A. Dovier, C. Piazza, and A. Policriti. An efficient algorithm for computing bisimulation
equivalence. Theoretical Computer Science, 311:221–256, 2004. doi:10.1016/S0304-3975(03)
00361-X.

[GKMS21] M. Grohe, K. Kersting, M. Mladenov, and P. Schweitzer. Color refinement and its applications. In
G. Van den Broek, K. Kersting, and Natarajan S., editors, An Introduction to Lifted Probabilistic
Inference, chapter 15. The MIT Press, 2021. doi:10.7551/mitpress/10548.003.0023.

[GMV21] J.F. Groote, J. Martens, and E.P. de Vink. Bisimulation by partitioning is Ω((m + n) logn). In
S. Haddad and D. Varacca, editors, Proc. CONCUR 2021, volume 203 of LIPIcs, pages 31:1–31:16.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.31.

[GN21] M. Grohe and D. Neuen. Isomorphism, canonization, and definability for graphs of bounded rank
width. Communications of the ACM, 64(5):98–105, 2021. doi:10.1145/3453943.

[GVV18] J.F. Groote, H.J. Rivera Verduzco, and E.P. de Vink. An efficient algorithm to determine
probabilistic bisimulation. Algorithms, 11(9):131,1–22, 2018. doi:10.3390/a11090131.

[HJ86] W.D. Hillis and G.L. Steele Jr. Data parallel algorithms. Communications of the ACM,
29(12):1170–1183, 1986. doi:10.1145/7902.7903.

[Hop71] J. Hopcroft. An n logn algorithm for minimizing states in a finite automaton. In Z. Kohavi and
A. Paz, editors, Theory of Machines and Computations, pages 189–196. Academic Press, 1971.
doi:10.1016/b978-0-12-417750-5.50022-1.

[JGKW20] D.N. Jansen, J.F. Groote, J.J.A. Keiren, and A. Wijs. An O(m logn) algorithm for branching
bisimilarity on labelled transition systems. In A. Biere and D. Parker, editors, Proc. TACAS,
volume 12079 of Lecture Notes in Computer Science, pages 3–20. Springer, 2020. doi:10.1007/
978-3-030-45237-7_1.

[JR94] J. Jájá and Kwan Woo Ryu. An efficient parallel algorithm for the single function coarsest partition
problem. Theoretical Computer Science, 129(2):293–307, 1994. doi:10.1016/0304-3975(94)

90030-2.
[KMP77] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM Journal on

Computing, 6(2):323–350, 1977. doi:10.1137/0206024.
[KS90] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three problems

of equivalence. Information and Computation, 86(1):43–68, 1990. doi:10.1016/0890-5401(90)
90025-D.

[Kul13] K. Kulakowski. Concurrent bisimulation algorithm. ArXiv, CoRR, abs/1311.7635, 2013.
[LR94] I. Lee and S. Rajasekaran. A parallel algorithm for relational coarsest partition problems and its

implementation. In D.L. Dill, editor, Computer Aided Verification, volume 818 of Lecture Notes
in Computer Science, pages 404–414. Springer, 1994. doi:10.1007/3-540-58179-0_71.

[MGH+21] J.J.M. Martens, J.F. Groote, L.B. van den Haak, H.P. Hijma, and A.J. Wijs. A linear parallel
algorithm to compute bisimulation and relational coarsest partitions. In Gwen Salaün and Anton
Wijs, editors, Proc. FACS, volume 13077 of Lecture Notes in Computer Science, pages 115–133.
Springer, 2021. doi:10.1007/978-3-030-90636-8_7.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Proc.
5th GI-Conference on Theoretical Computer Science, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer, 1981. doi:10.1007/BFb0017309.

[PT87] R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973–989, 1987. doi:10.1137/0216062.

[PTB85] R. Paige, R.E. Tarjan, and R. Bonic. A linear time solution to the single function coarsest partition
problem. Theoretical Computer Science, 40:67–84, 1985. doi:10.1016/0304-3975(85)90159-8.

https://doi.org/10.1016/S0304-3975(98)00169-8
https://doi.org/10.1016/0304-3975(82)90016-0
https://doi.org/10.1007/978-3-540-88282-4_17
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.7551/mitpress/10548.003.0023
https://doi.org/10.4230/LIPIcs.CONCUR.2021.31
https://doi.org/10.1145/3453943
https://doi.org/10.3390/a11090131
https://doi.org/10.1145/7902.7903
https://doi.org/10.1016/b978-0-12-417750-5.50022-1
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1016/0304-3975(94)90030-2
https://doi.org/10.1016/0304-3975(94)90030-2
https://doi.org/10.1137/0206024
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1007/3-540-58179-0_71
https://doi.org/10.1007/978-3-030-90636-8_7
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1137/0216062
https://doi.org/10.1016/0304-3975(85)90159-8

?:26 J.F. Groote, J.J.M. Martens, and E.P. de Vink Vol. 19:?

[RL98] S. Rajasekaran and I. Lee. Parallel algorithms for relational coarsest partition problems. IEEE
Transactions on Parallel and Distributed Systems, 9(7):687–699, 1998. doi:10.1109/71.707548.

[SV84] L.J. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by circuits.
SIAM Journal of Computing, 13(2):409–422, 1984. doi:10.1137/0213027.

[WDMS20] T. Wißmann, U. Dorsch, S. Milius, and L. Schröder. Efficient and modular coalgebraic partition
refinement. Logical Methods Computer Science, 16(1), 2020. doi:10.23638/LMCS-16(1:8)2020.

[Wij15] A.J. Wijs. GPU accelerated strong and branching bisimilarity checking. In C. Baier and C. Tinelli,
editors, Proc. TACAS, volume 9035 of Lecture Notes in Computer Science, pages 368–383.
Springer, 2015. doi:10.1007/978-3-662-46681-0_29.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1109/71.707548
https://doi.org/10.1137/0213027
https://doi.org/10.23638/LMCS-16(1:8)2020
https://doi.org/10.1007/978-3-662-46681-0_29

	1. Introduction
	2. Preliminaries
	3. Roberts' algorithm
	4. Bk is (n logn) for partition refinement
	5. Bk is (nlogn) for partition refinement with an oracle
	6. Ck is ((m+n)logn) for partition refinement
	7. An (n) lowerbound for parallel partitioning algorithms
	8. Colour refinement
	9. Conclusion
	References

