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Abstract
The transportation problem is a fundamental problem in operations research, where items
need to be transported from supply nodes (each with a given supply) to demand nodes (each
with a given demand) in the cheapest possible way. Here, we are interested in a generalization
of the transportationproblemwhere, each supplynodehas a (possibly empty) set of conflicting
pairs of demand nodes, and each demand node a (possibly empty) set of conflicting pairs
of supply nodes. Each supply node may only send supply to at most one demand node of
each conflicting pair. Likewise, each demand node may only receive supply from at most one
supply node of each conflicting pair.We call the resulting problem the transportation problem
with conflicts (TPC). We show that the complexity of TPC depends upon the structure of the
so-called conflict graph that follows from the conflicting pairs. More concrete, we show that
for many graph-classes the corresponding TPC remains NP-hard, and for some special cases
we derive constant factor approximation algorithms.

Keywords Transportation problem · Conflict graph · Computational complexity ·
Approximation

1 Introduction

Consider the classical Transportation Problem, in which we are given suppliers, each having
a supply, and locations, each having a demand. For all possible pairs consisting of a supplier
and a location we are given a unit transportation cost. The goal is to fulfill the demand with
minimum cost. This problem is well-known and efficiently solvable.
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Many situations in practice have, as a base, this transportation problem. However,
additional properties are often present. To illustrate this, consider a setting described by
Vancroonenburg et al. (2014), where patients (suppliers) have to be allocated to hospital
rooms (locations), with the additional constraint that each room should only contain patients
of the same gender. We call a pair of patients with different gender a forbidden pair, and
further, we call the set of forbidden pairs the conflict set. This example gives rise to the
so-called Red–Blue transportation problem.

Another example, see Cao (1992), comes from storage management where containers
(suppliers) need to be placed in rows of a storage yard (locations), such that costs of operations
(search, load) is minimized. However, some containers are not allowed to be placed in the
same row, due to their content or size. Again, two containers that cannot be placed in the same
row are called a forbidden pair, and the set of forbidden pairs for a particular row form its
conflict set. The resulting situation gives rise to theTransportation ProblemwithExclusionary
Side Constraints, which is slightly more general than the Red–Blue transportation.

Our last example comes from Chen et al. (2016), where companies (suppliers) want to
promote their products to potential customers (locations). On the one hand, a customer wants
to limit the number of promotions received from similar companies, inducing forbidden pairs
of companies for each customer. On the other hand, companies want to geographically spread
their promotion and therefore limit the number of promotions to customers living close to
each other, inducing forbidden pairs of customers. Chen et al. (2016) call this problem the
conflict-aware weighted bipartite b-matching problem.

We introduce the so-called transportation problem with conflicts (TPC, see Sect. 1.1
for a precise description) in which there can be conflict sets consisting of pairs of supply
nodes and/or conflict sets consisting of pairs of demand nodes. Since conflict sets consists of
forbidden pairs we can model a conflict set with a so-called conflict graph. A conflict graph
belonging to a specific graph class indicates a specific structure of the conflict set. In this
paper we study the complexity and the approximability of the TPC depending upon different
classes of conflict graphs.

The paper is organized as follows. In the remaining of this sectionwegive a formal problem
description of TPC, introduce some terminology and notation, and provide an overview of the
related literature. In Sect. 2 we focus on so-called conflict graphs, and present an overview of
our results. Section 3 presents hardness results for different types of conflict graphs. Section 4
provides constant-factor approximation algorithms for special cases, and we conclude in
Sect. 5.

1.1 Problem statement

In the transportation problem with conflicts (TPC) we are given a complete bipartite graph
(S ∪ D, E), where (see also Fig. 1):

S: is the set of supply nodes (suppliers), with for each i ∈ S,

– A supply si ∈ N, and
– A conflict set Ci containing forbidden pairs of demand nodes (locations),

D: is the set of demand nodes (locations), with for each j ∈ D,

– A demand d j ∈ N, and
– A conflict set Fj containing forbidden pairs of supply nodes,
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Fig. 1 Transportation problem with conflicts

E : is the complete edge set, with for each i ∈ S and j ∈ D an edge (i, j) ∈ E for which
we have,

– A capacity ui, j ∈ N, and
– A weight wi, j ∈ N.

Similar to the classical transportation problem we assume that
∑

i∈S si = ∑
j∈D d j . A

solution is an integral vector x , with xi, j ∈ N indicating for each edge (i, j) ∈ E , how much
supply is sent from supply node i ∈ S to demand node j ∈ D. The value of a solution equals∑

i∈S
∑

j∈D wi, j · xi, j .
Given a solution x , we say that a conflict occurs if xi, j1 > 0 and xi, j2 > 0, while

( j1, j2) ∈ Ci for some i ∈ S. Likewise, a conflict occurs if xi1, j > 0 and xi2, j > 0, while
(i1, i2) ∈ Fj . A solution x is not feasible when a conflict occurs or when xi, j > ui, j for an
edge (i, j) ∈ E .

We say that demand (supply) constraints are fulfilled if for all j ∈ D,
∑

i∈S xi, j = d j

(for all i ∈ S,
∑

j∈S xi, j = si ). We say that demand (supply) constraints are respected if for
all j ∈ D,

∑
i∈S xi, j ≤ d j (for all i ∈ S,

∑
j∈S xi, j ≤ si ).

We consider two problems:

(1) Find a feasible solution fulfilling all demand and supply constraints, while minimizing
the value of a solution (min-TPC), and

(2) Find a feasible solution respecting all demand and supply constraints, while maximizing
the value of a solution (max-TPC).

1.2 Terminology and notation

An important tool in our analysis are conflict graphs. We build an induced conflict graph
GFj for each demand node j ∈ D as follows: there is a vertex for each supply node and two
vertices are connected if and only if the corresponding supply nodes constitute a forbidden
pair in Fj . A similar procedure is used to build an induced conflict graphGCi for each supply
node i ∈ S. For an example, we refer to Figs. 2 and 3 for the conflict graphs of C1 and F7
from Fig. 1.

Clearly, in case of identical conflict sets F , the induced conflict graphs are identical as
well; we then refer to the conflict graph GF .
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Fig. 2 Conflict graph GC1

Fig. 3 Conflict graph GF7

Fig. 4 Red–Blue transportation

The use of conflict graphs allows us to easily express special structures occurring in
the conflict sets. For example, consider the previously mentioned Red–Blue transportation
problem, in which we need to assign male and female patients to hospital rooms. In the
Red–Blue transportation problem we have an identical conflict set F that contains every pair
consisting of a male and a female patient. Equivalently, the conflict graph induced by F is
complete bipartite. Indeed, in the conflict graph there is an edge between every red supply
node (female patient) and every blue supply node (male patient), see also Fig. 4.

Throughout this paper we will discuss several special cases of TPC. We use a three-field
notation to systematize the different special cases of TPC: TPC(α, β, χ).
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Definition 1 TPC(α, β, χ) is a special case of TPC where;
α ∈ {Ci ,C,CB∅} describes the nature of the conflict sets of the supply nodes.
Ci : arbitrary conflict sets, each supply node i ∈ S has a (possible empty) conflict set.
C : identical conflict sets, each supply node i ∈ S has conflict set C .

CB : identical conflict sets, and its induced conflict graph GC is complete bipartite.
∅: no conflict between demand nodes, each supply node i ∈ S has an empty conflict set.

β ∈ {Fj , F, FB ,∅}] describes the nature of the conflict sets of the demand nodes.

Fj : arbitrary conflict sets, each demand node j ∈ D has a (possible empty) conflict set.
F : identical conflict sets, each demand node j ∈ D has conflict set F .

FB : identical conflict sets, and its induced conflict graph GF is complete bipartite.
∅: no conflict between supply nodes, each demand node j ∈ D has an empty conflict set.

χ ∈ {ui, j ,∞, 1} describes the nature of the edge capacities.
ui, j : arbitrary capacities.
∞: uncapacitated, or equivalently ui, j ≥ min{si , d j }
1: then ui, j = 1, for every edge (i, j) ∈ E .

We call the TPC one-sided if either Ci = ∅ for all supply nodes i ∈ S, or Fj = ∅ for all
demand nodes j ∈ D.

1.3 Related literature

1.3.1 Special cases and applications

We first explicitly point out how the three examples mentioned in the Introduction are special
cases of TPC.

Conflict-aware weighted Bipartite b-matching (CA-WBM): Chen et al. (2016) describe
the conflict-aware weighted Bipartite b-matching problemmentioned in the introduction.
In their most general problem description there is, as input, a threshold t , the number
of conflicts allowed in a feasible solution. The problem with t = 0 is a special case of
max-TPC where we have edge capacities ui, j = 1 for each (i, j) ∈ E , identical conflict
sets Ci = C for each supply node i ∈ S and identical conflict set Fj = F for each
demand node j ∈ D, i.e. max-TPC(C, F, 1).
They prove that their problem isNP-hard even if the problem is one-sided and no conflicts
(t = 0) are allowed. Let d be the maximum degree of both conflict graphs GC and GF .
They present a greedy (2+ d)-approximation for the one-sided case. The same analysis
can be used to give a greedy (2 + 2d)-approximation algorithm for the two-sided case.
Transportation problem with exclusionary side constraints (TPESC): Cao (1992)
describes the transportation problem with exclusionary side constraints mentioned in
the introduction. This problem is a special case of min-TPC where we have one-sided
conflicts and no edge capacities, i.e. min-TPC(∅, Fj ,∞).
Cao (1992) and later Sun (2002) describe Branch and Bound approaches to solve the
problem. Cao and Uebe (1995) and later Sun (1998) use Tabu-Search methods to solve
the problem. Syarif andGen (2003) describe a genetic algorithm.Goossens and Spieksma
(2009) prove that this problem is strongly NP-hard even if the conflict sets are identical,
i.e. Fj = F for all j ∈ D. They also prove that no polynomial time constant factor
approximation exists even if there is only one non-empty conflict set and |D| = 2 (unless
P = NP).
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Red–Blue transportation problem (RBTP): Vancroonenburg et al. (2014) describe the
Red–Blue transportation problem mentioned in the introduction. RBTP is defined for
both the minimization as well as the maximization objective. This problem is a special
case of TPC where we have a one-sided identical conflict set F and no edge capacities.
Actually, the conflict set F induces a complete bipartite graph as conflict graph (see also
Sect. 2), i.e. RBTP can be described as TPC(∅, FB ,∞).
For the minimization objective they prove that no constant-factor approximation algo-
rithm for RBTP can exist, even if si = 1 and d j = 3 for all i ∈ S, j ∈ D (unless P
= NP). For the maximization objective the problem remains NP-hard and they present
three different 1

2 -approximation algorithms.

1.3.2 Other related problems

Max flow with disjunctive constraints: In the maximum flow problem with negative
disjunctive constraints we are given a directed graph G = (N , A), source s ∈ N , a sink
t ∈ N , and there is a capacity ui, j for each arc (i, j) ∈ A. In addition there are negative
disjunctive constraints, meaning that pairs of arcs are given, at most one of which is
allowed to carry a positive amount of flow in a feasible solution. The goal is to maximize
the amount of flow sent from s to t while respecting the capacities and the negative
disjunctive constraints.
Similar to the construction sketched in Sect. 1.2 one can build a conflict graph in which
there is a node for each arc (i, j) and there is an edge between two arcs if they are in
conflict.
Pferschy and Schauer (2013) prove that this problem is NP-hard, even if the induced
conflict graph consists only of unconnected edges and directed graph G = (N , A) only
consists of disjoint paths of length three.
Notice that this problem is more general than max-TPC due to the arbitrary graph struc-
ture.
Maximum matching with disjunctive constraints: Another well-known problem related
to the classical Transportation problem ismaximummatching. In themaximummatching
problemwith negative disjunctive constraint we are given a graphG = (V , E)with edge
weights and negative disjunctive constraints on the edges. The goal is to find a matching
withmaximumweight. Darmann et al. (2011) show that themaximummatching problem
with negative disjunctive constraints is NP-hard even for conflict graphs where every
connected component is a single edge. Again, this result does not apply to TPC due to
the fact that the graph in TPC is a bipartite graph.
Two-to-one assignment problem: Goossens et al. (2012) describe the two-to-one assign-
ment problem (2-1-AP) as follows. We are given a set X of 2n elements and a set Y of n
elements. A feasible triple cost ci1,i2, j is associated to two distinct elements i1, i2 ∈ X
and an element j ∈ Y ; the goal is to select n feasible triples of minimum total cost such
that each element occurs once in a selected triple.
They prove that the existence of a PTASwould imply P =NP and they provide a constant-
factor approximation for the special case of decomposable costs satisfying the triangle
inequality.
It is not difficult to see that min-TPC(∅, F,∞) with si = 1 for all i ∈ S and d j = 2
for all j ∈ D is a special case of 2-1-AP. Indeed, observe that any feasible solution
of min-TPC(∅, F,∞) with d j = 2 also consists of triples, where a triple consists of a
demand node and two supply nodes that are not in conflict. Given an instance of min-
TPC, we create an instance of the 2-1-AP as follows. Let set X contain all supply nodes
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Fig. 5 MIS and max-TPC

and set Y all demand nodes. Consider now a triple consisting of a node j ∈ Y and two
nodes i1, i2 ∈ X , that are not in conflict for demand node j ∈ D. We set its cost to be
ci1,i2, j = wi1, j + wi2, j ; the cost of any other feasible triple is set to a large number. This
shows that min-TPC is a special case of 2-1-AP. The costs we define however are not
decomposable in the sense of Goossens et al. (2012).

2 A preview

Let us first informally argue why max-TPC in case of a single demand node is an NP-hard
problem. Clearly, in any feasible solution, the set of supply nodes i ∈ S that send flow to a
particular demand node j ∈ D (i.e. those i ∈ S with xi, j > 0) form an independent set in
the induced conflict graph of that demand node j ∈ D. Indeed, since apparently none of the
supply nodes assigned are in conflict, there is no edge connecting them in the conflict graph.
This shows that Maximum Independent Set (MIS) is a special case of the TPC. Indeed, given
an instance of MIS, i.e. a graph G = (V , E) with |V | = n, we can construct an instance of
max-TPC with n supply nodes each with supply 1 and a single demand node with demand n
whose induced conflict graph is equivalent to the graph G (see also Fig. 5), all edge weights
are 1.

This means that max-TPC with a single demand node is at least as difficult the maximum
independent set problem.

Note that for min-TPC the above construction does not work, as min-TPC requires that
all supply and demand constraints are fulfilled. In the above construction supply constraints
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can only be fulfilled if the graph G of the MIS instance contains no edges, i.e. no pair of
supply nodes is in conflict. However, with a similar reduction, it is shown that no PTAS exists
for TPC(∅, Fj ,∞), even with |D| ≥ 2 and exactly one demand node having a non-empty
conflict set (unless P = NP), (Goossens and Spieksma 2009).

We now review the existing complexity results for TPC.
Goossens and Spieksma (2009) prove that:

(1) min-TPC(∅, F,∞) is weakly NP-hard for |D| = 2,
(2) min-TPC(∅, Fj ,∞) is weakly NP-hard for each fixed |S| ≥ 2, and
(3) min-TPC(∅, F,∞) is strongly NP-hard for each fixed |D| ≥ 3.

These results do not assume any structure on the conflict graph GF . Motivated by an
application, Vancroonenburg et al. (2014) assume thatGF is a complete bipartite graph; they
prove that:

(1) Both min-TPC(∅, FB ,∞) and max-TPC(∅, FB ,∞) remain NP-hard even if si = 1 for
all i ∈ S and d j = 3 for all j ∈ D, and

(2) min-TPC(∅, FB ,∞) remains NP-hard, even if edge set E is complete, all edge weights
are equal and there are only 2 supply nodes with equal supply.

Our results focus on the nature of the conflict graph GF . First, we point out that, in the
extreme cases where either F is empty (i.e. GF contains no edges), or F contains all pairs
(i.e. GF is a clique), the resulting problem TPC(∅, F, ui, j ) is easily seen to be polynomial
solvable.

Second, it is clear from our previous discussion that any graph class for which MIS is
NP-hard, the corresponding problem TPC(∅, F,∞) is NP-hard as well. However, there are
graph classes for which independent set is easy, i.e. polynomial solvable; thus, for these graph
classes the previous argument does not allow us to conclude that the corresponding special
case of TPC is NP-hard. To deal with these graph classes, we provide the following results.

(1) TPC(∅, F,∞) remainsNP-hard, even ifGF is amatching (Theorem1); this immediately
implies NP-hardness of TPC(∅, F,∞) in case GF is a bipartite graph or an interval
graph.

(2) TPC(∅, F,∞) remains NP-hard, even if GF is a simple path (Theorem 2); this imme-
diately implies NP-hardness of TPC(∅, F,∞) in case GF is a tree.

(3) TPC(∅, F,∞) remains NP-hard, even if GF is a split graph (Theorem 3).

Notice that indeed, MIS is polynomially solvable for the graph classes mentioned above.
Further, in case of a complete bipartite conflict graph,we close the gap between polynomial

and NP-complete cases of TPC(∅, FB ,∞):

(4) TPC(∅, FB ,∞) remains NP-hard, even if supply si = 1 for each supply node i ∈ S
and all demand d j = 2 for each demand node j ∈ D, thereby settling a case left open
by Vancroonenburg et al. (2014) (Theorem 4).

In addition, we give approximation results depending on the approximation factor for
finding a certain independent set, for the following special cases of max-TPC:

(1) max-TPC(∅, Fj ,∞) with supply si = 1 for each i ∈ S (Theorem 6);
(2) max-TPC(∅, Fj , 1) (Theorem 7);
(3) max-TPC(C, Fj ,∞) with supply si = 1 for each i ∈ S and a valid q-colouring on the

conflict graph induced by C (Theorem 8);
(4) max-TPC(C, Fj , 1) with a valid q-colouring on the conflict graph induced by C (The-

orem 9).
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Finally, we mention here that assuming a constant number of demand nodes, (i.e. |D| is
fixed), can lead to some cases that are solvable in polynomial time. For instance, we point
out that, in case of a fixed |D|, and GF being a star (centered around supply node s ∈ S),
it suffices to solve 2|D| classical transportation problems. Indeed, observe that for a single
demand node d ∈ D, either node d is supplied exclusively by node s, or, node s cannot be
used to supply node d . This observation implies that solving 2|D| classical transportation
problems is sufficient to solve TPC(∅, F,∞). In the same spirit, we claim that if |F | has a
constant size, it is sufficient to solve

(
2|F |)|D|

classical transportation problems, in order to
solve TPC(∅, F,∞).

3 Proofs of our complexity results

As announced above, in this section we show that TPC(∅, F,∞) is NP-hard in case GF

is a bipartite graph, interval graph, a matching, a simple path (Sect. 3.1) or a split graph
(Sect. 3.2). In Sect. 3.3, we show that TPC(∅, FB ,∞) remains NP-hard even if si = 1 for
all i ∈ S and d j = 2 for all j ∈ D.

All proofs in this section assume a one-sided conflict set F (thus, conflict sets Ci are
empty) and there is an infinite capacity on the edges. In fact, observe that to specify an
instance of the resulting TPC problem it is sufficient to specify S (the set of supply nodes),
D (the set of demand nodes), F (the conflict set), and w (the edge weights, edge set E is
complete).

3.1 When the conflict graph is a matching or simple path

In this section we show that even if the induced conflict graph GF is a perfect matching or
a simple path, both max-TPC and min-TPC remain NP-hard. This implies that the problem
remains NP-hard for bipartite graphs, interval graphs, trees and forests. We first prove that
max-TPC andmin-TPC remain NP-hard even if the induced conflict graph of F is a matching
(only contains disconnected edges); after that we show that it is not difficult to extend the
proof such that the results holds for a simple path as well.

To prove the theorem below we reduce our problem to monotone 1-in-3SAT, which is
known to be NP-Complete (Garey and Johnson 1979). An instance is defined as follows.

Given: A set of n variables {v1, . . . , vn}, and a set of m clauses {c1, . . . , cm}, each
containing 3 variables, each variable in positive form (unnegated).

Question: Is there a truth-assignment that satisfies all clauses in C such that in each clause
exactly 1 variable is TRUE?

Theorem 1 Min-TPC(∅, F,∞) is NP-hard, even if the induced conflict graph of GF is a
(perfect) matching.

Proof Given an instance I of monotone 1-in-3SAT, let λv be the number of clauses in which
variable v occurs.We construct an instance of min-TPC(∅, F,∞) as follows (see also Fig. 6).

S: For each variable v, we have supply nodes i(v), i(v̄), each with supply λv . Hence we
have 2n supply nodes.

D: For each clause c ∈ C we have a demand node j(c) with demand 1, and a demand node
j(c̄), with demand 2. And, for each variable v we have a demand node j(v), with demand
λv . Hence, we have 2m + n demand nodes.
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Fig. 6 Monotone 1-in-3SAT and TPC(∅, F, ∞), only edges with weight 0 are shown

F : The conflict set contains forbidden pairs (i(v), i(v̄)), for every variable v. Note that, the
conflict graph GF is indeed a perfect matching.

E : The weights on the edges are defined as follows:

– For each variable v that occurs (positively) in clause c we have wi(v), j(c) = 0 and
wi(v̄), j(c̄) = 0.

– For each variable v we have wi(v), j(v) = 0 and wi(v̄), j(v) = 0.
– For any other edge e ∈ E we have we = 1.

We now argue that an instance of monotone 1-in-3SAT is a YES-instance if and only if
the corresponding instance of min-TPC(∅, F,∞) has a solution with cost 0.

Suppose we have a YES-instance of monotone 1-in-3SAT, with a certificate indicating
whether variable v is set to TRUE or FALSE. We create the following solution of the corre-
sponding TPC instance.

If variable v is set to TRUE, then:

– For each clause c in which variable v occurs, 1 unit of supply is sent from supply node
i(v) to demand node j(c),

– λv units of supply are sent from supply node i(v̄) to demand node j(v).

If variable v is set to FALSE, then:
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– For each clause c in which variable v occurs, 1 unit of supply is sent from supply node
i(v̄) to demand node j(c̄),

– λv units of supply are sent from supply node i(v) to demand node j(v).

It is easy to see that no conflicts occur in this solution. Hence we only need to show that
all supply and demand constraints are fulfilled.

Since λv equals the number of clauses containing variable v, we know that all supply
constraints are fulfilled and that the demand for each demand node j(v) is fulfilled.

We now show that the demand constraints are fulfilled as well. Since we have a YES-
certificate, we know that exactly 1 variable is set to TRUE for each clause c. Hence, the
demand for each demand node j(c) is fulfilled. Furthermore if follows that in each clause c
two variables are set FALSE, hence, the demand for each demand node j(c̄) is fulfilled as
well.

Observe that since we only use edges of weight 0, the cost of the solution is 0.
Now, suppose that we have a solution with cost 0 of the TPC instance.
This solution fulfills all supply and demand constraints and only uses edges of weight 0.

Thus, we know that either λv units of supply are sent from i(v) to j(v), or from i(v̄) to j(v).
(Since i(v) and i(v̄) are in conflict, there is no solution in which both i(v) and i(v̄) send
supply to j(v).) We will construct a truth-assignment as follows: for each variable v, if i(v)

sends supply to j(v), then we set variable v to FALSE, else we set variable v to TRUE. We
now argue that this is indeed a YES-certificate for monotone 1-in-3SAT.

It is easy to see that each clause has at least one variable set to TRUE. Indeed, the solution
of the corresponding TPC instance with cost 0 is feasible, hence all demand constraints are
fulfilled. Thus, demand node j(c) receives one unit of supply from one of the supply nodes
i(v). Hence, for each clause at least one variable is set to TRUE.

Likewise, we know that all supply constraints are fulfilled. Thus, each supply node corre-
sponding to a variable v that is set to TRUE distributes λv units of supply over demand nodes
j(c). Hence, the sum of λv of the variables v that are set to TRUE equals m, the number of
clauses. Hence, each clause has exactly one variable set to TRUE. �	
Corollary 1 There is no constant-factor approximation algorithm for min-TPC(∅, F,∞),
even if the induced conflict graph of F is a (perfect) matching, unless P = NP.

Corollary 2 Max-TPC(∅, F,∞) is NP-hard, even if the induced conflict graph GF is a (per-
fect) matching.

Proof For max-TPC(∅, F,∞) the reduction is basically the same, the only change is the
edge-weights. The weights on the edges are defined as follows:

– For each variable v that occurs in clause c we have wi(v), j(c) = 1 and wi(v̄), j(c̄) = 1.
– For each variable v we have wi(v), j(v) = 1 and wi(v̄), j(v) = 1.
– For any other edge e ∈ E we have we = 0.

Note that now we have that a monotone 1-in-3SAT instance is a YES-instance, if and only
if max-TPC(∅, F,∞) has solution of profit

∑
v∈V 2 · λv . �	

It follows immediately from Theorem 1 and Corollary 2 that TPC(∅, F,∞) remains NP-
hard even if the induced conflict graph GF is a bipartite graph or an interval graph.

Let us now informally discuss the version of TPC(∅, F,∞) for which the induced conflict
graph of F is a simple path. Given an instance of TPC(∅, F,∞), of which the induced conflict
graph of F only contains disconnected edges, it is easy to create an instance of TPC(∅, F,∞)
of which the induced conflict graph F is a simple path. We can add n − 1 dummy supply
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Fig. 7 Monotone 1-in-3SAT and TPC with simple path as induced conflict graph

nodes, each with supply 1, and 1 dummy demand node with demand n − 1 (recall that n is
the number of variables in the monotone 1-in-3SAT instance). Edge set E is by definition a
complete edge set, so we add the missing edges connecting the newly added dummy nodes.
The edges connecting the dummy supply nodes to the dummy demand node will have weight
0, all other added edges will have weight 1. In the induced conflict graph we connect the
dummy supply nodes to the non-dummy supply nodes, such that the induced conflict graph
becomes a simple path (see Fig. 7). Observe that this does not affect the equivalence as
described in the proof of Theorem 1.

Theorem 2 TPC(∅, F,∞) is NP-hard, even if the induced conflict graph of GF is a simple
path.

Corollary 3 There is no constant-factor approximation algorithm for min-TPC(∅, F,∞),
even if the induced conflict graph of F is a simple path (unless P = NP).

It follows immediately from Theorem 2 that TPC(∅, F,∞) remains NP-hard even if the
induced conflict graph GF is a tree.
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3.2 When the conflict graph is a split graph

In this section we show that for every graph class G for which the so-called minimum sum
colouring problem is NP-hard, the TPC restricted to conflict graphs from G is also NP-hard.
For some graph classes (for instance bipartite graphs and interval graphs), this result provides
an alternative proof of TPC(∅, F,∞), since minimum sum colouring is NP-hard for these
classes, see Bar-Noy and Kortsarz (1998), Marx (2005), Szkaliczki (1999). However, there
exists a graph class not captured by Theorems 1 and 2 for whichMIS is easy, while minimum
sum colouring is NP-hard; the class of split graphs. We refer to Salavatipour (2000) where it
is shown that minimum sum colouring is NP-hard for split graphs. Summarizing, the results
in this section imply that TPC(∅, F,∞) remains NP-hard even if the conflict graph is a split
graph.

The minimum sum colouring problem is defined as follows.

Given: A graph G = (V , EG) with |V | = n.
Goal: Find a colouring c : V → {1, . . . , n} of minimum weight

∑
v∈V c(v) such that if

(v, u) ∈ EG , then c(v) �= c(u).

Theorem 3 LetG be a graph class for which theminimum sum colouring problem is NP-hard.
Min-TPC(∅, F,∞) is NP-hard, even if the induced conflict graph GF ∈ G.

Proof Given an instance of the minimum sum colouring problem, specified by a graph G =
(V , EG), we construct an instance of min-TPC(∅, F,∞) as follows (see also Fig. 8).

S: For each vertex v ∈ V we have supply node i(v)with supply 1.We also have an additional
dummy node s with supply n(n − 1). Hence, we have n + 1 supply nodes.

D: We have n demand nodes each with demand n (one for each colour). Hence, we have
D := {1, . . . , n}.

F : We have a forbidden pair (i(v), i(u)) ∈ F for each edge in (v, u) ∈ EG , i.e. F := EG .
Hence, the induced conflict graph GF is equivalent to graph G = (V , EG).

E : The weights on the edges are defined as follows:

– For each i(v) ∈ S \ {s} and for each j ∈ D: wi(v), j = j ;
– For each j ∈ D: ws, j = 0.

The goal is to find a feasible solution of minimum cost. This specifies the instance of
min-TPC.

We will now argue that a solution of minimum sum colouring with cost Z corresponds to
a solution of min-TPC with cost Z and vice versa.

Suppose we have a feasible solution for the minimum sum colouring problem instance,
meaning that there is a colour c(v) assigned to each v ∈ V ; the resulting cost of this solution
is Z = ∑

v∈V c(v). In the corresponding instance of min-TPC we send the single unit of
supply of node i(v) ∈ S to node j ∈ D if vertex v is coloured with colour j , i.e. if c(v) = j ;
the weight of this flow equals j . Further, we distribute the supply from node s to all nodes
j ∈ D such that all supply and demand constraints are fulfilled; the weight of this flow equals
0. Since the colouring is a valid colouring in G = (V , E), we know that vertices adjacent
in G received distinct colours; in other words, no demand node receives supply from two
supply nodes that are a forbidden pair in F . Also, the total value of this solution equals Z .

Now, suppose we have a feasible solution for our min-TPC instance with a total value Z .
Then each i(v) ∈ S sends a single unit of flow to exactly one demand node j ∈ D (supply
equals 1); the weight of this flow equals j . In the corresponding minimum sum colouring
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Fig. 8 Example of construction, where n = 4

instance we give vertex v ∈ V colour j if supply node i(v) ∈ S sends supply to demand
node j ∈ D. Since no conflicts are allowed in our assignment, we know that no two vertices
adjacent in G receive the same colour, and the total cost of this solution,

∑
v c(v), equals Z .

�	
Corollary 4 LetG be a graph class for which theminimum sum colouring problem is NP-hard.
Max-TPC(∅, F,∞) is NP-hard, even if the induced conflict graph GF ∈ G.
Proof Formax-TPC the reduction is basically the same, the only change are the edgeweights.
For max-TPC we define the weight on the edges as follows:

– For each i(v) ∈ S \ {s} and for each j ∈ D: wi(v), j = n − j .
– For each j ∈ D: ws, j = 0.

Note that in this case the profit of the assignment in max-TPC does not equal the cost of
the solution to the minimum colouring problem. However, it still holds that, if we are able
to solve max-TPC in polynomial time, we will find an optimal solution to minimum sum
colouring in polynomial time as well. �	

It follows immediately from Theorem 3 and Corollary 4 that TPC(∅, F,∞) remains NP-
hard even if the induced conflict graph GF is a split graph. Note that in Sect. 3.1 we have
already shown that TPC(∅, F,∞) remains NP-hard even if the induced conflict graph GF is
a bipartite or interval graph.
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3.3 A complete bipartite conflict graph with si = 1 and dj = 2

As mentioned before TPC(∅, FB ,∞) is also known as the Red–Blue transportation problem
(RBTP). Recall that for RBTP we know that the problem is NP-hard even if all supply si = 1
for all supply nodes i ∈ S and all demand d j = 3 for all demand nodes j ∈ D.

Vancroonenburg et al. (2014) state that it remains open whether the problem is still NP-
hard even if all demand equals 2. We prove here that this problem remains NP-hard. To do so
we make a reduction from a special case of SAT, known as (2, 2)-SAT, which is proven to be
NP-hard by Ratner and Warmuth (1990). An instance I of (2, 2)-SAT is defined as follows.

Given: A set of n variables {v1, . . . , vn} and a set of m clauses C = {c1, . . . , cm}, such
that every variable occurs exactly twice in positive form and exactly twice in
negative form.

Question: Is there a truth-assignment that satisfies all clauses in C?

Theorem 4 Min-TPC(∅, FB ,∞) is NP-hard, even if si = 1 and d j = 2 for all i ∈ S and
j ∈ D.

Proof We stress that (2,2)-SAT does not impose any bound on the size of the clauses.Without
loss of generality we assume that |C | is even.

Recall that the induced conflict graph GFB is a complete bipartite graph. Hence, it is
sufficient to define two sets of supply nodes, SR and SB. Then, the conflict set FB contains a
conflict for each pair of nodes with one node in SR and one node in SB. We shall split the set
of supply nodes S into red supply nodes, SR, and blue supply nodes, SB.

Given instance I of (2,2)-SAT we construct an instance of min-TPC(∅,FB,∞), where all
supply is 1 and all demand is 2, as follows.

SR : For each clause c ∈ C we have a supply node r(c), and for each variable v occurring
positively in clause c we have supply node r(v, c).

SB : For each clause c ∈ C we have a supply node b(c), and for each variable v occurring
negatively in clause c we have supply node b(v̄, c).

D: For each clause c ∈ C we have demand node j(c), and for each variable v we have
demand node j(v), and we n have dummy nodes ji , for i = 1, . . . , n.

E : The weights on the edges are defined as follows:

– For each variable v that occurs in positive form in clause c we have wr(v,c), j(v) = 0 and
wr(v,c), j(c) = 0.

– For each variable v that occurs in negative form in clause c we have wb(v̄,c), j(v) = 0 and
wb(v̄,c), j(c) = 0.

– For every clause c we have wr(c), j(c) = 0 and wb(c), j(c) = 0.
– Any edge connecting a supply node to a dummy demand node ji (i = 1, . . . , n) has

weight 0.
– For any other edge e ∈ E we have we = 1.

Note that each of the sets SR, SB and D contain 2n +m nodes, which is even, because we
assumed that the number of clauses, m, is even.

We now argue that the (2,2)-SAT instance is a YES-instance, if and only if min-
TPC(∅, FB ,∞) has solution of value 0 (see also Fig. 9).

First, suppose that we have a solution with value 0 of the corresponding TPC instance.
This solution fulfills all supply and demand constraints and only uses edges of weight 0.

Hence, we know that a demand node j(v) receives supply either from the two red supply
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Fig. 9 Example solution for (2,2)-SAT and TPC(∅, FB , ∞)

nodes representing the two positive occurrences of variable v in a clause, or from the two
blue supply nodes representing the two negative occurrences of variable v in a clause. If it
receives supply from the two blue supply nodes we set variable v to be TRUE; otherwise we
set variable v to be FALSE.

We now argue that this is a satisfying truth-assignment. Consider an arbitrary clause c ∈ C
and the corresponding demand node j(c). Demand node j(c) receives supply from at least
one supply node representing the occurrence of a variable v in that clause. Suppose that
supply node r(v, c) sends supply to j(c) and therefore no supply to j(v). Hence variable v

is set to TRUE and clause c in which v occurs in positive form is satisfied. Suppose b(v̄, c),

123



Annals of Operations Research (2021) 298:207–227 223

sends supply to j(c) and therefore no supply to j(v). Hence variable v is set to FALSE and
clause c in which it occurs in negative form is satisfied.

Second, suppose we have a satisfying truth-assignment.
If variable v has been set to TRUE, then demand node j(v) receives supply from the two

blue supply nodes representing the two negative occurrences of variable v. If variable v has
been set to FALSE, then demand node j(v) receives supply from the two red supply nodes
representing the two positive occurrences of variable v.

Now consider a clause c and pick one variable v that satisfies this clause. If variable v

occurs in positive form, then we know v has been set to TRUE in order to satisfy the clause.
In this case both r(v, c) and r(c) send supply to demand node j(c). If variable v occurs in
negative form, then we know v has been set to FALSE in order to satisfy the clause. In this
case both b(v̄, c) and b(c) send supply to demand node j(c).

So far we have assigned an even number of red supply nodes and an even number of
blue supply nodes. The remaining supply nodes can therefore be assigned to the remaining
dummy demand nodes, such that each demand node receives supply of only one colour. �	
Corollary 5 There is no constant-factor approximation algorithm for min-TPC(∅, FB ,∞),
even if si = 1 and d j = 2, unless P = NP.

Corollary 6 Max-TPC(∅, FB ,∞) is NP-hard, even if si = 1 and d j = 2.

Proof For max-TPC the reduction is basically the same, the only change is the edge-weights.
The weights on the edges are defined as follows:

– For each variable v that occurs in positive form in clause c we have wr(v,c), j(v) = 1 and
wr(v,c), j(c) = 1.

– For each variable v that occurs in negative form in clause c we have wb(v̄,c), j(v) = 1 and
wb(v̄,c), j(c) = 1.

– For every clause c we have wr(c), j(c) = 1 and wb(c), j(c) = 1.
– Any edge connecting a supply node to a dummy demand node has weight 1.
– For any other edge e ∈ E we have we = 0.

Note that now we have that (2,2)-SAT instance is a YES-instance, if and only if max-
TPC(∅, FB ,∞) has solution of value 2(2n + m). �	

4 Approximation for max-TPC

From the previous section we conclude that there exists no constant-factor approximation
for min-TPC (unless P = NP). When it comes to max-TPC, we have shown in Sect. 2 that for
any instance of the Maximum Independent Set Problem, there exists an equivalent instance
of Max-TPC(∅, F,∞). For the maximum independent set problem on graph G = (V , E)

with |V | = n, it is known that it is hard to approximate in polynomial time within a factor
n1−ε , for any ε > 0, unless P = NP (Håstad 1996). Hence for max-TPC(∅, F,∞) we know
that no constant-factor approximation algorithm exists, even if |D| = 1, unless P = NP.

Theorem 5 Max-TPC(∅, F,∞), with n := |S|, is hard to approximate in polynomial time
within a factor n1−ε , for any ε > 0, even if supply si = 1 for each supply node i ∈ S, and
|D| = 1 with d1 = n (unless P = NP).

We now describe the so-called Separable Assignment Problem and show how existing
approximation results can be applied to max-TPC.
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4.1 Max-TPCmeets the separable assignment problem

The separable assignment problem (SAP) generalizes several well-known assignment prob-
lems. An informal description of the SAP is as follows. We are given a set of bins, a set of
items and a profit for assigning a certain item to a certain bin. We are also given a packing
constraint for each bin. Such a packing constraint must be such that every subset of a feasible
packing is also feasible. So, for example, a packing constraint cannot state that each bin
contains exactly 4 items, because a subset of 3 items would no longer be feasible. A packing
constraint can state that each bin contains at most 4 items. The goal is to find an assignment
of items to bin that maximizes total profit.

Suppose that, for a single bin, there is a β-approximation algorithm for finding the maxi-
mum profit assignment. Fleischer et al. (2011) present the following results for SAP:

(1) A β(1 − 1
e )-approximation algorithm (based on Randomized LP-Rounding), and

(2) A (
β

β+1 − ε)-approximation algorithm (based on Local Search).

Thus, with γ = max{β(1 − 1
e ), (

β
β+1 − ε)}, we summarize the results of Fleischer et al.

(2011) by saying that they provide a γ -approximation algorithm for SAP. Note if β ≥ 1
e−1

then γ = β(1 − 1
e ), else γ = β

β+1 − ε.
Let us now consider the following special case of max-TPC(∅, Fj ,∞), where all supply

si = 1 for each supply node i ∈ S. We now show that we can describe this problem as a
special case of SAP.

To do so, we view each supply node i ∈ S in max-TPC as an item vi in SAP and we view
each demand node j ∈ D with demand d j in max-TPC as a bin b j in SAP.

The packing constraint of each bin b j states that;

(1) The total number of packed items does not exceed d j , and
(2) A pair of items vi1 , vi2 can only be packed in bin b j if the corresponding pair of

supply nodes does not occur in the conflict set of the corresponding demand node, i.e.
if (i1, i2) /∈ Fj.

Note that, in our setting, finding the maximum profit solution for a single demand node
j ∈ D is equivalent to finding a maximum weighted independent set of size at most dj in
conflict graph GFj , where the weight of a node i ∈ S equals edge weight wi, j . Finding a
maximum weighted independent set of size at most a given cardinality d (called MWIS-d) is
an interesting combinatorial optimization problem in its own right; notice that this problem
is more general than the well-studied maximum weight independent set problem (MWIS).
Indeed, Kalra et al. (2017) study MWIS-d , and show that for bipartite graphs, MWIS-d is
NP-complete (while MWIS is well-known to be solvable in polynomial time for bipartite
graphs (Ahuja et al. 1993). In addition, Kalra et al. (2017) give a 1

2 -approximation algorithm
for MWIS-d on bipartite graphs. Such approximation results can be used to obtain constant
factor approximation algorithm for a single bin, which in turn leads to approximation results
for special cases of max-TPC using Fleischer et al. (2011).

Likewise, we can use the results of a generalization of SAP, called k-SAP. In k-SAP we
are given a set of bins, a set of items I , a profit for assigning an item to a certain bin and a
packing constraint for each bin. Now each item i ∈ I may be assigned to at most ki different
bins, but at most once to each bin. The goal is to find an assignment of items to bins that
maximizes total profit.

Again, assume that we are given a β-approximation algorithm for finding the maximum
profit assignment for a single bin, and let k = mini∈I ki . Bender et al. (2015) prove that there
exists a β(1 − 1

ek
)-approximation algorithm based on Randomized LP-Rounding.
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4.1.1 One-sidedmax-TPC

Let us first consider only one-sided constraints. The above discussion will give us the fol-
lowing result.

Theorem 6 Suppose there is a β j -approximation for finding a maximum weighted indepen-
dent set of size at most d j on the conflict graph GFj induced by Fj for each j ∈ D, let

β = min j∈D β j and let γ = max{β(1 − 1
e ), (

β
β+1 − ε)}.

Then there exists a γ -approximation algorithm formax-TPC(∅, Fj ,∞)with supply si = 1
for each supply node i ∈ S.

As mentioned before, suppose that in each of the conflict graphs GFj induced by Fj for
each j ∈ D we can find a maximum weight independent set of size at most dj in polynomial
time (i.e. β = 1 and γ = (1 − 1

e )), then we have a (1 − 1
e )-approximation algorithm. For

example, this is the case when for all j ∈ D we have that demand dj is constant, i.e. not part
of the input.

We can also apply the above result to max-TPC(∅, FB ,∞), where the conflict graph is
a complete bipartite graph G = (R, B, E) (the Red–Blue transportation problem). To find
the most profitable assignment for a single demand node with demand d j we compute the
most profitable assignment with supply nodes in R, the most profitable assignment with
supply nodes in B and choose the most profitable assignment of the two. Hence, we can
find a maximum weighted independent set of size at most d j in polynomial time [i.e. β = 1
and γ = (1 − 1

e )]. From the theorem above it follows we have an (1 − 1
e )-approximation

algorithm, thereby improving the 1/2 approximation factor found by Vancroonenburg et al.
(2014).

Recall that one of the applications of the Red–Blue transportation problem is the assign-
ment of male and female patients to hospital rooms, while keeping in mind that a room is
either male-only or female-only. Suppose now, for example, that a male and female patient
would like to share a room, because they are married. This gives rise to a TPC instance with a
conflict graph which is bipartite, but not complete. As mentioned before, finding an Indepen-
dent Set of size at most d j of maximum weight in a bipartite graph is NP-hard and a greedy
1/2-approximation exists (Kalra et al. 2017) (i.e. β = 1

2 and γ = 1
3 − ε). Thus, Theorem 6

implies the existence of a ( 13 − ε) approximation algorithm for max-TPC(∅, Fj ,∞) with
bipartite conflict graphs and si = 1 for all i ∈ S.

In case the supply nodes have a supply of si ≥ 1 for all i ∈ S, and all edge capacities
equal 1, we can use existing results for k-SAP to derive approximation results.

Theorem 7 Suppose there is a β j -approximation for finding a maximum weighted indepen-
dent set of size at most d j on the conflict graph GFj induced by Fj for each j ∈ D. Let k be
the minimum of all supply, i.e. k = mini∈S si , and let β = min j∈D β j .

Then there exists a β(1 − 1
ek

)-approximation algorithm for max-TPC(∅, Fj , 1).

4.1.2 Two-sided max-TPC

Recall that we require the conflicts to be one-sided in order to be able to use the results
known for SAP. However, we can be slightly less restrictive. Assume that the demand nodes
are coloured either red or blue and that each supply node may send flow to either only red
demand nodes or only blue demand nodes. One approach is to solve the problem once while
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ignoring the blue demand nodes and once while ignoring the red demand nodes, and select
the best of both solutions; this is a 1/2 · γ -approximation algorithm.

More generally, suppose we have two-sided conflicts, but one of the sides has identical
conflicts, w.l.o.g. conflict set Ci = C for all supply nodes i ∈ S. If we have a valid q-
colouring on the induced conflict graph GC , then we can split the problem into q one-sided
max-TPC problems, which we can solve independently. A valid q-colouring on a graph
G = (V , E), is a function c : V → {1, . . . , q}, such that for all (v, u) ∈ E we have
c(v) �= c(u).

Note that, to find a q-colouring, it need not be sufficient to know that a graph is q-
colourable, since it is NP-hard to color a q-colourable graph with q(log q)/25 colours, for a
sufficiently large constant q (Khot 2001).

Theorem 8 Suppose there is a β j -approximation for finding a maximum weighted inde-
pendent set of size at most d j on the conflict graph GFj induced by Fj for each j ∈ D,
and a valid q-colouring on the conflict graph induced by C, let β = min j∈D β j and let

γ = max{β(1 − 1
e ), (

β
β+1 − ε)}.

Then there exists a 1/q ·γ -approximation algorithm for max-TPC(C, Fj ,∞) with supply
si = 1 for each supply node i ∈ S.

Again, we can strengthen these results if we allow supply nodes to have a supply si ≥ 1
for i ∈ S, but restrict that each supply node is assigned at most once to each demand node,
i.e. edge capacity ui, j = 1. This allows us to use the results for k-SAP.

Theorem 9 Suppose there is a β j -approximation for finding a maximum weighted indepen-
dent set of size at most d j on the conflict graph GFj induced by Fj for each j ∈ D, and a
valid q-colouring on the conflict graph induced by C. Let k be the minimum of all supply,
i.e. k = mini∈S si , and let β = min j∈D β j .

Then there exists a 1/q · β(1 − 1
ek

)-approximation algorithm for max-TPC(C, Fj , 1).

5 Conclusion

In this paper we have introduced the transportation problem with conflicts (TPC), which is a
natural generalization of the classical Transportation problem. TPC is able to model several
applications that have restrictions on the set of suppliers supplying a demand node and vice
versa. Since in general TPC is at least as difficult as maximum (Weighted) Independent
Set, we are interested in establishing the complexity of TPC when the restrictions satisfy
particular structures that we capture using a conflict graph.

In particular, we have looked at the structure of the conflict graph induced by the conflict
sets. We show that one-sided identical TPC remains NP-hard even if its conflict graph is a
bipartite graph, planar graph, interval graph or a simple path, thereby answering an open
problem stated by Vancroonenburg et al. (2014).

Finally we use results known for the separable assignment problem, and MWIS-d , to find
approximation algorithms for special cases of max-TPC.
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