CEJGRE (1994 95), Volume 3, Number 1 THEORY

The Computational Complexity of a Bin
Packing Game*

FRITS C. R. SPIEKSMA
GERHARD J. WOEGINGER

ABSTRACT: In this paper we investigate the following game: two players 1 and II must alternately
pack items into two equal-sized bins. In one variant, the first player who is not able to move loses
the game, in the other variant, player I wins the game if and only if the game ends with all items
packed.

We show that for both variants the problem of deciding which player has a winning strategy
is PSPACE-complete. We also give polynomial time results for some special cases of the problem.

Keyworps: Bin Packing; Computational Complexity; Game.

1. INTRODUCTION

Games are not only a matter of ‘social interest’, they may also serve as a
model for several phenomena occurring in the real world.

® For example, conflicts between parties with different interests (e.g. different
companies that operate on the same market) may be modeled and analyzed
by games.

® Another application is fault-tolerance of abstract systems. The erroneous
behaviour of a system is modeied by assuming that the system uses an
intelligent strategy to prevent us from reaching our goals. If we are able to
deal with this type of error, we are also able to deal with all weaker types of
errors.

* This research has been supported by the Spezialforschungsbereich F003 “Optimierung und Kon-
trolle”, Projektbereich Diskrete Optimierung.

Central European Journal for Operations Research and Economics 1 — 1994/95



40 Frats C. R. SpieksMA and GERTARD J. WOEGINGER

® Worst-case complexity of algorithms and worst-case behaviour of data struc-
tures may be modelled via two-player games (cf. MEHLHORN, K., NAHER, S.

and RaucH, M. [10]).

® In computational complexity theory, the definition of the alternating Turing
machine can be stated via a game (the alternating Turing machine is one of
the standard models for parallel computations). See JOHNSON, D. S. [8].

Games also provide many examples of problems which, although theoretic-
ally solvable, appear to be beyond the limits of practical computation. For
example, the difficulty of deciding whether a given position in the game of
CHESS can be won be the player who is about to move is widely recognized.
Although this problem is in principle solvable by an exact computation, no way
is known of carrying out that computation on a real computer in less than an
astronomical amount of time.

In this respect, CHESS is typical for many two-player games. For any such
game (two-player game with perfect information), the essential question in

which we are interested is:

(Q) “Given a special situation of the game, does the first player have a winning
strategy?”’

The complexity of deciding this problem is called the computational com-
plexity of the corresponding game. A game is considered an ‘easy’ game, if there
is a polynomial time algorithm for deciding (Q). It is considered to be a difficult’
game, if answering (Q) is NP-hard, and it is considered to be ‘very difficult’, if
answering (Q) is EXPTIM E-complete or PSPACE-complete. Many generaliza-
tions of well-known games like CHESS, HEX and GO have been proved to be
EXPTIME-complete or PSPACE-complete (see e.g. FRAENKEL, A. and LicH-
TENSTEIN, D. [5], LICHTENSTEIN, D. and SipsEr, M. [9], REIscH, S. [11]). Several
‘more abstract’ games are treated in the paper by Even, S. and TarJAN, R. E.
[3], FRAENKEL, A. and GOLDSCHMIDT, E. [4], FRAENKEL A. and YESHA, Y. [6],
SCHAEFER, T. J. [13] and by STOCKMEYER, L. J. and CHANDRA, A. K. [14].

In this paper, we deal with a special two-player, perfect-information game.
Given is a sequence of n items (nonnegative integers) aj, ..., a, and two bins,
where each bin is of size b. Players 1 and II must alternately pack the first
unpacked item, i.e. player I starts with putting item g, into bin 1 or bin 2, then
player 11 packs a, and so on. The game ends as soon as (i) all items have been
packed or (ii) the current item a; does not fit into either bin. In one variant of
the game called PACK +/+, the first player that is unable to pack loses the game.
In the variant called PACK +/—, player I wins if and only if all items have been

packed at the end of the game.

Central European Journal for Operations Research and Economics | 1994/95

The Comy

tional Complexity of a Bin Packing Game A.—

By a straight forward reduction from the NP-complete PARTITIONING pro-
c_n_.: (cf. GAREY, M. R. and JoHnsoN, D. S. [7]), it is easy to see that both
variants of this game are NP-hard. However, a much stronger result holds: We
will show ﬁ.:m.ﬂ PAck +/+ and PAck +/— both are PSPACE-complete. ?—.oa-
over, we will identify several ‘easy’ (i.e. polynomial time solvable) special cases
of the games.

.j_@ paper is organized into sections as follows. Section 2 informally sum-
marizes several definitions and notions from computational complexity theory
that are relevant to the understanding of this paper. In Section 3, we derive our
PSPACE-completeness results. We first prove that Oc>zdzmo, 1-IN-3-SAT is
PSPACE-complete. With the help of this result, we are able to prove PSPACE-
completeness for both variants of our game. Section 4 discusses three special
cases of PACK+/— and Pack+/+ that can be solved in polynomial time
Section 5 finishes with the conclusion. ,

2. TECHNICAL PRELIMINARIES

In this section, we give informal definitions and explanations for several
terms from complexity theory.

Um::ﬁ:: of PSPACE. A recognition problem is in PSPACE if it is solvable on
a Turing machine with polynomially bounded space. A problem is called
PSPACE-complete if it belongs to the hardest problems in PSPACE (i.e. if every
other problem in PSPACE can be solved efficiently with the help of a subroutine
solving this problem).

mmmimnw:no.cn completeness in PSPACE. The completeness in PSPACE of the
games mentioned in the preceding section rests ultimately on the fact that these
games :m<o. enough complexity to simulate Turing machines. Each of these
games provides, in effect, through its various inputs, a language which is rich
enough to describe Turing machine computations. As a consequence, if a
polynomial-time algorithms for a// problems in PSPACE. PSPACE is m, very
large class, and it would be very surprising if every problem in PSPACE were
polynomial-time decidable. PSPACE includes the class NP, which contains
many well-known problems (for example, the Travelling Salesman Problem and
the Quadratic Assignment Problem) for which no polynomial-time algorithm is
x:.oé:. Hence, for any game, PSPACE-completeness provides very strong
evidence that the game cannot be analyzed with reasonable effort and time.

Central European Journal for Operations Research and Economics | — 1994/95



A.N Frirs C. R Spicksma and GERIARD J. WOEGINGER

3. PSPACE-COMPLETENESS RESULTS

In this section, we prove that deciding whether a winning strategy for
player I exists for instance of PACK+/+ or PAcCk +/— is PSPACE-complete.
We will use a two-step transformation from QUANTIFIED 3-SATISFIABILITY,
which is defined as follows:

QUANTIFIED 3-SATISFIABILITY

Input. A set X = {x,, ..., x,} of variables, together with a well-formed quan-
tified Boolean formula F= (Q,x,)(Q,x,)...(0,x,) F;,, where (I)F, is a
Boolean expression over X in conjunctive normal form with three literals
per clause and (ii) each Q,;_, is 3 and each Q,, is V.

Question. Is F true?

SCHAEFER, T. J. [13] proved that QUANTIFIED 3-SATISFIABILITY is PSPACE-
-complete (whereas the version with only two literals per clause is solvable
in polynomial time). We introduce the intermediate problem QUANTIFIED
1-IN-3-SAT. Recall that in standard logic, a truth-setting for the variables satis-
fies some (ungantified) Boolean formula F in conjuctive normal form iff every
clause contains at least one true literal. In QUANTIFIED 1-IN-3-SAT, a truth-
setting for the variables satisfies some (ungantified) Boolean formula F, in
conjunctive normal form iff every clause contains exactly one true literal.

We did not find a PSPACE-completeness proof for QUANTIFIED 1-IN-3-SAT
in the literature. For the sake of completeness, we state the easy reduction in the
following lemma.

Lemma 3.1 QUANTIFIED 1-IN-3-SAT is PSPACE-complete.

Proof. Clearly, the problem can be solved in polynomial space by some back- .

tracking algorithm and thus lies in the class PSPACE. To establish PSPACE-
hardness, we describe a reduction from QUANTIFIED 3-SATISFIABILITY.

Consider an instance F = (3x,)(Vx,)(Ax;) ... (Vx,) I of QUANTIFIED 3-SATIS-
FIABILITY, and let Fj consist of exactly m clauses over X. In our reduction, we use
all variables in X together with 8m new variables, and we introduce 3m new
clauses in the following way: Every clause C; = (a; + b, + ¢;) in K (with a;, b;, ¢
literals over X) is replaced by three new clauses (a, + a, + ), (b; + @, + %),
(¢; + B+ 6,), where a;, B, 7, and &, are new variables that have not been used
before. It can be checked that every truthassignment for a,, b,, ¢; that makes C;
true, can be extended to a truthassignment for a;, B, ¥, and §; such that each of

Central European Journal for Operations Research and Economics | 1994/95

The Computational Complexity of a Bin Packing Game Aw

the three new clauses contains exactly one true literal and vice versa (this is the
standard construction used for establishing NP-completeness of 1-IN-3-SAT, cf.
[7]). Moreover, we introduce 4m new variables called ¢, f;, ¥/ and &, for
| < i< m. These ‘primed’ variables will not appear in any clause.

The corresponding instance for QUANTIFIED 1-IN-3-SAT then starts with
(3x,)(Vx,)(3x,) ... (Vx,), followed by an alternating sequence of (3*) and (Y*'),
where all new unprimed variables are quantified by 3, and all the new primed
variables are quantified by V, finally followed by the 3m new clauses.

We claim that the constructed instance of QUANTIFIED 1-IN-3-SAT has
answer YES if and only if the original instance of QUANTIFIED 3-SATISFIABILITY
has answer YES. (If) For the first sequence of quantified variables (variables
in X) we use the same truthvalues as in QUANTIFIED 1-IN-3-SAT. The following
unprimed new variables (existentially quantified) can be used to make every new
clause contain exactly one true literal (as noted above), and the primed new
variables are meaningless since they do not appear in the new clauses. (Only if)
Trivial, just consider the restriction without the new primed and unprimed
variables. O

There is a well-known correspondence between quantified formulas and
games. Consider a game played on formulas where the ith move consists in
assigning truthvalues to the variables (player I assigns the existentially quan-
tified, player II assigns the rest) and where player I wins iff the formula is true
after all variables are assigned. Clearly, the formula is true iff player I has a
winning strategy. This correspondence is also used in our proof.

Theorem 3.2 The game PACK + | — is PSPACE-complete.

Proof. Since checking whether player 1 has a winning strategy can be done by
backtracking in polynomial time, PAck +/— is in PSPACE. We give a reduction
from QUANTIFIED 1-IN-3-SAT to prove PSPACE-hardness.

Consider an instance (3x,)(Vx,) ... (Vx,) Fy QUANTIFIED 1-IN-3-SAT, and let
Fy contain exactly m clauses called C|, ..., C,,. Forevery 1 < i < n, we define two
numbers A(7) and B(i). All these numbers will have m + n decimal places. We
number the places from 1 to m + n starting with the least significant place. The
first m (least significant) places we will call the clause-part, the remaining n
places are called the control-part. In the control-part of A(i) and B(i), place
m + n — i+ | will be the digit 4, whereas all other places in the control-part will
be zero. In the clause-part of A(i), place j will be 1 if and only if the variable x;
appears unnegated in the clause C; and 0 otherwise. Symmetrically, in the
clause-part of B(i) the place j will be 1 if and only if the variable x; appears
negated in the clause C; and 0 otherwise. Moreover, we introduce two other

Central European Journal for Operations Research and Economics 1 — 1994/95



iR

A,AV Frits C. R. Spuiksma and Geriarn J. Wor

numbers A* and B* with m decimal places, where all places in A* are 3 and all
places in B* are 2.

Next, we describe an instance of PACK+/—. The bin capacity b is set to
4(10™+"+ ' — 1)/9, i.e. the decimal number consisting of (m + n) places that are
all equal to 4. The item list is as follows:

A(1), B(1), 0, AQ2), BQ2), A3), ..., AQ2i — 1), BQi — 1), 0, AQ2i), B2i),..., A*, B*

(in other words, the items come in packages AB0 4B of size five, and with the
pair A* B* in the end). Note that the sum of all item sizes exactly equals 2b.
We claim that player I can win this instance of PAck +/— iff the instance of
QUANTIFIED 1-IN-3-SAT is true.

Observe that for any 1 < i < 2n, the items A(i) and B(i) (respectively A*
and B*) cannot be packed into the same bin: Because of the control-parts, item
A(1) fills about 90 % of the bin in which it is packed, and since B(1) is about as
large as A(1), it must be packed into the other bin. Similarly, A(2) fills mcoE
90 % of the remaining space in its bin, and since B(2) is about the same size as
A(2), it must be put into the other bin. The same argument applies to any pair
A(i) and B(i). W.l.o.g. 4* is packed into the first bin and B* into the second bin
(in case a packing exists). We interprete “A(i) is packed into bin 1 and B(i) into
bin 27 as “variable x, is set to true” (and of course “A(i) is packed into bin 2 as
“x, is set to false’). Because of the above observation, this yields a consistent
truthsetting.

Moreover, observe that until the packing of A* and B*, there are no
restrictions on the packing of items A(i): In either of the two bins there is a
sufficient amount of empty space into which A(i) will fit. The remaining part of
the equivalence-proof is easy:

In case the 1-IN-3-SAT formula is true, player I just has to follow the
truthsetting of the formula. He decides the packing of the items with ‘odd
numbers’, and player 11 must follow him and pack the corresponding B(2i — 1)-
item into the other bin. No matter, how player II then reacts, for every packing
of an item with an ‘even number’, there exists a winning move of player I for the
next odd-numbered item. In the end, just before 4* has to be packed, the
1-IN-3-SAT formula will be fulfilled and every clause will contain exactly one true
literal. We want to argue that 4* exactly fits into bin 1, and that B* exactly fits
into bin 2. Consider an arbitrary decimal place i < m in the clause part of the
bin contents. In bin 1, 4* contributes 3 to this place and the item that corres-
ponds to the true literal contributes 1; this sums up to a digit 4 in every clause
place of the contents of bin 1. Moreover, every place m + j in the control-part
will be 4, as exactly one of the control-parts of A(n —j+ 1) and B(n —j + 1)
contributes to bin 1. Hence, every place of the decimal representation of the

Central European Journal for Operations Research and Economics 1 1994/95

The Computational Complexity of a Bin Packing Game AM

contents of bin 1 is 4, and the bin is exactly full. An analogous argument holds
for bin 2.

On the other hand, if the 1-IN-3-SAT formula is not true, player 1I has a
winning strategy for the formula-game. If he follows the according strategy in
the packing game, then in the end there will be at least one clause that is not
satisfied and does not contain exactly one true literal. Consider the situation just
before 4* and B* have to be packed. There exists a highest-indexed clause C;
that is not satisfied. The clause-parts of the three corresponding literals together
contribute a value of 3 to place j, and this value 3 is partially assigned to bin 1
and partially to bin 2. No matter, how it is divided (0/3, 2/1 or 3/0), there will
be a digit at least 2 in the corresponding place of the contents of bin 1 or a digit
at least 3 in the corresponding place of the contents of bin 2. Since C; was chosen
to be the highest indexed such clause, all higher places in the control-part are
equal to four, and all higher places in the clause part are 1 (contents of bin 1)
respectively 2 (contents of bin 2). With this it is easy to see that packing 4* and
B* would force the contents of one bin to exceed the capacity. O

Theorem 3.3 The game PACK + |+ is PSPACE-complete.

Proof. Trivial. Take an instance of PACK+/— and add an item that is larger
than the binsize and assigned to player II at the end of the list. Either player I
is able to pack all instances from PAck +/—, and player II fails in packing the
final item, or there exists a strategy for player 1l to prevent the packing of
all items from Pack+/—, and player I loses. Hence, both instances are
equivalent. O.

4. EASY CASES

In this section, we identify three polynomially solvable special cases of the
games PACK + /4 and PAck +/—. Remember that the reduction in the preced-
ing section strongly exploited the decimal representation of the item-sizes. We
will argue that if the item sizes are encoded in unary, then the computational
complexity of both games drops down from PSPACE-complete to polynomial.
An analogous result holds, if the number of distinct item sizes is bounded by
some constant. Moreover, if there are no two items with similar sizes (see below
for an exact definition), then the packing problems also become easy.

Observation 4.1 The unary encoded versions of PACK+ [+ and PACK +/— are
solvable in polynomial time.

Central European Journal for Operations Research and Economics 1 — 1994/95



Av@ Frits C. R. SPieksMA and GERHARD J. WOEGINGER

Proof. Consider the set of all possible game situations: A situation is fully
determined by the index i of the next item to be packed together with the
contents CONT of bin 1. Since the input is encoded in unary, the number of such
pairs (i, CONT) is polynomial in the size of the input. Therefore, one can
construct the complete ‘state space’ of the game in polynomial time and all
possibilities to go from one situation to another one. With this it is routine to
determine who is going to win the game by computing the Sprague-Grundy
function (see e.g. [2]). O

Observation 4.2 If the number of pairwise distinct item sizes is bounded by some
constant, PACK +/+ and PAck +/— are solvable in polynomial time.

Proof. Again the number of game situations is polynomial in the input size:
For a distinct itemsizes is,, ..., is, a situation is fully determined by a vector of
length a + 1, where the last component contains the index of the next item to
be packed, and where component i with 1 < i < a counts the number of items
of size is; that have been packed into bin 1 till now. If n denotes the number of
items to be packed, the number of possible situations is polynomially bounded
by O(n®*"). O

We say that two items are very distinct from each other, if the the smaller
item is at most half of the larger item. Observe that for a set of pairwise very
distinct items, every item is larger than all smaller items together.

Theorem 4.3 For a list of very distinct items, the game PACK+/— can be solved
in polynomial time.

Proof. We will analyse two types of subgames which interact with each other
and reduce to each other. The first subgame is denoted by MIN MIN(d): here the
goal of player I is to pack the list in such a way that afterwards the smaller one
of the two bin contents is at most d, and player Il wants to avoid this. In the
second subgame MIN MAX (d), player | wants to have the larger one of the two
bin contents to be at most d (essentially, this is again PACK+/—).

Consider an instance a,...,a,, b of PAck+/— (or, equivalently, of the
game MIN MaAx (b)) and determine the largest item a, = max,{q;}. We assume
w.l.o.g. that a, < b (since otherwise player 11 trivially wins). We observe that
player I wins the game if and only if item @, can be packed: In case a, is packed,
then the other bin is sufficiently large to absorb al/ other items, and therefore all
remaining items will be packed. In case a, cannot be packed, player I immediate-
ly loses. This implies that player I wins if and only if he has a winning strategy
for the game MIN MIN(b — a,) on the sublist of items a,,...,a,_,.

Now let @, denote the maximum size of the items a,, ..., a, _,. We claim that
assoonasa, has been packed, say into bin 1, it is easy to determine who is going

Central European Journal for Operations Research and Economics | 1994/95

The Computational Complexity of a Bin Packing Game L.‘N

to win: After the packing of a, _,, bin 1 definitely will contain more than bin 2
(since a, is larger than all the rest together). Hence, player 1 will pack all his
remaining items into bin | (to keep the smaller contents as small as possible) and
player II will pack all his remaining items into bin 2 (to make the smaller
contents large).

From this we derive that in case item a, belongs to player I, his new goal
is to pack the list @, ..., a, _, in such a way that afterwards the minimum of the
two bin contents is smaller than some bound (this bound depends on the overall
size of all remaining items assigned to player I1). Hence, we arrive at just another
instance of MIN MIN(x). On the other hand, if item «a, belongs to player II,
player II will put a, in the bin with smaller contents. This bin will immediately
become the larger bin (as a, is the largest item), and the goal of player I is to pack
the list a,,...,a,_, in such a way that the maximum of the two bin contents is
smaller than some bound.

Summarizing, for lists of very distinct items it is possible to reduce any
instance of MIN MAX () to some smaller equivalent instance of MIN MIN (),
and to reduce any instance of MIN MIN(x) to some smaller equivalent instance
of MIN MIN (%) or MIN MaX (). Since these reduction can be performed in linear
time (one just must determine the maximum value and compute some numbers
by adding), we conclude that PAck +/— is solvable in polynomial time. O

Remark. It is nice to observe that the following trivial strategy does not work
for the game MIN MiIN: Player I always packs his items into the larger bin (and
keeps the current minimum small), player II (who wants to make the minimum
large) always packs his items into the smaller bin. If the item list <0, 2, 3, 4) is
packed according to these strategies with d = 3, in the end the minimum bin
contents will be 4 and player 11 will win the game. However, if both players play
optimally, in the end the minimum bin contents will be 3 and player I wins the
game.

Corollary 4.4 For a list of very distinct items, the game PACK + [+ can be solved
in polynomial time.

Proof. Determine the first item a, that is larger than the bin size. Determine the
largest a,iteminay, ..., a, . Itis easy to check that PAck 4 /+ either ends when
a, or when a, is to be packed. Thus, we solve PACK+/— on the lists a,, ..., a,,
and a,, ..., a,. Depending on the outcome of these two instances, and depending
on which player must pack a, respectively a,, one easily finds out who is going
to win. _ O

Central European Journal for Operations Research and Economics 1 — 1994/95



A.w Frits C. R. Seiksma and GERHARD J. WOEGINGER

5. CONCLUSION

We analysed the computational complexity of two closely related packing
games. We proved that both games are computationally intractable (PSPACE-
complete) and we identified three easy special cases. EVEN, S. and TARJAN, R. E.
[3] claimed that with high probability “any game with a sufficiently rich struc-
ture”’ should be complete in PSPACE. Comparing the structure of the general
games with the structure of the three easy special cases, one sees that our results
confirm this observation.

REFERENCES

ADACHI, A., IWATA, S. and KasAl, T.: Some combinatorial game problems require £2(n*) time.
Journal ACM 31, 1984, pp. 361—376.

BERLEKAMP, E. R., CoNway, J. H. and Guy, R. K.: Winning Ways. Academic Press, London,
1982.

[3] EveN, S. and TARIAN, R. E.: 4 combinatorial problem which is complete in polynomial space.
Journal ACM 23, 1976, pp. 710-- 719.

[1

—

2

ot

[4] FRAENKEL, A. and GoLDSCHMIDT, E.: PSPACE-hardness of some combinatorial games. Journal
Combinatorial Theory, Ser. A 46, 1987, pp. 21—38.

[5] FRAENKEL, A. and LICHTENSTEIN, D.: Computing a perfect strategy for n by n chess requires time
exponential in n. Journal Combinatorial Theory, Ser. A 31, 1981, pp. 199 -214.

[6] FRAENKEL, A. and YESHA, Y.: Complexity of problems in games, grphs and algebraic equations.
Discrete Applied Mathematics 1, 1979, pp. 15—30.

[7] GAREY, M. R. and JounsoN, D. S.: Computers and Intractability: 4 Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.

[8] Jounson, D. S.: The NP-completeness column: An ongoing guide. J. Algorithms 4, 1983,

pp. 397—411.

[9] LicHTENSTEIN, D. and SipsEr, M.: Go is polynomial-space hard. Journal ACM 27, 1980,
pp. 393—401.

[10] MEHLHORN, K., NAHER, S. and RAuCH, M.: On the complexity of a game related to the
dictionary problem. In: Proceedings 30th Annual Symposium on Foundations of Computer
Science, 1989, pp. 546—548.

[11] REiscH, S.: Hex ist PSPACE-vollstaendig. Acta Informatica 15, 1981, pp. 167—191.

[12] ScHAEFER, T. J.: The complexity of satisfiability problems. In: Proc. 10th Symp. on Theory of
Computing, 1978, pp. 216—226.

[13] ScHAEFER, T. J.: On the complexity of some two-person perfect-information games. Journal
Computer System Sciences 16, 1978, pp. 185—225.

[14] STOCKMEYER, L. J. and CHANDRA, A. K.: Provably difficult combinatorial games. SIAM Journal
on Computing 8, 1979, pp. 151—174.

Central European Journal for Operations Research and Economics 1 1994/95

The Computational Complexity of a Bin Packing Game L.@

Received March 1994
Revised October 1994

NSN.HV, C. R. SPIEKSMA, University of Limburg, Department of Mathe-
matics, P.O. Box 616, 6200 MD Maastricht, The Netherlands.

Qmwl\:ﬁu J. .:\QmQNZQmw, TU Graz, Institut fiir Theoretische Infor-
matik, Klosterwiesgasse 32/I1, A-8010 Graz, Austria.

Central European Journal for Operations Research and Economics 1 — 1994/95



