
Computers & Operations Research 141 (2022) 105688

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A project scheduling problem with periodically aggregated
resource-constraints
Pierre-Antoine Morin a,b, Christian Artigues a,∗, Alain Haït b, Tamás Kis c, Frits C.R. Spieksma d

a LAAS CNRS, University of Toulouse, CNRS, Toulouse, France
b ISAE SUPAERO, University of Toulouse, Toulouse, France
c MTA SZTAKI, Hungarian Academy of Sciences, Budapest, Hungary
d Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands

A R T I C L E I N F O

Keywords:
Project scheduling
Periodic aggregation of resource-constraints
Computational complexity
Mixed-integer linear programming

A B S T R A C T

We consider the so-called periodically aggregated resource-constrained project scheduling problem. This
problem, introduced by Morin et al. (2017), is a variant of the well-known resource-constrained project
scheduling problem that allows for a more flexible usage of the resource constraints. While the start and
completion times of the activities can be arbitrary moments in time, the limitations on the resource usage are
considered on average over aggregated periods of parameterized length. This paper presents new theoretical
and experimental results for this problem. First, we settle the complexity status of the problem by proving NP-
hardness of a number of special cases of the problem. Second, we propose a new mixed-integer programming
formulation of the problem by disaggregating the precedence constraints over the periods. A theoretical
comparison shows that the new formulation dominates the previously proposed one in terms of relaxation
strength. Finally, we carry out computational experiments on instances from the literature to compare the
merits of the different formulations.
1. Introduction

In the extensively studied standard resource-constrained project
scheduling problem (RCPSP), at any time, the sum of the requirements
of the activities that are currently processed must not exceed the
resource capacity. This scheme permits to generalize a wide range
of scheduling problems. However, in some practical applications, the
time horizon is divided uniformly into consecutive intervals, and only
the average activity requirements on each interval is considered. This
aggregated form of resource constraints appears notably in employee
scheduling where the load generated by the different activities and its
compatibility with the number of present employees is evaluated on
average in each shift (Paul and Knust, 2015). However, the schedule
of the activities can, and often should be determined on a more precise
time scale for specific reasons such as the necessary anticipation for the
usage of scarce resources or the contractual relationships with suppliers
and customers (Artigues et al., 2009). Another example can be found
in manufacturing or smart building applications, where the electricity
consumption of jobs is only computed in intervals fixed by the electric-
ity provider while the schedule of the jobs can be more detailed (Haït
and Artigues, 2011). In the literature, averaging the resource demand
of activities inside fixed length periods has been proposed for prob-
lems with variable-intensity activities: the rough cut capacity planning

∗ Corresponding author.
E-mail address: artigues@laas.fr (C. Artigues).

(RCCP) (Hans, 2001) and the resource-constrained project scheduling
problem with variable intensity activities (RCPSVP) (Kis, 2005). An
extension of the RCPSP with partially renewable resources, entitled
RCPSP/𝛱 , has been introduced by Böttcher et al. (1999), that allows to
define intervals with specific rules for resource consumption. However,
the formulations proposed by Hans for the RCCP and by Kis for the
RCPSVP do not involve variables representing start times; moreover,
there is no assumption (a priori) nor algorithm (a posteriori) that pro-
vides values for start times. However, the average ‘‘energy’’ (duration
× demand) is an explicit variable. For a given solution (average energy
of each activity on each resource in each period), resource constraints
induce bounds on start times for compatible schedules (i.e. schedules
whose energy profile matches the solution). In some cases, any such
schedule is precedence-infeasible. For the RCCP, a workaround has
been proposed, but might fail. For the RCPSVP, in order to avoid this
phenomenon, for each predecessor/successor pair, the standard end-to-
start precedence constraint is replaced with the following constraint:
if the predecessor completes in period 𝓁, then the successor may start
only in period 𝓁+1 or later, which leads to overconstrained precedence
constraints, compared to the standard ones. In both cases, no start times
are involved. Apart from being undesirable for the above-mentioned
vailable online 10 January 2022
305-0548/© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cor.2021.105688
Received 9 October 2020; Received in revised form 19 December 2021; Accepted 2
1 December 2021

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:artigues@laas.fr
https://doi.org/10.1016/j.cor.2021.105688
https://doi.org/10.1016/j.cor.2021.105688
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2021.105688&domain=pdf

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

s
i

n

Fig. 1. Example #1.

pecific reasons, generally, this enforcement also has a strong negative
mpact on the scheduling objectives.

For the RCPSP/𝛱 , start times must coincide with sub-interval
bounds and so can be seen as discrete variables: because of this, not
only optimal but also feasible solutions, possibly even all of them, may
be excluded.

This paper focuses on the Periodically Aggregated Resource-
Constrained Project Scheduling Problem (PARCPSP), introduced in Mori
et al. (2017), that permits to address this modification of resource
constraints, while considering the activity start times as continuous
variables. In organizations, this model allows to consider decisions at
an intermediate level between planning at the tactical level for the
resource limitation constraints and scheduling at the operational level
for time windows and precedence constraints.

Let us consider the following example (cf. Fig. 1), with a project
composed of two activities and one resource (cf. Fig. 1(a)). Each
activity has one unit processing time and a unit resource consumption,
while the resource has one unit capacity. We suppose that the activities
are not subject to a precedence relation. In the case of the RCPSP,
the resource is disjunctive: the standard cumulative resource constraint
forbids that the activity execution windows overlap, even partially.
However, if these resource constraints are aggregated over time peri-
ods, e.g. of unit length, such that the total average request should not
exceed the resource capacity, then there exists feasible schedules such
that the two activities overlap, and even start and complete at the same
moments in time. More precisely, among such schedules, some remain
infeasible (cf. Fig. 1(b)), while others become feasible (cf. Fig. 1(c)).
This example will be further commented in Section 2.

In Morin et al. (2017), a mixed-integer linear programming (MILP)
formulation and heuristics are discussed, while the problem itself is
conjectured to be NP-complete. The aim of the current paper is, first,
to establish the NP-completeness of the PARCPSP, with various restric-
tions on the input, to highlight non-standard structural properties of
this problem and, second, to propose alternative mixed-integer linear
2

programming formulations with tighter relaxations.
The paper is structured as follows. In Section 2, the PARCPSP
is defined formally and compared to traditional resource-constrained
project scheduling problems. In Section 3, the PARCPSP is proved to be
strongly NP-hard, by focusing on the computational complexity charac-
terization of three particular cases. In Section 4, the MILP formulation
proposed in Morin et al. (2017) is recalled and a new formulation
is proposed. The new formulation is shown to dominate the previous
formulation in terms of LP relaxation. Computational experiments to
compare the new formulation with the previous one are given in
Section 5. Finally, in Section 6, some concluding remarks are drawn
and possible extensions of the problem are discussed.

2. PARCPSP – Problem statement

In this section, we formally introduce the problem studied. It
is a variant of the extensively studied Resource Constrained Project
Scheduling Problem (RCPSP), based on a temporal aggregation of
resource constraints over periods defining a uniform subdivision of
the time horizon, hence the name Periodically Aggregated Resource
Constrained Project Scheduling Problem (PARCPSP).

2.1. Input and notations

The input of the problem can be split into two independent parts.

• On the one hand, a project instance 𝑋 is considered. An activ-
ity set and a resource set are given. Activities require a given
amount of capacity on some or all resources throughout their
execution. They cannot be interrupted: preemption is not allowed.
Precedence relations possibly exist between activities.
The notations related to the project instance are listed hereafter.

A Finite set of 𝑛 activities
R Finite set of 𝑚 renewable resources
𝑝𝑖 Processing time of activity 𝑖 ∈ A

𝑏𝑘 Capacity of resource 𝑘 ∈ R

𝑟𝑖,𝑘 Request (demand) of activity 𝑖 ∈ A on
resource 𝑘 ∈ R

𝐸 ⊆ A × A ; precedence relations (arc list)

Let X the set of project instances.
• On the other hand, the time horizon is divided uniformly into 𝐿

periods of parameterized length 𝛥 ∈ R>0. The convention chosen
for period numbering is represented in Fig. 2.

A solution is a vector 𝑆 = (𝑆𝑖)1≤𝑖≤𝑛 ∈ R𝑛, where 𝑆𝑖 is the start date of
activity 𝑖 ∈ A . The start date and the completion date of the project are
denoted by 𝑆0 = min𝑖∈A (𝑆𝑖) and 𝑆𝑛+1 = max𝑖∈A (𝑆𝑖 + 𝑝𝑖), respectively.

2.2. A formulation of the PARCPSP

Let 𝑆 ∈ R𝑛 a solution of the PARCPSP. We consider two alternative
objective functions linked to the temporal execution of the project.

𝐶𝑚𝑎𝑥 = 𝑆𝑛+1 (project makespan)
𝑑𝑢𝑟(𝑆) = 𝑆𝑛+1 − 𝑆0 (project duration)

Notice that, for the PARCPSP, unlike the RCPSP, these two objec-
tives are not equivalent, because there is no guarantee that, for any of
these objectives, at least one activity starts at 𝑡 = 0 (hence 𝑆0 > 0).
This is further discussed in Section 2.5. Moreover, if we set 𝑆0 ≥ 0, the
problem defined with objective duration is indeed a relaxation of the
one defined with objective makespan, since 𝑆𝑛+1 = 𝐶𝑚𝑎𝑥.

Two families of constraints are taken into account.

1. Precedence constraints
For each arc (𝑖1, 𝑖2) ∈ 𝐸, activity 𝑖1 has to complete before

activity 𝑖2 starts.

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

i
t

l

Fig. 2. Uniform subdivision of the time horizon.
s

Fig. 3. Evaluation of the execution duration in aggregated periods.

2. Resource constraints (periodically aggregated)
For each resource 𝑘 ∈ R, in each period 𝓁 ∈ Z, the sum of the
average requests of the activities cannot exceed the capacity of
the resource.

Let 𝑑𝑖,𝓁(𝑆) ∈ [0, 𝛥] denote the execution duration of activity 𝑖 ∈ A
n period 𝓁 ∈ Z depending on solution 𝑆, i.e., 𝑑𝑖,𝓁(𝑆) is the length of
he intersection of two intervals: the execution interval of activity 𝑖,

and period 𝓁Fig. 3.

𝑑𝑖,𝓁(𝑆) =
|

|

|

[

𝑆𝑖, 𝑆𝑖 + 𝑝𝑖
]

∩ [(𝓁 − 1)𝛥,𝓁𝛥]||
|

= max
(

0 , min
(

𝑆𝑖 + 𝑝𝑖 , 𝓁𝛥
)

− max
(

𝑆𝑖 , (𝓁 − 1)𝛥
)

)

Notice that, given a solution 𝑆, the expression of the average request
of activity 𝑖 ∈ A on resource 𝑘 ∈ R over period 𝓁 ∈ Z is 𝑟𝑖,𝑘

𝑑𝑖,𝓁 (𝑆)
𝛥 .

Therefore, the PARCPSP can be formulated as follows:

Minimize 𝑑𝑢𝑟(𝑆) (1)

subject to 𝑆𝑖2 − 𝑆𝑖1 ≥ 𝑝𝑖1 ∀(𝑖1, 𝑖2) ∈ 𝐸 (2)
∑

𝑖∈A

𝑟𝑖,𝑘
𝑑𝑖,𝓁(𝑆)

𝛥
≤ 𝑏𝑘 ∀𝑘 ∈ R , ∀𝓁 ∈ Z (3)

Remark. Activities may start at any time within a period. In other
words, the PARCPSP permits to tackle start and completion events in
a precise way, as well as precedence constraints, while the resource
consumption is evaluated on average over (aggregated) periods.

Remark. Notice that the formulation is easily adjusted when capacities
depend on the period, in which case 𝑏𝑘 is replaced by 𝑏𝑘,𝓁 . Non uniform
period length can similarly be obtained by replacing 𝛥 by 𝛥𝓁 .

In the following, the notation PARCPSP[𝑋,𝛥] is used to identify the
problem instance considered, composed of a project 𝑋 ∈ X and a
period length 𝛥 ∈ R>0. Similarly, the notation RCPSP[𝑋] is used.

2.3. Conditions for the existence of feasible schedules

Let 𝑋 ∈ X be a project instance and 𝛥 ∈ R>0 a (fixed) period
ength.

• The precedence constraints are satisfiable iff the precedence
graph is acyclic.

• Let 𝑖 ∈ A . Let 𝑘 ∈ R. Let 𝑆 denote a feasible solution of
PARCPSP[𝑋,𝛥]. Let 𝓁𝑖 = 1 +

⌊𝑆𝑖
𝛥

⌋

denote the period in which
activity 𝑖 starts (i.e. such that (𝓁𝑖 − 1)𝛥 ≤ 𝑆𝑖 < 𝓁𝑖𝛥).

– If 𝑝𝑖 ≥ 2𝛥
The execution window

[

𝑆𝑖, 𝑆𝑖 + 𝑝𝑖
]

fully includes period 𝓁𝑖+
1. So, in this period: 𝑟𝑖,𝑘𝑑𝑖,𝓁𝑖+1(𝑆) = 𝑟𝑖,𝑘𝛥 ≤ 𝑏𝑘𝛥. Hence:
𝑟 ≤ 𝑏 .
3

𝑖,𝑘 𝑘
– If 𝑝𝑖 < 2𝛥
The least restrictive configuration is such that the middle
of the execution window is a period bound (otherwise by
shifting the activity in any direction, the maximum over-
lapping with the left or the right period increases, which
increases the maximum resource requirement of the activity
among all periods) i.e.: 𝑆𝑖 +

𝑝𝑖
2 = 𝓁𝑖𝛥. In this case, 𝑑𝑖,𝓁𝑖 (𝑆) =

𝑑𝑖,𝓁𝑖+1(𝑆) = 𝑝𝑖
2 while 𝑑𝑖,𝓁(𝑆) = 0 in all other periods 𝓁 ∈

Z ⧵
{

𝓁𝑖,𝓁𝑖 + 1
}

. In other words, the demand of activity 𝑖 is
split equally over two consecutive periods. So, the resource
constraints in periods 𝓁𝑖 and 𝓁𝑖 + 1 result in the same
inequality: 𝑟𝑖,𝑘

𝑝𝑖
2 ≤ 𝑏𝑘𝛥.

Hence: 𝑟𝑖,𝑘 ≤ 𝑏𝑘
2𝛥
𝑝𝑖

Therefore, the (aggregated) resource constraints are satisfiable iff :

∀𝑖 ∈ A ∀𝑘 ∈ R 𝑟𝑖,𝑘 ≤ 𝑏𝑘 max
{

1, 2𝛥
𝑝𝑖

}

Remark. If the project instance 𝑋 satisfies the following conditions,
then, whatever the value of 𝛥 (period length), there exist feasible
schedules.

• The precedence graph is acyclic.
• ∀𝑖 ∈ A ∀𝑘 ∈ R 𝑟𝑖,𝑘 ≤ 𝑏𝑘

2.4. Comparison with the RCPSP

A possible formulation for the RCPSP is:

Minimize 𝑑𝑢𝑟(𝑆) (4)

ubject to 𝑆𝑖2 − 𝑆𝑖1 ≥ 𝑝𝑖1 ∀(𝑖1, 𝑖2) ∈ 𝐸 (5)
∑

𝑖∈A𝑡(𝑆)
𝑟𝑖,𝑘 ≤ 𝑏𝑘 ∀𝑘 ∈ R , ∀𝑡 ∈ R (6)

In this formulation, A𝑡(𝑆) denote the set of activities in progress at
𝑡 ∈ R depending on solution 𝑆.

A𝑡(𝑆) =
{

𝑖 ∈ A
|

|

|

𝑡 ∈
[

𝑆𝑖, 𝑆𝑖 + 𝑝𝑖
)

}

Notice that the only difference between the RCPSP and the PARCPSP
lies in the definition of the resource constraints, which are evaluated
either exactly at each instant 𝑡 ∈ R or on average in each (aggregated)
period 𝓁 ∈ Z (see Fig. 4), which makes the PARCPSP a relaxation of
the RCPSP.

Another way of viewing this is to consider the impact of very
small 𝛥. Indeed, if 𝛥 becomes small, then, given the definition of
𝑑𝑖,𝓁(𝑆), intervals 𝓁 in which the activity is processed will be completely
occupied by the activity, and hence feature 𝑑𝑖,𝓁(𝑆) = 1. This means that,
as 𝛥 becomes smaller, formulation (1)–(3) converges to formulation
(4)–(6).

2.5. Impact of aggregation on resource feasibility

Finally, let us consider two simple examples, respectively in Fig. 1
(Example 1, already investigated in the introduction), and in Fig. 5
(Example 2).

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

r
o
O

p
t

d
H
d

E

Fig. 4. Evaluation of activity demands on resources.
n
A
t
t

i

3

T

Example 1. We recall that, in this example, the project instance 𝑋1 ∈
X (see Fig. 1(a)) is composed of a single resource of capacity 1 and
two identical activities (same processing time equal to 1, same request
on the resource equal to 1) with no precedence relations. We consider
solutions such that the two activities are executed simultaneously,
i.e. 𝑆1 = 𝑆2 (so, the project duration is equal to 1).

For the RCPSP[𝑋1], such solutions are not feasible, since they violate
esource constraints (evaluated at each instant). An optimal solution is
btained by executing one activity at a time, with no idle time; hence
pt(RCPSP[𝑋1]) = 1 + 1 = 2.

Let us consider a uniform subdivision of the temporal horizon, with
eriods of length 𝛥 = 1. What about the feasibility of such solutions for
he PARCPSP[𝑋1, 1] ?

• If 𝑆1 = 𝑆2 = 0, then both activities are completed at 𝑡 = 1, i.e. both
execution windows match exactly the first period (𝓁 = 1). In this
period: 𝑑1,1(𝑆) = 𝑑2,1(𝑆) = 𝛥. Therefore, the average request of
each activity is equal to 𝛥

𝛥 = 1. So, as shown in Fig. 1(b), the sum
of the average requests in this period (= 2) exceeds the capacity
of the resource (= 1). Hence this solution is not feasible.

• If 𝑆1 = 𝑆2 = 0.5, then both activities are completed at 𝑡 = 1.5,
i.e. both execution windows are split equally over two consecutive
periods (𝓁 ∈ {1, 2}). In these periods: 𝑑1,𝓁(𝑆) = 𝑑2,𝓁(𝑆) = 𝛥

2 .
Therefore, the average request of each activity is equal to 𝛥∕2

𝛥 = 1
2 .

So, as shown in Fig. 1(c), the sum of the average requests in these
periods (= 1) does not exceed the capacity of the resource (= 1).
Hence this solution is feasible.
Indeed, this solution is optimal (since the two activities run in
parallel, no other configuration can lead to a shorter project
duration).

This first example enhances the following points.

• Even when resources have a constant capacity over time, in the
case of the PARCPSP, unlike the RCPSP, shifting a schedule can
affect its feasibility.

• The gap between the optimum of the RCPSP and the PARCPSP
can be large (here 50%) even with unit periods (𝛥 = 1). In fact the
example shows that the standard resource capacity lower bound
equal to max𝑘∈R

∑

𝑖∈A 𝑟𝑖,𝑘𝑝𝑖∕𝑏𝑘 is not a valid lower bound for the
PARCPSP.

For this particular instance, the project duration is reduced by
ispatching the average requests equally over two consecutive periods.
owever, the rule ‘‘the more periods used, the shorter the project
uration’’ does not apply to all instances, as shown in the next example.

xample 2. The project instance 𝑋2 ∈ X is composed of a single
resource with capacity 5 and three activities with one precedence
relation (see Fig. 5(a) for the numerical parameter values). We still
consider unit periods (𝛥 = 1).
4

o

• As shown in Fig. 5(b), the solution (0, 0.5, 2) is feasible. It is not
optimal: one can shorten the project duration by shifting activity
1 to the right for an amount of 1/6 and shifting activity 3 to the
left for an amount of 1/6, leading to a duration of 2.5.
Notice that 3 periods are intersected by at least one activity
execution window.

• As shown in Fig. 5(c), the solution (0.5, 1, 2.5), obtained by shifting
the previous solution by +0.5, is not feasible. It is possible to
repair it, by shifting activities 1 and 3 by − 1

6 and + 1
6 , respectively,

thus enlarging the project duration by 1
3 but now using 4 periods.

Therefore, we showed that the feasibility of a schedule depends
not only on the relative positions of activity execution windows as
in the RCPSP, but also on their absolute positions, which determines
the average resource usage in aggregated periods. This problem has
consequently fundamental differences with the related RCPSP.

3. Complexity

The complexity of the problem was left open in Morin et al. (2017).
This section first establishes that the problem is in NP, even if the time
horizon is not part of the input. Then, the computational complexity
of three particular cases are considered, which yields the complexity
result for the PARCPSP.

3.1. Inclusion in NP

To check whether a start time solution vector is feasible w.r.t. a
fixed makespan requires checking the resource and the precedence
constraints. Since the number of time periods over a time horizon
which covers both 𝑆0 and 𝑆𝑛+1 may not be bounded by a polynomial
in the size of the input, computing the average resource consumption
in every time period is not a viable approach to check the feasibility
of a schedule in polytime. Testing resource constraints only in periods
where the resource usage increases is sufficient. Recall that activities
may start at any time in a period, and that preemption is not allowed.
Therefore, each activity 𝑖 ∈ A may increase the resource usage only in
two periods: the period when it starts

(

𝓁𝑖 = 1 +
⌊𝑆𝑖
𝛥

⌋

)

, and possibly the
ext one. So, for each activity, at most two periods have to be checked.
single test in a given period on a given resource consists in verifying

hat the sum of the mean demands of the activities is not greater than
he capacity of the resource.

This yields an algorithm in O (1 + |𝐸| + 𝑚 × 2𝑛 × 𝑛), thus polynomial
n the input size.

.2. One resource, constant capacity

heorem 1. The PARCPSP with makespan objective and a single resource
f fixed capacity 𝑏 ≥ 2 is weakly NP-hard.

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

P
p
𝑎
p
∅

o
a
p
r
e
i
o

a
W
i
N
s
(
i
f
r
[
e
u
a

C
o

Fig. 5. Example #2.
P
t
t

C

P
a
a
s
l
t
u
t
b

t
a
w
a
o
r
a
a
i
2
t
b
i
p

roof. We show that PARTITION ≤𝑃 PARCPSP. In the PARTITION
roblem (Karp, 1972), we have 𝑛 items, and each item 𝑖 has a size
𝑖 ≥ 1. All the data is integral, and ∑

𝑖 𝑎𝑖 is an even integer. Is there a
artitioning of the items into two subsets 𝑆1 and 𝑆2, such that 𝑆1∩𝑆2 =
, 𝑆1 ∪ 𝑆2 = {1,… , 𝑛}, and ∑

𝑖∈𝑆1
𝑎𝑖 =

∑

𝑖∈𝑆2
𝑎𝑖?

For any instance of the PARTITION problem, we define an instance
f PARCPSP as follows. There is a single resource of capacity 2. There
re 𝑛 activities, activity 𝑖 corresponds to item 𝑖 in the PARTITION
roblem instance, and it has processing time 𝑝𝑖 ∶= 2𝑎𝑖. The resource
equirement of each activity is 1 from the single resource during its
xecution. We let 𝛥 = 1. We claim that the PARTITION problem
nstance has a YES answer if and only if the corresponding instance
f PARCPSP admits a feasible schedule of length (

∑𝑛
𝑖=1 𝑝𝑖)∕2.

First suppose that the PARTITION problem instance has a YES
nswer. Then it must be the case that ∑𝑖∈𝑆1

𝑝𝑖 =
∑

𝑖∈𝑆2
𝑝𝑖 = (

∑𝑛
𝑖=1 𝑝𝑖)∕2.

e define the following schedule: the activities corresponding to the
tems in 𝑆1 are scheduled in a single sequence from time 0 onwards.
otice that each activity starts and ends at integral time points. This

equence occupies one unit of the resource from time 0 to time
∑𝑛

𝑖=1 𝑝𝑖)∕2. Now schedule all the activities corresponding to the items
n 𝑆2 in any sequence from time 0 onwards. Again, this sequence
inishes at time (

∑𝑛
𝑖=1 𝑝𝑖)∕2. Since 𝛥 = 1, the total capacity of the

esource is 2 in each interval [𝑡 − 1, 𝑡]. Further on, in each interval
𝑡 − 1, 𝑡] with 𝑡 ≤ (

∑𝑛
𝑖=1 𝑝𝑖)∕2, the total resource usage is 2, because

xactly two activities are processed in the intervals, each requiring one
nit from the resource. Therefore, the schedule is feasible, and all jobs
re completed by time (

∑𝑛
𝑖=1 𝑝𝑖)∕2.

Conversely, suppose there is a feasible schedule of length (
∑𝑛

𝑖=1 𝑝𝑖)∕2.

laim 1a. In any feasible schedule of length (∑𝑛
𝑖=1 𝑝𝑖)∕2, exactly two units
5

f resource are used in each interval. t
roof. The total resource requirement of the activities is ∑𝑛
𝑖=1 𝑝𝑖. Since

he total capacity of the resource from time 0 to time (
∑𝑛

𝑖=1 𝑝𝑖)∕2 is equal
o (

∑𝑛
𝑖=1 𝑝𝑖), the claim follows. ■

laim 1b. Exactly two activities start at time 0.

roof. Suppose it is not the case. Observe that there can be at most two
ctivities processed in the interval [0, 1], because if there were 3 or more
ctivities starting in the interval [0, 1], then all these 3 or more activities
hould be processed throughout the interval [1, 2], as each activity is of
ength 2 or more (𝑝𝑖 = 2𝑎𝑖, and 𝑎𝑖 ≥ 1). But this is impossible, because
he resource has capacity 2, and the activities would require 3 or more
nits of the resource. Now suppose that less than 2 activities start at
ime 0. Then the resource usage of the activities in interval [0, 1] must
e less than 2, which contradicts Claim 1a. ■

So far we have shown that exactly two activities start at time 0 in
he feasible schedule. Since the processing times are integral, these two
ctivities finish at integral time points, at 𝑡1 and 𝑡2, say. If 𝑡1 = 𝑡2, then
e can repeat the same argument to show that there are exactly two
ctivities starting right at time 𝑡1 = 𝑡2. If 𝑡1 ≠ 𝑡2, then without loss
f generality, 𝑡1 < 𝑡2. Then in the interval [𝑡1, 𝑡1 + 1], one unit of the
esource is used by the activity which is still in progress. Since both 𝑡1
nd 𝑡2 are divisible by 2 (as each 𝑝𝑖 is divisible by 2), 𝑡2 ≥ 𝑡1 + 2, and
gain, at most one activity may start in the interval [𝑡1, 𝑡1+1], otherwise
n the interval [𝑡1+1, 𝑡1+2] the total resource usage would be more than
. It follows that a new activity must be started at time 𝑡1, otherwise in
he interval [𝑡1, 𝑡1 + 1], less than 2 units of the resource would be used
y the feasible schedule, which would contradict Claim 1a. Proceeding
n this way, we prove that all the activities start at integral time
oints, and at any time, at most two activities are processed. Hence,

he schedule can be decomposed into two sequences of activities, 𝑆1

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

a
r
t

C
t
o
e
a
𝑆

3

t
w
J
c

T
i

P
o

e

o
s

1

C
𝑡

C

c
a

t

t

L

∀

r
s
P

𝑑

𝑑
i

C
c

∀

P
𝓁

Fig. 6. Feasible schedule, no partition.

nd 𝑆2, each of the same total length (
∑𝑛

𝑖=1 𝑝𝑖)∕2. Then 𝑆1 and 𝑆2 give
ise to a partitioning of the items such that ∑𝑖∈𝑆1

𝑎𝑖 =
∑

𝑖∈𝑆2
𝑎𝑖. Hence,

he instance of the PARTITION problem has answer YES. □

The reduction does not hold for the duration (𝑆𝑛+1 − 𝑆0) objective.
onsider the simple multiset of 5 elements {1, 1, 1, 1, 1}. Obviously,
here is no partition of such set. If we now consider the PARCPSP
btained by the reduction, we obtain a set of 5 tasks of duration 2,
ach having a unit resource requirement on a resource of capacity 2
nd we also have 𝛥 = 1. Fig. 6 displays a feasible schedule of duration
𝑛+1 − 𝑆0 = 5 =

∑5
𝑖=1 𝑝𝑖∕2.

.3. One resource, arbitrary capacity

The previous reduction (from the PARTITION problem) can be
ransformed slightly to derive the strong NP-hardness of the PARCPSP
ith objective makespan from the 3-PARTITION problem (Garey and

ohnson, 1979), when considering a single resource with arbitrary
apacity.

heorem 2. The PARCPSP with makespan objective and a single resource
s strongly NP-hard when capacity 𝑏 is part of the input.

roof. Let us show that 3-PARTITION ≤𝑃 PARCPSP. Given 3𝑛 items
f integral size 𝑎𝑖 such that ∑

𝑖 𝑎𝑖 = 𝑛𝐷, and 𝐷
4 < 𝑎𝑖 < 𝐷

2 for all 𝑖 ∈
{1,… , 3𝑛}, the 3-PARTITION problem consists in determining whether
a partitioning of the items into 𝑛 pairwise disjoint triples 𝑇1,… , 𝑇𝑛 of
qual sum, i.e. ∑𝑖∈𝑇𝑗 𝑎𝑖 = 𝐷 for all 𝑗 ∈ {1,… , 𝑛}, exist.

The reduction from the 3-PARTITION problem to PARCPSP is al-
most the same as the previous reduction from PARTITION. Each item
𝑖 is converted into an activity with processing time 𝑝𝑖 ∶= 2𝑎𝑖, and a
resource requirement of 1; we only change the capacity of the single
resource, setting it to 𝑛 (previously set to 2).

Let us show that the 3-PARTITION problem instance has a YES
answer if and only if the corresponding instance of PARCPSP admits
a feasible schedule of length 2𝐷 = (

∑𝑛
𝑖=1 𝑝𝑖)∕𝑛.

First suppose that the 3-PARTITION problem instance has a YES
answer. A similar reasoning as the one presented in the previous proof
entails that scheduling the activities corresponding to a triple 𝑇𝑗 in any
rder from time 0 on in a single sequence yields a feasible schedule
uch that all jobs complete by time 2𝐷.

Conversely, suppose there is a feasible schedule of length 2𝐷. Claims
a,Claim 1b can be adapted seamlessly as follows.

laim 2a (Generalization of Claim 1a). In each interval [𝑡 − 1, 𝑡] for
∈ {1,… , 2𝐷}, exactly 𝑛 units of the resource is used.

laim 2b (Generalization of Claim 1b). Exactly 𝑛 activities start at time 0.

Moreover, there is no interval [𝑡 − 1, 𝑡], with 𝑡 ∈ {1,… , 2𝐷},
ontaining a moment during which less than 𝑛 activities are active (an
ctivity being active at moment 𝑡 if 𝑆 ≤ 𝑡 < 𝑆 + 𝑝). This can be seen
6

𝑗 𝑗 𝑗 𝓁
using a contradiction argument; suppose there is an interval containing
a moment with less than 𝑛 activities being active. Since, in this interval,
𝑛 units of resource must be used (after Claim 2a), there must also be
a moment in this interval in which more than 𝑛 activities are active.
But that implies that a neighboring interval must feature more than 𝑛
activities active during that whole interval (since 𝑝𝑗 ≥ 2 and 𝛥 = 1),
hereby exceeding the available capacity, which contradicts Claim 2a.

Therefore, at each instant in [0, 2𝐷], exactly 𝑛 activities are active.
Hence, the instance of the 3-PARTITION problem has answer YES. □

3.4. Multiple resources, constant capacities

The third reduction, inspired from Blazewicz et al. (1983), estab-
lishes the strong NP-hardness of the PARCPSP with objective duration
or makespan for instances with an unlimited number of resources
with constant capacities. The proof presented hereafter considers the
objective duration; notice that the proof for the objective makespan is
very similar, because Claim 3a holds regardless of the actual objective.

Theorem 3. The PARCPSP with duration or makespan objective and
unlimited number of resources with constant capacities is strongly NP-hard.

Proof. We establish that Chromatic Number ≤𝑃 PARCPSP. Given a
non-oriented graph G = (V ,E), the Chromatic Number problem (Karp,
1972) consists in coloring the vertices of G using a minimum number
of colors (𝑐𝑗)𝑗∈V so that no two adjacent vertices are assigned the same
color. Let G = (V ,E) a non-oriented graph. Let 𝛥 ∈ R>0 (e.g. 𝛥 = 1).
Let 𝑋(G) ∈ X the project instance defined by:

• A = V (activity = vertex)
• R = E (resource = edge)
• ∀𝑖 ∈ A 𝑝𝑖 = 2𝛥
• ∀𝑘 ∈ R 𝑏𝑘 = 1
• ∀𝑖 ∈ A ∀𝑘 ∈ R 𝑟𝑖,𝑘 = 1 if vertex 𝑖 is one of the two extremities

of edge 𝑘, 0 otherwise
• 𝐸 = ∅ (no precedence relations)

Clearly, this is a polynomial time reduction; so, Theorem 3 holds if
he following assertions are equivalent.

1. G admits a feasible coloring 𝑐 such that:
max(𝑐𝑗)1≤𝑗≤𝑛 ≤ 𝛾

2. There exists a feasible schedule 𝑆 such that:
𝑑𝑢𝑟(𝑆) ≤ 2𝛾𝛥

Suppose G admits a feasible coloring 𝑐 such that max(𝑐𝑗)1≤𝑗≤𝑛 ≤ 𝛾.
et 𝑆 be the schedule defined by:

𝑖 ∈ A 𝑆𝑖 = 2(𝑐𝑖 − 1)𝛥

Given an edge (resource), its extremities (the two activities that
equire it) are colored differently (are not executed simultaneously,
ince processing times are all equal to 2𝛥). So, 𝑆 is feasible for the
ARCPSP (indeed, it is even feasible for the RCPSP). Moreover:

𝑢𝑟(𝑆) = 𝑆𝑛+1 − 𝑆0 ≤ 2𝛾𝛥 − 0 = 2𝛾𝛥

Hence, the direct implication holds.
Conversely, suppose there exists a feasible schedule 𝑆 such that

𝑢𝑟(𝑆) ≤ 2𝛾𝛥. Without loss of generality, the project execution starts
n period 𝓁 = 1, i.e., 0 ≤ 𝑆0 < 𝛥.

laim 3a. The execution windows of the two activities that share a
ommon resource are disjoint.

(𝑖1, 𝑖2) ∈ R
(

𝑆𝑖1 + 𝑝𝑖1 ≤ 𝑆𝑖2

)

∨
(

𝑆𝑖2 + 𝑝𝑖2 ≤ 𝑆𝑖1

)

roof. Let 𝑘 = (𝑖1, 𝑖2) ∈ R. Suppose that 𝑆𝑖1 ≤ 𝑆𝑖2 . For 𝑖 ∈ A , let
𝑖 = 1 +

⌊𝑆𝑖
𝛥

⌋

denote the period in which activity 𝑖 starts. Notice that
≤ 𝓁 .
𝑖1 𝑖2

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

.

Fig. 7. Execution interval (PARCPSP complexity proof).

For any activity 𝑖 ∈ A , including 𝑖1 and 𝑖2, since 𝑝𝑖 = 2𝛥, one can
determine bounds on 𝑑𝑖,𝓁(𝑆) (see also Fig. 7):

∀𝓁 ∈ Z 𝑑𝑖,𝓁(𝑆)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∈ (0, 𝛥] if 𝓁 = 𝓁𝑖
= 𝛥 if 𝓁 = 𝓁𝑖 + 1

∈ [0, 𝛥) if 𝓁 = 𝓁𝑖 + 2

= 0 otherwise

Indeed: 𝑑𝑖,𝓁𝑖+2(𝑆) = 𝛥 − 𝑑𝑖,𝓁𝑖 (𝑆)
Moreover, 𝑆 is feasible; the resource constraints state that, in any

period 𝓁 ∈ Z :

𝑑𝑖1 ,𝓁(𝑆) + 𝑑𝑖2 ,𝓁(𝑆) ≤ 𝛥

• Suppose that: 𝓁𝑖2 = 𝓁𝑖1
Then, in period 𝓁 = 𝓁𝑖1 + 1 = 𝓁𝑖2 + 1 :

𝑑𝑖1 ,𝓁(𝑆) + 𝑑𝑖2 ,𝓁(𝑆) = 2𝛥 > 𝛥

Therefore, this configuration cannot occur.
• Suppose that: 𝓁𝑖2 = 𝓁𝑖1 + 1

Then, in period 𝓁 = 𝓁𝑖1 + 1 = 𝓁𝑖2 :

𝑑𝑖1 ,𝓁(𝑆) + 𝑑𝑖2 ,𝓁(𝑆) = 𝛥 + 𝑑𝑖2 ,𝓁𝑖2 (𝑆) > 𝛥

Therefore, this configuration cannot occur.
• Suppose that: 𝓁𝑖2 = 𝓁𝑖1 + 2

Then, in period 𝓁 = 𝓁𝑖1 + 2 = 𝓁𝑖2 :

𝑑𝑖1 ,𝓁(𝑆) ≤ 𝛥 − 𝑑𝑖2 ,𝓁(𝑆)

⇔ (𝓁 − 1)𝛥 + 𝑑𝑖1 ,𝓁(𝑆) ≤ 𝓁𝛥 − 𝑑𝑖2 ,𝓁(𝑆)

⇔ (𝓁𝑖1 + 1)𝛥 + 𝑑𝑖1 ,𝓁𝑖1+2(𝑆) ≤ 𝓁𝑖2𝛥 − 𝑑𝑖2 ,𝓁𝑖2 (𝑆)

⇔ 𝑆𝑖1 + 𝑝𝑖1 ≤ 𝑆𝑖2

• Suppose that: 𝓁𝑖2 ≥ 𝓁𝑖1 + 3
Then:

𝑆𝑖1 + 𝑝𝑖1 < (𝓁𝑖1 + 2)𝛥 ≤ (𝓁𝑖2 − 1)𝛥 ≤ 𝑆𝑖2

It follows that 𝑆𝑖1 ≤ 𝑆𝑖2 ⇒ 𝑆𝑖1 + 𝑝𝑖1 ≤ 𝑆𝑖2 . Hence, the claim
holds. ■

Let 𝑐 the coloring defined by:

∀𝑗 ∈ V 𝑐𝑗 = 1 +
⌊𝑆𝑗

2𝛥

⌋

Let (𝑗1, 𝑗2) ∈ E . Recall that processing times are all equal to 2𝛥;
so, after Claim 3a, ||

|

𝑆𝑗2 − 𝑆𝑗1
|

|

|

≥ 2𝛥 . By construction, ||
|

𝑐𝑗2 − 𝑐𝑗1
|

|

|

≥ 1
i.e. 𝑐𝑗1 ≠ 𝑐𝑗2 . Therefore, 𝑐 is feasible.

Since 𝑑𝑢𝑟(𝑆) ≤ 2𝛾𝛥:

∀𝑖 ∈ A 𝑆0 ≤ 𝑆𝑖 ≤ 𝑆𝑛+1 − 𝑝𝑖 ≤
(

𝑆0 + 2𝛾𝛥
)

− 2𝛥

Consequently, 1 ≤ 𝑐𝑗 ≤ 𝛾 for all 𝑗 ∈ V , and max(𝑐𝑗)1≤𝑗≤𝑛 ≤ 𝛾.
Hence, the reciprocal implication also holds. □
7

Table 1
Summary of the results on the NP-hardness of the PARCPSP for makespan minimization

One resource
Constant capacity

Weakly NP-hard
Theorem 1

Multiple resources
Constant capacity

Strongly NP-hard
Theorem 3

One resource
Arbitrary capacity

Strongly NP-hard
Theorem 2

Multiple resources
Arbitrary capacity

Strongly NP-hard

Table 2
Variables of the first period-indexed formulation.
𝑆𝑖 ≥ 0 Start time of Activity 𝑖 ∈ A

𝑆0 (resp 𝑆𝑛+1) represents the start (resp the end) of the project.

𝑑𝑖,𝓁 ∈ [0, 𝛥] intersection length of intervals [𝑆𝑖 , 𝑆𝑖 + 𝑝𝑖] and [(𝓁 − 1)𝛥,𝓁𝛥]

𝑧𝑠𝑖,𝓁 ∈ {0, 1} Binary step variables: 𝑧𝑠𝑖,𝓁−1 ≤ 𝑧𝑠𝑖,𝓁
𝑧𝑠𝑖,𝓁 = 1 if 𝑆𝑖 is in period 𝓁, i.e. 𝑆𝑖 ∈ [(𝓁 − 1)𝛥,𝓁𝛥]

𝑧𝑓𝑖,𝓁 ∈ {0, 1} Binary step variables: 𝑧𝑓𝑖,𝓁−1 ≤ 𝑧𝑓𝑖,𝓁
𝑧𝑓𝑖,𝓁 = 1 if 𝑆𝑖 + 𝑝𝑖 is in period 𝓁, i.e. 𝑆𝑖 + 𝑝𝑖 ∈ [(𝓁 − 1)𝛥,𝓁𝛥]

3.5. General case

The general result comes from the reductions provided for the
three particular cases. In Table 1, an arrow points to a more gen-
eral/less restricted context for makespan minimization. Hence, the
destination problem is at least as difficult as the origin problem. The
gray boxes correspond to complexity results holding also for duration
minimization.

It follows that the PARCPSP is strongly NP-hard in the general case.
In the remaining of the paper, solution approaches are investigated.

4. A new mixed-integer linear programming formulation

In this Section, we consider mixed-integer linear programming for-
mulations for the problem. Continuous variables are used to represent
activity starting times while period-indexed variables allow to model
the aggregated resource constraints. We consider two formulations
and their strengthened variants. The first one was proposed by Morin
et al. (2017) and the second one is a new formulation based on the
decomposition of a period relatively to the execution of an activity.
Both formulations can be strengthened by using bounds on the number
of periods possibly intersected by an activity. In addition, the new
formulation allows to use disaggregated precedence constraints. We
show that the disaggregated second formulation is stronger than the
first one in terms of LP relaxation.

4.1. First formulation

4.1.1. Variables
The decision variables used in the model proposed by Morin et al.

(2017) are summarized in Table 2. A continuous start time variable 𝑆𝑖
gives the start time of each activity 𝑖 ∈ A while a continuous variable
𝑑𝑖,𝓁 gives the length of the intersection of the time window of activity
𝑖 ∈ A with period 𝓁 ∈ L . Two period-indexed binary step variables
𝑧𝑠𝑖,𝓁 and 𝑧𝑓𝑖,𝓁 are used to mark the first and last periods of an activity.
An illustration of the link between these variables is given in Fig. 8.

4.1.2. Initial formulation
We recall below the main constraints of the formulation proposed

by Morin et al. (2017), the domains of the decision variables being
those of Table 2.

(𝐹1) Minimize 𝑆 − 𝑆 (7)
𝑛+1 0

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.
Fig. 8. Representation of an execution time window with the variables of the first period-indexed formulation.
l

L

(

⇔

⇒

w

b

𝑆𝑖2 − 𝑆𝑖1 ≥ 𝑝𝑖1 ∀(𝑖1, 𝑖2) ∈ 𝐸 (8)
∑

𝑖∈A

𝑟𝑖,𝑘 𝑑𝑖,𝓁 ≤ 𝑏𝑘 𝛥 ∀𝑘 ∈ R , ∀𝓁 ∈ L

(9)
𝓁𝛥(1 − 𝑧𝑠𝑖,𝓁) ≤ 𝑆𝑖 ≤ 𝐿𝛥 − (𝐿 − 𝓁)𝛥 𝑧𝑠𝑖,𝓁 ∀𝑖 ∈ A , ∀𝓁 ∈ L

(10)
𝓁𝛥(1 − 𝑧𝑓𝑖,𝓁) ≤ 𝑆𝑖 + 𝑝𝑖 ≤ 𝐿𝛥 − (𝐿 − 𝓁)𝛥 𝑧𝑓𝑖,𝓁 ∀𝑖 ∈ A , ∀𝓁 ∈ L

(11)
𝛥 (𝑧𝑠𝑖,𝓁−1 − 𝑧𝑓𝑖,𝓁) ≤ 𝑑𝑖,𝓁 ≤ 𝛥 (𝑧𝑠𝑖,𝓁 − 𝑧𝑓𝑖,𝓁−1) ∀𝑖 ∈ A , ∀𝓁 ∈ L

(12)
𝑑𝑖,𝓁 ≥ 𝓁𝛥 − 𝑆𝑖 − 𝛥 𝑧𝑓𝑖,𝓁 − 𝓁𝛥 𝑧𝑠𝑖,𝓁−1 ∀𝑖 ∈ A , ∀𝓁 ∈ L

(13)
𝑑𝑖,𝓁 ≥ 𝑆𝑖 + 𝑝𝑖 − (𝓁 − 1)𝛥 − 𝛥(1 − 𝑧𝑠𝑖,𝓁−1)

− (𝐿 − 𝓁 + 1)𝛥(1 − 𝑧𝑓𝑖,𝓁) ∀𝑖 ∈ A , ∀𝓁 ∈ L

(14)
∑

𝓁∈L

𝑑𝑖,𝓁 = 𝑝𝑖 ∀𝑖 ∈ A (15)

Objective (7) minimizes the project duration, under precedence
constraints (8) and aggregated resource constraints (9). Constraints
(10) link start time variables 𝑆𝑖 and variables 𝑧𝑠𝑖,𝓁 , while constraints
(11) link completion time variables 𝑆𝑖 + 𝑝𝑖 to variables 𝑧𝑓𝑖,𝓁 .

The remaining constraints allow to compute the intersection lengths
𝑑𝑖,𝓁 . Constraints (12) enforce 𝑑𝑖,𝓁 to take value 0 when period 𝓁 is either
before or after the execution interval of activity 𝑖, and value 𝛥 when
period 𝓁 is integrally included in the execution interval of 𝑖. Constraints
(13) allow to compute 𝑑𝑖,𝓁 when 𝓁 is the period that contains 𝑆𝑖, while
𝑆𝑖+𝑝𝑖 belongs to a period 𝓁′ > 𝓁. Constraints (14) allow to compute 𝑑𝑖,𝓁
when 𝓁 is the period that contains 𝑆𝑖 + 𝑝𝑖 while 𝑆𝑖 belongs to a period
𝓁′ < 𝓁. Constraints (15) state that the sum of the intersection lengths
of activity 𝑖 over all the periods must be equal to the processing time of
𝑖. These constraints are necessary to compute the correct 𝑑𝑖𝑙 when the
duration of an activity is lower than 𝛥 and the activity is fully included
in one period (see proof of Theorem 4 for further details).

Theorem 4. Formulation (𝐹1) is a correct formulation for the PARCPSP

Proof is given in Appendix A.
8

4.1.3. Strengthening the first formulation
Morin et al. (2017) proposed to strengthen the formulation as

follows. Since all periods have the same duration 𝛥, starting the project
in the first period is a dominant policy. Hence the following constraint
is valid.

0 ≤ 𝑆0 ≤ 𝛥 (16)

Furthermore, since preemption is not allowed, the number of pe-
riods intersected by an activity is bounded as stated by the following
theorem. As in the proof of Theorem 4, let us define the first period of
an activity 𝓁𝑠𝑖 as the one that satisfies (𝓁𝑠𝑖 − 1)𝛥 ≤ 𝑆𝑖 < 𝓁𝑠𝑖𝛥 and let
ast period of an activity 𝓁𝑓 𝑖 be defined by (𝓁𝑓 𝑖 −1)𝛥 ≤ 𝑆𝑖 + 𝑝𝑖 < 𝓁𝑓 𝑖𝛥.

emma 1.
𝓁𝑓 𝑖 = 𝓁𝑠𝑖 + 𝑝𝑖

𝛥 . Otherwise, either 𝓁𝑓
𝑖 = 𝓁𝑠𝑖 +

⌊

𝑝𝑖
𝛥

⌋

or 𝓁𝑓 𝑖 = 𝓁𝑠𝑖 +
⌈

𝑝𝑖
𝛥

⌉

.
The first and the last period of an activity are such that either 𝓁𝑓 𝑖 =
𝓁𝑠𝑖 +

⌊

𝑝𝑖
𝛥

⌋

or 𝓁𝑓 𝑖 = 𝓁𝑠𝑖 +
⌈

𝑝𝑖
𝛥

⌉

.

Proof. Since we have (𝓁𝑠𝑖 − 1)𝛥 ≤ 𝑆𝑖 < 𝓁𝑠𝑖𝛥, it follows:

𝓁𝑠𝑖 − 1)𝛥 + 𝑝𝑖 ≤ 𝑆𝑖 + 𝑝𝑖 < 𝓁𝑠𝑖𝛥 + 𝑝𝑖

(𝓁𝑠𝑖 − 1 +
𝑝𝑖
𝛥
)𝛥 ≤ 𝑆𝑖 + 𝑝𝑖 < (𝓁𝑠𝑖 +

𝑝𝑖
𝛥
)𝛥

(𝓁𝑠𝑖 − 1 +
⌊ 𝑝𝑖
𝛥

⌋

)𝛥 ≤ 𝑆𝑖 + 𝑝𝑖 < (𝓁𝑠𝑖 +
⌈ 𝑝𝑖
𝛥

⌉

)𝛥,

hich yields the desired result. □

In the proof of Theorem 4 (Appendix A), we show that for any
solution 𝑆𝑖, 𝑖 ∈ A , a compatible assignment of the other variables can
e obtained by setting 𝑧𝑠𝑖,𝓁 = 0 for each 𝓁 < 𝓁𝑠𝑖, 𝑧𝑠𝑖,𝓁 = 1 for each

𝓁 ≥ 𝓁𝑠𝑖, 𝑧𝑓𝑖,𝓁 = 0 for each 𝓁 < 𝓁𝑓 𝑖 and 𝑧𝑓𝑖,𝓁 = 1 for each 𝓁 ≥ 𝓁𝑓 𝑖.
Hence, a consequence of Lemma 1 is that variables 𝑧𝑠𝑖,𝓁 and 𝑧𝑓𝑖,𝓁

can be linked via a binary variable 𝜋𝑖 (only one binary variable per
activity), such that:

𝜋𝑖 = 0 ⇔ 𝑧𝑠𝑖,𝓁 = 𝑧𝑓
𝑖,𝓁+

⌊ 𝑝𝑖
𝛥

⌋

𝜋𝑖 = 1 ⇔ 𝑧𝑠𝑖,𝓁 = 𝑧𝑓
𝑖,𝓁+

⌈ 𝑝𝑖
𝛥

⌉

In this case the integrality constraint on variables 𝑧𝑓𝑖,𝓁 can be
relaxed and the linking constraint can be easily linearized by the
adjunction of the following constraints:

𝑧𝑓 ∈ 0, 1 ∀𝑖 ∈ A , ∀𝓁 ∈ L (17)
𝑖,𝓁 []

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

𝑧

𝑧

𝑧

I
o

R
l

Fig. 9. Scheduling variables of an activity for the second period-indexed formulation with 𝑝𝑖 ≥ 𝛥.
s
f

𝓁
(
a

𝜋𝑖 ∈ {0, 1} ∀𝑖 ∈ A (18)

𝑧𝑠𝑖,𝓁 ≥ 𝑧𝑓
𝑖,𝓁+

⌊ 𝑝𝑖
𝛥

⌋ ∀𝑖 ∈ A , ∀𝓁 ∈ L (19)

𝑠𝑖,𝓁 ≤ 𝑧𝑓
𝑖,𝓁+

⌈ 𝑝𝑖
𝛥

⌉ ∀𝑖 ∈ A , ∀𝓁 ∈ L (20)

𝑠𝑖,𝓁 ≤ 𝑧𝑓
𝑖,𝓁+

⌊ 𝑝𝑖
𝛥

⌋ + 𝜋𝑖 ∀𝑖 ∈ A , ∀𝓁 ∈ L (21)

𝑠𝑖,𝓁 ≥ 𝑧𝑓
𝑖,𝓁+

⌈ 𝑝𝑖
𝛥

⌉ + 𝜋𝑖 − 1 ∀𝑖 ∈ A , ∀𝓁 ∈ L (22)

f the number of periods is large this reduces considerably the number
f explicit binary variables of the problem.

emark. If activity 𝑖 ∈ A is such that 𝑝𝑖 mod 𝛥 = 0, the first and the
ast period of this activity are such that 𝓁𝑓 𝑖 = 𝓁𝑠𝑖 + 𝑝𝑖

𝛥 . Then there is
no need to introduce variable 𝜋𝑖 and the above-defined constraints can
be simply replaced by:

𝑧𝑠𝑖,𝓁 = 𝑧𝑓𝑖,𝓁+ 𝑝𝑖
𝛥

∀𝑖 ∈ A , ∀𝓁 ∈ L (23)

We denote by (𝐹1𝑠) the strengthened formulation of Morin et al.
(2017).

4.2. An alternative formulation

4.2.1. Variables description
In time-indexed formulations of scheduling problems, precedence

constraints expressed directly under the form of constraints (8) are
called aggregated precedence constraints. There exists indeed a dis-
aggregated form of these precedence constraints that strengthen the
relaxation (see e.g. Artigues (2017)). We show in this section that a
disaggregated form of the precedence constraints can be proposed for
the PARCPSP despite the continuous nature of the start time variables.
For each activity 𝑖 ∈ A and each time period 𝓁 ∈ L , let us define new
variables 𝜆𝑖,𝓁 and 𝜇𝑖,𝓁 such that

𝜆 = |[0, 𝑆] ∩ [(𝓁 − 1)𝛥,𝓁𝛥]| and 𝜇 = |[𝑆 + 𝑝 , 𝐿𝛥] ∩ [(𝓁 − 1)𝛥,𝓁𝛥]|.
9

𝑖,𝓁 𝑖 𝑖,𝓁 𝑖 𝑖
Table 3
Variables of the second period-indexed formulation.
𝑆𝑖 Start time of activity 𝑖 ∈ A

𝑆0 (respectively 𝑆𝑛+1) represents the start (resp. the end) of the
project.

𝑑𝑖,𝓁 intersection length of intervals [𝑆𝑖 , 𝑆𝑖 + 𝑝𝑖] and [(𝓁 − 1)𝛥,𝓁𝛥]

𝜆𝑖,𝓁 intersection length of intervals [0, 𝑆𝑖] and [(𝓁 − 1)𝛥,𝓁𝛥]

𝜇𝑖,𝓁 intersection length of intervals [𝑆𝑖 + 𝑝𝑖 , 𝐿𝛥] and [(𝓁 − 1)𝛥,𝓁𝛥]

𝑧𝜆𝑖,𝓁 Binary variables ensuring a decreasing step behavior for variables
𝜆𝑖,𝓁

𝑧𝜇𝑖,𝓁 Binary variables ensuring an increasing step behavior for variables
𝜇𝑖,𝓁

The other decision variables used in the new model are described
in Table 3.

From this definition it immediately follows that 𝜆𝑖,𝓁 is a decreasing
tep function of 𝓁, while, symmetrically, 𝜇𝑖,𝓁 is an increasing step
unction of 𝓁. In the case that 𝑝𝑖 ≥ 𝛥, illustrated by Fig. 9 for activity
𝐴𝑖, 𝜆𝑖,𝓁 is equal to 𝛥 for each period 𝓁 < 𝓁𝑠𝑖, then equal to 𝛥 − 𝑑𝑖,𝓁 for

= 𝓁𝑠𝑖 and finally equal to 0 for 𝓁 > 𝓁𝑠𝑖. Under the same condition
𝑝𝑖 ≥ 𝛥), 𝜇𝑖,𝓁 is equal to 0 for 𝓁 < 𝓁𝑓 𝑖, then equal to 𝛥−𝑑𝑖,𝓁 for 𝓁 = 𝓁𝑓 𝑖

nd finally equal to 𝛥 for 𝓁 > 𝓁𝑓 𝑖.
In the case where 𝑝𝑖 < 𝛥 and if the execution of activity 𝑖 overlaps

a period change (precisely 𝓁𝑠𝑖𝛥 ∈ [𝑆𝑖, 𝑆𝑖 + 𝑝𝑖]) the same behavior is
observed.

In the case where 𝑝𝑖 < 𝛥 and there is no period 𝓁 such that 𝓁𝛥 ∈
[𝑆𝑖, 𝑆𝑖+𝑝𝑖] (such as for Activity 𝐴𝑖, fully included in period 2 in Fig. 10),
then a slightly different behavior is observed. The difference in this case
is that for 𝓁 = 𝓁𝑠𝑖 = 𝓁𝑐𝑖, the period that fully includes the activity, we
have 𝜆𝑖,𝓁 + 𝑑𝑖,𝓁 + 𝜇𝑖,𝓁 = 𝛥 with 𝜆𝑖,𝓁 > 0 and 𝜇𝑖,𝓁 > 0. In Fig. 10, we have

𝜆𝑖,2 = 0.5𝛥 and 𝜇𝑖,2 = 𝑑𝑖,2 = 0.25𝛥.

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

a

Fig. 10. Scheduling variables of an activity for the second period-indexed formulation with 𝑝𝑖 < 𝛥.
t
t
p

𝑧

The monotonicity of the new variables allow a simpler linearization
nd furthermore, by definition, 𝜆𝑖,𝓁 , 𝜇𝑖,𝓁 and 𝑑𝑖,𝓁 define a partition of

period 𝓁. More precisely, we always have 𝜆𝑖,𝓁 + 𝑑𝑖,𝓁 + 𝜇𝑖,𝓁 = 𝛥.

4.2.2. Initial formulation
Given the proposed variables, the new formulation can be written

as follows.

(𝐹2) Minimize 𝑆𝑛+1 − 𝑆0 (24)

𝑆𝑖2 − 𝑆𝑖1 ≥ 𝑝𝑖1 ∀(𝑖1, 𝑖2) ∈ 𝐸 (25)
∑

𝑖∈A

𝑟𝑖,𝑘𝑑𝑖,𝓁 ≤ 𝑏𝑘𝛥 ∀𝑘 ∈ R , ∀𝓁 ∈ L (26)

𝜆𝑖,𝓁 + 𝑑𝑖,𝓁 + 𝜇𝑖,𝓁 = 𝛥 ∀𝑖 ∈ A , ∀𝓁 ∈ L (27)

𝑆𝑖 =
∑

𝓁∈L

𝜆𝑖,𝓁 ∀𝑖 ∈ A (28)

∑

𝓁∈L

𝑑𝑖,𝓁 = 𝑝𝑖 ∀𝑖 ∈ A (29)

𝜆𝑖,𝓁 ≤ 𝛥 𝑧𝜆𝑖,𝓁 ∀𝑖 ∈ A , ∀𝓁 ∈ L (30)

𝜆𝑖,𝓁 ≥ 𝛥 𝑧𝜆𝑖,𝓁+1 ∀𝑖 ∈ A , ∀𝓁 ∈ L (31)

𝜇𝑖,𝓁 ≤ 𝛥 𝑧𝜇𝑖,𝓁 ∀𝑖 ∈ A , ∀𝓁 ∈ L (32)

𝜇𝑖,𝓁 ≥ 𝛥 𝑧𝜇𝑖,𝓁−1 ∀𝑖 ∈ A , ∀𝓁 ∈ L (33)

𝑧𝜆𝑖,𝓁 ∈ {0, 1} ∀𝑖 ∈ A , ∀𝓁 ∈ L (34)

𝑧𝜇𝑖,𝓁 ∈ {0, 1} ∀𝑖 ∈ A , ∀𝓁 ∈ L (35)

𝑑𝑖,𝓁 , 𝜇𝑖,𝓁 , 𝜆𝑖,𝓁 ≥ 0 ∀𝑖 ∈ A , ∀𝓁 ∈ L (36)

Objective function (24), precedence constraints (25) and resource
constraints (26) are the same as in the first formulation. Constraints
(27) define the partition of each period 𝓁 by variables 𝜆𝑖,𝓁 , 𝜇𝑖,𝓁 and 𝑑𝑖,𝓁 .
Constraints (28) allow to express 𝑆𝑖 from the 𝜆𝑖,𝓁 variables. Constraints
(29) take the activity processing times into account. Constraints (30)
and (31) define the step behavior of variables 𝜆𝑖,𝓁 and 𝑧𝜆𝑖,𝓁 , in such a
way that a single variable 𝜆𝑖,𝓁 may vary between 0 and 𝛥, while the
others take either value 0 or value 𝛥. Constraints (32) and (33) define
the same process for variables 𝜇𝑖,𝓁 and 𝑧𝜇𝑖,𝓁 (cf Fig. 9). Finally 𝑧𝜆𝑖,𝓁 and
𝑧𝜇𝑖,𝓁 are binary variables (constraints (34) and (35)) while 𝑑𝑖,𝓁 , 𝜇𝑖,𝓁 and
𝜆 are non negative (constraints (36)).
10

𝑖,𝓁
Theorem 5. Formulation (𝐹2) is a correct formulation of the PARCPSP.

Proof is given in Appendix B.

4.2.3. Formulation strengthening
As for the previous formulation the start time of the project can be

assigned to the first period.

0 ≤ 𝑆0 ≤ 𝛥 (37)

As a consequence of Lemma 1, a binary variable 𝜋𝑖 can also be
defined for each activity to express the link between the start and the
first period of an activity

𝜋𝑖 = 0 ⇔ 𝑧𝜆𝑖,𝓁 + 𝑧𝜇
𝑖,𝓁+

⌊ 𝑝𝑖
𝛥

⌋

−1
= 1

𝜋𝑖 = 1 ⇔ 𝑧𝜆𝑖,𝓁 + 𝑧𝜇
𝑖,𝓁+

⌈ 𝑝𝑖
𝛥

⌉

−1
= 1

The linearization of these constraints gives:

𝑧𝜇𝑖,𝓁 ∈ [0, 1] ∀𝑖 ∈ A , ∀𝓁 ∈ L (38)

𝜋𝑖 ∈ {0, 1} ∀𝑖 ∈ A (39)

𝑧𝜆𝑖,𝓁 + 𝑧𝜇
𝑖,𝓁+

⌊ 𝑝𝑖
𝛥

⌋

−1
≤ 1 ∀𝑖 ∈ A , ∀𝓁 ∈ L (40)

𝑧𝜆𝑖,𝓁 + 𝑧𝜇
𝑖,𝓁+

⌈ 𝑝𝑖
𝛥

⌉

−1
≥ 1 ∀𝑖 ∈ A , ∀𝓁 ∈ L (41)

𝑧𝜆𝑖,𝓁 + 𝑧𝜇
𝑖,𝓁+

⌊ 𝑝𝑖
𝛥

⌋

−1
≥ 1 − 𝜋𝑖 ∀𝑖 ∈ A , ∀𝓁 ∈ L (42)

𝑧𝜆𝑖,𝓁 + 𝑧𝜇
𝑖,𝓁+

⌈ 𝑝𝑖
𝛥

⌉

−1
≤ 2 − 𝜋𝑖 ∀𝑖 ∈ A , ∀𝓁 ∈ L (43)

Remark. As for (𝐹1) if an activity 𝑖 ∈ A is such that 𝑝𝑖 mod 𝛥 = 0,
here is no need to introduce 𝜋𝑖 for this activity, as the last period of
he activity can be obtained by a constant translation from the first
eriod.

𝜆
𝑖,𝓁 + 𝑧𝜇

𝑖,𝓁+ 𝑝𝑖
𝛥 −1

= 1 ∀𝑖 ∈ A , ∀𝓁 ∈ L (44)

𝜆𝑖,𝓁 + 𝜇𝑖,𝓁+ 𝑝𝑖
𝛥
= 𝛥 ∀𝑖 ∈ A , ∀𝓁 ∈ L (45)

We denote by (𝐹2𝑠) the so-strengthened formulation.

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

d

d
t
s
𝑧
f
t

p

4

s

4.2.4. Disaggregated precedence constraints
Consider two formulations 𝐴 and 𝐵, and let 𝑧𝐴(𝐼) (𝑧𝐵(𝐼)) denote the

value of the linear relaxation of model 𝐴 (𝐵) applied to instance I of
the PARCPSP. Following standard terminology, we say that the linear
relaxation of Formulation 𝐴 is stronger than the linear relaxation of
Formulation 𝐵 when the two following conditions are fulfilled:

C1: for each instance 𝐼 of PARCPSP, 𝑧𝐴(𝐼) ≥ 𝑧𝐵(𝐼), and
C2: there exists an instance 𝐼 of PARCPSP for which 𝑧𝐴(𝐼) > 𝑧𝐵(𝐼).
Thanks to the introduction of variables 𝜆𝑖,𝓁 and 𝜇𝑖,𝓁 , a further tight-

ening of the formulation (𝐹2𝑠) can be obtained through the definition
of disaggregated precedence constraints. For that purpose, aggregated
precedence constraints (25) can be replaced by:

𝜇𝑖1 ,𝓁 + 𝜆𝑖2 ,𝓁 ≥ 𝛥 ∀(𝑖1, 𝑖2) ∈ 𝐸 , ∀𝓁 ∈ L (46)

Theorem 6. Replacing in formulation (𝐹2𝑠), aggregated precedence con-
straints (25) by disaggregated constraints (46) yields a correct formulation
for the PARCPSP, which is stronger.

Proof.
It is easy to see that the aggregated precedence constraints (25)

are implied by the conjunction of disaggregated constraints (46) and
constraints (27)–(29). Indeed, summing up constraints (46) for all 𝑙 ∈
L yields:
∑

𝑙∈L

𝜆𝑖2 ,𝓁 ≥ 𝐿𝛥 −
∑

𝑙∈L

𝜇𝑖1 ,𝓁

This gives the aggregated precedence constraints since 𝑆𝑖 =
∑

𝑙∈L 𝜆𝑖2 ,𝓁
by (28) and 𝑆𝑖+𝑝𝑖 = 𝐿𝛥−

∑

𝑙∈L 𝜇𝑖,𝓁 by (27)–(29). Hence we have shown
that the LP relaxation of the new formulation with the disaggregated
precedence constraints is not weaker than the new formulation with the
aggregated precedence constraints. Consider now the problem instance
with 𝐿 = 3 periods of duration 𝛥 = 1 and 𝑛 = 3 activities with durations
𝑝1 = 𝑝2 = 𝑝3 = 1 and a single resource of capacity 𝑏1 = 3 and
activity requirements 𝑏1 = 𝑏2 = 2 and 𝑏3 = 3. Furthermore there are
two precedence constraints 𝐸 = {(1, 3), (2, 3)}. Consider the following
(optimal) fractional solution of (F2s), with objective value 2.

𝑆𝑖 𝜆𝑖,1 𝜆𝑖,2 𝜆𝑖,3 𝑧𝜆𝑖,1 𝑧𝜆𝑖,2 𝑧𝜆𝑖,3 𝜇𝑖,1 𝜇𝑖,2 𝜇𝑖,3 𝑧𝜇𝑖,1 𝑧𝜇𝑖,2 𝑧𝜇𝑖,3 𝑑𝑖,1 𝑑𝑖,2 𝑑𝑖,3
1 3/4 3/4 0 0 1 0 0 0 1/4 1 0 1 1 1/4 3/4 0
2 3/4 3/4 0 0 1 0 0 0 1/4 1 0 1 1 1/4 3/4 0
3 7/4 7/8 7/8 0 1 7/8 0 0 1/8 1/8 0 1/8 1 1/8 0 7/8

This solution satisfies the LP relaxation of constraints (25)–(36) but
violates the disaggregated constraints. For period 𝓁 = 1 and prece-
ence (1, 3), we have 𝜇1,1 + 𝜆3,1 = 7

8 < 𝛥 although we have 𝑆3 =
7
4 ≥ 𝑆2 + 𝑝2 = 7

4 . Hence the new formulation augmented with the
isaggregates precedence constraints is stronger. Furthermore solving
he LP relaxation with the disaggregated constraint gives the following
olution with optimal solution 25

12 > 2. Furthermore, since the 𝑧𝜆𝑖,𝓁 and
𝜇
𝑖,𝓁 variables are all integer-valued, the solution of the relaxation is
easible for the PARCPSP and consequently optimal, which illustrates
he potential quality of the new valid inequalities.

𝑆𝑖 𝜆𝑖,1 𝜆𝑖,2 𝜆𝑖,3 𝑧𝜆𝑖,1 𝑧𝜆𝑖,2 𝑧𝜆𝑖,3 𝜇𝑖,1 𝜇𝑖,2 𝜇𝑖,3 𝑧𝜇𝑖,1 𝑧𝜇𝑖,2 𝑧𝜇𝑖,3 𝑑𝑖,1 𝑑𝑖,2 𝑑𝑖,3
1 1/4 1/4 0 0 1 0 0 0 3/4 1 0 1 1 3/4 1/4 0
2 1/4 1/4 0 0 1 0 0 0 3/4 1 0 1 1 3/4 1/4 0
3 4/3 1 1/3 0 1 1 0 0 0 2/3 0 0 1 0 2/3 1/3

□

We denote by (F2s+) the new formulation with the disaggregated
recedence constraints.

.3. Theoretical comparison of formulations (𝐹1𝑠) and (𝐹2𝑠+)

Theorem 7. The linear relaxation of (𝐹2𝑠+) is stronger than the linear
11

relaxation of (𝐹1𝑠).
Proof. Let us first compare the relaxations of formulations (F1s) and
(F2s), with aggregated precedence constraints only. We remark there
exist linear non singular transformations between the binary variables
(𝑧𝑠𝑖,𝓁 and 𝑧𝑓𝑖,𝓁) of the first model and the one of the second model (𝑧𝜆𝑖,𝓁
and 𝑧𝜇𝑖,𝓁).

𝑧𝑠𝑖,𝓁 = 1 − 𝑧𝜆𝑖,𝓁+1

𝑧𝑓𝑖,𝓁 = 𝑧𝜇𝑖,𝓁

Continuous variables (𝑆𝑖 and 𝑑𝑖,𝓁) appear in both models with the
ame meaning, while variables (𝜆𝑖,𝓁 and 𝜇𝑖,𝓁) appear only in the second

model.
The start time of an activity 𝑖 is a linear expression of variables 𝜆𝑖,𝓁

(Constraints (28)).

𝑆𝑖 =
∑𝐿

𝓁=1 𝜆𝑖,𝓁

Similarly, recall that the completion time of an activity 𝑖 is a linear
expression of variables 𝜇𝑖,𝓁 (using constraints (28),(29),(27)).

𝑆𝑖 + 𝑝𝑖 = 𝐿𝛥 −
∑𝐿

𝓁=1 𝜇𝑖,𝓁

Aggregated precedence constraints have the same expression in both
models (constraints (8) and (25)). We remark that rewriting the other
constraints of formulation (𝐹1𝑠) by substituting variables of the first
model by the variables of the second model yields constraints that are
implied by the constraints of (𝐹2𝑠). Let us provide the proof for the
lower bound part of Constraints (10). We first rewrite the constraint for
activity 𝑖 and period 𝓁−1, by using the transformation 𝑧𝑠𝑖,𝓁−1 = 1−𝑧𝜆𝑖,𝓁 ,
we obtain the following equivalent constraint in variable 𝑧𝜆𝑖,𝓁 .

𝑆𝑖 ≥ (𝓁 − 1)𝛥 − (𝓁 − 1)𝛥
(

1 − 𝑧𝜆𝑖,𝓁
)

(10′
𝐿𝐵)

Now we evaluate expression 𝑆𝑖 − (𝓁 − 1)𝛥+ (𝓁 − 1)𝛥
(

1 − 𝑧𝜆𝑖,𝓁
)

by using
𝑆𝑖 =

∑𝐿
𝓁=1 𝜆𝑖,𝓁 . We obtain:

𝑆𝑖 − (𝓁 − 1)𝛥 + (𝓁 − 1)𝛥
(

1 − 𝑧𝜆𝑖,𝓁
)

= −(𝓁 − 1)𝛥 +
(

∑𝐿
𝓁′=1 𝜆𝑖,𝓁′

)

+ (𝓁 − 1)𝛥 −
(

∑𝓁−1
𝓁′=1 𝛥

)

𝑧𝜆𝑖,𝓁

≥
∑𝐿

𝓁′=1 𝜆𝑖,𝓁′ −
∑𝓁−1

𝓁′=1 𝛥𝑧
𝜆
𝑖,𝓁′+1

≥
∑𝐿

𝓁′=1 𝜆𝑖,𝓁′ −
∑𝓁−1

𝓁′=1 𝜆𝑖,𝓁′

=
∑𝐿

𝓁′=𝓁 𝜆𝑖,𝓁′

≥ 0

The proof for the upper bound part of Constraints (10) and Con-
straints (11) (link between 𝑆𝑖, 𝑧𝑠𝑖,𝓁 and 𝑧𝑓𝑖,𝓁) and the proof for Con-
straints ((12)–(14)) (expression of 𝑑𝑖,𝓁) are given in Appendix A. Con-
straints (15) of the first model are also present in the second model
(Constraints (36) and (29)).

Lastly, Constraints (19)–(23) that link variables 𝑧𝑠𝑖,𝓁 and 𝑧𝑓𝑖,𝓁 of the
first model via binary variable 𝜋𝑖 are equivalent to constraints (40)–
(44) that link variables 𝑧𝜆𝑖,𝓁 and 𝑧𝜇𝑖,𝓁 of the second model via the same
binary variable 𝜋𝑖: The above described linear transformations can be
used to switch from one formulation to the other. From what precedes,
we conclude that formulation (𝐹2𝑠) cannot be weaker than formulation
(𝐹1𝑠) in terms of linear programming relaxation. As Theorem 6 states
that formulation (𝐹2𝑠+) is stronger than formulation (𝐹2𝑠), the result
follows. □

5. Computational experiments

In this section, we compare the different MILP formulations on a set
of benchmark instances from the literature. As in Morin et al. (2017),
we select standard resource-constrained-project scheduling instances,
to which we associate a period 𝛥 with 𝛥 = 1, 2, 3, 4 and 5. We use

IBM ILOG CPLEX 20.1 for solving the (mixed-integer) linear programs

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

,

r
b
F
v
N
c
i
s
b

d

i
𝛥
C
d
t
a
a
o

with default parameters. All experiments were run with 2 threads on 8
cluster nodes, each with 36 Intel Xeon CPU E5-2695 v3 2.10 GHz cores
running Linux Ubuntu 16.04.4.

We first compare the LP relaxations of the Morin et al. (2017)
strengthened formulation (𝐹1𝑠) with the new ones (𝐹2𝑠 and 𝐹2𝑠+) on
the 30, 60, 90 and 120 activity RCPSP instances from the PSPLIB li-
brary, named KSD30, KSD60, KSD90 and KSD120 (Kolisch and Sprecher
1996), as well as on the Pack instances (Carlier and Néron, 2003). With
the different values of 𝛥, we obtain a set of 2400 KSD30 instances, 2400
KSD60 instances, 2400 KSD90 instances, 3000 KSD120 instances and
280 Pack instances. For each instance, an upper bound of the number
of periods is obtained by selecting the best solution in terms of project
duration returned by the randomized multi-start priority-rule based
heuristic presented in Morin et al. (2017) with 1000 iterations.

Table 4 reports the results of the LP relaxations compared to the
trivial critical path lower bound (CPM) given by the precedence con-
straints only. Each row of the table correspond to the instances of a
specific set for a given 𝛥, except the last row ‘‘all’’ of each instance set
that regroups all the 𝛥 values and the last ‘‘all’’ row that regroups the
statistics over all instances and 𝛥 values. Column #UB>CPM displays
the number of instances for which the upper bound is not equal to
the CPM lower bound. Indeed, the LP relaxations have the potential of
increasing the CPM lower bound only on these instances. A first remark
is that this number is a decreasing function of 𝛥, which illustrates the
fact that decreasing the period lengths globally tightens the resource
constraints, yielding larger project durations. There are two columns
of results for each formulation 𝐹1𝑠, 𝐹2𝑠 and 𝐹2𝑠+. The first column
(gap CPM) gives the average improvement upon the CPM bound, only
on the instances for which the CPM bound is strictly lower than UB
(number given in column #UB>CPM). The second column (cpu) gives
the average cpu time in seconds. The best results in terms of gap and
CPU time are highlighted in bold.

The ranking 𝐹1𝑠 < 𝐹2𝑠 < 𝐹2𝑠+ from the weakest to the strongest
upper bound is well illustrated by the results. Globally, for the larger
values of 𝛥, all bounds are rather weak and each bound gets tighter
as 𝛥 decreases. The improvement brought by the new formulation
with aggregated precedence constraints (𝐹2𝑠) on the previous formu-
lation is modest, except on the Pack set. The new formulation with
disaggregated precedence constraints (𝐹2𝑠+) significantly improves the
previous formulation upon the CPM-based lower bound on all instances
with small 𝛥. The large gaps observed for the Pack instance set are
explained by the small number of precedence constraints in this set
and the predominance of resource constraints. This allows to remark
that the improvement brought by 𝐹2𝑠 and 𝐹2𝑠+ on the previous
formulation 𝐹1𝑠 can be drastic and indicates that the new formulation
better captures resource conflicts. About the computational times, the
fastest bounds are obtained either by 𝐹1𝑠 or 𝐹2𝑠, the latter offering
the best compromise quality/speed. The computational times become
very large for the KSD120 set and illustrates the limits of time-indexed
MILP approaches for large scheduling horizons, even with aggregated
resource constraints.

The 𝐹2𝑠+ formulation is superior to the other ones in terms of LP
relaxations. We now switch to the comparison of the quality of the
integer solutions found by CPLEX under a limited time.

We limit the CPU time to 1 h for the KSD30 instances and to 2 h
for the remaining instances. The randomized multi-start priority-rule
based heuristic of Morin et al. (2017) with 1000 iterations is used to
obtained an initial feasible solution provided as a ‘‘MILP start’’.

Table 5 reports the obtained results on the KSD30 and KSD60 sets
for the three formulations. For each formulation and value of 𝛥, the
table displays the number of optimal solutions found and certified
within the allotted time (column #opt), the average gap between the
lower and the upper bound returned by the solver, and the average
CPU time. The last column (av. gap LB RCPSP) gives the average
gap for each value of 𝛥 of the optimal solution (or the best found
12

lower bound when optimality is not verified) for the PARCPSP to the
Table 4
Comparisons of 𝐹1𝑠, 𝐹2𝑠 and 𝐹2𝑠+ LP relaxations on various instance sets.

set 𝛥 #UB>CPM 𝐹1𝑠 𝐹2𝑠 𝐹2𝑠+

gap CPM cpu (s) gap CPM cpu (s) gap CPM cpu (s)

KSD30

5 146 0.00% 0.11 0.00% 0.23 0.23% 0.30
4 171 0.00% 0.15 0.00% 0.27 0.21% 0.38
3 198 0.00% 0.20 0.02% 0.33 0.85% 0.41
2 234 0.00% 0.31 0.20% 0.47 1.89% 0.41
1 264 0.02% 0.54 1.00% 0.62 4.00% 0.33
all 1013 0.01% 0.29 0.31% 0.41 1.71% 0.37

KSD60

5 158 0.00% 0.51 0.00% 0.76 0.33% 2.02
4 167 0.00% 0.91 0.00% 1.01 0.42% 2.93
3 181 0.00% 1.40 0.04% 1.52 1.51% 3.29
2 202 0.00% 3.32 0.49% 2.56 3.16% 4.57
1 233 0.00% 6.97 2.05% 3.19 5.73% 7.76
all 941 0.00% 2.96 0.62% 1.94 2.52% 4.39

KSD90

5 164 0.00% 1.68 0.00% 2.88 0.27% 5.14
4 174 0.00% 3.82 0.00% 2.96 0.34% 6.64
3 179 0.00% 8.11 0.01% 5.16 1.39% 19.06
2 198 0.00% 28.82 0.52% 13.86 3.60% 37.46
1 214 0.00% 57.28 2.43% 22.01 7.12% 46.93
all 929 0.00% 21.91 0.67% 10.08 2.79% 24.62

KSD120

5 485 0.00% 10.71 0.07% 5.03 1.48% 14.43
4 496 0.00% 27.98 0.22% 8.45 1.84% 31.09
3 508 0.00% 72.78 1.07% 17.56 3.75% 66.96
2 521 0.00% 145.90 2.90% 48.35 6.83% 138.41
1 550 0.01% 282.09 6.22% 73.84 11.52% 247.16
all 2560 0.00% 112.19 2.19% 31.78 5.25% 103.31

Pack

5 54 0.00% 0.09 1.74% 0.13 15.72% 0.19
4 55 0.00% 0.13 3.97% 0.19 20.37% 0.22
3 55 0.00% 0.26 14.05% 0.26 35.64% 0.30
2 55 0.31% 0.51 32.26% 0.37 51.32% 0.41
1 55 4.45% 1.28 64.17% 0.46 73.89% 0.62
all 274 0.96% 0.46 23.32% 0.28 39.48% 0.35

all all 5717 0.00% 54.34 1.25% 16.26 3.52% 51.05

optimal solution (of the best known lower bound when the optimum
is unknown) of the RCPSP. The number in this column for row all
is the best gap over all 𝛥 values. Note that for KSD30 instances the
optimal makespan for the RCPSP are known while for KSD60 we use
for comparison the best current LB.1

The av. gap LB RCPSP gaps is increasing on average in function
of 𝛥 and is of significant magnitude. This confirms that aggregating the
esource constraints without restricting the start time values is highly
eneficial for reducing the makespan, as mentioned in the introduction.
or each instance set, the largest obtained bound for the different
alues of 𝛥 gives a gap to the best known RCPSP LB of less than 3%.
o lower bound is improved on the KSD60 set. The results in Table 5,
ompared to the best results obtained by MILP for the standard RCPSP
n Koné et al. (2011), suggest that the PARCPSP is not much easier to
olve than the RCPSP. So it is still unclear whether the PARCPSP can
e used as an efficient bounding scheme of the RCPSP.

Turning now to the comparison of formulations, the best results are
isplayed in bold. The aggregated variant of the new formulation (𝐹2𝑠)

appears dominated on all criteria, including the CPU time.2 The previ-
ous formulation (𝐹1𝑠) obtains the best results for solving the KSD30
nstances with 𝛥 = 1 and 𝛥 = 2 as well as the KSD60 instances with
= 3 in terms of optimal solutions found with a faster or equivalent

PU time. This indicates that the quality of the LP relaxation of 𝐹2𝑠+
oes not always compensate the search slowdown it incurs. However,
he 𝐹2𝑠+ dominates on all criteria for the remaining instances and is
lways the best one in terms of average gap for all 𝛥 values. Averaging
ll instances and all 𝛥 values, the 𝐹2𝑠+ formulation outperforms the
ther ones for all criteria.

1 Recorded at http://solutionsupdate.ugent.be/ last visit November 9, 2021.
2 Recall that the time limit is 1 h for KSD30 and 2 h for KSD60.

http://solutionsupdate.ugent.be/

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

a
d
T
K

Table 5
Comparisons of integer solutions for instances KSD30 and KSD60.
set 𝛥 𝐹1𝑠 𝐹2𝑠 𝐹2𝑠+ gap LB RCPSP

#opt gap time #opt gap time #opt gap time

KSD30

5 457 0.13% 226.40 447 0.24% 323.09 474 0.02% 110.41 6.70%
4 441 0.39% 342.46 432 0.52% 411.52 459 0.14% 234.62 6.25%
3 438 0.62% 386.32 423 0.89% 465.93 437 0.42% 380.21 5.69%
2 436 0.97% 386.46 425 1.41% 477.13 433 0.83% 430.54 4.72%
1 447 1.05% 336.47 422 2.04% 492.52 437 1.03% 406.05 2.82%
all 2219 0.63% 335.62 2149 1.02% 434.04 2240 0.49% 312.36 2.82%

KSD60

5 402 0.97% 1235.91 400 1.22% 1290.65 426 0.32% 974.67 3.57%
4 397 1.36% 1278.81 394 1.89% 1337.82 406 0.79% 1224.08 3.48%
3 395 2.08% 1335.99 390 3.64% 1388.57 394 1.57% 1354.49 3.35%
2 383 3.37% 1504.17 381 5.86% 1534.21 383 2.77% 1498.22 3.17%
1 377 6.98% 1604.12 372 6.91% 1664.11 380 3.59% 1535.03 2.50%
all 1954 2.95% 1391.80 1937 3.90% 1443.07 1989 1.81% 1317.30 2.45%
Table 6
Comparisons of integer solutions for instances KSD90, KSD120, Pack.

set 𝛥 𝐹1𝑠 𝐹2𝑠+ gap LB RCPSP

#opt gap time #opt gap time

KSD90

5 390 1.55% 1366.66 411 0.86% 1208.99 1.88%
4 388 2.25% 1401.56 393 1.85% 1334.47 2.01%
3 385 3.36% 1439.20 387 2.89% 1441.82 2.14%
2 384 6.79% 1490.47 378 4.16% 1575.43 2.33%
1 376 10.69% 1655.45 378 4.64% 1561.48 1.78%
all 1923 4.93% 1470.67 1947 2.88% 1424.44 1.42%

KSD120

5 302 8.82% 3738.88 353 7.66% 3270.11 5.81%
4 283 13.92% 3946.06 314 10.34% 3731.16 6.83%
3 260 20.30% 4232.44 272 12.74% 4137.12 7.25%
2 232 28.12% 4555.50 238 16.79% 4420.86 7.76%
1 203 35.02% 4958.74 223 18.05% 4601.85 6.47%
all 1280 21.24% 4286.32 1400 13.12% 4032.22 4.82%

Pack

5 27 1.12% 4937.18 38 2.02% 2959.33 11.77%
4 19 2.04% 5577.67 37 0.47% 3292.10 9.24%
3 16 3.27% 5787.41 27 3.10% 4179.22 7.44%
2 13 5.08% 6185.74 26 2.24% 4632.17 5.01%
1 6 8.26% 7085.33 32 1.89% 3857.74 1.85%
all 63 3.95% 5914.67 160 1.94% 3784.11 1.83%

We now switch to the KSD90, KSD120 and Pack benchmarks, which
re much harder to solve in the RCPSP setting. Here, only the non
ominated formulations (𝐹1𝑠 and 𝐹2𝑠+) are compared. As seen in
able 6, except for three exceptions (average CPU time criterion for
SD90-𝛥 = 3 instances and number of optima found for KSD90-𝛥 =

2 instances), the new formulation outperforms the previous one on
all instances and all criteria. Two additional observations are worth
mentioning. First while the optimality gaps moderately increase for
KSD30, KSD60 and KSD90 sets, the limit of the time-indexed MILP
approach seems to be reached for the KSD120 set since large gaps are
observed as 𝛥 decreases. This is inline with the large needed CPU time
for solving the LP relaxation. A second remark is the relative quality
of the RCPSP bound on the Pack instances. These instances seem as
challenging in the PARCPSP setting as they are in the RCPSP setting,
even for 𝛥 = 5 instances since only 38 instances out of 55 are solved to
optimality. However 4 of the RCPSP lower bounds reported in Schutt
et al. (2013) were improved, while no lower bound was improved for
KSD60, KSD90 and KSD120 instances. The main notorious difference
between the Pack and the KSD sets is that the Pack instances are
‘‘highly cumulative’’ in the sense that many activities can be scheduled
in parallel and have very few precedence constraints (which explains
the name Pack with reference to the 2D packing problem). In this case,
the resource aggregation seems to pay off although all improvements
were obtained for 𝛥 = 1. The improved lower bounds are reported in
13

Table 7.
Table 7
Improved RCPSP lower bounds on the Pack instance set compared to Schutt et al.
(2013).

name LB (Schutt et al., 2013) LB 𝐹2𝑠+

Pack037 116 125
Pack046 110 118
Pack050 94 100
Pack053 97 105

6. Conclusion and perspectives

In this paper, an original variant of the RCPSP, namely the PARCPSP,
has been studied from a theoretical point of view. This problem is
indeed a relaxation of the RCPSP, that permits to model periodically
aggregated resource constraints arising from practical applications,
where the resource usage is limited only on average over periods
of parameterized length. Contrarily to the RCPSP, the feasibility of
a solution (with respect to the resource constraints) is no more in-
variant by shifting. We proposed three reductions to establish the
computational complexity of particular cases of the problem, which
is strongly NP-hard in the general case. We designed a new period-
indexed mixed-integer linear programming formulation of the problem,
defining the precedence constraint in a disaggregated form. We carried
out a polyhedral study that established that the new formulation is
stronger than the previously proposed formulation in terms of linear
programming relaxation. A computational experiment on the set of
PSPLIB project scheduling instances with five different period lengths,
showed that the practical improvement of the lower bound is signifi-
cant. When using the formulations for exact solution approaches in a
commercial MILP solver, the new formulation is still globally better in
terms of optimal solution found and optimality gaps, except for a few
exceptions. The PARCPSP appears as a challenging NP-hard problem.
Although it provides a bounding scheme for the widely studied RCPSP,
it is still unclear whether efficient approaches can be designed to this
aim. However this research direction is worth pursuing as a few lower
bounds were improved for the difficult RCPSP instance set Pack. For a
global improvement of mixed-integer linear programming approaches,
the disaggregated precedence constraints could be added on-the-fly
to obtain a better compromise between the formulation size and the
relaxation quality. The question whether an extended formulation
based on a Dantzig–Wolfe decomposition of the resource constraint,
as successfully done for the RCPSP (Mingozzi et al., 1998; Brucker and
Knust, 2000; Baptiste and Demassey, 2004), would yield a competitive
relaxation is open, as the aggregated resource constraints are less tight
than the standard ones. In order to fit practical applications, various
extensions can be considered. For instance, the definition of a consump-
tion rate, either fixed (data) or variable (decision to make), on resources
for each activity would allow to model a wider range of resource usage

profiles. Also, one could take into account additional limitations, in

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

i
a
i
c
o
p
e
p
i
R

C

t
A
o
A
o
m
F
t

D

c
i

A

b
C
T
N
w
O

A
t

P
a
v
t
c
t
o
m
t
O
l
n
b
t
(

a similar way as in Okubo et al. (2015), where a RCPSP/𝛱 orig-
nal formulation is enriched with specific constraints. More flexible
ctivities with variables intensities should also be considered such as
n Hans (2001), Kis (2005). A promising research direction consists in
onsidering varying period lengths. Indeed, models with time buckets
f non homogeneous lengths were successfully applied to a scheduling
roblem issued from particle therapy for cancer treatment (Riedler
t al., 2020). The latter work reveals that this approach has a double
otential: to better model practical situations where resource scarceness
s time-dependent, and to improve primal and dual bound for the
CPSP.

RediT authorship contribution statement

Pierre-Antoine Morin: Conceptualization, Formal analysis, Inves-
igation, Methodology, Software, Writing – original draft. Christian
rtigues: Conceptualization, Formal analysis, Investigation, Method-
logy, Software, Writing – original draft, Writing – review & editing.
lain Haït: Conceptualization, Formal analysis, Investigation, Method-
logy, Writing – review & editing. Tamás Kis: Conceptualization, For-
al analysis, Investigation, Methodology, Writing – review & editing.
rits C.R. Spieksma: Conceptualization, Formal analysis, Investiga-
ion, Methodology, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

The research of Christian Artigues and Alain Haït is supported
y ANR Project PER4MANCE (ANR-18-CE10-0007). The research of
hristian Artigues is partially supported by ANITI (ANR-19-PI3A-0004).
he research of Frits Spieksma is supported by NWO Gravitation Project
ETWORKS, Grant Number 024.002.003. The research of Tamás Kis
as supported by the National Research, Development and Innovation
ffice — NKFIH, Grant no. SNN 129178, and ED_18-2-2018-0006.

ppendix A. Proof of Theorem 4: Formal correctness of formula-
ion (𝑭 𝟏)

roof. We first show that a feasible solution for formulation (𝐹1) is
feasible solution for the PARCPSP with the same objective function

alue. Consider a solution 𝑆𝑖 the MILP and suppose it is unfeasible for
he PARCPSP. Since constraints (8) translate directly the precedence
onstraints, the solution must be resource-unfeasible, which means
hat constraints (3) of the conceptual model is violated. This can
nly be the case if there exists 𝑖 ∈ A and 𝓁 ∈ L such 𝑑𝑖,𝓁 <
ax
(

0 , min
(

𝑆𝑖+𝑝𝑖 , 𝓁𝛥
)

−max
(

𝑆𝑖 , (𝓁−1)𝛥
)

)

, i.e. 𝑑𝑖,𝓁 is strictly smaller
han the intersection length of intervals [𝑆𝑖, 𝑆𝑖 + 𝑝𝑖] and [(𝓁 − 1)𝛥,𝓁𝛥].
therwise constraints (9) ensure that constraints (3) are satisfied. The

ower bound to 𝑑𝑖,𝓁 for each 𝑖 ∈ A and 𝓁 ∈ L is set by its non-
egativity and by constraints (12)–(14). The latter constraints involve
inary variables 𝑧𝑠𝑖,𝓁−1 and 𝑧𝑓𝑖,𝓁 . We show that 𝑑𝑖,𝓁 is not smaller
han the intersection length for each of the possible values for pair
𝑧𝑠𝑖,𝓁−1, 𝑧𝑓𝑖,𝓁).

• 𝑧𝑠𝑖,𝓁−1 = 0 and 𝑧𝑓𝑖,𝓁 = 0. According to (10), since 𝑧𝑠𝑖,𝓁−1 = 0 we
have 𝑆𝑖 ≥ (𝓁−1)𝛥. Similarly, with 𝑧𝑓𝑖,𝓁 = 0 constraint (11) yields
𝑆𝑖 + 𝑝𝑖 ≥ 𝓁𝛥. In this case the intersection length is 0 if 𝑆𝑖 ≥ 𝓁𝛥
and 𝓁𝛥 − 𝑆𝑖 otherwise. This is ensured by the non-negativity of
𝑑 in conjunction with constraints (13).
14

𝑖,𝓁
• 𝑧𝑠𝑖,𝓁−1 = 0 and 𝑧𝑓𝑖,𝓁 = 1. As for the previous case, inserting
𝑧𝑠𝑖,𝓁−1 = 0 in (10) gives 𝑆𝑖 ≥ (𝓁 − 1)𝛥. Setting 𝑧𝑓𝑖,𝓁 = 1 in (11)
yields 𝑆𝑖 + 𝑝𝑖 ≤ 𝓁𝛥. This is the case where interval [𝑆𝑖, 𝑆𝑖 + 𝑝𝑖]
is included in [(𝓁 − 1)𝛥,𝓁𝛥], so the intersection length is equal to
𝑝𝑖. Remark that 𝑆𝑖 ≥ (𝓁 − 1)𝛥 ⟹ 𝑆𝑖 + 𝑝𝑖 > (𝓁 − 2)𝛥. Hence,
we have 𝑧𝑓𝑖,𝓁−2 = 0 since 𝑧𝑓𝑖,𝓁−2 = 1 and (11) would imply that
𝑆𝑖 + 𝑝𝑖 ≤ (𝓁 − 2)𝛥. Then, since 𝑧𝑓𝑖,𝓁−2 = 0 and 𝑧𝑠𝑖,𝓁−1 = 0, (12)
yields 𝑑𝑖,𝓁−1 = 0. We have also 𝑑𝑖,𝓁′ = 0 for all 𝓁′ ≤ 𝓁 − 1 because
𝑧𝑓𝑖,𝓁ε−1 = 0 and 𝑧𝑠𝑖,𝓁′ = 0 according to step constraints. Another
remark is that 𝑆𝑖 + 𝑝𝑖 ≤ 𝓁𝛥 ⟹ 𝑆𝑖 < (𝓁 + 1)𝛥. With (10),
this yields 𝑧𝑠𝑖,𝓁+1 = 1. Since in addition 𝑧𝑓𝑖,𝓁 = 1, constraint (12)
yields 𝑑𝑖,𝓁+1 = 0. With step constraints, we have 𝑧𝑓𝑖,𝓁ε−1 = 1 and
𝑧𝑠𝑖,𝓁′ = 1 and so with (12) 𝑑𝑖,𝓁′ = 0 for all 𝓁′ ≥ 𝓁 + 1. It follows
that 𝑑𝑖,𝓁′ = 0 for all 𝓁′ ∈ L ⧵ {𝓁}. According to constraint (15),
we obtain 𝑑𝑖,𝓁 = 𝑝𝑖.

• 𝑧𝑠𝑖,𝓁−1 = 1 and 𝑧𝑓𝑖,𝓁 = 0. (10) and 𝑧𝑠𝑖,𝓁−1 = 1 implies that
𝑆𝑖 ≤ (𝓁−1)𝛥, while (11) and 𝑧𝑓𝑖,𝓁 = 0 imply that 𝑆𝑖+𝑝𝑖 ≥ (𝓁)𝛥. In
this case interval [(𝓁 − 1)𝛥,𝓁𝛥] is included in interval [𝑆𝑖, 𝑆𝑖 + 𝑝𝑖]
and the intersection length is equal to 𝛥. Inserting 𝑧𝑠𝑖,𝓁−1 = 1 and
𝑧𝑓𝑖,𝓁 = 0 in (12) directly gives 𝑑𝑖,𝓁 ≥ 𝛥.

• 𝑧𝑠𝑖,𝓁−1 = 1 and 𝑧𝑓𝑖,𝓁 = 1. In this case, we obtain 𝑆𝑖 ≤ (𝓁−1)𝛥 with
(10) and 𝑆𝑖 + 𝑝𝑖 ≤ 𝓁𝛥 with (11). It follows that the intersection
length is 𝑆𝑖 + 𝑝𝑖 − (𝓁 − 1)𝛥 if 𝑆𝑖 + 𝑝𝑖 ≥ (𝓁 − 1)𝛥 and 0 otherwise.
Constraints (14) yields 𝑑𝑖,𝓁 ≥ 𝑆𝑖 + 𝑝𝑖 − (𝓁 − 1)𝛥.

As in all case 𝑑𝑖,𝓁 is not smaller than the actual length of the intersection
of intervals [𝑆𝑖, 𝑆𝑖 + 𝑝𝑖] and [(𝓁 − 1)𝛥,𝓁𝛥], any feasible solution of
the MILP is also feasible for the PARCPSP. Furthermore the objective
functions are exactly the same.

It remains to show that for any feasible solution of the PARCPSP,
there is a compatible assignment of the other decision variables that
satisfies all the constraints of the MILP. Let 𝑆𝑖, 𝑖 ∈ A denote a feasible
solution of the PARCPSP. Obviously the precedence constraints (8) are
satisfied. Setting variables 𝑑𝑖,𝓁 to 𝑑𝑖,𝓁(𝑆) according to its definition in
Section 2.2 allows to satisfy constraints (9) and (15). Consider the
following assignment for variables 𝑧𝑠𝑖,𝓁 . Let 𝓁𝑠𝑖 the period such that
(𝓁𝑠𝑖 − 1)𝛥 ≤ 𝑆𝑖 < 𝓁𝑠𝑖𝛥. For all 𝑖 ∈ A , let us set 𝑧𝑠𝑖,𝓁 = 0 for each
𝓁 < 𝓁𝑠𝑖 and 𝑧𝑠𝑖,𝓁 = 1 for each 𝓁 ≥ 𝓁𝑠𝑖. Similarly, let 𝓁𝑓 𝑖 the period
verifying (𝓁𝑓 𝑖 − 1)𝛥 ≤ 𝑆𝑖 + 𝑝𝑖 < 𝓁𝑓 𝑖𝛥. For all 𝑖 ∈ A , let us set 𝑧𝑓𝑖,𝓁 = 0
for each 𝓁 < 𝓁𝑓 𝑖 and 𝑧𝑓𝑖,𝓁 = 1 for each 𝓁 ≥ 𝓁𝑓 𝑖. This assignment
obviously satisfies the step behavior constraints of variables 𝑧𝑠𝑖,𝓁 and
𝑧𝑓𝑖,𝓁 . Start time lower bound constraints (10) are satisfied as they give
𝑆𝑖 ≥ 𝓁𝛥 for 𝓁 = 1,… ,𝓁𝑠𝑖 − 1 and 𝑆𝑖 ≥ 0 for 𝓁 = 𝓁𝑠𝑖,… , 𝐿. Start time
upper bound constraints (10) are also satisfied as they can be written
𝑆𝑖 ≤ 𝐿𝛥 for 𝓁 = 1,… ,𝓁𝑠𝑖 − 1 and 𝑆𝑖 ≤ 𝓁𝛥 for 𝓁 = 𝓁𝑠𝑖,… , 𝐿. The
same holds for completion time lower and upper bound constraints
(11), since we obtain 𝓁𝛥 ≤ 𝑆𝑖 + 𝑝𝑖 ≤ 𝐿𝛥 for 𝓁 = 1,… ,𝓁𝑓 𝑖 − 1
and 0 ≤ 𝑆𝑖 + 𝑝𝑖 ≤ 𝓁𝛥 for 𝓁 = 𝓁𝑓 𝑖,… , 𝐿. Now, let us consider the
constraints (10)–(14) that link 𝑑𝑖,𝓁 , 𝑆𝑖, 𝑧𝑠𝑖,𝓁 and 𝑧𝑓𝑖,𝓁 variables. Recall
that 𝑑𝑖,𝓁 is set to max

(

0 , min
(

𝑆𝑖 + 𝑝𝑖 , 𝓁𝛥
)

− max
(

𝑆𝑖 , (𝓁 − 1)𝛥
)

)

. For
each task 𝑖, we consider the following sets 𝐿1 = {𝓁 ∈ L |𝓁 < 𝓁𝑠𝑖},
𝐿2 = {𝓁 ∈ L |𝓁 > 𝓁𝑓 𝑖} and 𝐿3 = {𝓁𝑠𝑖 + 1,… ,𝓁𝑓 𝑖 − 1}. Note
that L = 𝐿1 ∪ {𝓁𝑠𝑖,𝓁𝑓 𝑖} ∪ 𝐿2 ∪ 𝐿3. By definition of 𝓁𝑠𝑖 and 𝓁𝑓 𝑖,
𝑑𝑖,𝓁𝑠𝑖 = 𝓁𝑠𝑖𝛥 − 𝑆𝑖 and 𝑑𝑖,𝓁𝑓 𝑖 = 𝑆𝑖 + 𝑝𝑖 − (𝓁𝑓 𝑖 − 1)𝛥 if 𝓁𝑓 𝑖 > 𝓁𝑠𝑖 and
𝑑𝑖,𝓁𝑓 𝑖 = 𝑑𝑖,𝓁𝑠𝑖 = 𝑝𝑖 otherwise. For 𝓁 ∈ 𝐿1 ∪ 𝐿2, 𝑑𝑖,𝓁 = 0. For 𝓁 ∈ 𝐿3,
𝑑𝑖,𝓁 = 𝛥. We show below that constraints (13)–(14) are all compatible
with these values.

Non-negativity constraints are satisfied for all 𝓁 ∈ L . Constraints
(12) are equivalent to 𝑑𝑖,𝓁 ≤ 0 for 𝓁 ∈ 𝐿1 ∪ 𝐿2 and 𝑑𝑖,𝓁 ≤ 𝛥 for
𝓁 = {𝓁𝑠𝑖,𝓁𝑓 𝑖} ∪ 𝐿3. Constraints (12) can be written 𝑑𝑖,𝓁 ≥ 0 for
𝓁 ∈ 𝐿1 ∪ 𝐿2 ∪ {𝓁𝑠𝑖,𝓁𝑓 𝑖} and 𝑑𝑖,𝓁 ≥ 𝛥 for 𝓁 ∈ 𝐿3. Constraints (13)
give 𝑑𝑖,𝓁 ≥ 𝓁𝛥−𝑆𝑖 < 0 for 𝑙 ∈ 𝐿1, 𝑑𝑖,𝓁 ≥ 𝓁𝑠𝑖𝛥−𝑆𝑖 for 𝓁 = 𝓁𝑠𝑖 in the case
where 𝑧𝑓𝑖,𝓁𝑠𝑖 = 0 (i.e. 𝓁𝑓 𝑖 > 𝓁𝑠𝑖) and 𝑑𝑖,𝓁 ≥ (𝓁𝑠𝑖−1)𝛥−𝑆𝑖 < 0 for 𝓁 = 𝓁𝑠𝑖

in the case where 𝑧𝑓𝑖,𝓁𝑠𝑖 = 1. For 𝓁 ∈ 𝐿3, we obtain 𝑑𝑖,𝓁 ≥ −𝑆𝑖. For
𝓁 = 𝓁𝑓 𝑖 > 𝓁𝑠𝑖 and for 𝓁 ∈ 𝐿2, we have 𝑑𝑖,𝓁 ≥ −𝛥 − 𝑆𝑖. Last, constraints

𝑖 𝑖 𝑖 𝑖
(14) give precisely 𝑑𝑖,𝓁 ≥ 𝑆𝑖 + 𝑝𝑖 − (𝓁𝑓 −1)𝛥 for 𝓁 = 𝓁𝑓 and 𝓁𝑓 > 𝓁𝑠 .

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.

𝓁
y

a
𝜆
(

R

A

A

B

B

B

B

C

G

H

H

For 𝓁 = 𝓁𝑓 𝑖 = 𝓁𝑠𝑖, we have 𝑑𝑖,𝓁 ≥ 𝑆𝑖 + 𝑝𝑖 − 𝓁𝑓 𝑖𝛥 < 0. For 𝓁 ∈ 𝐿1 or
𝓁 = 𝓁𝑠𝑖 < 𝓁𝑓 𝑖, the constraints is written 𝑑𝑖,𝓁 ≥ 𝑆𝑖+𝑝𝑖−(𝐿+1)𝛥 < 0. For
∈ 𝐿3, we obtain 𝑑𝑖,𝓁 ≥ 𝑆𝑖 + 𝑝𝑖 − 𝐿𝛥 < 0. For 𝓁 ∈ 𝐿2, the constraint

ields 𝑑𝑖,𝓁 ≥ 𝑆𝑖 + 𝑝𝑖 − (𝓁 − 1)𝛥 < 0. □

Appendix B. Proof of Theorem 5: Formal correctness of formula-
tion (𝑭 𝟐)

Proof. Given the common structure with the first formulation and the
definition of variables 𝑑𝑖,𝓁 , 𝜆𝑖,𝓁 and 𝜇𝑖,𝓁 , we just have to show that
constraints (27)–(36) properly model the relationships 𝑑𝑖,𝓁 = [𝑆𝑖, 𝑆𝑖 +
𝑝𝑖] ∩ [(𝓁 − 1)𝛥,𝓁𝛥] for each activity 𝑖. Constraints (30)–(31) can be
rewritten 𝑧𝜆𝑖,𝓁+1 ≤ 𝜆𝑖,𝓁

𝛥 ≤ 𝑧𝜆𝑖,𝓁 , meaning that variables 𝑧𝜆𝑖,𝓁 have a
decreasing step behavior. Suppose that a period 𝓁 is such that 𝓁𝛥 ≥ 𝑆𝑖
and 𝜆𝑖,𝓁 > 0. Then we have 𝑧𝜆𝑖,𝓁 = 1 and so 𝑧𝜆𝑖,𝓁′ = 1 and 𝜆𝑖,𝓁′ = 𝛥, for all
𝓁′ < 𝓁. In this case we would have ∑𝓁

𝓁′=1 𝜆𝑖,𝓁′ > 𝑆𝑖, a contradiction. It
follows that any non zero 𝜆𝑖,𝓁 variable is such that 𝓁𝛥 < 𝑆𝑖. It follows
that if 𝑆𝑖 > 0, the first 𝓁 ∈ {1,… , ⌊ 𝑆𝑖

𝛥 ⌋} periods are such that 𝜆𝑖,𝓁 = 𝛥
nd period 𝓁 = ⌊

𝑆𝑖
𝛥 ⌋+1 is such that 𝜆𝑖,𝓁 = 𝑆𝑖 mod 𝛥. We have precisely

𝑖,𝓁 = [0, 𝑆𝑖] ∩ [(𝓁 − 1)𝛥,𝓁𝛥] for all 𝓁 ∈ L . Similarly, constraints (32)–
33) yield 𝑧𝜇𝑖,𝓁−1 ≤ 𝜇𝑖,𝓁

𝛥 ≤ 𝑧𝜇𝑖,𝓁 for all 𝓁 ∈ L . Hence variables 𝑧𝜇𝑖,𝓁−1
have an increasing step behavior. Composition of constraints (27), (28)
and (29) give 𝐿𝛥 − 𝑆𝑖 − 𝑝𝑖 =

∑

𝓁∈L 𝜇𝑖,𝓁 . With the same reasoning it
comes that 𝜇𝑖,𝓁 = [𝑆𝑖+𝑝𝑖, 𝐿𝛥]∩ [(𝓁−1)𝛥,𝓁𝛥]. From constraints (27), we
obtain 𝑑𝑖,𝓁 = 𝛥 − [𝑆𝑖 + 𝑝𝑖, 𝐿𝛥] ∩ [(𝓁 − 1)𝛥,𝓁𝛥] − [0, 𝑆𝑖] ∩ [(𝓁 − 1)𝛥,𝓁𝛥] =
[𝑆𝑖, 𝑆𝑖 + 𝑝𝑖] ∩ [(𝓁 − 1)𝛥,𝓁𝛥]. □

Appendix C. Proof details of Theorem 7

Proof. We provide below the full proof of the implication of model
(F1s) by model (F2s) for Constraints (10), (11) (link between 𝑆𝑖, 𝑧𝑠𝑖,𝓁
and 𝑧𝑓𝑖,𝓁) and Constraints (12)–(14) (expression of 𝑑𝑖,𝓁). For each
constraint, the variables of model (F1s) are substituted by the variable
of model (F2s), which yields the constraint with a prime (’) that are
then shown to be always satisfied.

𝑆𝑖 ≤ (𝓁 − 1)𝛥 + (𝐿 − 𝓁 + 1)𝛥𝑧𝜆𝑖,𝓁 (10’𝑈𝐵)

using 10𝑈𝐵 for 𝑙 − 1 and 𝑧𝑠𝑖,𝓁−1 = 1 − 𝑧𝜆𝑖,𝓁

𝑆𝑖 − (𝓁 − 1)𝛥 − (𝐿 − 𝓁 + 1)𝛥𝑧𝜆𝑖,𝓁

= −(𝓁 − 1)𝛥 +
(

∑𝐿
𝓁′=1 𝜆𝑖,𝓁′

)

−
(

∑𝐿
𝓁′=𝓁 𝛥

)

𝑧𝜆𝑖,𝓁

≤ −
∑𝐿

𝓁′=𝓁

(

𝛥𝑧𝜆𝑖,𝓁′ − 𝜆𝑖,𝓁′
)

−
∑𝓁−1

𝓁′=1
(

𝛥 − 𝜆𝑖,𝓁′
)

≤ 0

𝑆𝑖 + 𝑝𝑖 ≥ 𝓁𝛥 − 𝓁𝛥𝑧𝜇𝑖,𝓁 (11’𝐿𝐵)

𝑆𝑖 + 𝑝𝑖 − 𝓁𝛥 + 𝓁𝛥𝑧𝜇𝑖,𝓁

= −𝓁𝛥 +
(

𝐿𝛥 −
∑𝐿

𝓁′=1 𝜇𝑖,𝓁′
)

+
(

∑𝓁
𝓁′=1 𝛥

)

𝑧𝜇𝑖,𝓁

≥
∑𝓁

𝓁′=1

(

𝛥𝑧𝜇𝑖,𝓁′ − 𝜇𝑖,𝓁′
)

+
∑𝐿

𝓁′=𝓁+1
(

𝛥 − 𝜇𝑖,𝓁′
)

≥ 0

𝑆𝑖 + 𝑝𝑖 ≤ 𝓁𝛥 + (𝐿 − 𝓁)𝛥
(

1 − 𝑧𝜇𝑖,𝓁
)

(11’𝑈𝐵)

𝑆𝑖 + 𝑝𝑖 − 𝓁𝛥 − (𝐿 − 𝓁)𝛥
(

1 − 𝑧𝜇𝑖,𝓁
)

= −𝓁𝛥 +
(

𝐿𝛥 −
∑𝐿

𝓁′=1 𝜇𝑖,𝓁′
)

− (𝐿 − 𝓁)𝛥 +
(

∑𝐿
𝓁′=𝓁+1 𝛥

)

𝑧𝜇𝑖,𝓁
≤ −

∑𝐿
𝓁′=1 𝜇𝑖,𝓁′ +

∑𝐿
𝓁′=𝓁+1 𝛥𝑧

𝜇
𝑖,𝓁′−1

≤ −
∑𝐿

𝓁′=1 𝜇𝑖,𝓁′ +
∑𝐿

𝓁′=𝓁+1 𝜇𝑖,𝓁′

= −
∑𝓁

𝓁′=1 𝜇𝑖,𝓁′
15

≤ 0
𝑑𝑖,𝓁 ≥ 𝛥
(

1 − 𝑧𝜆𝑖,𝓁 − 𝑧𝜇𝑖,𝓁
)

(12’𝐿𝐵)

𝑑𝑖,𝓁 − 𝛥
(

1 − 𝑧𝜆𝑖,𝓁 − 𝑧𝜇𝑖,𝓁
)

= 𝛥 − 𝜆𝑖,𝓁 − 𝜇𝑖,𝓁 − 𝛥 + 𝛥𝑧𝜆𝑖,𝓁 + 𝛥𝑧𝜇𝑖,𝓁

=
(

𝛥𝑧𝜆𝑖,𝓁 − 𝜆𝑖,𝓁
)

+
(

𝛥𝑧𝜇𝑖,𝓁 − 𝜇𝑖,𝓁
)

≥ 0

𝑑𝑖,𝓁 ≤ 𝛥
(

1 − 𝑧𝜆𝑖,𝓁+1 − 𝑧𝜇𝑖,𝓁−1
)

(12’𝑈𝐵)

𝑑𝑖,𝓁 − 𝛥
(

1 − 𝑧𝜆𝑖,𝓁+1 − 𝑧𝜇𝑖,𝓁−1
)

= 𝛥 − 𝜆𝑖,𝓁 − 𝜇𝑖,𝓁 − 𝛥 + 𝛥𝑧𝜆𝑖,𝓁+1 + 𝛥𝑧𝜇𝑖,𝓁−1

=
(

𝛥𝑧𝜆𝑖,𝓁+1 − 𝜆𝑖,𝓁
)

+
(

𝛥𝑧𝜇𝑖,𝓁−1 − 𝜇𝑖,𝓁
)

≤ 0

𝑑𝑖,𝓁 ≥ 𝓁𝛥 − 𝑆𝑖 − 𝛥𝑧𝜇𝑖,𝓁 − 𝓁𝛥
(

1 − 𝑧𝜆𝑖,𝓁
)

(13’)

𝑑𝑖,𝓁 − 𝓁𝛥 + 𝑆𝑖 + 𝛥𝑧𝜇𝑖,𝓁 + 𝓁𝛥
(

1 − 𝑧𝜆𝑖,𝓁
)

= 𝑑𝑖,𝓁 − 𝓁𝛥 +
(

∑𝐿
𝓁′=1 𝜆𝑖,𝓁′

)

+ 𝛥𝑧𝜇𝑖,𝓁 + 𝓁𝛥 − 𝓁𝛥𝑧𝜆𝑖,𝓁

=
∑𝐿

𝓁′=1 𝜆𝑖,𝓁′ + 𝑑𝑖,𝓁 + 𝛥
(

𝑧𝜇𝑖,𝓁 − 𝑧𝜆𝑖,𝓁
)

−
(

∑𝓁−1
𝓁′=1 𝛥

)

𝑧𝜆𝑖,𝓁

≥
∑𝐿

𝓁′=1 𝜆𝑖,𝓁′ + (𝛥 − 𝜆𝑖,𝓁 − 𝜇𝑖,𝓁) + 𝛥
(

𝑧𝜇𝑖,𝓁 − 𝑧𝜆𝑖,𝓁
)

−
(

∑𝓁−1
𝓁′=1 𝛥 𝑧𝜆𝑖,𝓁′+1

)

≥
(

∑𝐿
𝓁′=1 𝜆𝑖,𝓁′ − 𝜆𝑖,𝓁 −

∑𝓁−1
𝓁′=1 𝜆𝑖,𝓁′

)

+
(

𝛥𝑧𝜇𝑖,𝓁 − 𝜇𝑖,𝓁
)

+ 𝛥
(

1 − 𝑧𝜆𝑖,𝓁
)

≥
∑𝐿

𝓁′=𝓁+1 𝜆𝑖,𝓁′

≥ 0

𝑑𝑖,𝓁 ≥ 𝑆𝑖 − 𝑝𝑖 − (𝓁 − 1)𝛥 − 𝛥𝑧𝜆𝑖,𝓁 − (𝐿 − 𝓁 + 1)𝛥
(

1 − 𝑧𝜇𝑖,𝓁
)

(14’)

𝑑𝑖,𝓁 − 𝑆𝑖 − 𝑝𝑖 + (𝓁 − 1)𝛥 + 𝛥𝑧𝜆𝑖,𝓁 + (𝐿 − 𝓁 + 1)𝛥
(

1 − 𝑧𝜇𝑖,𝓁
)

= 𝑑𝑖,𝓁 + (𝓁 − 1)𝛥 −
(

𝐿𝛥 −
∑𝐿

𝓁′=1 𝜇𝑖,𝓁′

)

+ 𝛥𝑧𝜆𝑖,𝓁 + (𝐿 − 𝓁 + 1)𝛥 − (𝐿 − 𝓁 + 1)𝛥𝑧𝜇𝑖,𝓁

=
∑𝐿

𝓁′=1 𝜇𝑖,𝓁′ + 𝑑𝑖,𝓁 + 𝛥
(

𝑧𝜆𝑖,𝓁 − 𝑧𝜇𝑖,𝓁
)

−
(

∑𝐿
𝓁′=𝓁+1 𝛥

)

𝑧𝜇𝑖,𝓁

≥
∑𝐿

𝓁′=1 𝜇𝑖,𝓁′ + (𝛥 − 𝜆𝑖,𝓁 − 𝜇𝑖,𝓁) + 𝛥
(

𝑧𝜆𝑖,𝓁 − 𝑧𝜇𝑖,𝓁
)

−
(

∑𝐿
𝓁′=𝓁+1 𝛥 𝑧𝜇𝑖,𝓁′−1

)

≥
(

∑𝐿
𝓁′=1 𝜇𝑖,𝓁′ − 𝜇𝑖,𝓁 −

∑𝐿
𝓁′=𝓁+1 𝜇𝑖,𝓁′

)

+
(

𝛥𝑧𝜆𝑖,𝓁 − 𝜆𝑖,𝓁
)

+ 𝛥
(

1 − 𝑧𝜇𝑖,𝓁
)

≥
∑𝓁−1

𝓁′=1 𝜇𝑖,𝓁′

≥ 0 □

eferences

rtigues, C., 2017. On the strength of time-indexed formulations for the
resource-constrained project scheduling problem. Oper. Res. Lett. 45 (2), 154–159.

rtigues, C., Gendreau, M., Rousseau, L.-M., Vergnaud, A., 2009. Solving an in-
tegrated employee timetabling and job-shop scheduling problem via hybrid
branch-and-bound. Comput. Oper. Res. 36 (8), 2330–2340.

aptiste, P., Demassey, S., 2004. Tight LP bounds for resource constrained project
scheduling. OR Spectrum 26 (2), 251–262.

lazewicz, J., Lenstra, J., Rinnooy Kan, A., 1983. Scheduling subject to resource
constraints: Classification and complexity. Discrete Appl. Math. 5 (1), 11–24.

öttcher, J., Drexl, A., Kolisch, R., Salewski, F., 1999. Project scheduling under partially
renewable resource constraints. Manage. Sci. 45 (4), 543–559.

rucker, P., Knust, S., 2000. A linear programming and constraint propagation-based
lower bound for the RCPSP. European J. Oper. Res. 127 (2), 355–362.

arlier, J., Néron, E., 2003. On linear lower bounds for the resource constrained project
scheduling problem. European J. Oper. Res. 149 (2), 314–324.

arey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide To the Theory
of NP-Completeness. W. H. Freeman.

aït, A., Artigues, C., 2011. A hybrid CP/MILP method for scheduling with energy
costs. Eur. J. Ind. Eng. 5 (4), 471–489.

ans, E.W., 2001. Resource Loading by Branch-and-Price Techniques (Ph.D. thesis).

Twente Univ. Press.

http://refhub.elsevier.com/S0305-0548(21)00384-1/sb1
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb1
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb1
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb4
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb4
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb4
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb6
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb6
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb6
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb7
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb7
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb7
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb9
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb9
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb9
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb10

Computers and Operations Research 141 (2022) 105688P.-A. Morin et al.
Karp, R.M., 1972. Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (Eds.), Proceedings of a Symposium on the Complexity of Computer
Computations, Held March 20-22, 1972, At the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA. In: The IBM Research Symposia Series,
Plenum Press, New York, pp. 85–103.

Kis, T., 2005. A branch-and-cut algorithm for scheduling of projects with
variable-intensity activities. Math. Program. 103 (3), 515–539.

Kolisch, R., Sprecher, A., 1996. PSPLIB - a project scheduling library. European J. Oper.
Res. 96, 205–216.

Koné, O., Artigues, C., Lopez, P., Mongeau, M., 2011. Event-based MILP models for
resource-constrained project scheduling problems. Comput. Oper. Res. 38 (1), 3–13.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L., 1998. An exact algorithm for
the resource-constrained project scheduling problem based on a new mathematical
formulation. Manage. Sci. 44 (5), 714–729.
16
Morin, P.-A., Artigues, C., Haït, A., 2017. Periodically aggregated resource constrained
project scheduling problem. Eur. J. Ind. Eng. 11 (6), 792–817.

Okubo, H., Miyamoto, T., Yoshida, S., Mori, K., Kitamura, S., Izui, Y., 2015. Project
scheduling under partially renewable resources and resource consumption during
setup operations. Comput. Ind. Eng. 83, 91–99.

Paul, M., Knust, S., 2015. A classification scheme for integrated staff rostering and
scheduling problems. RAIRO-Oper. Res. 49 (2), 393–412.

Riedler, M., Jatschka, T., Maschler, J., Raidl, G.R., 2020. An iterative time-bucket
refinement algorithm for a high-resolution resource-constrained project scheduling
problem. Int. Trans. Oper. Res. 27 (1), 573–613.

Schutt, A., Feydy, T., Stuckey, P.J., 2013. Explaining time-table-edge-finding prop-
agation for the cumulative resource constraint. In: International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations
Research. Springer, pp. 234–250.

http://refhub.elsevier.com/S0305-0548(21)00384-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb13
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb13
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb13
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb19
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb19
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb19
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb19
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb19
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00384-1/sb20

	A project scheduling problem with periodically aggregated resource-constraints
	Introduction
	PARCPSP – Problem statement
	Input and notations
	A formulation of the PARCPSP
	Conditions for the existence of feasible schedules
	Comparison with the RCPSP
	Impact of aggregation on resource feasibility

	Complexity
	Inclusion in NP
	One resource, constant capacity
	One resource, arbitrary capacity
	Multiple resources, constant capacities
	General case

	A new mixed-integer linear programming formulation
	First formulation
	Variables
	Initial formulation
	Strengthening the first formulation

	An alternative formulation
	Variables description
	Initial formulation
	Formulation strengthening
	Disaggregated precedence constraints

	Theoretical comparison of formulations (F1s) and (F2s+)

	Computational experiments
	Conclusion and perspectives
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Proof of Theorem 4: Formal correctness of formulation (F1)
	Appendix B. Proof of Theorem 5: Formal correctness of formulation (F2)
	Appendix C. Proof details of Theorem 7
	References

