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1. Introduction

A key institute in old and modern democracies is the parlia-
ment: a collection of persons that have been elected to represent
the people and whose main task is to control legislative power. To
exercise their right and duty of controlling power, there is a phys-
ical location where the elected representatives meet, discuss, and
vote: the parliament. Typically, the parliament is a building where
locations of seats are given, and hence, after an election, the ques-
tion arises: who sits where?

While at first sight this question may appear an innocent one,
there have been intense debates and rows in several parliaments
around the globe about this matter. Before giving an overview of
some of these debates, we first motivate that seat allocations are
far from innocent, and may actually influence voting behavior. Saia
(2018) considers the situation in Iceland, where seats for mem-
bers of parliament (MPs) are allocated randomly, independent of
party affiliation. This has created the opportunity to statistically
test whether neighbors of an MP have an impact on the MP’s vot-
ing behavior, and it is shown in Saia (2018) that the answer is af-
firmative: not only voting behavior, but even the choice of words is
influenced by one’s neighbors in the parliament. The existence of
this effect is confirmed by Harmon, Fisman, & Kamenica (2019) in a
study devoted to the European Parliament. From this, we conclude
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that seating allocations are important, and this finding motivates
our work.

We now sketch a number of elections where arriving at a seat-
ing allocation after an election was a contested matter.

 Following the 2017 elections for the House of Representatives in
the Netherlands, newspapers reported a lot of debate on seating
assignment. For instance, Kok (2017) describes how the party
PvdA, after losing many seats in the elections, is “punished” by
losing their front row seats. This shows that not all seats are
equally important. Seats in the front have more visibility and
allow direct access to the debating spot. Usually, large parties
occupy one or more front seats. Abels, Besselink, & Zuidervaart
(2017) mention that the seating assignment is a precarious and
not to be underestimated matter, and that “redoing the seating
assignment puzzle is like doing higher mathematics”. We return
to this case in Section 8.

o The 2019 elections for the House of Representatives in Finland.
Here, the Swedish People’s Party wanted to move closer to the
centre, leaving the Finns Party on the right of the parliament,
something they were very unhappy about." Many democracies
have parties that are labeled somewhere on a “left-right” spec-
trum. This left-right positioning is often reflected in the alloca-
tion of seats. Phrased more generally, MPs from different par-
ties that are considered to hold similar views are allocated to
neighboring positions in the parliament.

e The 2017 elections for the Bundestag in Germany. Leading
members of Germany’s established parties opposed an arrange-

1 See https://newsnowfinland.fi/politics/new- parliament-seating-plan-solved-but
-not-everyone-is-happy. Accessed: April 28, 2020.
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ment where members of the party AfD sit close to the govern-
ment’s bench (Thurau, 2017).

e The 2014 Elections in Flanders, Belgium. The “left-right” spec-
trum issue came up here, along with the biggest party not
wanting to be split up (i.e. have seats separated by corridors).?

The problem of finding an acceptable seating assignment is not
just limited to examples given above. Seating assignments have, for
example, also been the topic of debate in France (Désir, 2016) and
the UK.

In the seating assignment problem we assume that each MP
receives a particular seat. This is common practice in most par-
liaments but not in all; notable exceptions are the House of Rep-
resentatives in the USA, and the House of Commons in the UK. A
key property of seating assignments encountered in practice is that
in a vast majority of cases MPs from the same party are seated
in clusters. This reflects that communication between MPs of the
same party is an important factor when determining a seating
assignment. More concretely, members of the same party should
be seated in each other’s vicinity; this allows them to pass infor-
mation and notes quickly and discretely. Thus, to facilitate intra-
party communication, neighboring seats (to be defined later) are
as much as possible allocated to MPs of the same party.

We are given a parliament layout, a number of political par-
ties, and for each party, the number of seats it is entitled to.
We will model the seating assignment problem by constructing a
graph where a node corresponds to a seat, and where neighboring
seats are represented by an edge connecting the two correspond-
ing nodes. In our definition of the seating assignment problem, we
model the above-described key property by demanding that seats
assigned to members of the same party induce a connected sub-
graph. Our objective is to maximize the number of connections be-
tween nodes assigned to the same party, see Section 3 for a precise
problem description.

In some parliaments, clear rules exist that yield a seat-
allocation. For instance, in the US Senate, senators are ordered by
seniority and, starting with the oldest senator, each senator gets
to choose a seat with Republicans on the right and Democrats
on the left side of the chamber; in Iceland, as mentioned above,
a draw determines which MPs sit where. Typically, there is no
clear procedure regarding seat assignment; the seating proposals
follow from a combination of tradition and negotiations. Hence, a
neutral, optimization-based approach can help reduce such discus-
sions. The aim of this paper is to explicitly identify this problem, to
formally model it, to derive insights in its complexity, and to test
computationally the efficiency of various approaches.

The remainder of this paper is structured as follows. We give
an overview of related literature in Section 2. Next, in Section 3,
we formally define the seating assignment problem. Section 4 con-
tains computational complexity results. In Section 5, we present
a Mixed Integer Programming (MIP) formulation. We also present
two classes of valid inequalities, and we illustrate how these
strengthen the linear programming relaxation of our MIP formu-
lation. We address the issue of symmetry-breaking constraints. We
describe in Section 6 a heuristic that solves an instance of a set
partitioning problem using integer programming; here, the user
has control over the size of the instance. We test both the mathe-
matical programming formulation using state-of-the-art MIP solver
Cplex, as well as the heuristic, in Section 7. We discuss the seating

2 See: https://www.knack.be/nieuws/belgie/onenigheid-in-vlaams- parlement-cd-
v-en-n-va-willen-in-het-midden-zitten/article-normal-155667.html [in Dutch]. Ac-
cessed: April 28th, 2020.

3 See: https://www.bbc.com/news/uk-scotland-scotland-politics-32802374. Ac-
cessed: April 28, 2020.
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of the Dutch House of Representatives as a case study in Section 8.
Finally, we conclude the paper in Section 9.

2. Related literature

Seating assignments can be represented with graphs, where
nodes correspond to seats and edges represent seat adjacencies.
Assigning seats to parties constitutes a variant of vertex par-
titioning. Many types of graph partitioning problems are well-
known to be NP-complete (see e.g. Garey, Johnson, & Stockmeyer,
1976). Regarding vertex partitioning, one related work is by Dyer
& Frieze (1985). They show that finding an arbitrary contiguous
node partition into three sets is hard for bipartite, planar graphs.
In Section 4 we discuss in more detail the relation between the
results in Dyer & Frieze (1985) and this paper.

Another problem that is closely connected to our problem is
known as connected MAX-k-CUT, where the nodes of a given
graph need to be partitioned into k connected components such
that the number of edges between different parts is maximized.
Haglin & Venkatesan (1991) show that this problem is NP-hard al-
ready for k = 2; connected MAX-k-CUT is studied in Hojny, Joor-
mann, Liithen, & Schmidt (2021); they mention various applica-
tions, study different formulations, and investigate these experi-
mentally. Polyhedral aspects of the connectivity constraints are ad-
dressed in Wang, Buchanan, & Butenko (2017) and Oosten, Rutten,
& Spieksma (2007). Our setting differs from this class of problems
since in our case the size of each of the components is given and
we are dealing with a different maximization objective.

Darlay, Brauner, & Moncel (2012) investigate dense and sparse
vertex partitioning. Their goal is to maximize the sum of the den-
sities of each subset in the partition. They prove NP-hardness and
non-approximability for this problem. Darlay et al. (2012) do not,
however, fix the number of subsets in the partition, nor their size,
whereas in our problem both are given (and fixed).

Another related work is done by Benati, Puerto, & Rodriguez-
Chia (2017). They propose a new model for clustering so-called at-
tributed graphs. An attributed graph, aside from having the typical
node set V and edge set E which correspond to relational data, also
contains a matrix M, which contains information on similarities ac-
cording to different features. Benati et al. (2017) propose MIP for-
mulations to solve a clustering problem, with the constraint that
there must be a path in G between nodes clustered in the same
group. In essence, this is a contiguity-constraint, which is simi-
lar to our problem setting. However, the objective considered in
Benati et al. (2017) is a typical clustering objective; nodes within
each cluster should be similar to each other and nodes from differ-
ent clusters should be dissimilar with respect to the information
in M. In our problem setting, we want to maximize the number of
connections between nodes assigned to the same party. In other
words, we try to cluster based on relational data (the number of
connections), whereas Benati et al. (2017) cluster based on indi-
vidual node data. A final difference is that in the work by Benati
et al. (2017) all nodes have to be assigned to some cluster, whereas
that is not necessarily the case in this work (the number of seats
can be greater than the number of MPs).

Clique partitioning and clique covering (see e.g. Pullman,
1983 for a survey), are other related, yet different problems. The
problem of finding a minimum clique cover is a well-known NP-
hard problem (Karp, 1972). In this paper, we also want to partition
(or cover) the nodes of a graph, however we do not require the
partitions to be cliques.

There is also a stream of literature that studies problems re-
lated to (political) districting or zoning. In districting, a region
needs to be divided into a set of districts. In essence this is a
type of graph partitioning problem where contiguity is paramount.
Shirabe (2009) considers three variations of contiguity-based dis-


https://www.knack.be/nieuws/belgie/onenigheid-in-vlaams-parlement-cd-v-en-n-va-willen-in-het-midden-zitten/article-normal-155667.html
https://www.bbc.com/news/uk-scotland-scotland-politics-32802374

B. Vangerven, D. Briskorn, D.R. Goossens et al.

tricting problems, and models these using integer programming.
Next, he uses the 48 contiguous US states as an instance.

King, Jacobson, Sewell, & Cho (2012), King, Jacobson, & Sewell
(2015) also analyze political districting. They primarily focus on
so-called geo-graphs, a graph model that provides a scale-invariant
method for enforcing contiguity constraints in local search meth-
ods.

3. The seating assignment problem

In this section we formalize the seating assignment problem
and emphasize some relevant special graph structures. We denote
the set of seats in the parliament by V ={1,..., n}. The set P rep-
resents the political parties. Every party p € P is entitled to a num-
ber BP of seats. We consider the weighted graph G = (V,E,w),
which represents the seats and their adjacency relations. There is
an edge e={i, j} e E between nodes iV and jeV if the cor-
responding two seats are adjacent in the parliament. Adjacency
can occur when two seats are next to each other on the same
row; in addition, seats on consecutive rows can also be adjacent.
There is a given weight w, € R, e € E, which reflects the degree
to which seats i and j allow communication. We restrict ourselves
to 0 < we < 1, where higher weights reflect better communication
opportunities.

Definition 1. Given a weighted graph G = (V,E, w), and given a set
P with numbers BP for each p € P, a seating assignment is an as-
signment of nodes to parties, such that (i) each party p € P gets
assigned BP nodes and (ii) every node in V is assigned at most
once.

Members of the same political party want to sit in a way that
is contiguous.

Definition 2. A seating assignment is contiguous if, for each politi-
cal party p € P, the sub-graph induced by the nodes assigned to p
is connected.

In other words, in a contiguous seating assignment there exists
at least one path between every two nodes assigned to the same
party, using only nodes assigned to that same party.

In the following we introduce one more constraint motivated
by interests of political parties in the real world. As made clear in
the article by Abels et al. (2017), seats on the front row are usu-
ally of special interest to political parties. They are desired, valued
above other seats, for reasons of exposure: the seats are in plain
view of the camera, and are usually situated close to the speaker
microphones. It follows that assigning a fair number of front row
seats to every party is a desirable. Let F €V be the set of front
row seats/nodes. A fair distribution of front row seats assigns a
given number of rP seats in F to each party p € P. There are sev-
eral methods available to determine rP, e.g. the D’Hondt method
(Gallagher, 1991).

Definition 3. Given numbers rP for each p € P, a seating assign-
ment is front-fair if each political party p € P gets assigned at least
rP seats in F.

Definition 4. Given a graph G = (V,E,w), a set P of parties, and
numbers BP, rP for each party p € P, the Seating Assignment Prob-
lem (SAP) asks for a contiguous and front-fair seating assignment
that maximizes the total weight of edges between nodes assigned
to the same party.

4. Computational complexity results

We gather and present the computational complexity results
in this section. While we state the results here, we relegate the
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technical proofs to Appendix A. The results can be summarized as
follows. First, we prove that finding an optimal contiguous seat-
ing assignment is strongly NP-hard even for considerably restricted
classes of graphs and even if front row seats do not need to be ac-
counted for. Second, we show that it is strongly NP-complete to
determine whether a contiguous and front-fair seating assignment
exists even on a considerably restricted class of graphs.

Theorem 1. SAP is strongly NP-hard even for connected planar
graphs with maximum degree of at most 3 and we = 1 for each edge
e cE, if rP = 0 for each party p € P, and if each seat is occupied.

Corollary 1. SAP is strongly NP-hard even for planar graphs with
maximum degree of at most 2 and we =1 for each edge e € E, if
rP = 0 for each party p € P, and if each seat is occupied.

These results relate to the results of Dyer & Frieze (1985) as fol-
lows. Dyer & Frieze (1985) show (Theorem 2.1(a)) that finding an
arbitrary contiguous node partition into three sets is hard for bi-
partite, planar graphs. They do not consider partition sizes, hence,
our results are incomparable.

However, they also show that (Theorem 2.2) the problem to
decide whether a feasible solution to SAP exists is strongly NP-
complete even for bipartite graphs and even for two parties. We
show in Theorem 1 that SAP is strongly NP-hard even for con-
nected planar graphs with maximum degree of at most 3 and
even if each seat is occupied. In our results, planarity comes into
play. Additionally, we strengthen the result by bounding the de-
gree. Corollary 1 strengthens this again, but sacrifices connected-
ness of the graph in the process.

We continue by considering SAP on a further considerably re-
stricted class of graphs. Some parliament seating schematics ex-
hibit a grid-like shape. If this is the case, the corresponding graph
results in a grid graph, see Itai, Papadimitriou, & Szwarcfiter (1982),
from which we take the following definition. Let G* be the infinite
graph whose vertex set consists of all points of the plane with in-
teger coordinates and in which vertices are connected if and only
if the (Euclidian) distance between them is equal to 1. A grid graph
is a finite, node-induced subgraph of G*. In the following we con-
sider a particular type of grid graphs.

Definition 5. G(m, m), m € N*, is the grid graph which has exactly
the set of nodes with both coordinates in [1, m].

Theorem 2. SAP is strongly NP-hard even for G(m, m), m € N*, with
we = 1 for each edge e € E, if rP = 0 for each party p € P, and if each
seat is occupied.

Dyer & Frieze (1985) consider bipartite graphs and
Theorem 1 considers planar graphs. Grid graphs are both bi-
partite and planar. Note that while Theorem 1 restricts to a
maximum degree of 3, Theorem 2 restricts to a proper special
case of connected planar graphs namely grid graphs (which have
maximum degree of 4). Thus, the results in Theorem 1 and 2 are
not comparable.

Finally, we state that existence of proper seating assignment be-
comes a non-trivial issue if front row seats come into play.

Theorem 3. Deciding whether a contiguous and front-fair seating as-
signment exists is strongly NP-complete even for connected planar
graphs with maximum degree of at most 3 and if each seat is oc-
cupied.

We point out that this result does not only hold for arbitrary
numbers of front row seats granted for parties but also if the
D’Hondt method is used to determine these numbers. We provide
more details in Appendix A.



B. Vangerven, D. Briskorn, D.R. Goossens et al.
5. A mixed-integer programming formulation of the SAP

We provide a mathematical programming formulation for the
SAP in Section 5.1. In Section 5.2, we present two sets of valid in-
equalities, and in Section 5.3 we discuss symmetry-breaking con-
straints.

5.1. Main mixed-integer programming formulation

There are different ways to model the SAP as a mixed-integer
program; to enforce the contiguity constraints, we opt for a mul-
ticommodity flow formulation - this is in the spirit of formula-
tions given in Hojny et al. (2021). We consider a directed graph
G = (V,A), where, like before, the nodes in V correspond to the
seats. There is one node for every seat in the parliament. Observe
that one can always (arbitrarily) number the nodes in V, e.g. from
1 to |V|, which implies an ordering of the nodes. We use a similar
procedure to order the parties in P. Since our mathematical formu-
lation ensures contiguity using a flow-based formulation, we use
arcs instead of edges. There are arcs between nodes corresponding
to adjacent seats in the set A. If and only if {i, j} € E, then (i, j) € A
and (j,i) € A. In other words, we replace every edge by two arcs.

There is a binary variable le which equals 1 if node i is assigned
to party p and O otherwise. A binary variable y? indicates whether
nodes i and j defined by e = {i, j} are both assigned to party p.

We use a flow-based formulation to ensure contiguity: every
party has one source node, from which an amount of flow em-
anates, that can only flow via existing arcs. To that end, we in-
troduce binary variables zf’, that decide which node is the source
node from which an amount B8P —1 of flow emanates, for every
party p € P. The variables f(’?j) indicate the amount of flow that
goes from a node i to another node j for a party p € P.

max Y ) weyk (1)
peP ecE
st Yy xf<1 VieV, (2)
peP
>N =p VpeP, 3
ieV
sz =1 VpeP, (4)
ieV
2P <xP VpePieV, (5)
yb <l VpePecE,ice, (6)
> iz B+ > by =1 VpePicV, (7)
Jr(ij)eA Jr(ij)eA
0<f§ =By VpePe={ij} <L (8)
doxl=rP VpeP, (9)
ieF
yPe{0,1} VpePecE, (10)
xP.zF € {0,1} VpePieV. (11)
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Table 1
Values of x-variables and objective function contribution of the LP-relaxation of the
MIP formulation for the example in Fig. 1.

Party p  xF xb xb xh xP xP xb xp xb S yP
1 19 19 1/9 1/9 19 19 1/9 1/9 19 10/9
2 19 19 19 19 19 19 1/9 1/9 1/9 10/9
3 19 19 19 19 19 19 1/9 1/9 1/9 10/9
4 2/3 23 23 2/3 23 23 2/3 2/3 23 203

The objective function (1) represents the goal to maximize the
weighted number of arcs between nodes assigned to the same
party. Constraints (2) ensure that every node is assigned at most
once, implying that there are seats that can potentially be left
empty, and constraints (3) make sure that every party gets as-
signed the correct number of nodes. Constraints (4) and (5) take
care of the flow source selection: one source node needs to be se-
lected for every party, and that source node needs to be assigned
to that party. Constraints (6) restrict the y? variables. Specifically,
variable y? with e = {i, j} can only equal 1 if both nodes i and j
are assigned to party p. Finally, Constraints (7) and (8) take care of
the flow requirements, implying that only contiguous seating as-
signments are feasible. Constraints (7) ensure that the source node
of party p has a supply of B8P — 1 while non-source nodes have a
flow demand of 1. Constraints (8) make sure that only arcs con-
necting nodes of party p can be used to establish a flow for p.
Notice that for each edge e both corresponding arcs are restricted
that way. Now it is easy to verify that a flow of 8P — 1 originat-
ing from the source node can be established only if each node can
be reached from the source node on a path only visiting nodes as-
signed to p. Constraints (9) require that each party p € P gets at
least its granted number of front row seats. Constraints (10) and
(11) are the integrality constraints.

Finally, we remark that we can relax the constraint that y? is bi-
nary, because this is implied by the integrality of xf’ and the nature
of the objective function. Similarly, we can also relax the constraint
that zP is binary.

5.2. Valid inequalities

We present two different sets of inequalities valid for formula-
tion (2)-(11). The first type of valid inequalities is graph-specific.
Let A(G) be the maximum degree of a node v eV in the original
graph (with edges), that is the maximum number of seats any seat
is adjacent to. Then, the following inequalities are valid:
=Bl min(r-1).20)  Vper (12)

ecE

The idea behind these inequalities is as follows. Consider the gP
nodes assigned to party p € P. Since, in a solution to the SAP, an
individual node is connected to at most min(8P — 1, A(G)) other
nodes, it follows that the number of edges that can be selected
in the graph induced by nodes assigned to party p (i.e., the left-
hand side of (12)), is bounded by g -min(BP — 1, A(G)) (where
we divide by 2 to account for double counting of each individual
edge).

To see the potential impact of inequalities (12), consider the in-
stance depicted in Fig. 1. There are 9 nodes, and there are four par-
ties with 81 = B2 = 83 =1 and B* = 6. The optimal integer solu-
tion has an objective function value of 6 and assigns either nodes 1
to 3 or nodes 7 to 9 to parties 1, 2, and 3, and the remaining nodes
to party 4. An optimal solution of the LP-relaxation of (1)-(11) has
an objective function value of 10 (i.e. the number of edges); the
corresponding values of the x-variables are given in Table 1. Af-
ter adding inequalities (12), the objective function value drops to
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Table 2
Values of x-variables and objective function contribution of the LP-relaxation of the ES
MIP formulation for the example in Fig. 1 including inequalities (12). g’
p p p p p p p p p p 5
Party p  xj X5 X3 X, Xg Xg X3 Xg X9 >y cocoooo g
1 0 13 0 0 0 13 13 0 0 0 SS3555522,2 5
2 0 0/ Y3 0 13 o/ 0/ 0 13 o0 S|SSSESSEgogaS5585885%
B S ccoccocoldclLono22 g4
3 13 0 0 13 0 0 0 13 0 0 = Ralaiaiakahai N R
4 23 2/3 2/3 23 233 2/3 2/3 2/3 23 203 o N e NN
NY-mY dOoodoooooSd oS oo
glnmms-nynsg8s888888888
o= MO AN NONMOOOO0OO0OO0O0O0O0 OO OO
Table3 [l Bl 2R B B A o B oL N oS I N oS I N B oN I N oS B N BN oY |
Values of x-variables and objective function contribution of the LP-relaxation of the © 32 52 3 32 3@ 3¢ 3@
MIP formulation for the example in Fig. 1 including inequalities (13). “ 2858858888882 2322 ¥
Tl NN —mm 1 Qo™ 1
Party p  xP xP xP xXPox2 X2 X xP xP SyP 2
1 - > - : : : : ° 8 lﬁOO‘)@OﬁOI\@I\mHOv—' 2o¢@
A 218|38 T RgETE2RG BEA
2 16 1/6 1/6 0o 0 0 16 16 16 1 - P
3 Y3 13 13 0 0 0 0 0 0 1 s
4 12 12 12 1 1 1 12 12 12 6 =
[aal
x
Table 4 cggseee 3
Values of x-variables and objective function contribution of the LP-relaxation of the o § § § § § § § g % o % cococococooo g
MIP formulation for the example in Fig. 1 including both inequalities (12) and (13). O SS9 999999g
Ll = === —=NN~NOWN—mMOo O ®
Partyp X b xb X xE X2 X X5 Ty
AN o = N = = (N —
00 0 o 0 0 0 1 2 0 E|szBRnigcEggscaggscs
2 13 0 0 1/5 1/5 1/5 0 0 0 0 EFlmrF " N0 RANNANRNNNNAQQA
3 0 14 1/5 0 0 0 15 13 0 0 I~
4 213 23 4/5 4/5 45 45 4/5 13 13 31/5 = QS%§S%§\5§§>§§ AR
+|8|SSS Sk N2RR  ARA
9
=1
20 . . . glalnoaaaonm3Eies S0
%, and the corresponding values of the x-variables when (12) is S|8|lge¥ycdgy-cSegg pon
added, are given in Table 2.

The second type of valid inequalities is contiguity-specific. They &
can be obtained by first calculating a shortest path (with arcs hav- l
. . . . . . 2
ing unit lepgth) between every pair Of'dlStlnCt nodes in G = (V,A). ccccosos., g
The all-pairs shortest path problem is a wel.l—kn.own and well- o|5555555522c20000000y
researched problem that be solved in polynomial time (e.g. by ap- A 5S55555555S0oS830oc-oo59 %
plying the Floyd—-Warshall algorithm (Cormen, Leiserson, Rivest, & HlTToT oo oo memeeamea sk
Stein, 2009)). We denote by d; ;, the length of the shortest path . R B B s B o Ko B BBe il

. . o . o, . . . .
from i e V to j € V. The following inequalities are then valid: ElQZlocalgagsssssssssss
Hl=MmO = AN TO0O—ANANANANANNNNNNAN
P up . Li s »
x'+x!<1 VpePijeV:i<janddg; > pP. (13) e o o e o e e v
b ! olggreerxexh =gy SHRES

Indeed, two nodes i, j € V that are separated in G by more than . S|CGSSSSScmuN2RE ASRER
BP nodes cannot be assigned to the same party. Ei o =~ o " o0

To see the potential impact of inequalities (13), consider again £ a|22332253255822 25y

. . . y . . L. S|IO| 0 RRRRNOO O =D D | ™ —~
the instance depicted in Fig. 1. After adding inequalities (13) for
the fourth party, the value of an optimal solution of the LP- 3
relaxation equals 9. The corresponding values of the x-variables are ®
given in Table 3. &

Clearly, adding inequalities (12) or adding inequalities (13) to 2222229, oo o ¢
the MIP formulation (1) to (11) strengthens the LP-relaxation. Even QI222=2=222a7¥0=2522888S%
more, we point out that when adding inequalities (12) as well as e r e e === =60~ 000N MmN
inequalities (13) to the MIP formulation describing the instance de- beo SOCNMANNS S
picted in Fig. 1, the optimal value of the LP-relaxation drops to 6.2, gloxssanABRESE38888838

. . . . 4 — NONTOOOOWNHNODODOOOOO O OO
which is lower than the value resulting from only adding (12) or g [l R R R R R N R R
only adding (13). The corresponding values of the x-variables are k - e R BREEE ® o
given in Table 4. This example thus shows that combining the two ElE|5|558888RG A0 agmonar < &

. ers . S|l |lVU|locoococoocococomun—=—mAaAANN 1 N 1

classes of inequalities may lead to a bound that is stronger than e | <
when considering a single class of inequalities. S ; clnoooaomnI28ncos 3 O
o |SI8|aRIXEREE-2274832 , 2,2
P = 2. 2.2

. . =

5.3. Symmetry-breaking constraints s e = 6 v ~ < =~ © n
P B SN0 NG ONOSNgG NS RIE D
5 SN 00O —~ANMONAN——0O0MAN — O —

Another issue that is relevant when efficiently solving the MIP z
formulation is the presence of symmetry. We distinguish two types E R R =R R T
of symmetry in our formulation. The first one relates to the se- £18 = o o

. . < . = b0
lection of the source node among the nodes/seats assigned to the w35 PININLOORRRREORDE0DD g

. . . . 7
same party, while the second one aims to eliminate symmetry s E Bl v s v rrrrrTmnmnnnoooood
= O

with respect to parties of equal size.
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In order to reduce the number of choices of the source node for
a given assignment of seats to a party we propose to choose the
lowest-indexed seat as the source node. The following constraints
achieve this choice:

i
szzxf’ VpePieV.
j=1

(14)

These constraints ensure that whenever a node is assigned to a
party, the corresponding source node has an index that is lower or
equal. We use these inequalities (14) in all further computations.

The second type of constraints account for two parties of the
same size being exchangeable in a solution (which yields a differ-
ent solution with the same objective value):

i-1

<>z Vp.pePp <pBP=pFicV.i>1, (15)
=1

Y-z <Yi-Zf -1 Vp.pePp <ppP=p7.  (16)

ieV ieV

Each of these constraints enforce that the source nodes of par-
ties that have the same size are assigned to seats that are indexed
in the same order as the order of the parties. A similar type of
symmetry-breaking constraints can be found in Grimm, Kleinert,
Liers, Schmidt, & Zottl (2019) and Méndez Diaz & Zabala (2001).

6. A heuristic for the SAP

In this section, we present a heuristic in order to determine
good solutions for SAP instances. While the heuristic can be ap-
plied to any type of graph, it has been developed with graphs
that represent the structure of a typical parliament in mind (see
Section 7). The heuristic consists of two phases. First, we gener-
ate for each party p a set of connected subgraphs of the graph
G = (V,E). Each such subgraph corresponds to a contiguous subset
of BP seats (nodes in G), including the required number of front
row seats rP. Note that settings without front row seat require-
ments can also be handled with this approach, by simply setting
rP =0 for each party p € P. Second, we select one subgraph per
party such that there is no overlap, maximizing the weighted num-
ber of edges between nodes assigned to the same party. The result
is a contiguous seating assignment.

Phase 1. For each party p, we generate a set NP of connected
subgraphs of G as follows. We make a distinction depending on
whether or not the party is entitled to front row seats.

o If the party p is not entitled to front row seats (rP=0), we
create connected subgraphs for every node n ¢V as a starting
node. We initialize a new connected subgraph implied by node-
set N = {n}. Next, we consider the nodes adjacent to a node in
N, but not including any front row seats (nor nodes that are
already in N). From this set of neighboring nodes, denoted by
Sy\r(N), we select one node using uniform probabilities and
add it to N. We continue doing this until N has the required
size BP. Finally, we add N to AP, and keep repeating this pro-
cedure until we have a given number of QP (chosen as a pa-
rameter depending on the size of party p) connected subgraphs
for every node n € V as starting point.

If the party is entitled to rP > 0 front row seats, we generate
all sets of rP connected front row seats. For each such set D, we
initialize N to D, and we iteratively add neighboring nodes to N
as we did for the case of r’=0. We repeat this QP times for each
D, and add each resulting N to A'P. The motivation behind us-
ing a set of connected front row seats, is twofold: (i) ensuring a
connected subgraph is made trivial, and (ii) using disconnected
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(sets of) front row seats can lead to potentially “exotic” sub-
graphs, which, given graphs that reflect the layout of a typical
parliament, are likely to contribute less to the objective func-
tion value than subgraphs in which all front row seats are con-
nected.

The pseudo code of the procedure for phase 1 is given in
Algorithm 1.

generate subgraphs
for g=1 to QP do
while |N| < 8P do
Draw {n’} from &y\r(N) using probabilities p, =

m°
N < Nu{n'};
end
NP — NPU{N} ;
end

main procedure

for each p in P do

NP =g ;

if r? = 0 then

for each n in V \ F do
N ={n};

generate subgraphs;

end

end

else

for each D C F such that |[D| =rP and D is
connected do

N = D;

generate subgraphs;

end

end
end
Algorithm 1: Pseudo code for phase 1.

Phase 2. We denote N as the superset including all subgraphs
in AP over all parties. Each such N € N can be characterized by (i)
the corresponding party py and (ii) its weighted number of edges
wy (i.e., Wy =3 o_jj jjer:i jeN We)- We declare a binary variable xy
for each N € N, which takes value 1 if party py will be seated ac-
cording to N, and O otherwise. Solving the following integer pro-
gramming (IP) formulation then provides the best solution we can
obtain by assigning each party p a subgraph in NP,

max ) WXy (17)
NeN

st Y xy=1 VpeP, (18)
NeN'P

> a1 VneV, (19)
NeN:nsN

xy € {0,1} VN e N. (20)

Notice that the solution to the above IP formulation is indeed
the optimum solution to the instance of SAP if for each party p set
NP contains all subgraphs with P nodes and rP front row seats.

The quality of the solution generated by the heuristic, and even
whether the heuristic results in a feasible solution, depends on the
subgraphs generated in phase 1. Most parliaments have a number
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Fig. 1. An instance of the SAP with 9 seats where each edge has a weight of 1.

of seats per row that increases towards the back of the room. For
graphs based on this layout and parties that have at least one front
row seat, phase 1 is likely to result in favorable pie slice or drop
shaped sets of seats, as the number of neighbors, and hence the
chance of expanding in that direction, increases towards the back
of the parliament. If the subgraphs present in an optimal solution
are generated, then the heuristic will output an optimal solution
as well. Herein lies the flexibility of the heuristic: adding more
subgraphs may improve the quality of the solution, however, this
comes at the cost of computation time. Finally, observe that, when
implementing Phase 2, one may choose not to solve the IP to opti-
mality, but instead be content with a solution that is, say within 5%
of the optimum. Although we did experiment with this idea, the
outcomes were very similar to the outcomes we got when solv-
ing the IP to optimality; therefore we do not report here on these
former outcomes.

7. Computational study

In this section, we discuss a computational study which com-
pares the MIP model from Section 5 with the heuristic developed
in Section 6 on a set of artificially generated instances.

The instances are generated according to the seating layout de-
picted in Fig. 2, which represents a fictitious parliament consist-
ing of three blocks of seats. According to a book by Cohen de Lara
& Mulder (2016), this layout is quite common in parliaments all
over the world. The left- and rightmost blocks each have 2 seats
on the front row, whereas the middle block is larger and has 3
front row seats. Rows increase in size as they are more to the back
of the parliament. The weights used in the objective function are 1
for in-block connections (depicted with full lines in Fig. 2) and 0.5
for between-block connections (depicted as dotted lines in Fig. 2).
Note that for seats on different blocks, only connections on the
same row are considered. Each instance consist of the first 4, 5 or 6
rows, leading to settings with 46, 65, or 87 seats, respectively. Pre-
liminary computational experiments showed that instances with 2
or 3 rows are trivial for both the exact and heuristic approaches:
optimal solutions are always found in at most a couple of seconds.
Hence, the results for these instances are not reported in this pa-
per.

For every number of rows, we examine 3 different numbers of
parties, ranging from 5 to 10. The party sizes are generated such
that each party takes between s% and 50% of the seats, and there
is at least one party with size in [s%, (s + 5)%], for values of s in
{5,10, 15}. A large value of s corresponds with a parliament filled
with large parties of similar size, while a small value of s will re-
sult in at least one small party and more variance in party sizes.
Note that s = 15 is not possible for settings with more than 6 par-
ties.

In total, our computational study involves 190 instances. Each
line in Table 5 corresponds with a set of 10 instances with the in-
dicated number of rows, number of parties, and s-value; the aver-
age variance of party sizes is given in the forth column.
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Table 6
Computational results of the heuristic.

Instances Heuristic

Rows Parties s Var. Obj. Time F B
4 5 5 31.7 813 53.2 10 8
4 5 10 172 78.0 53.7 10 10
4 5 15 26 74.9 54.0 10 10
4 6 5 11.7 749 45.9 10 10
4 6 10 6.8 71.9 40.8 10 10
4 6 15 07 72.0 22.7 10 10
4 7 5 140 69.7 28.1 10 10
4 7 10 26 65.9 14.8 10 10
5 7 5 374 1142  160.6 10 7
5 7 10 56 1046  237.1 10 10
5 8 5 20.7 107.8 129.2 10 9
5 8 10 15 97.0 1741 10 10
5 9 5 194 1025 976 10 9
5 9 10 03 91.0 63.9 10 10
6 8 5 30.7 157.0 379.6 10 10
6 8 10 28 1434 14571 6 6
6 9 5 156 1512  295.8 10 10
6 9 10 09 1406 3184 10 10
6 10 5 135 1453  288.2 10 10

Average 97.9%  94.2%

We tackled all instances using four MIP formulations:

MIP standard: formulation (1)-(11) and (14),

MIP cuts: formulation (1)-(14),

MIP cuts + (15): formulation (1)-(14) and (15), and
MIP cuts + (16): formulation (1)-(14) and (16).

Instances were solved using the state-of-the-art MIP solver
Cplex 12.10, with a time limit of 2000 seconds. We compare the
performance of the MIP models with an implementation of the SAP
heuristic, where we set QP = 15 - 8P. All the experiments were car-
ried out on a laptop with a 3.70 Gigahertz processor and 64 giga-
byte of RAM. The results are summarized in Tables 5 and 6.

In Tables 5 and 6 each line represents averages over 10 in-
stances, with a given number of rows, number of parties, and s-
value. We outline the variance of the party sizes, achieved objec-
tive function value, required computation time in seconds, and the
number of instances for which a feasible, a best, and a proven opti-
mal (F/B/O) solution was found by the corresponding method. Note
that B is to be interpreted as best over the results by the MIP mod-
els (Table 5) and the heuristic (Table 6), and that the number of
instances for which the time limit was hit is given by 10-0.

According to the results in Table 5, the performance difference
between the various MIP models is small. Optimal solutions are
found for nearly all instances with 4 rows by each of the MIP
models. While adding valid inequalities (12) and (13) to the stan-
dard MIP reduces the computation time from 417.2 seconds to
355.2 seconds on average, no further reduction is obtained by also
adding symmetry-breaking constraints (15) or (16). Looking at the
instances with 5 or 6 rows, the MIP approaches hit the time limit
for each instance. While this results at least in a feasible solution
for most of the cases with 5 rows, this is not the case for the in-
stances with 6 rows. In these cases, the cuts offer no consistent
added value, since the gap as well as the percentage of instances
for which a feasible and a best solution was found is very similar.
Adding symmetry-breaking constraints (15) or (16) also does not
offer a clear advantage.

Table 6 shows that, for the setting with 4 rows, the heuristic
finds best solutions for all but two instances, where it terminates
with a close-to-optimal solution. In fact, for all but six instances
we can conclude the solution to be optimal since Cplex proved the
corresponding objective value to be optimal using at least one MIP
formulation. The heuristic manages to obtain these results in less
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Fig. 2. Graph structure of the generated instances.

Fig. 3. Seating schematic of the Dutch House of Representatives (based on Cohen de Lara & Mulder, 2016).

than 40 seconds on average, and its computation times show very
little variability. For the larger instances, and in contrast with the
MIP formulations, the heuristic almost always finds a feasible solu-
tion. With an average computation time of 143.8 seconds for 5 row
instances, and 547.8 seconds for 6 row instances, its computation
time remains limited. The bulk of this computation time (98.8%) is
spent on the second phase; the first phase accounts accounts for
more than 5% of the computation time in only one instance.

The bottom lines of the tables show that the heuristic clearly
outperforms the MIP approaches with respect to the number of
instances for which a feasible solution was found. Furthermore, for
nearly 95% of the instances, the best found solution was obtained
with the heuristic.

We have also experimented with setting the x-variables in the
MIP-cuts model to the values implied by the solution obtained
by the heuristic, as a (partial) initial solution. While this resulted
in a significant decrease of computation time (often 30%) for the
smaller instances, it did not improve the objective function value
for the instances that could not be solved to optimality within
2000 seconds. Furthermore, the MIP could only very rarely im-
prove the heuristic solution it started from (and never substan-
tially). Given these very modest results, we opted not to include
detailed results in this paper.

8. Case study: the Dutch House of Representatives

The House of Representatives in the Netherlands counts 150
seats, divided over six identical pie slice shaped blocks of seats.
Each block has six rows, and includes two front-row seats, which
are closest to the microphones and are prominently visible on TV
broadcastings. Fig. 3 contains a schematic representation of the
seating layout in the House of Representatives. The 2017 election
gave rise to a rather dispersed composition of the parliament, in-
volving no less than 15 parties. The largest party (VVD) holds 32
seats, followed by PVV with 20 seats; CDA and D66 each can claim
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19 seats. There are several very small parties, including two one-
person fractions (which, at some point had dissociated from larger
parties).

The current seating assignment is depicted in Fig. 4 (top), and
was highly contested, as described by several newspaper articles
(e.g. Abels et al., 2017; Adriaanse & de Witt Wijnen, 2017; Kok,
2017; Mesdag, 2017; de Witt Wijnen, 2017). For example, the po-
litical party FvD, claiming to be a progressive middle party, did
not want to be seated next to the right-wing populist party PVV.
As reported in Section 1, the party PvdA was frustrated not to
have a front-row seat, which is however not unreasonable given
that the election left them with only 9 seats. The party DENK was
complaining that they did not have access to a corridor, as they
found themselves surrounded by other parties, making it difficult
to reach the microphones. One MP of the party D66 did not like to
be separated by a corridor from the rest of the party. This also hap-
pened with CDA and VVD, the MPs of the latter party were even
spread over three blocks.

If we associate a weight of one for each depicted edge that con-
nects neighboring seats that are assigned to the same party, and
we use a weight of 0.5 for each connection between blocks (repre-
sented by dashed lines), the current solution has an objective value
of 242.5. The middle row of Fig. 4 shows the result of running
“MIP cuts” for little over 35 hours. The objective function value is
272.5, beating the current seating assignment. The bottom row of
Fig. 4 depicts the result of our heuristic approach. In less than 30
minutes, we obtain an objective function value of 275, further im-
proving the MIP result. Furthermore, this solution has other attrac-
tive properties: (i) each party has access to a corridor, and (ii) the
contesting parties FvD and PVV do not occupy neighboring seats.
No party is split over more than one block, except of course VVD,
which is too large to be seating in a single block. Hence, our ap-
proach shows that it can alleviate most of the concerns that were
expressed in the media.
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Fig. 4. Current seating assignment in the House of Representatives (top), the best found MIP solution (middle) and the solution resulting from our heuristic (bottom).

9. Conclusion

The seating assignment problem is a conceptually simple, but
computationally challenging problem in combinatorics. Just like
some politicians, we find that answering the question of who sits
where is surprisingly difficult. Yet it is not impossible. The compu-
tational experiments show that even when using additional valid
inequalities, exact MIP solvers have difficulties coming up with op-
timal, or at times even feasible, solutions within reasonable com-
putation times. Heuristics, however, prove to be a promising av-
enue to tackle such problems. The case study on the House of Rep-
resentatives in the Netherlands further illustrates that our heuristic
is able to solve a real-life problem adequately within a reasonable
computation time.

This research can also have merits in practical applications
other than seating assignments in parliaments. For example, there
is a resemblance to assigning professors and research assistants
to offices in a building. Naturally, one would want to maximize
the communication possibilities between members of the same re-
search group (which would correspond to a political party in this
paper). It also makes sense to not spread these people randomly
over a building. The concept of seat adjacency carries over to office
adjacency. If multiple people can share the same offices, then there
is an additional extension that does not arise in a parliament seat-
ing setting: office capacities. This type of assignment of persons
(linked to certain groups) to offices, taking into account communi-
cation possibilities, undoubtedly also arises in private companies,
government building, etc.
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Appendix A. Proofs

Theorem 1. SAP is strongly NP-hard even for connected planar
graphs with maximum degree of at most 3 and w, = 1 for each edge
e cE, if rP =0 for each party p € P, and if each seat is occupied.

The proof is based on a reduction from 3-partition which is
well-known to be NP-hard in the strong sense (Garey & John-
son, 1979). The 3-partition problem (3PP) is as follows. You are
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given 3b+1 positive integers ai,...,asp, B with 7 <aq <§ for
each g=1,...,3b and Zq 1aq = bB. Does there exist a partition
of set {1,2,. ..,3b} into b subsets Ay, ..., A, of three integers each

such that 3,4 ag =B foreachr=1,...,b?

Proof. First, we argue that we can restrict ourselves to a special
case of 3PP where each number is a multiple of 3. We can trans-
form each instance of 3PP into an instance of this special case
by multiplying each number ay, ..., as,, B by 3. The answer to the
new instance is yes if and only if the answer to the original in-
stance is yes.

We consider the decision problem whether or not a feasible
solution to SAP with a target objective value (or more) exists.
Given an instance I of 3PP with ag being a multiple of 3 for each
q=1,...,3b we construct an instance I of SAP as follows. We have
two types of nodes that make up the node set V =V uVe.

e We have bB triangle nodes V!
1,...,rB} foreach r=1,...,
colored.

We have b — 1 connecting nodes V¢ = {bB+1,.
In Fig. A.5, these nodes are shaded grey.

=Viu.. .0Vl Vi ={(r-1)B+
b. In Fig. A.5, these nodes are not

. bB+ (b—1)}.

We have three types of edges. Each edge has unit weight.

The first type of edges is such that each triple 3s+1,3s+
2,35+ 3 of nodes with s= .,bB/3 —1 forms a triangle.
Since we restricted ourselves to a special case of 3PP where
each number is positive and a multiple of 3, bB/3 — 1 is inte-
ger. We refer to these edges as triangle edges.

The second type of edges directly connects triangles. Node Bg +
3s+ 3 is connected to node Bg+ 3s+4 for every g=0,...,b—
1and s=0,...,B/3 — 2. Again, since B is a positive multiple of
3, B/3 — 2 is integer.

The third type of edges indirectly connects triangles via nodes
in V€. Node Bg is connected to node bB+ g which in turn is
connected to node Bg+ 1 for every g=1,...,b— 1. In Fig. A.5,
these edges are depicted as fat grey lines.

By construction, the graph has maximum degree of 3 and is
planar. We have 4b — 1 parties. Party g =1, ..., 3b needs to get qq
seats. Parties 3b+1,...,4b— 1 each need to get a single seat. This
completely specifies an instance instance I’ of SAP.

The reduction is in pseudo-polynomial time. We claim that we
can achieve a total weight of edges between nodes assigned to the
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Fig. A.5. Reduction graph.

same party of ZSL (ag +aq/3 — 1) = 4bB/3 — 3b if and only if the
answer to [ is yes.

First, let us assume that we have a solution with solution
value 4bB/3 — 3b. We are first going to argue that each party q =
1,...,3b can contribute at most 4aq/3 —1 to the objective value
and it does so if and only if it gets assigned a set of aq/3 triangles
which are directly connected to each other by edges in the second
subset. Assume that exactly k < aq/3 full triangles are assigned to
party g. Then, it contributes to the objective value as follows. We
have at most 3k + (k — 1) edges from the triangles and this value
is achieved if the triangles are chosen such that they are connected
by edges of the second subset. Each of the remaining ag — 3k > 0
seats can have at most two adjacent seats of party q (otherwise
they occupy a triangle). Furthermore, two seats can have only one
adjacent seat of party g (otherwise the seats imply a cycle which is
only possible if a triangle is occupied). This gives an upper bounds
of (2(ag —3k—2)+2)/2=aq—3k—1 for the contribution to the
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objective value. Overall, the contribution of party q cannot exceed
3k+ (k—1)+ (ag—3k—-1)=ag+ k-2 < 4aq/3 - 2.

Since each party 3b+1,...,4b—1 does not contribute a posi-
tive value to the objective function, solution value

3b
> " (4aq/3 — 1) = 4bB/3 - 3b
q=1

can be achieved only if each party g =1, ..., 3b gets assigned aq/3
triangles which are directly connected to each other by edges in
the second subset. Now we see that each maximum subset of tri-
angles which are directly connected to each other constitutes a
container to be packed with parties. The capacity of each container
equals B while party q=1,...,3b occupies a4 units of capacity.
Thus, the partition of parties into subsets to be seated in the same
maximum subset of triangles constitutes a yes certificate to I.
Second, if the answer to [ is yes we can pack parties into
containers such that each party q occupies exactly aq/3 triangles
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which achieves an objective value of 4bB/3 — 3b. This completes
the proof. O

Corollary 1. SAP is strongly NP-hard even for planar graphs with
maximum degree of at most 2 and w, =1 for each edge e c E, if
rP = 0 for each party p € P, and if each seat is occupied.

The reduction can be done in a similar way as in the proof of
Theorem 1. We can construct a graph of b isolated paths of length
B each. We consider only parties 1,..., 3b and, by packing parties
into paths, can achieve an objective value of Zgil (aq - 1) =b(B -
3) if and only if the answer to I is yes.

Theorem 2. SAP is strongly NP-hard even for G(m, m), m € N*, with
we = 1 for each edge e € E, if rP = 0 for each party p € P, and if each
seat is occupied.

The proof is based on a reduction from the Packing Squares in
a Square problem (PSS). PSS is known to be strongly NP-complete
(see Li & Cheng, 1990 and Leung, Tam, Wong, Young, & Chin,
1990). PSS is defined as follows. Given a boundary square with
edge length B € N* and a set of smaller squares with edge lengths
S={s1.53,..., Sp}, where s; e N*, Vi=1,...,b. Does there exist an
orthogonal packing of the squares in S in the boundary square B,
such that no squares overlap?

Proof. We consider the corresponding decision problem of SAPGG,
which asks whether a feasible solution with a target objective
value of A (or more) exists. We will transform an arbitrary instance
of PSS to an instance of SAPGG. We assume that Y_7 ; s? = B2 since
we can add extra squares of size 1 otherwise.

The boundary square of surface B x B in the PSS instance will
correspond with a grid graph G that has B x B nodes in the SAPGG
instance, that is G(B, B). First, we show how the boundary square
with side length B corresponds to a grid graph G(B, B). Fig. A.6
shows how the boundary square can be divided in a grid. Using a
Cartesian coordinate system with its origin in the left-bottom cor-
ner of the boundary square, a vertical grid line goes from (x, 0) to
(x,B) for each x € {0,...,B} and a horizontal grid line goes from
(0,x) to (B.x) for each x € {0, ..., B}. Next, as Fig. A.6 clarifies, that
grid trivially corresponds to a grid graph G(B, B) where a node is
centered in each cell.

We have b parties and party i =1,...,b needs to get B! :51‘2

seats. Finally, let A=2 Z?:] (sl.2 —5;). This completes the reduction
in pseudo-polynomial time.

We claim that we can reach the target objective value of A in
the SAPGG instance if and only if the answer to the PSS instance is
yes.

We remark that a connected sub-graph induced by an assign-
ment of nodes to a party in a grid graph corresponds to a so-called
polyomino in the corresponding grid overlay. We present a poly-
omino definition, that is slightly adapted from the original book
on the topic by Golomb (1996).
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Definition 6. Polyominoes are shapes made by connecting cer-
tain numbers of equal-sized squares, each joined together with
at least one other square along an edge. Chess players might call
this “rookwise connection”; that is, a rook - which can travel ei-
ther horizontally or vertically in any move, but never diagonally -
placed on any square of the polyomino must be able to travel to
any other square in that polyomino in a finite number of moves.

Imagine a polyomino of size 51‘2 embedded in an infinite grid
graph. Edges that connect nodes in that polyomino, we refer to as
inner edges. A polyomino has e;,,., inner edges. Edges that connect
a node in the polyomino with a node that is not part of the poly-
omino, we refer to as cut edges. A polyomino has eq;: cut edges.
Observe now that 4s,.2 = 2@jnner + €cut holds, because every node
has a degree equal to 4. By considering each edge incident to each
node in the polyomino we account for inner edges twice. Hence,
for a polyomino of fixed size minimizing the number of cut edges
is equivalent to maximizing the number of inner edges.

Next, we note that the perimeter of a polyomino equals ecy:.
From Harary & Harborth (1976) and Kurz (2008), it follows that
given a size s? = ', the unique polyomino of that size that mini-
mizes the perimeter is a square with side length s;. Hence, square-
shaped polyominoes minimize the number of cut edges, which in
turn maximizes the number of inner edges. In our setting, poly-
ominoes are to be positioned in a boundary square with grid graph
overlay, instead of an infinite grid graph. However, this does not
impact the result that the number of inner edges is maximized if
and only if all corresponding polyominoes are square-shaped. In
particular, this results in A =2 Zf’zl (51'2 —s;) inner edges.

We show how a yes certificate for the PSS instance corresponds
to a solution of SAPGG which meets target value A. If a square i
covers a grid cell, then the corresponding node in G(B, B) is as-
signed to party i. Obviously, the implied seating assignment is con-
tiguous and each party i gets 8! seats. Due to the square shape of
subgraphs assigned to parties, the number of inner edges in G(B, B)
equals A.

Conversely, a yes answer for an instance of SAPGG corre-
sponds to a yes answer for the instance of PSS. Recall, that A =
2 Z?:] (si2 —s;) is the number of inner edges obtained if and only
if all corresponding polyominoes are square shaped. Hence, sub-
graphs assigned to parties correspond to squares and because no
seat is assigned to more than one party it follows that these
squares do not overlap. O

We give an extra example in Fig. A.7, where there are 6 squares
to be packed in a boundary square with side length B = 3. In this
example we have A = 4. The corresponding SAPGG solution is op-
timal, because the assignments are all square shaped, minimizing
the total number of cut edges, which in turn maximizes the inner
edges.

Theorem 3. Deciding whether a contiguous and front-fair seating as-
signment exists is strongly NP-complete even for connected planar
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Fig. A.7. A solution of a PSS instance (left) and its corresponding SAPGG solution (right) with A = 4.

B nodes B nodes B nodes

B nodes B nodes

Fig. A.8. Sketch of the graph construction used in the proof of Theorem 3.

graphs with maximum degree of at most 3 and if each seat is oc-
cupied.

The proof is again by reduction from 3PP.

Proof. Given an instance I of 3PP we construct an instance I’ of
SAP as follows. We construct a graph G with V ={1,...,b(B+2) —
2} and F ={1,...,b(B+1) — 1}. The set E of edges is determined
as E = EF UE-F UE’ with

o EF ={{i,i+1}]i=1,....b(B+1)—2},
e EF={{i,i+1}|i=b(B+1),...,b(B+1) -3}, and
e ' ={{k(B+1),b(B+1)—1+k} |k=1,....b—1}.

Note that EF constitute a path on nodes in F, E-F constitute a
path on nodes in V\ F, and E’ connect each node in V \ F with
exactly one node in F. A sketch of this construction is depicted in
Fig. A.8.

We have 4b — 1 parties in set P = {1,...,4b — 1}. Each party p €
{1,...,3b} gets BP =aq seats. Each party pe {3b+1,...,4b—1}
gets BP = 2 seats. For parties 1,..., 3p we set rP = 8P — 1, and for
parties 3b+1,..., 4b—1 we set rP = 1. This completely specifies
instance I’ of SAP.

We claim that for I’ there is a contiguous and front-fair seating
assignment if and only if the answer to [ is yes.

Suppose we have a contiguous seating assignment satisfy-
ing front row seat requirements. We can see that parties 3b +
1,....,4b—1 occupy seats 1-(B+1),2-(B+1),....(b—1)-(B+
1) since these are the only front row seats connected to a seat
in V \ F. Since 8P =2 for each pe {3b+1,...,4b— 1}, we can as-
sume that each party pe {3b+1,...,4b— 1} gets seats (p—3b) -
(B+1) and b(B+ 1) + p — 4b (by renumbering). Note that seats in
F are separated by seats taken by these parties into subsets of B
seats connected by a path each. No pair of seats in different sub-
sets is connected by an edge. Hence, remaining parties 1,...,3b
are assigned to these subsets such that the total number of seats
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of parties assigned to the same subset does not exceed B. Since
there are only bB seats in F available for these parties and their
total number of seats is bB, as well, the total number of seats of
parties assigned to the same subset is exactly B. This constitutes
a yes certificate for I. Finally, given a yes certificate for I, we can
arrange a seating with the structure described above. O

We point out that the numbers of front row seats for par-
ties in the proof of Theorem 3 might be obtained using the
D’Hondt method although it is not a unique outcome. Each party
pefl,....,4b—1} gets granted at least BP —1 front row seats
which leaves (b(B+1) —1) — ((bB—3b) + (b—1)) = 3b front row
seats to be distributed. All parties are tied for an additional front
row seat and, thus, depending on the tie breaker, each party p e
{1,...,3b} might get only front row seats while each party p e
{3b+1,...,4b— 1} might get only one front row seat (and, thus,
one seat in V \ F).
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