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Round robin tournaments are omnipresent in sport competitions and beyond. We investigate three in- 

teger programming formulations for scheduling a round robin tournament, one of which we call the 

matching formulation . We analytically compare their linear relaxations, and find that the relaxation of 

the matching formulation is stronger than the other relaxations, while still being solvable in polynomial 

time. In addition, we provide an exponentially sized class of valid inequalities for the matching formu- 

lation. Complementing our theoretical assessment of the strength of the different formulations, we also 

experimentally show that the matching formulation is superior on a broad set of instances. Finally, we 

describe a branch-and-price algorithm for finding round robin tournaments that is based on the matching 

formulation. 
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. Introduction 

Integer programming continues to be a very popular way to 

btain a schedule for a round robin tournament. The ability to 

traightforwardly model such a tournament, and next solve the re- 

ulting formulation using an integer programming solver, greatly 

acilitates practitioners. Moreover, it is usually possible to add all 

inds of specific local constraints to the formulation that help ad- 

ressing particular challenges. We substantiate this claim of the 

idespread use of integer programming by mentioning some of 

he works that use integer programming to arrive at a sched- 

le for a round robin tournament. Indeed, from the literature, it 

s clear that for national football leagues (which are predomi- 

antly organized according to a so-called double round robin for- 

at), integer programming-based techniques are used extensively 

o find schedules. Without claiming to be exhaustive we men- 

ion Alarcón et al. (2017) , Della Croce & Oliveri (2006) , Durán 

t al. (2021, 2007) , Durán, Guajardo, & Sauré (2017) , Goossens 

 Spieksma (2009) , Rasmussen (2008) , Recalde, Torres, & Vaca 

2013) , Ribeiro & Urrutia (2012) . Other sport competitions that are 

rganized in a round robin fashion (or a format close to a round 

obin) have also received ample attention: we mention Cocchi et al. 

2018) , Lambers, Rothuizen, & Spieksma (2021) , and Raknes & Pet- 

ersen (2018) who use integer programming for scheduling volley- 

all leagues, Fleurent & Ferland (1993) who use integer program- 
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ing for scheduling a hockey league, Kim (2019) and Bouzarth, 

rannan, Harris, & Hutson (2022) for baseball leagues, Kostuk 

 Willoughby (2012) for Canadian football, Nemhauser & Trick 

1998) and Westphal (2014) for basketball leagues. Further, there 

as been work on studying properties of the traditional formula- 

ion, among others, by Briskorn (2008) , Trick (2003) , and Briskorn 

 Drexl (2009a,b) . Well-known surveys are given by Kendall, Knust, 

ibeiro, & Urrutia (2010) , Rasmussen & Trick (2008) and Goossens 

 Spieksma (2010) ; we also refer to Knust (2023) , who maintains 

n elaborate classification of literature on sports scheduling. More 

ecently, the international timetabling competition ( Van Bulck & 

oossens, 2022 ) featured a round robin sports timetabling prob- 

em, and most of the submissions for this competition used integer 

rogramming in some way to obtain a good schedule. 

All this shows that integer programming is one of the most 

referred ways to find schedules for competitions organized via a 

ound robin format. 

In this paper, we aim to take a fresh look at the problem of 

nding an optimal schedule for round robin tournaments using in- 

eger programming techniques. Depending upon how often a pair 

f teams is required to meet, different variations of a round robin 

ournament arise: in case each pair of teams meets once, the re- 

ulting format is called a Single Round Robin, in case each pair 

f teams is required to meet twice, we refer to the resulting vari- 

tion as a Double Round Robin. These formats are the ones that 

ccur most in practice; in general we speak of a k -Round Robin 

o describe the situation where each pair of teams is required to 

eet k times. 
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We have organized the paper as follows. In Section 2 , we pre- 

isely define the problem corresponding to the Single Round Robin 

ournament, and we present three integer programming formula- 

ions for it. We call them the traditional formulation ( Section 2.1 ), 

he matching formulation ( Section 2.2 ), and the permutation for- 

ulation ( Section 2.3 ), and we observe that their linear relaxations 

an be solved in polynomial time. We prove in Section 3 that the 

atching formulation is stronger than the other formulations. In 

ection 4 we provide a class of valid inequalities for the matching 

ormulation. In Section 5 , we generate instances of our problem 

ith two goals in mind: (i) to experimentally assess the quality of 

he bounds found by our models ( Section 5.2 ), and (ii) to report on

he performance of a branch-and-price algorithm ( Section 5.3 ). We 

onclude in Section 6 . 

. Problem definition and formulations 

In this section, we provide a formal definition of our problem 

nd introduce the necessary terminology and notation. We focus 

n the so-called Single Round Robin (SRR) tournament, where ev- 

ry pair of teams has to meet exactly once. We refer to van Doorn-

alen, Hojny, Lambers, & Spieksma (2022) for a more general ver- 

ion of the problem, where every pair of teams has to meet k times

 k ≥ 1 ). 

Throughout the entire paper, we assume that n is an even in- 

eger that denotes the number of teams; for reasons of conve- 

ience we assume n ≥ 4 . We denote the set of all teams by T .

 match is a set consisting of two distinct teams and the set 

f all matches is denoted by M , in formulae, M = { m = { i, j} :
, j ∈ T , i � = j} . We denote, for each i ∈ T , by M i = {{ i, j} :
j ∈ T \ { i }} the set of matches played by team i . As we assume in

his section that every pair of teams meets once, and as n is even,

he matches can be organized in n − 1 rounds, which we denote 

y R ; hence, we deal in this section with a compact single round 

obin tournament. 

Prepared with this terminology and notation, we are able to 

rovide a formal definition of the SRR problem. 

roblem 1 (SRR) . Given an even number n ≥ 4 of teams with cor-

esponding matches M , a set of n − 1 rounds R , as well as an in-

egral cost c m,r for every match m ∈ M and round r ∈ R , the sin-

le round robin (SRR) problem is to find an assignment A ⊆ M × R 

f matches to rounds that minimizes the cost 
∑ 

(m,r) ∈A c m,r such 

hat every team plays a single match per round and each match is 

layed in some round. 

Since the SRR problem is NP -hard (see Briskorn, Drexl, & 

pieksma, 2010, Van Bulck & Goossens, 2020, Easton, 2003 ), there 

oes not exist a polynomial time algorithm to find an optimal as- 

ignment unless P = NP . For this reason, several researchers have 

nvestigated integer programming (IP) techniques for finding an 

ptimal assignment of matches to rounds. We follow this line of 

esearch and discuss three different IP formulations for the SRR 

roblem: a traditional formulation with polynomially many vari- 

bles and constraints ( Section 2.1 ) as well as two formulations 

hat involve exponentially many variables ( Sections 2.2 and 2.3 ). 

o the best of our knowledge, the latter models have not explicitly 

een discussed in the literature before; we point out though that 

riskorn (2008) and Briskorn & Drexl (2009a) consider related for- 

ulations that include practical aspects such as breaks and home- 

way assignments. 

.1. The traditional formulation 

The traditional formulation of the SRR problem has been dis- 

ussed, among others, by Trick (2003) and Briskorn & Drexl 
25 
2009a,b) . To model an assignment of matches to rounds, this for- 

ulation introduces, for every match m ∈ M and round r ∈ R , a bi-

ary decision variable x m,r to model whether match m is played in 

ound r ( x m,r = 1 ) or not ( x m,r = 0 ). With these variables, problem

RR can be modeled as: 

in 

∑ 

m ∈M 

∑ 

r∈ R 
c m,r x m,r (T1) 

 

r∈ R 
x m,r = 1 , m ∈ M , (T2) 

∑ 

 ∈M i 

x m,r = 1 , i ∈ T , r ∈ R, (T3) 

 m,r ∈ { 0 , 1 } , m ∈ M , r ∈ R. (T4)

Constraints (T2) ensure that each pair of teams meets once, 

nd Constraints (T3) imply that each team plays in each round. 

his model has O (n 2 ) constraints and O (n 3 ) variables. Note that 

onstraints (T4) can be replaced by x m,r ∈ Z + as the upper 

ound x m,r ≤ 1 is implicitly imposed via Constraints (T2) and non- 

egativity of variables. The linear programming relaxation of (T) 

rises when we replace (T4) by x m,r ≥ 0 ; given an instance I of SRR, 

e denote the resulting value by v LP 
tra (I) . 

.2. The matching formulation 

A matching-based formulation is discussed by Briskorn & Drexl 

2009a) . Consider the complete graph that results when associat- 

ng a node to each team, say K n = (T , M ) . Clearly, a single round of

 feasible schedule can be seen as a perfect matching in this graph. 

his observation allows us to build a matching based formulation 

y introducing a binary variable for every perfect matching in K n ; 

e denote the set of all perfect matchings in K n by M . In fact, one

an derive the following model also via a Dantzig–Wolfe decompo- 

ition Dantzig & Wolfe (1960) , Desaulniers, Desrosiers, & Solomon 

2005) applied to the traditional formulation (T). We will exploit 

his observation in Section 3 . 

We employ a binary variable y M,r for each perfect matching 

 ∈ M and round r ∈ R . If y M,r = 1 , the model prescribes that

atching M is used for the schedule of round r, whereas y M,r = 0 

ncodes that a different schedule is used. To be able to represent 

he cost of round r ∈ R , the total cost of all matches in M is de-

oted by d M,r : = 

∑ 

m ∈ M 

c m,r , which leads to the model 

in 

∑ 

M∈ M 

∑ 

r∈ R 
d M,r y M,r (M1) 

∑ 

∈ M 

y M,r = 1 , r ∈ R, (M2) 

∑ 

∈ M : 
m ∈ M 

∑ 

r∈ R 
y M,r = 1 , m ∈ M , (M3) 

 M,r ∈ { 0 , 1 } , M ∈ M , r ∈ R. (M4)

Constraints (M2) ensure that a matching is selected in each 

ound, while Constraints (M3) enforce that each pair of teams 

eets in some round. Similarly to the traditional formulation, we 

an replace (M4) by y M,r ∈ Z + . In this way, the linear programming

elaxation of (M) arises when replacing (M4) by y M,r ≥ 0 ; given an 

nstance I of SRR, the resulting value is denoted by v LP 
mat (I) . Notice 

hat this formulation uses an exponential number of variables, as 

he number of matchings grows exponentially in n . Nevertheless, 

e will see below that computing v LP 
mat is possible in polynomial 

ime. 

Formulation (M) is a variation of a model proposed by Briskorn 

 Drexl (2009a) . Their model, however, also takes into account 
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d  
hether or not a team plays home or away, and restricts the total 

umber of times a team plays consecutive home or away matches. 

hey observe that the pricing problem corresponding to their for- 

ulation boils down to finding a minimal cost perfect matching 

or each round. The proof also applies to formulation (M), imply- 

ng the following result: 

emma 2.1 (cf. Briskorn & Drexl (2009a) ) . The LP relaxation of the 

atching formulation (M) can be solved in polynomial time. 

.3. The permutation formulation 

Instead of fixing the schedule of a round, the permutation for- 

ulation fixes, for a given team, the order of the teams against 

hich the given team plays its successive matches. That is, it in- 

roduces a variable for each team i and each permutation of T \ { i } .
e denote the set of all such permutations by �−i . Moreover, for 

 team j ∈ T and round r ∈ R , denote the set of all permutations

here j occurs at position r in the permutation by �−i 
j,r . Permu- 

ations from �−i 
j,r thus encode that team i plays against team j in 

ound r. For a permutation π ∈ �−i and round r ∈ R , we refer to

he opponent of team i in round r as πr ∈ T \ { i } . The cost of a

chedule encoded via permutations �−i for a team i ∈ T is then 

iven by e i,π : = 

∑ 

r∈ R c { i,πr } ,r . Using binary variables z i,π , where 

 ∈ T and π ∈ �−i , that encode whether i plays against its oppo-

ents in order π ( z i,π = 1 ) or not ( z i,π = 0 ), the permutation for-

ulation is 

in 

1 

2 

∑ 

i ∈ T 

∑ 

π∈ �−i 

e i,π z i,π (P1) 

∑ 

∈ �−i 

z i,π = 1 , i ∈ T , (P2) 

∑ 

∈ �−i 
j,r 

z i,π = 

∑ 

π∈ �− j 
i,r 

z j,π , { i, j} ∈ M , r ∈ R, (P3)

 i,π ∈ { 0 , 1 } , i ∈ T , π ∈ �−i . (P4)

Constraints (P2) ensure that a permutation is selected for each 

eam, while Constraints (P3) enforce that, given a round and a pair 

f teams, these teams meet in that round, or they do not meet in

hat round. Due to rescaling the objective by 1 
2 , we find the cost 

f an optimal SRR schedule. Moreover, we can again replace Con- 

traint (P4) by z i,π ∈ Z + . The linear programming relaxation of (P) 

hen arises when replacing Constraints (P4) by z i,π ≥ 0 ; given an 

nstance I of SRR, we denote the resulting value by v LP 
per (I) . 

Since this model has n ! variables, we investigate whether its LP 

elaxation can be solved efficiently. 

emma 2.2. The LP relaxation of the permutation formulation (P) can 

e solved in polynomial time. 

roof. Due to the celebrated result by Grötschel, Lovász, & Schri- 

ver (1981) , it is sufficient to show that the separation problem for 

he constraints of the dual of the linear relaxation of Model (P) 

an be solved in polynomial time, see also Lübbecke (2011) for a 

iscussion in the context of pricing problems. 

We introduce dual variables αi for each constraint of 

ype (P2) and β{ i, j} ,r for each constraint of type (P3) . To normal- 

ze Constraint (P3) , we assume it to be given by 
∑ 

π∈ �−i 
j,r 

z i,π −
 

π∈ �− j 
i,r 

z j,π = 0 with i < j. Then, the dual constraints are given by

i + 

∑ 

r∈ R : 
i<πr 

β{ i,πr } ,r −
∑ 

r∈ R : 
i>πr 

β{ i,πr } ,r ≤
1 

2 

e i,π i ∈ T , π ∈ �−i . 
fi

26 
f i ∈ T is fixed, then, due to the definition of e i,π , the separation

roblem for dual values ( ̄α, β̄ ) is to decide whether there exists a 

ermutation π ∈ �−i such that 

∑ 

r∈ R : 
<πr 

β̄{ i,πr } ,r −
∑ 

r∈ R : 
i>πr 

β̄{ i,πr } ,r −
1 

2 

∑ 

r∈ R 
c { i,πr } ,r > −ᾱi . 

o answer this question, it is sufficient to find a permutation max- 

mizing the left-hand side of this expression. Such a permutation 

an be found by computing a maximum weight perfect matching 

n the complete bipartite graph with node bipartition (T \ { i } ) ∪ R

nd edge weights defined for each j ∈ T \ { i } and r ∈ R by 

 j,r = 

{ 

− 1 
2 

c { i, j} ,r + β̄{ i, j} ,r , if i < j, 

− 1 
2 

c { i, j} ,r − β̄{ i, j} ,r , otherwise. 

ince this problem can be solved in polynomial time, the assertion 

ollows by solving this problem for each of the n teams. �

. Comparing the strength of the different formulations 

In the previous section, we have introduced three different 

odels for finding an optimal schedule for problem SRR. While 

he traditional formulation contains both polynomially many vari- 

bles and constraints, the matching and permutation formulation 

ake use of an exponential number of variables. The aim of this 

ection is to investigate whether the increase in the number of 

ariables in comparison with the traditional formulation leads to 

 stronger formulation. We measure the strength of a formulation 

ased on the value of its LP relaxation, where a higher value of the 

P relaxation indicates a stronger formulation as the LP relaxation’s 

alue is closer to the optimum value of the integer program, as en- 

apsulated by the following definitions. 

efinition 3.1. Let f and g be mixed-integer programming formu- 

ations of the SRR problem and denote by v LP 
f 
(I) and v LP 

g (I) the

alue of the respective LP relaxations for an instance I of SRR. 

• We say that f and g are relaxation-equivalent if, for each in- 

stance I of problem SRR, the value of the linear program- 

ming relaxations are equal, i.e., v LP 
f 
(I) = v LP 

g (I) . 

• We say that f is stronger than (or dominates) g if (i) for 

each instance I of problem SRR, v LP 
f 

(I) ≥ v LP 
g (I) , and (ii) there 

exists an instance I of problem SRR for which v LP 
f 

(I) > v LP 
g (I) .

We now proceed by formally comparing the strength of the for- 

ulations from Section 2 using the terminology of these defini- 

ions. We state our results using three lemmata, and summarize 

ll our results in Theorem 3.5 . 

First, we show that the traditional and permutation formulation 

ave equivalent LP relaxations. 

emma 3.2. The permutation formulation (P) is relaxation-equivalent 

o the traditional formulation (T). 

roof. To prove this lemma, we show that there is a one-to-one 

orrespondence between feasible solutions of the traditional for- 

ulation’s and the permutation formulation’s LP relaxations that 

reserves the objective value. First, we construct a solution of the 

P relaxation of the traditional formulation from a solution z of 

he LP relaxation of the permutation formulation. To this end, de- 

ne for each { i, j} ∈ M and r ∈ R a solution x ∈ R 

M×R via x { i, j} ,r =
 

π∈ �−i 
j,r 

z i,π . Note that x is non-negative as all z-variables are non- 

egative. Moreover, it is well-defined as 
∑ 

π∈ �−i 
j,r 

z i,π = 

∑ 

π∈ �− j 
i,r 

z j,π
ue to (P3) . Finally, all constraints of type (T2) and (T3) are satis-

ed since 
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for each m ∈ M : 
∑ 

r∈ R 
x { i, j} ,r = 

∑ 

r∈ R 

∑ 

π∈ �−i 
j,r 

z i,π

= 

∑ 

π∈ ⋃ 

r∈ R �−i 
j,r 

z i,π = 

∑ 

π∈ �−i 

z i,π
P2 = 1 , 

or each i ∈ T , r ∈ R : 
∑ 

j∈ T \{ i } 
x { i, j} ,r = 

∑ 

j∈ T \{ i } 

∑ 

π∈ �−i 
j,r 

z i,π

= 

∑ 

π∈ �−i 

z i,π
P2 = 1 . 

e conclude the proof by constructing a feasible solution for the 

P relaxation of the permutation formulation from a feasible solu- 

ion x of the traditional formulation’s LP relaxation. 

Let x be such a solution and let i ∈ T . Consider the matrix

 

i ∈ R 

(T \{ i } ) ×R with entries X i 
j,r 

= x { i, j} ,r . Due to all constraints of

he traditional formulation’s LP relaxation, X i is a doubly stochastic 

atrix and is thus contained in the Birkhoff polytope, see Ziegler 

1995) . Consequently, X i can be written as a convex combination 

f all permutation matrices. That is, if P i,π is the permutation 

atrix associated with π ∈ �−i , there exist multipliers λi 
π ≥ 0 , 

∈ �−i , such that X i = 

∑ 

π∈ �−i λi 
π P i,π and 

∑ 

π∈ �−i λi 
π = 1 . Based 

n these multipliers, we define a solution z of the permuta- 

ion formulation via z i,π = λi 
π . To conclude the proof, we need to 

how that this solution z is feasible for the permutation formu- 

ation’s LP relaxation and has the same objective value as x . Ob- 

erve that z is non-negative since all λ’s are non-negative. Con- 

traints (P2) and (P3) are satisfied as 

for each i ∈ T : 
∑ 

π∈ �−i 

z i,π = 

∑ 

π∈ �−i 

λi 
π = 1 , 

for each { i, j} ∈ M , r ∈ R : 
∑ 

π∈ �−i 
j,r 

z i,π = 

∑ 

π∈ �−i 
j,r 

λi 
π = x { i, j} ,r 

= 

∑ 

π∈ �− j 
i,r 

λ j 
π = 

∑ 

π∈ �− j 

z j,π

ince 
∑ 

π∈ �−i λi 
π = 1 and x { i, j} ,r is a convex combination of permu- 

ation matrices that assign team j (or i ) to round r, respectively. 

onsequently, z is feasible for the permutation formulation’s LP re- 

axation. Finally, both x and z have the same objective value be- 

ause 

1 

2 

∑ 

i ∈ T 

∑ 

π∈ �−i 

e i,π z i,π = 

1 

2 

∑ 

i ∈ T 

∑ 

π∈ �−i 

e i,πλi 
π = 

1 

2 

∑ 

i ∈ T 

∑ 

π∈ �−i 

∑ 

r∈ R 
c { i,πr } ,r λi 

π

= 

1 

2 

∑ 

i ∈ T 

∑ 

j∈ T \{ i } 

∑ 

r∈ R 
c { i, j} ,r 

∑ 

π∈ �−i : 
πr = j 

λi 
π P i,ππr ,r 

= 

1 

2 

∑ 

i ∈ T 

∑ 

j∈ T \{ i } 

∑ 

r∈ R 
c { i, j} ,r x { i, j} ,r 

= 

∑ 

{ i, j}∈M 

∑ 

r∈ R 
c { i, j} ,r x { i, j} ,r . 

his proves that both formulations are relaxation-equivalent. �

Next, we turn our focus to the matching formulation and com- 

are it with the traditional formulation (and thus, by the previous 

emma, also with the permutation formulation). 

emma 3.3. For each n ≥ 6 , the matching formulation (M) is stronger 

han the traditional formulation (T). 

roof. We decompose matrix x ∈ [0 , 1] M×R into the column vec- 

ors x 1 , . . . , x | R | representing the matches of a specific round. Ob- 

erve that, for fixed round index r ∈ R , the integer points in 

 

r = 

{ 

x r ∈ [0 , 1] M : 
∑ 

m ∈M i 

x r m 

= 1 for all i ∈ T 

} 

(4) 
27 
orrespond to the perfect matchings in K n . From (4) , we can thus

erive a formulation equivalent to (T): 

x = (x 1 , . . . , x | R | ) ∈ [0 , 1] M×R : x satisfies (T2) and x r ∈ P r for all r ∈ R 
}
. 

(5) 

Let P r 
I 

denote the integer hull of P r , i.e., P r 
I 

is the perfect

atching polytope. Since solutions are binary and P r 
I 

⊆ P r , we can 

trengthen the LP relaxation of (T) by replacing x r ∈ P r by x r ∈ P r I 
n (5) . Applying Dantzig–Wolfe decomposition to x r ∈ P r 

I 
results in 

xpressing every partial solution x r as a convex combination of 

ncidence vectors of perfect matchings. The latter is exactly the 

atching formulation (2) , which by the previous arguments can- 

ot be weaker than the traditional formulation (T). 

To prove that the matching formulation dominates the tradi- 

ional formulation for any even integer n ≥ 6 , we distinguish three 

ases. In the first case, assume n ≥ 10 . Consider the pairs of teams 

iven by 

 = { { 1 , 2 } , { 2 , 3 } , { 1 , 3 } } ∪ { { 4 , 5 } , { 5 , 6 } , { 4 , 6 } } ∪ 

{ { 7 , 8 } , { 8 , 9 } , . . . , { n − 1 , n } , { 7 , n } } . 
nterpreting E as the edges of an undirected graph, E defines three 

onnected components consisting of two 3-cycles and an even cy- 

le. We construct an instance of the SRR problem by specifying the 

ost function c ∈ R 

M×R via 

 m,r = 

{
1 , if m / ∈ E and r ∈ { 1 , 2 } , 
0 , otherwise. 

t is easy to verify that x ∈ R 

M×R given by 

 m,r = 

⎧ ⎨ 

⎩ 

1 
2 
, if m ∈ E and r ∈ { 1 , 2 } , 

0 , if m / ∈ E and r ∈ { 1 , 2 } , 
1 

n −3 
, otherwise , 

s feasible for the LP relaxation of the traditional formulation and 

as objective value 0. Hence, x is optimal. 

Solving the LP relaxation of the matching formulation for 

his instance, however, results in an objective value that is at 

east 2. Indeed, each perfect matching M ∈ M contains at least 

ne match m ∈ M with m ∈ {{ i, j} : (i, j) ∈ { 1 , 2 , 3 } × { 4 , 5 , . . . , n }} .
ince c m, 1 = c m, 2 = 1 for such a match, it follows that in both

ounds 1 and 2, matchings are selected with total weight at least 

 due to (M3) , leading to a solution with total cost at least 2. 

In the second case, we consider n = 6 . To prove the statement, 

e use the same construction as before, however, we do not re- 

uire the even cycle anymore. That is, E defines two 3-cycles and 

he argumentation remains the same as before. 

In the last case n = 8 , we consider the set of pairs 

 = 

{{ 1 , 2 } , { 1 , 3 } , { 2 , 3 } } ∪ 

{{ 4 , 5 } , { 5 , 6 } , { 6 , 7 } , { 7 , 8 } , { 4 , 8 } }. 

f we interpret E as edges of an undirected graph, the correspond- 

ng graph has two connected components being a 3-cycle and a 5- 

ycle, respectively. We choose the cost-coefficients c ∈ R 

M×R to be 

 m,r = 

{
1 , if m / ∈ E and r ∈ { 1 , 2 } , 
0 , otherwise. 

imple calculations show that an optimal solution of the tradi- 

ional formulation’s LP relaxation is x ∈ R 

M×R with 

 m,r = 

⎧ ⎨ 

⎩ 

1 
2 
, if m ∈ E and r ∈ { 1 , 2 } , 

0 , if m / ∈ E and r ∈ { 1 , 2 } , 
1 
5 
, otherwise, 

hich has objective value 0, whereas the matching formulation’s 

P relaxation has value 2. �
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The previous two lemmata completely characterize the relative 

trength of the three different formulations except for n = 4 . The 

tatus of this case is settled in the next lemma. 

emma 3.4. For n = 4 , the traditional formulation and the matching 

ormulation are relaxation-equivalent. 

roof. Using the same notation as in Lemma 3.3 , note that P r = P r 
I 

f n = 4 . Hence, Dantzig-Wolfe reformulation used to derive the 

atching formulation from the traditional formulation does not 

trengthen the latter. Both are thus relaxation-equivalent. �

Summarizing the previous results of this section, we can pro- 

ide a complete comparison of the strength of the traditional, 

atching, and permutation formulation. 

heorem 3.5. For each n ≥ 6 , the traditional and permutation formu- 

ation are relaxation-equivalent, whereas the matching formulation is 

tronger than either of them. For n = 4 , the traditional, matching, and

ermutation formulation for problem SRR are relaxation-equivalent. 

Besides verifying that all three models are equivalent for n = 4 , 

e can also show that the matching formulation’s integer hull is 

lready completely characterized by (M2), (M3) , as well as non- 

egativity inequalities for all variables. 

roposition 3.6. For n = 4 , Eqs. (M2) and (M3) as well as non-

egativity inequalities define an integral polyhedron. That is, the 

atching formulation’s LP relaxation coincides with its integer hull. 

roof. To prove the proposition’s statement, we show that the 

onstraint matrix of (M) is totally unimodular. The result follows 

hen by the Hoffman–Kruskal theorem Schrijver (1987) as all right- 

and side values in (M) are integral. 

For n = 4 , the set of all matchings M consists of exactly the

hree matchings 

 1 = { { 1 , 2 } , { 3 , 4 } } , M 2 = { { 1 , 3 } , { 2 , 4 } } , M 3 = { { 1 , 4 } , { 2 , 3 } } . 
he non-trivial constraints from Formulation (M) are Eqs. (M2) and 

M3) , which yield system ⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

y M 1 , 1 

y M 1 , 2 

y M 1 , 3 

y M 2 , 1 

y M 2 , 2 

y M 2 , 3 

y M 3 , 1 

y M 3 , 2 

y M 3 , 3 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 

1 

1 

1 

1 

1 

1 

1 

1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(( M 2) , r = 1) 
(( M 2) , r = 2) 
(( M 2) , r = 3) 
(( M 3) , m = { 1 , 2 } ) 
(( M 3) , m = { 1 , 3 } ) 
(( M 3) , m = { 1 , 4 } ) 
(( M 3) , m = { 2 , 3 } ) 
(( M 3) , m = { 2 , 4 } ) 
(( M 3) , m = { 3 , 4 } ) 

ote that the last three equations are redundant and can be re- 

oved. The constraint matrix of the remaining equations is the 

ode-edge incidence matrix of a bipartite graph and hence totally 

nimodular, which concludes the proof. �

Thus, for n = 4 , simply solving the LP-relaxation of the match- 

ng formulation by the simplex method, suffices to find an opti- 

um integral solution. 
28
. Strengthening the formulations 

In this section, we continue our investigations of the struc- 

ure of the formulations. In Section 4.1 , we derive an exponentially 

ized class of valid inequalities for the matching formulation. Also, 

e show in Section 4.2 that adding the so-called odd-cut inequal- 

ties to the traditional formulation yields a formulation that is ac- 

ually relaxation-equivalent to the matching formulation. The latter 

s an idea that has also been described by Trick (2003) . 

.1. Strengthening the matching formulation 

Observe that Theorem 3.5 does not rule out the possibility that, 

or n ≥ 6 , every vertex of the LP relaxation of the matching formu- 

ation is integral. That, however, is not the case. In Example 4.1 , we

ive an example of a fractional solution of the LP relaxation of the 

atching formulation that corresponds to an extreme point of its 

orresponding polytope. 

xample 4.1. Let n = 6 . Then, the set of teams and rounds is given

y T = { 1 , . . . , 6 } and rounds R = { 1 , . . . , 5 } , respectively. In Fig. 1 ,

e depict a fractional solution of the matching formulation’s LP 

elaxation. For each round r ∈ R , we provide two perfect match- 

ngs between the teams T , the blue and green (dashed) match- 

ng M, whose corresponding variables y M,r have value 1 
2 in the cor- 

esponding solution; all remaining variables have value 0. It is easy 

o verify that this fractional solution y � is indeed feasible for the LP 

elaxation of (M). In fact, we claim that it is an extreme point. 

We now proceed by exhibiting a class of inequalities valid for 

he matching formulation. To describe our class of valid inequali- 

ies, consider the following lemma. 

emma 4.2. Let m 1 , m 2 ∈ M be disjoint and let r ′ ∈ R . Then, ∑ 

 ∈ R \{ r ′ } 

∑ 

M∈ M : 
m 1 ∈ M or m 2 ∈ M 

y M,r + 

∑ 

M∈ M : 
m 1 / ∈ M or m 2 / ∈ M 

y M,r ′ + 

∑ 

M∈ M : 
m 1 ,m 2 ∈ M 

2 y M,r ′ ≥ 2 (6) 

s a valid inequality for (M). In particular, it is a Chvátal–Gomory cut 

erived from the LP relaxation of (M). 

roof. It is sufficient to prove that (6) is indeed a Chvátal–Gomory 

ut. To this end, we multiply Eq. (M2) for round r ′ and Eq. (M3) for

atches m 1 and m 2 by 1 
2 and sum the resulting equations to ob- 

ain 

∑ 

 ∈ R \{ r ′ } 

∑ 

M∈ M : 
m 1 ∈ M or m 2 ∈ M 

C M,r 

2 
y M,r + 

∑ 

M∈ M : 
m 1 / ∈ M or m 2 / ∈ M 

1 + C M,r 

2 
y M,r ′ + 

∑ 

M∈ M : 
m 1 ,m 2 ∈ M 

3 

2 
y M,r ′ = 

3 

2 
, 

here C M,r = | M ∩ { m 1 , m 2 }| . Since all y -variables are non-negative,

e can turn this equation into a ≥-inequality by rounding up 

he left-hand side coefficients. Moreover, since in a feasible so- 

ution for (M) all variables attain integer values, we can in- 

rease the right-hand side from 

3 
2 to 2, which yields the desired 

nequality. �

xample 4.3 (Example 4.1 continued) . Using this class of inequali- 

ies, we can show that the point y � presented before is indeed not 

ontained in the matching formulation’s integer hull. Select r ′ = 1 , 

 1 = { 1 , 6 } , and m 2 = { 3 , 5 } . To see that y � violates the corre-

ponding inequality, let M be the blue and M 

′ be the green match- 

ng of the first round as well as M 

′′ the blue matching of round 4.

hen, the corresponding inequality’s left-hand side evaluates in y � 

o y � 
M 

′′ , 4 + y � M, 1 + y � 
M 

′ , 1 = 

3 
2 . Hence, y � violates the corresponding 

nequality as 3 
2 � 2 . 

Note that Inequality (6) is a so-called { 0 , 1 2 } -cut (Caprara & Fis-

hetti, 1996) as all multipliers used in the derivation are 1 
2 (and 0 

or inequalities/equations that have not been used). By taking more 
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Fig. 1. A feasible point for the LP relaxation of Formulation (M). 

e

c

f

P

l

i

d

P

e

o

T

M

a

h

t

W

r

4

c

t

s

i

 

c

t

i  

s  

e

s

o

c

t

m

i∑

w

p

d

t

L

b

P

a  

s

D

e

R

e

m

i

L

c∑

a

e

5

e

i

L

s

e

i

t

m

i

p

t

s

5

e

e

a

b

quations in the generation of a valid inequality into account, we 

an generalize (6) to an exponentially large class of inequalities as 

ollows. 

roposition 4.4. Let A ⊆ M be a set of pairwise disjoint matches and 

et B ⊆ R . If | A | + | B | is odd, then 

∑ 

M∈ M 

∑ 

r∈ B 

⌈
1 + | M ∩ A | 

2 

⌉
y M,r + 

∑ 

M∈ M 

∑ 

r∈ R \ B 

⌈ | M ∩ A | 
2 

⌉
y M,r 

≥ 1 + | A | + | B | 
2 

, (7) 

s a valid inequality for (M). In particular, it is a Chvátal–Gomory cut 

erived from the LP relaxation of (M). 

roof. We follow the line of the proof of Lemma 4.2 and multiply 

ach constraint of type (M2) with index in A and each constraint 

f type (M3) with index in B by 1 
2 and sum all resulting equations. 

his leads to 

Since all y -variables are non-negative, we derive the inequality 

∑ 

∈ M 

∑ 

r∈ B 

⌈
1 + | M ∩ A | 

2 

⌉
y M,r + 

∑ 

M∈ M 

∑ 

r∈ R \ B 

⌈ | M ∩ A | 
2 

⌉
y M,r ≥ | A | + | B | 

2 

, 

nd by integrality of the y -variables, we can round up the right- 

and side, which leads to the desired inequality. �

While Inequalities (6) can trivially be separated in polynomial 

ime, an efficient separation algorithm for (7) is not immediate. 

e leave the complexity status of separating (7) open for future 

esearch. 

.2. Strengthening the traditional formulation 

In this section, we consider the impact of adding so-called odd- 

ut inequalities (an idea described by Trick, 2003 ) to the tradi- 

ional formulation. While Trick (2003) used these inequalities to 

trengthen the traditional formulation, we also provide theoretical 

mplications. 

Recall the definition of P r , r ∈ R , from the proof of Lemma 3.3 . A

lassical observation from matching theory is that there exist ex- 

reme points of P r such that each edge (match) of an odd cycle 

n K n has a weight of 1 
2 . That is, the traditional formulation can as-

ign an odd cycle of length k a weight of k 
2 . Such a solution, how-

ver, cannot be written as a convex combination of integer feasible 

olutions, because each such solution defines a perfect matching 

n the matches of a fixed round, i.e., the total weight of an odd 

ycle can be at most k −1 
2 . To strengthen the traditional formula- 

ion, one can thus add facet defining inequalities for the perfect 
29 
atching polytope P M 

to Model (T), which results in the additional 

nequalities 
 

i ∈ U 

∑ 

j∈ T \ U 
x { i, j} ,r ≥ 1 , U ⊆ T with | U| odd , r ∈ R, (8) 

hich correspond to the odd-cut inequalities for the matching 

olytope and can be separated in polynomial time. In particular, 

ue to the classical result by Edmonds (1965) , adding Inequali- 

ies (8) to P r yields P r 
I 

. 

emma 4.5. Let n ≥ 6 . The traditional formulation (T) extended 

y (8) is relaxation-equivalent to the matching formulation. 

roof. Using the notation from the proof Lemma 3.3 , 

dding (8) to (M) allows us to replace x r ∈ P r in (5) by x r ∈ P r I . Con-

equently, as the matching formulation is derived from x r ∈ P r I via 

antzig–Wolfe decomposition, both formulations are relaxation- 

quivalent. �

emark 4.6. Since the traditional and permutation formulation are 

quivalent, one might wonder whether also the permutation for- 

ulation can be enhanced by odd-cut inequalities. Indeed, us- 

ng the transformation x { i, j} ,r = 

∑ 

π∈ �−i 
j,r 

z i,π as in the proof of 

emma 3.2 , one can show that the corresponding version of odd- 

ut inequalities is given by 
 

i ∈ U 

∑ 

j∈ T \ U 

∑ 

π∈ �−i 
j,r 

z i,π ≥ 1 , U ⊆ T with | U| odd , r ∈ R, 

nd that the enhanced traditional and permutation formulation are 

quivalent. 

. Computational results 

In this section, we report the outcomes of our computational 

xperiments. Section 5.1 describes the test set that we have used 

n our experiments. Afterwards, we investigate the quality of the 

P relaxations of the different models and compare their corre- 

ponding values in Section 5.2 . Finally, we discuss our experi- 

nce with solving instances of the SRR problem using the match- 

ng formulation, i.e., not only solving the LP relaxation but also 

he corresponding integer program. To this end, we have imple- 

ented a branch-and-price algorithm whose details are described 

n Section 5.3 . Note that Briskorn & Drexl (2009a) also report com- 

utational experience with a branch-and-price algorithm. While 

hey report on a model that also takes breaks and home-away as- 

ignments into account, we focus on the plain models for SRR. 

.1. Test set 

We have generated 10 0 0 instances of the SRR problem to 

valuate the quality of the LP relaxations of the different mod- 

ls. Both our instances and implementation are publicly available 

t https://github.com/JasperNL/round-robin ; all experiments have 

een conducted using the code with githash 1657b4d7 . Our test 

https://github.com/JasperNL/round-robin
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et comprises of instances of different sizes, which are parame- 

erized by a tuple (n, ρ) and have cost coefficients attaining val- 

es 0 or 1. Parameter n encodes the number of teams and has 

ange n ∈ { 6 , 12 , 18 , 24 } ; parameter ρ controls the number of 1-

ntries in the objective. More precisely, we pick a set of match- 

ound pairs M × R of size � ρ · |M × R |� uniformly at random, de-

oted by S ⊆ M × R , where ρ ∈ { 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 } . The gener-

ted instance consists of n teams and has cost coefficients c m,r = 

 if (m, r) ∈ S and c m,r = 0 otherwise. For each combination of

 ∈ { 6 , 12 , 18 , 24 } and ρ ∈ { 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 } we have generated

0 instances. 

.2. A computational comparison of the linear relaxations 

In this section, we provide a computational comparison be- 

ween the LP relaxation values of the traditional formulation (T) 

and thus by Lemma 3.2 also of the permutation formulation) and 

P relaxation values of the matching formulation (M), and compare 

hese to the actual optimal (or best found) integral solutions. Be- 

ore we discuss our numerical results, we provide details about our 

mplementation as well as on how we find optimal integral solu- 

ions. 

Implementation details . To find the LP relaxation values, 

e implemented both formulations in Python 3 using the 

ySCIPOpt 4.1.0 package (Maher et al., 2016) for 

CIP 8.0.0 (Bestuzheva et al., 2021) , with CPLEX 20.1.0.0 as 

P solver. The traditional formulation is implemented as a compact 

odel. For the matching formulation, we use a column genera- 

ion procedure that receives a subset of all variables, solves the 

orresponding LP relaxation restricted to these variables, and adds 

urther variables until it can prove that an optimal LP solution 

as been found. To identify whether new variables need to be 

dded, we solve the so-called pricing problem, which corresponds 

o separating a corresponding solution of the dual problem. 

As a result of Lemma 2.1 , we can efficiently solve the pricing 

roblem. Let r ∈ R and m ∈ M , and let αr and βm 

denote the dual

ariable values associated with Constraints (M2) and (M3) , respec- 

ively. For each round r ∈ R , consider the complete graph with ver-

ex set T and the weight of edge m ∈ M as βm 

− c m,r . For M ∈ M ,

ariable y M,r has negative reduced cost if and only if the total 

eight of this perfect matching is larger than −αr . In our imple- 

entation, for each round we compute a maximal weight perfect 

atching, and add the associated variable if it has negative re- 

uced cost. 

We start with the empty set of variables, which means that 

he primal problem is initially infeasible. We resolve infeasibil- 

ty by adding variables to the problem that are associated with a 

ual constraint that violate a dual unbounded ray of this infeasible 

roblem. The column generation procedure has been embedded in 

 so-called pricer plug-in of SCIP , which adds newly generated 

ariables to the matching formulation. The maximal weight perfect 

atchings are computed using NetworkX 2.5.1, which provides an 

mplementation of Edmonds’ blossom algorithm. 

Finding optimal integer solutions To obtain the optimal integer 

olution value of as many instances as possible, we have used two 

ifferent solvers to solve the integer program of Model (T). On the 

ne hand, we have used SCIP as described in the above setup. On 

he other hand, we have modeled (T) using Gurobi 9.1.2 via its 

ython 3 interface. For each instance and solver, we have imposed 

 time limit of 48 hours to find an optimal integer solution. Using 

CIP , we managed to solve 852 of the 10 0 0 instances to optimal-

ty. With Gurobi , we were able to solve 866 of the 10 0 0 instances

o optimality. Out of the instances that were not solved to optimal- 

ty by all solvers, there were 45 instances where SCIP found a bet- 

er primal objective value, and 79 instances where Gurobi found 

 better primal objective value. All experiments have been run on 
30 
 compute cluster with identical machines, using one (resp. two) 

hread(s) on Xeon Platinum 8260 processors, with 10.7 gigabyte 

resp. 21.4 gigabyte) memory, respectively for SCIP and Gurobi . 
Numerical results Table 1 shows the aggregated computational 

esults of our experiments. For each number of teams n and 

atio ρ , we provide the average of the objective values of the relax- 

tion of the traditional formulation (column “v LP 
tra ”), the average of 

he objective values of the relaxation of the matching formulation 

column “v LP 
mat ”), and the average optimum value (column “v IP ”). 

otice that for n = 24 we have not been able to solve all instances

o optimality; in this case, we use the value of the best known 

olution instead of the (unknown) optimum for that instance in 

he v IP column. Recall that each value is an average over 50 in- 

tances. The number of optimally solved instances (resp. instances 

ot terminating within the time limit) are shown in column “O”

resp. “T”). 

To be able to assess the strength of the matching formulation 

ompared to the traditional formulation, we focus, in the right side 

f the table, on those instances for which v LP 
tra < v IP ; their number

out of 50) is given in the column labeled “#”. From this column, 

e see that the fraction ρ that leads to instances with a gap be- 

ween v LP 
tra and v IP slowly increases with n . Indeed, for n = 6 , most

nstances do not have a gap, for n = 12 , almost all instances with

∈ { 0 . 6 , 0 . 7 , 0 . 8 } have a gap, and for n = 18 , almost all instances

ith ρ ∈ { 0 . 7 , 0 . 8 , 0 . 9 } have a gap. 

We use the notion of the relative gap that is closed by the 

atching formulation relative to the traditional formulation, given 

y 

gap (I) : = 

v LP 
mat (I) − v LP 

tra (I) 

v IP (I) − v LP 
tra (I) 

for an instance I of SRR with 

v IP (I) − v LP 
tra (I) > 0 . 

 value of zero for rgap (I) implies that the relaxation values of the 

raditional formulation and the matching formulation are equal, 

hile a value of one (i.e., 100%) implies that the relaxation of the 

atching formulation is equal to the true objective of the opti- 

al integral solution. The column “average” gives the average rgap, 

hereas column “maximal” shows the maximum relative closed 

ap for an instance of this sub test set. 

For n = 6 , there are few instances with a gap. However, for 

hose instances for which there is a gap, it is clear that a sizable 

art of that gap is closed by the relaxation of the matching for- 

ulation. For larger values of n , many instances have a gap. We 

bserve that a significant percentage of the gap is closed by the 

elaxation of the matching formulation. If n is getting larger, how- 

ver, both the value of the average gap closed as well as the value 

f the maximal gap closed decrease. We conclude that for small 

alues of n , and thus for many realistic applications, the match- 

ng formulation provides a much better relaxation value than the 

raditional formulation. 

.3. A branch-and-price algorithm 

Since the matching formulation can dominate the traditional 

ormulation, a natural question is whether the stronger formu- 

ation also allows to solve the SRR problem faster than the tra- 

itional formulation. For this reason, we have implemented a 

ranch-and-price algorithm (in the computational setup as de- 

cribed above) to compute optimal integral solutions of the match- 

ng formulation. That is, we use a branch-and-bound algorithm to 

olve the matching formulation, where each LP relaxation is solved 

sing a column generation procedure. 

Implementation details . In classical branch-and-bound algo- 

ithms, the most common way to implement the branching 

cheme is to select a variable x i whose value x � 
i 

in the current 
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Table 1 

Comparison of the LP relaxation values of the traditional and matching formulation. 

All instances Restricted to instances with v LP 
tra < v IP 

Average value Solved Average value Solved Gap closed 

n ρ v LP 
tra v LP 

mat v IP O T # v LP 
tra v LP 

mat v IP O T Average Maximal 

6 0.5 2.227 2.297 2.380 50 0 14 2.452 2.702 3.000 14 0 43.45% 100.00% 

6 0.6 3.802 3.865 3.920 50 0 12 3.924 4.188 4.417 12 0 52.08% 100.00% 

6 0.7 5.430 5.510 5.540 50 0 9 5.611 6.056 6.222 9 0 66.67% 100.00% 

6 0.8 7.620 7.635 7.660 50 0 4 7.250 7.438 7.750 4 0 37.50% 100.00% 

6 0.9 10.003 10.040 10.060 50 0 6 10.361 10.667 10.833 6 0 66.67% 100.00% 

12 0.5 0.080 0.080 0.080 50 0 0 – – – 0 0 – –

12 0.6 2.018 2.213 3.480 50 0 49 2.019 2.217 3.510 49 0 15.29% 100.00% 

12 0.7 8.022 8.342 9.500 50 0 50 8.022 8.342 9.500 50 0 22.27% 70.77% 

12 0.8 17.184 17.474 18.340 50 0 50 17.184 17.474 18.340 50 0 29.89% 100.00% 

12 0.9 31.459 31.654 31.840 50 0 31 31.096 31.410 31.710 31 0 56.87% 100.00% 

18 0.5 0.000 0.000 0.000 50 0 0 – – – 0 0 – –

18 0.6 0.060 0.060 0.060 50 0 0 – – – 0 0 – –

18 0.7 2.045 2.292 5.600 50 0 50 2.045 2.292 5.600 50 0 6.68% 15.66% 

18 0.8 19.831 20.330 23.900 50 0 50 19.831 20.330 23.900 50 0 12.37% 28.19% 

18 0.9 52.700 53.066 54.500 50 0 49 52.673 53.047 54.510 49 0 21.55% 100.00% 

24 0.5 0.000 0.000 0.000 50 0 0 – – – 0 0 – –

24 0.6 0.000 0.000 0.000 50 0 0 – – – 0 0 – –

24 0.7 0.200 0.200 4.340 0 50 49 0.163 0.163 4.408 0 49 0.00% 0.00% 

24 0.8 12.352 12.893 24.180 0 50 50 12.352 12.893 24.180 0 50 4.57% 7.91% 

24 0.9 69.327 69.922 74.860 29 21 50 69.327 69.922 74.860 29 21 10.69% 21.68% 
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P solution is non-integral and to generate two subproblems by 

dditionally enforcing either x i ≤ � x � 
i 
� or x i ≥  x � � . In principle,

his strategy is also feasible for the matching formulation, where 

he subproblems correspond to forbidding a schedule M ∈ M for 

 round r ∈ R or fixing the schedule in round r to be M. This

ranching scheme, however, leads to a very unbalanced branch- 

nd-bound tree as the former subproblem only rules out a very 

pecific schedule, while the latter one fixes the matches of an 

ntire round. Another difficulty of the classical scheme is that it 

ight affect the structure of the pricing problem in the newly gen- 

rated subproblems. Ideally, the pricing problem should not change 

uch that the same algorithm can be used for adding new variables 

o the problem. We will address both issues next. 

To obtain a more balanced branch-and-bound tree, we have 

mplemented a custom branching rule following the Ryan–Foster 

ranching scheme Ryan & Foster (1981) : Our scheme selects a 

atch { i, j} ∈ M in a round r ∈ R and creates two children. In the

eft child, we forbid that { i, j} is played in round r, and in the right

hild, we enforce that { i, j} is played in round r. Note that for all

atchings M ∈ M this branching decision fixes all variables y M,r to 

ero if { i, j} ∈ M for the left child, and { i, j} / ∈ M for the right child.

Using this branching strategy, the structure of the pricing prob- 

em at each subproblem remains a matching problem. At the root 

ode of the branch-and-bound tree, we need to solve a maximum 

eight perfect matching problem in a weighted version of K n as 

escribed above. At other nodes of the branch-and-bound tree, 

e have added branching decisions that enforce that two teams i 

nd j either do meet or do not meet in a round r ∈ R . These deci-

ions can easily be incorporated by deleting edges from K n . When 

enerating variables for round r, we remove edge { i, j} from K n 

f i and j shall not meet in this round; if the match { i, j} shall

ake place, then we remove all edges incident with i and j except 

or { i, j} . Consequently, our branching strategy allows to solve the 

P relaxations of all subproblems in polynomial time. 

Since our Python implementation of the traditional and match- 

ng formulation took too much time to be used in a branching 

cheme, we decided to implement our branch-and-price algorithm 

s a plug-in using the C-API of SCIP . The pricer plug-in is anal-

gous, and maximal weight perfect matchings are now computed 

sing the LEMON 1.3.1 graph library. To ensure that the branching 

ecisions are taken into account, we also implemented a constraint 
31 
hat fixes y M,r to zero if the matching M violates the branching 

ecisions for round r, and added a plug-in that implements the 

ranching decisions. 

The branching rule sketched above admits some degrees of 

reedom in selecting the match { i, j} and round r. In our imple-

entation, we decided to mimic two well-known branching rules 

hich are described in detail in the survey by Achterberg, Koch, 

 Martin (2005) : most infeasible branching and strong branching 

n a selection of variables. Most infeasible branching branches on 

 binary variable with fractional value in an LP solution that is 

losest to 0.5, and strong branching branches on the variable that 

ields the largest dual bound improvement based on some metric. 

ince strong branching requires significant computational effort, it 

s common to make a limited branching candidate selection and 

pply strong branching on those. 

The pseudo code for our branching rule is given in Algorithm 1 . 

e start by computing the fractional match-in-round assignment 

alues induced by the y -variables. Then, we make a selection of 

otentially good branching candidates (m, r) ∈ M × R , that is based 

n the score m,r metric shown in Line 8: this score prioritizes 

atch-in-round assignments for which (i) the assignment value is 

lose to 0.5, (ii) the cost coefficients are large, and (iii) the as- 

ignment values are relatively high. Using this score, we hope to 

esolve fractionality soon (by (i)). By (ii), we want to enforce a 

ignificant change of the objective value in the child that forbids 

atch m , whereas the child enforcing that m is played selects a 

atch that is most likely played due to (iii). Experiments show 

hat full strong branching leads to a smaller number of nodes to 

olve the problem, but this turns out to be very costly compu- 

ationally. Therefore, we only apply strong branching for branch- 

nd-bound tree nodes close to the root, and only evaluate a sub- 

et of branching candidates that have the highest score m,r -metric. 

his is our candidate pre-selection. The higher the depth of the 

onsidered branch-and-bound tree node, the smaller the number 

f candidates considered. Of those branching candidates, we pick 

he candidate that maximizes score � m,r as defined in Line 18. The 

oal of this score is to choose the candidate where the objective 

alues of the hypothetical children are different from the current 

ode’s objective. By considering the product of this difference, we 

rioritize if the objective of both hypothetical children have some 

ifference with the current node objective. If the number of can- 



J. van Doornmalen, C. Hojny, R. Lambers et al. European Journal of Operational Research 310 (2023) 24–33 

Algorithm 1: Determining the branching candidate for an LP 

node. 

input : An LP solution y � m,r in a branch-and-bound tree node 

atdepth d with objective obj . 

output : The branching decision(match m ∈ M in round 

r ∈ R ),or detected integrality. 

1 // fractional assignment of match m to round r 

2 compute assign m,r ← 

∑ 

M∈ M : m ∈ M 

y � M,r for m ∈ M and r ∈ R ; 

3 if assign m,r is 0 or 1for all m ∈ M and r ∈ R then 

4 return integral solution found; 

5 // fractional part of assign m,r 

6 compute frac m,r ← min { assign m,r , 1 . 0 − assign m,r } for m ∈ M 

and r ∈ R ; 

7 // score for every match-round pair 
8 compute score m,r ← frac m,r · (1 . 0 + | c m,r | ) · ( assign m,r ) 

2 for 

m ∈ M and r ∈ R ; 

9 // strong branching candidate selection 
10 number _ of _ candidates ← max { 1 , � 0 . 1 · | M × R | · 0 . 65 d �} ; 
11 if number _ of _ candidates > 1 then 

12 pick number _ of _ candidates candidates (m, r) ∈ M × R with 

highest score m,r as strong branching candidates; 

13 foreach strong branching candidate (m, r) do 

14 if score m,r = 0 . 0 then 

15 // then assign m,r is 0 or 1, skip this 
candidate 

16 continue (i.e., skip this candidate); 

17 apply strong branching on (m, r) ,with 

objectives obj forbid , obj enforce in the two children; 

18 compute score � m,r ← 

( obj forbid − obj + 1 . 0) · ( obj enforce − obj + 1 . 0) ; 

19 return branch on strong branching candidate (m, r) with 

maximal~score � m,r ; 

20 else 

21 // do not apply strong branching deep in the 
branch-and-bound tree 

22 return branch on (m, r) ∈ M × R with maximal score m,r ; 

d
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Table 2 

Computational results for the branch-and-price algorithm for Model (M). 

Solved Solving time (seconds) 

n ρ # O T min mean max 

6 0.5 50 50 0 0.00 0.00 0.01 

6 0.6 50 50 0 0.00 0.00 0.01 

6 0.7 50 50 0 0.00 0.00 0.01 

6 0.8 50 50 0 0.00 0.00 0.01 

6 0.9 50 50 0 0.00 0.00 0.01 

12 0.5 50 50 0 1.25 2.38 5.73 

12 0.6 50 50 0 0.12 4.09 8.28 

12 0.7 50 50 0 0.21 3.33 7.38 

12 0.8 50 50 0 0.14 2.05 7.63 

12 0.9 50 50 0 0.11 0.54 2.21 

18 0.5 50 50 0 54.61 106.09 210.77 

18 0.6 50 48 2 103.41 866.21 7200.00 

18 0.7 50 3 47 930.53 6854.47 7200.09 

18 0.8 50 22 28 312.65 4084.21 7200.06 

18 0.9 50 50 0 6.74 332.98 3990.61 
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idates is only one, no strong branching is applied and that candi- 

ate match-in-round assignment is chosen for branching. 

All experiments have been run on a Linux cluster with Intel 

eon E5 3.5 gigahertz quad core processors and 32 gigabyte mem- 

ry. The code was executed using a single thread and the time 

imit for all computations was 2 hours per instance. 

Numerical results . Table 2 summarizes our results for our in- 

tances for n ∈ { 6 , 12 , 18 } . We distinguish the instances by their

arameters n and ρ , and we report on the number of instances 

hat could be solved (resp. could not be solved) within the time 

imit in column “O” (resp. “T”). Moreover, we report on the min- 

mum, mean, and maximum running time per parameterization. 

he mean of all running times t i is reported in shifted geometric 

ean 

∏ 50 
i =1 (t i + s ) 

1 
50 − s using a shift of 10 seconds to reduce the

mpact of instances with very small running times. 

We observe that instances with 6 and 12 teams can be solved 

ery efficiently within fractions of seconds in the former and 

ithin seconds in the latter case. Instances with 18 teams are more 

hallenging, in particular, if the ratio ρ ∈ { 0 . 7 , 0 . 8 } . In this case,

nly 3 and 22 instances could be solved, respectively, but note 

hat not all instances are equally difficult. For instance, for n = 18 

nd ρ = 0 . 8 , there exists an instance that can be solved within

oughly five minutes, whereas the mean running time is more 
32
han an hour. To fully benefit from the strong LP relaxation of the 

atching formulation, it might be the case that additional algo- 

ithmic enhancements can further improve the performance of the 

ranch-and-price algorithm. 

. Conclusion 

The use of integer programming for finding schedules of round 

obin tournaments is widespread. We have compared three formu- 

ations for this problem, one of which (the matching formulation) 

s stronger than the other formulations. We have proposed a class 

f valid inequalities for the matching formulation, which may be of 

se when developing cutting-plane based techniques for this prob- 

em. By randomly generating instances, we studied the strength of 

he formulations, and we implemented a branch-and-price algo- 

ithm based on the matching formulation to see its efficiency. Al- 

hough this algorithm is able to solve small-scale instances rather 

fficiently, solving large instances of the SRR efficiently remains a 

hallenge. 

It is a relatively straightforward exercise to generalize the for- 

ulations in this paper to k -Round Robin tournaments for k ≥ 2 . 

n such a setting, additional properties may become relevant; we 

ention home-away assignments and whether or not a tourna- 

ent should be split into k parts, where each pair of teams meets 

nce in each part. It is a fact that most of the theoretical results 

erived in the previous section continue to hold for these situa- 

ions, see van Doornmalen et al. (2022) for more details. 

Possible directions of future research are to further strengthen 

ur integer programming formulations/techniques. On the one 

and, once can investigate additional cutting planes to strengthen 

oth the traditional and matching formulation. For the match- 

ng formulation, cutting planes will in particular affect the pricing 

roblem and thus might change its structure. Thus, the trade-off

etween the strength of cutting planes and the difficulty of solv- 

ng the pricing problem that needs to be investigated. On the other 

and, one can enhance our branch-and-price algorithm in several 

irections, e.g., the development of more sophisticated branching 

ules or heuristics for producing good schedules. 
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