
Online Supplement to Recourse in Kidney

Exchange Programs

B.Smeulders, V.Bartier, Y.Crama, F.C.R.Spieksma

A The complexity of the selection problem: proofs

In this appendix, we provide the proofs of the theorems stated in Section 3.1
establishing the complexity of three versions of the selection problem.

Our reductions are from the satisfiability problem SAT, and from a special
case of SAT, called (2,2)-3SAT. Recall that an instance of SAT is defined as
follows.

Problem: SAT

Instance: A set of n Boolean variables {w1, . . . , wn} and a set of m clauses
C = {c1, . . . , cm} over the variables.

Question: Is there a truth-assignment that satisfies all clauses in C?

The special case (2,2)-3SAT arises when (i) each variable occurs twice negated,
and twice unnegated, and (ii) each clause contains exactly three literals. It is
proven NP-complete in Berman et al. (2004).

A.1 The selection problem with edge probabilities

Problem DecSPedge is the decision version of the selection problem with edge
probabilities. See Section 3.3 for a complete statement.

Theorem 1. DecSPedge is NP-complete.

Proof. Proof: We are going to provide a reduction from (2,2)-3SAT. Given an
instance of (2,2)-3SAT, we construct an instance of DecSPedge as follows. We
first build the vertex set V .

• For each clause ci ∈ C, there are three so-called clause vertices vc(i,1) , vc(i,2)
and vc(i,3) , i = 1, . . . ,m.

• For each variable wj , there are vertices vwj
, v+wj

and v−wj
, j = 1, . . . , n.

Thus V = {vc(i,1) , vc(i,2) , vc(i,3) | i = 1, . . . ,m} ∪ {vwj
, v+wj

, v−wj
| j = 1, . . . , n}.

We proceed by creating the edge set E. We use three sets of edges: truth-
assignment edges (TA), clause-satisfying edges (CS), and dummy edges (D).

• The truth-assignment edges are defined as follows:

TA ≡ {e(vwj , v
+
wj

), e(vwj , v
−
wj

)| j = 1, . . . , n}.

Each edge in TA has success probability 1.

1

• The clause-satisfying edges are defined as follows. Recall that each clause
in C contains three variables; we arbitrarily index them using index k,
k = 1, 2, 3. We have, for each i = 1, . . . ,m:

CS+
i ≡ ∪j{e(vc(i,k)

, v+wj
)| wj occurs unnegated as k-th variable in clause ci, k = 1, 2, 3},

and

CS−i ≡ ∪j{e(vc(i,k)
, v−wj

)| wj occurs negated as k-th variable in clause ci, k = 1, 2, 3}.

We set CS+ = ∪iCS+
i , CS− = ∪iCS−i , and CS = CS+ ∪ CS−. Each

edge in CS has success probability 1
m .

• The dummy edges are defined as follows:

D ≡ {e(vc(i,1) , vc(i,2)), e(vc(i,1) , vc(i,3)), e(vc(i,2) , vc(i,3))| i = 1, . . . ,m}.

Each dummy edge has success probability 1. We set E = TA ∪ CS ∪D.

See Figure 1 for graphical illustration.
Furthermore, we set B := n + 2m and Z := n + m + 1 − 1

2m , thereby
completing the description of the instance of DecSPedge. We claim that there
is a satisfying truth-assignment for C if and only if there exists an edge set E∗

with |E∗| ≤ B and E((V,E∗), p) ≥ Z.

v+wj

v−wk

v−wl

vc(i,1)

vc(i,2)

vc(i,3)

1
m

1
m

1
m

1

1

1

Figure 1: Clause-satisfying edges and dummy edges used in the construction of
an instance of SPedge for clause ci = (wj ∨ w̄k ∨ w̄l).

⇒ Suppose we have a satisfying truth-assignment for C. We will show how
to identify an edge set E∗ with |E∗| ≤ n+ 2m such that the expected value of
a maximum matching in G = (V,E∗) is at least n+m+ 1− 1

2m .
If, in a satisfying truth assignment for C, variable wj is TRUE, we add edge

e(vwj , v
−
wj

) to E∗; else, if wj is FALSE, we add edge e(vwj , v
+
wj

) to E∗. Next,
for each clause ci, let wj be a variable satisfying this clause, and, in fact, let wj

be the kth variable in that clause, k = 1, 2, 3. Then, we add edge e(vc(i,k),v
−
wj

)

to E∗ if wj is TRUE, and we add edge e(vc(i,k),v
+
wj

) to E∗ if wj is FALSE. Ad-

ditionally, we add dummy edges e(vc(i,`) , vc(i,`′)) with distinct `, `′ 6= k to E∗,
for i = 1, . . . ,m.

We consider the three sets of edges and their corresponding contributions to
the expected size of a maximum matching.

2

• Each of the m dummy edges in E∗ is not adjacent to any other edge in
E∗. Since each dummy edge succeeds with probability 1, they collectively
add m to the size of the matching.

• Each of the n truth-assignment edges in E∗ is not adjacent to any other
edge in E∗. Since each edge in TA succeeds with probability 1, they
collectively add n to the size of the matching.

• Next, consider the clause-satisfying edges, of which m are present in E∗.
A clause-satisfying edge in E∗ can be adjacent to at most one other clause-
satisfying edge in E∗; this follows from the fact that the number of clause-
satisfying edges that are incident to the same node is bounded by 2, which,
in turn, follows from the fact that each literal occurs twice negated and
twice unnegated. These edges succeed with probability 1

m , and since the
probability of adjacent edges succeeding is independent, the probability
of both edges succeeding is 1

m2 . Two adjacent edges thus jointly add
2
m −

1
m2 , or 1

m −
1

2∗m2 on average, to the expected size of the matching.
All m clause-satisfying edges thus collectively contribute at least 1 − 1

2m
to the size of the matching.

Adding all these contributions together, we conclude that the expected size of
the matching constructed is at least n+m+ 1− 1

2m .

⇐ Suppose there exists an edge set E∗ with |E∗| ≤ n + 2m such that the
expected size of a maximum matching in (V,E∗) equals at least n+m+1− 1

2m .
From this we will infer that (i) E∗ must contain n edges from TA that prescribe
a truth assignment, and contribute n, (ii) E∗ must contain m edges from D
contributing m, and (iii) E∗ must contain m edges from CS. Moreover, this
latter set of edges must contribute at least 1− 1

2m , implying that none of them
is adjacent to either an edge from TA in E∗, or to a dummy edge in E∗. In
addition, no pair of CS edges in E∗ shares a clause vertex. Thus, there is a CS
edge in E∗ incident to exactly one of the three vertices vc(i,1) , vc(i,2) and vc(i,3) ,
for each i = 1, . . . ,m, implying that the truth assignment found satisfies C.

We now argue the validity of the claims above.

First, we establish that exactly n + m of the edges in E∗ are edges from
TA∪D, and that no pair of these edges is adjacent. This will imply the existence
of a truth assignment, i.e., the edges in TA that are present in E∗ prescribe how
to set each variable to either TRUE or FALSE. We argue by contradiction.

• Consider the case where less than n + m edges in E∗ are from TA ∪ D.
Since every edge in E∗ is either an edge from TA ∪ D or an edge from
CS, it follows that E∗ consists of n+m− q edges from TA∪D and m+ q
clause-satisfying edges, for some q ≥ 1. Clearly, the resulting size of a
matching in E∗ is at most (n+m− q) + (m+ q) 1

m , as a single edge from
TA∪D adds at most 1 to the solution value, while a single edge from CS
adds at most 1

m . For q ≥ 1, this gives n+m+1−q(m−1
m) < n+m+1− 1

2m
(assuming m ≥ 2).

• On the other hand, if more than n+m edges in E∗ are from TA∪D, they
can collectively still contribute at most n + m to the size of a matching,
as no matching can contain more than n truth-assignment edges and m

3

edges from D. The maximum size of a matching is then bounded by
n+m+ (m− q) 1

m = n+m+ 1− q
m < n+m+ 1− 1

2m for q ≥ 1.

• Finally, two adjacent edges from TA ∪D that are both in E∗ collectively
only add at most 1 unit to the size of a matching. If n + m edges from
TA ∪D are in E∗, and some of these are adjacent, the maximum size of
a matching cannot exceed n+m.

It follows that E∗ contains m edges from D, as well as n edges from TA that
prescribe a truth assignment as follows: if e(wj , w

+
j) (e(wj , w

−
j) is in E∗, set vj

to FALSE (TRUE), j = 1, . . . , n. Since exactly n + m edges from TA ∪D are
in E∗, we know that E∗ contains m clause-satisfying edges. It remains to argue
that (i) no CS edge in E∗ is adjacent to a TA edge in E∗, and (ii) no pair of
CS edges in E∗ is adjacent.

Since the m clause-satisfying edges in E∗ collectively contribute at least
1− 1

2m to the expected size of a matching, we derive the following claims.

• We claim that no CS edge in E∗ is adjacent to a TA edge in E∗. Indeed,
even if one CS edge that is adjacent to a TA edge in E∗, is also in E∗, the
contribution of the CS edges in E∗ is at most (m− 1) 1

m < 1− 1
2m . This

observation implies that if a CS edge is in E∗, it is consistent with the
truth assignment induced by the TA edges, and hence represents a literal
satisfying a clause in C.

• If there is a triple of clause nodes vc(i,1) , vc(i,2) , vc(i,3) to which no CS edge
in E∗ is adjacent, then the contribution from the CS edges to the expected
size of the matching does not exceed (m − 1) 1

m . Since the expected size
of a maximum matching exceeds n+m+ 1− 1

2m , it follows that, for each
triple of clause nodes, exactly one must be adjacent to an edge in CS.

These implications ensure that the set of m CS edges present in E∗ is consistent
with the truth-assignment edges in E∗, thereby satisfying each clause in C. The
proof is complete.

A.2 The selection problem with vertex probabilities

DecSPvertex is the decision version of the selection problem with vertex prob-
abilities. We have stated the following theorem in Section 3.3:

Theorem 2. DecSPvertex is NP-complete.

Proof. Proof: Given an instance of (2,2)-3SAT, we construct an instance of
DecSPvertex as follows. Let us first build the vertex set V and the associated
probabilities; we use a similar construction as in the proof of Theorem 1, but
slightly simplified.

• For each clause ci ∈ C, there is a so-called clause vertex vci ∈ V with
p(vci) = 1

m , i = 1, . . . ,m.

• For each variable wj , there are three vertices vwj , v
+
wj

and v−wj
in V , each

with p(vwj) = p(vw+
j

) = p(vw−j
) = 1, j = 1, . . . , n.

4

Thus V = {vci | i = 1, . . . ,m} ∪ {vwj
, v+wj

, v−wj
| j = 1, . . . , n}. As in the proof of

Theorem 1, we introduce truth-assignment edges:

TA ≡ {e(vwj , v
+
wj

), e(vwj , v
−
wj

), j = 1, . . . , n}.

We also use clause-satisfying edges as follows. For each i = 1, . . . ,m define:

CS+
i ≡ ∪j{e(vci , v

+
wj

)| variable wj occurs positively in clause ci},

and

CS−i ≡ ∪j{e(vci , v
−
wj

)| variable wj occurs negatively in clause ci}.

By setting E = TA ∪ ∪iCS+
i ∪ ∪iCS

−
i , we have constructed G (see Fig-

ures 2(a) and 2(b)). Furthermore, we set B := n+m, and Z := n+ 1− 1
2m .

We claim that there is a satisfying truth-assignment for C if and only if there
exists an edge set E∗ with |E∗| ≤ B and E((V,E∗), p) ≥ Z. The reasoning we
use is similar to the reasoning used in the proof of Theorem 1.

v+wj

v−wk

v−wl

vci

(a) Clause-satisfying
edges

v+wj

v−wj

vwj

(b) Truth-assignment
edges

Figure 2: Edges used in the construction of an instance of SPvertex.

⇒ Suppose we have a satisfying truth-assignment for C. We will show how
to identify an edge set E∗ with |E∗| ≤ B = n+m such that the expected value
of a maximum matching in G = (V,E∗) is at least n+ 1− 1

2m .
If, in a satisfying truth assignment for C, variable wj is TRUE, we add edge

e(vwj , v
−
wj

) to E∗; else we add edge e(vwj , v
+
wj

) to E∗, j = 1, . . . , n. In this way,
we add n truth-assignment edges to E∗. Further, since C is satisfiable, there
exists for each clause ci, a variable, say wj , whose truth assignment realizes this
clause. For each i = 1, . . . ,m, we do the following: if wj occurs positively in
ci we add edge e(vci , v

+
wj

) to E∗, and if wj occurs negatively in ci we add edge

e(vci , v
−
wj

) to E∗. In this way, we add m clause-satisfying edges to E∗. We have
now specified E∗; observe that it contains n+m edges. Since each edge in E∗

is spanned by two vertices, say v and w with associated success probabilities pv
and pw, we say that edge {v, w} succeeds with probability pvpw. In particular,
observe that each edge in TA succeeds with probability 1, whereas each edge in
CS succeeds with probability 1

m .
Consider now the graph (V,E∗). We will identify a matching in this graph,

with the required expected size. The matching consists of truth-assignment
edges and clause-satisfying edges.

5

• First, we put all n truth-assignment edges that are in E∗ in the matching.
Notice that (i) no pair of TA edges in E∗ is adjacent (by construction),
(ii) no TA edge in E∗ is adjacent to a CS edge in E∗ (since we have a
satisfying truth assignment for C), and (iii) each edge in TA succeeds with
probability 1. Thus, the set of TA edges in E∗ form a partial matching
and jointly contribute expected weight n to the matching.

• Next, consider the m clause-satisfying edges present in E∗. Each clause-
satisfying edge is spanned by some node vci , and one node from {v+wj

, v−wj
},

say node v. The construction of E∗ allows that pairs of CS edges in E∗

are adjacent; indeed, it may happen that a same literal makes different
clauses true. Observe however, that the reduction from (2,2)-3SAT, where
each variable occurs twice negated, and twice unnegated, guarantees that
there do not exist three CS edges sharing a node. Thus, there are two
cases: either node v is adjacent to a single CS edge in E∗, or node v
is adjacent to two CS edges in E∗. In the first case, we simply select
the corresponding edge in the matching; it contributes weight 1

m . In the
second case node v is adjacent to two CS edges in E∗; then, we select one
of these edges. More precisely, if one such edge succeeds, or if both edges
survive, we can select one of them in the matching; the corresponding
probability of such an event is 2

m −
1

m2 . Thus, summing over the m edges,
we can add at least 1− 1

2m to the expected value of the matching.

Concluding, the expected value of this matching equals at least n+ 1− 1
2m .

⇐ Suppose there exists an edge set E∗ with |E∗| ≤ n + m such that the
expected size of a maximum matching (V,E∗) equals at least n + 1 − 1

2m . We
construct a truth-assignment satisfying C as follows.

First, we establish that exactly n of the edges in E∗ must be truth-assignment
edges, and that no pair of these edges is adjacent. This will imply the existence
of a truth assignment, i.e., the TA edges present in E∗ prescribe how to set
each variable to either TRUE or FALSE. By following a similar reasoning as in
the proof of Theorem 1, we conclude that E∗ contains n edges from TA that
prescribe a truth assignment as follows: if e(wj , w

+
j) (e(wj , w

−
j) is in E∗, set vj

to FALSE (TRUE), j = 1, . . . , n. Since exactly n truth-assignment edges are in
E∗, we know that E∗ contains m clause-satisfying edges. It remains to argue
that (i) no CS edge in E∗ is adjacent to a TA edge in E∗, and (ii) no pair of
CS edges in E∗ are adjacent to a clause vertex.

Since the m clause-satisfying edges in E∗ collectively contribute at least
1− 1

2m to the expected size of a matching, we derive the following claims.

• We claim that no CS edge in E∗ is adjacent to a TA edge in E∗. Indeed,
even if one CS edge that is adjacent to a TA edge in E∗, is also in E∗, the
contribution of the CS edges in E∗ is at most (m− 1) 1

m < 1− 1
2m . This

observation implies that if a CS edge is in E∗, it is consistent with the
truth assignment induced by the TA edges, and hence represents a literal
satisfying a clause in C.

• If two clause-satisfying edges corresponding to the same clause are both
in E∗, they jointly add at most 1

m to the expected size of a matching.
This is a consequence of the fact that, in that case, these two edges must

6

have some node vci in common which - by construction - succeeds with
probability 1

m , while the other nodes spanning these edges do not fail. This
ensures that both edges are either both successful or both fail. Thus, if two
such edges are in E∗, the contribution of the CS edges in E∗ is bounded
by (m− 1) 1

m . It follows that no two clause-satisfying edges corresponding
to the same clause are in E∗. The m tested clause-satisfying edges thus
all correspond to a different clause, and hence all clauses are satisfied.

These implications ensure that the set of m CS edges present in E∗ is consistent
with the truth-assignment edges in E∗, thereby satisfying each clause in C. The
proof is complete.

A.3 The selection problem with explicit scenarios

We finally turn to problem DecSPscen, the decision version of the selection
problem associated with a subset of scenarios (see Section 3.1).

Theorem 3. DecSPscen is NP-complete.

Proof. Proof: Given an instance of SAT, we construct an instance of DecSPscen
as follows. Let us first build the graph G = (V,E).

As in the previous proof, we set V = {vci | i = 1, . . . ,m}∪{vwj , v
+
wj
, v−wj
| j =

1, . . . , n}
We now specify the edge sets Es (1 ≤ s ≤ t), as well as the set E.
We set t := m, i.e., there is a scenario (i.e, an edge set Es) for every clause cs.

We use, as in previous proofs, the truth-assignment edges that will be present
in each set Es (1 ≤ s ≤ t):

TA := {e(vwj
, v+wj

), e(vwj
, v−wj

), j = 1, . . . , n}.

In addition, for each clause cs (s = 1, . . . , t), define the edge sets

CS+
s :=

⋃
j

{e(vcs , v+wj
)| variable wj occurs positively in clause cs},

CS−s :=
⋃
j

{e(vcs , v−wj
)| variable wj occurs negatively in clause cs}.

We now define, for each s = 1, . . . , t:

Es := TA ∪ CS+
s ∪ CS−s .

Moreover, we set E := ∪sEs. Further, we set B := n + m and Z := m(n + 1).
This completes the description of an instance of the decision version of SPscen.

We claim that there exists a satisfying truth assignment for C if and only if

there exists an edge set E∗ ⊆ E with |E∗| ≤ B and
t∑

s=1
z(V,Es∩E∗) ≥ m(n+1).

⇒ Suppose we have a satisfying truth-assignment for C. We will show how to
identify an edge set E∗ with |E∗| ≤ B = n+m such that whatever scenario/edge
set Es realizes, at least n+1 edges can be selected in an optimum solution of the
resulting instance of the KEP, i.e., z(V,Es ∩ E∗) ≥ n+ 1 for each s = 1, . . . , t.

If, in a satisfying truth assignment for C, variable wj is TRUE, we add edge
e(vwj

, v−wj
) to E∗; else we add edge e(vwj

, v+wj
) to E∗, j = 1, . . . , n. Further,

7

since C is satisfiable, there exists for each clause cs, a variable, say wj , whose
truth assignment satisfies this clause. Now, for each s = 1, . . . , t, we do the
following: if this wj occurs positively in cs, we add edge e(vcs , v

+
wj

) to E∗, and

if this wj occurs negatively in cs, we add edge e(vcs , v
−
wj

) to E∗. We have now
specified E∗; observe that it need not be a matching in G, and that it contains
n+m edges.

Consider now the instance of the KEP defined by the graph (V,Es∩E∗). We
claim that one can always find a matching of size n+ 1 in (V,Es ∩E∗). Indeed,
there are n edges present in TA ∩ E∗, and, by construction of E∗, there is one
edge incident to vcs that is in E∗, and is not adjacent to any of the edges in
TA∩E∗. Hence z(V,Es∩E∗) ≥ n+1 for each s = 1, . . . , t, and this implies that
the instance of the selection problem with explicit scenarios is a yes-instance.
⇐ Now, we show that if the instance of the decision version of SPscen is a

yes-instance, i.e., if there exists an E∗ with |E∗| ≤ n+m such that
t∑

s=1
z(V,Es∩

E∗) ≥ m(n + 1), there must be a satisfying truth assignment for C. First,
consider the graph Gs = (V,Es) (1 ≤ s ≤ t). We claim:

z(V,Es ∩ E∗) ≤ z(Gs) ≤ n+ 1 for s = 1, . . . , t. (1)

Indeed, in an optimum solution to the KEP instance defined by Gs, one can
select at most one edge out of the two adjacent edges {e(wj , w

+
j), e(wj , w

−
j)} for

j = 1, . . . , n, and one can select at most one edge incident to node vcs . Since
no other edges exist in Es, the upper bound in (1) is valid. Further, given that
our instance of the decision version of SPscen is a yes-instance, we have:

t∑
s=1

z(V,Es ∩ E∗) ≥ m(n+ 1). (2)

Combining (1) and (2) implies that E∗ is such that:

z(V,Es ∩ E∗) = n+ 1 for each s = 1, . . . , t.

In words, E∗ is such that, when intersected with the edges of any scenario
Es, the size of a maximum matching equals n + 1. Clearly, this value can
only be realized by having in E∗ at least one edge out of each of the n pairs
{e(wj , w

+
j), e(wj , w

−
j)} (1 ≤ j ≤ n), and at least one edge incident to each

vcs (1 ≤ s ≤ t). However, since we know that |E∗| ≤ n + m, we conclude
that E∗ contains exactly one edge from each pair {e(wj , w

+
j), e(wj , w

−
j)} and

exactly one edge incident to each vcs . The n edges in E∗ from the pairs
{e(wj , w

+
j), e(wj , w

−
j)} determine the truth assignment of the variables: if e(wj , w

+
j)

is in E∗, then we set wj to FALSE, else we set wj to TRUE. The m edges in E∗

incident to the nodes vcs imply that this truth assignment satisfies C: for each
individual clause cs there is an edge e(vcs , vwj

) in E∗, meaning there is a variable
wj whose truth assignment satisfies clause cs. The proof is complete.

B Integer programming formulation

In Section 2.2, we have introduced a very generic formulation of the determin-
istic kidney exchange problem, which has been extended in Section 3.2 to a

8

formulation of the selection problem. We present hereunder the specific for-
mulation of the selection problem which has been used in our computational
experiments.

Position Indexed Edge formulation

The Position Indexed Edge (PIE) formulation is proposed by Dickerson et al.
(2016). The main feature of this formulation is the introduction of position
indices, which denote in which position a particular arc is used in a cycle. In
order to model the selection problem, we further extend this formulation by
defining binary variables γi,j,k,`,s, where γi,j,k,`,s = 1 if and only if the arc (i, j)
is chosen in the kth position of a cycle in graph copy ` in scenario s. Arcs
in chains are handled similarly, though the graph copies are not needed here:
variable δi,j,k,s = 1 if and only if arc (i, j) is chosen in the kth position of a
chain in scenario s. The sets K(i, j, `, s) and K′(i, j, s) are computed in a pre-
processing step, and contain those positions in which (i, j) can be selected in
scenario s. We refer to Dickerson et al. (2016) for more details on the pre-
computation of these sets.

In the formulation hereunder, the objective function (3) and the constraints
(4), (5), (6) are directly inherited from the generic formulation. The cycle flow
constraints (7) enforce that if an arc arriving at a vertex i is selected in posi-
tion k in a cycle, another arc leaving that vertex i must be selected in position
k + 1. By not allowing arcs in positions larger than K, the cycle length con-
straints are enforced. Similarly, the chain flow constraints (8) enforce that an
arc may only be chosen in position k of a chain if an arc enters the same vertex in
position k−1. Graph copies are again used to break symmetry, as in Section 4.1.

max
∑
s∈S

qs
∑

(i,j)∈As

(
∑
`∈V

∑
k∈K(i,j,`,s)

γi,j,k,`,s +
∑

k∈K′(i,j,s)
δi,j,k,s) (3)

subject to
∑

(i,j)∈A
βi,j ≤ B, (4)

∑
`∈V

∑
j:(j,i)∈A`

s

∑
k∈K(j,i,`,s)

γj,i,k,`,s +
∑

j:(j,i)∈As

∑
k∈K′(j,i,s)

δj,i,k,s ≤ 1 ∀s ∈ S, i ∈ V,

(5)∑
`∈V

∑
k∈K(i,j,`,s)

γi,j,k,`,s +
∑

k∈K′(i,j,s)
δi,j,k,s ≤ βi,j ∀s ∈ S, (i, j) ∈ As,

(6)∑
j:((j,i)∈A`

s∧k∈K(j,i,`,s))
γj,i,k,`,s =

∑
j:((i,j)∈A`

s∧(k+1)∈K(i,j,`,s))
γi,j,k+1,`,s

∀s ∈ S, ` ∈ V,
i ∈ {`+ 1, . . . , n},
k ∈ {1, . . . ,K − 1}.

(7)∑
j:((j,i)∈As∧k∈K′(j,i,s))

δj,i,k,s ≤
∑

j:((i,j)∈As∧k∈K′(i,j,s))
δi,j,k−1,s ∀s ∈ S, i ∈ V, k ∈ {2, . . . , L},

(8)

βi,j , γi,j,k,`,s, δi,j,k′,s ∈ {0, 1} ∀s ∈ S, i, j, ` ∈ V, k ∈ K(i, j, `, s), k′ ∈ K′(i, j, s).
(9)

9

References

Piotr Berman, Marek Karpinski, and Alexander Scott. Approximation hardness
of short symmetric instances of MAX-3SAT. Report IHES-M-2004-28, 2004.

John P Dickerson, David F Manlove, Benjamin Plaut, Tuomas Sandholm, and
James Trimble. Position-indexed formulations for kidney exchange. In Pro-
ceedings of the 2016 ACM Conference on Economics and Computation, pages
25–42. ACM, 2016.

10

