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Abstract. We introduce the problem of selecting patient-donor pairs in a kidney exchange
program to undergo a crossmatch test, and we model this selection problem as a two-stage
stochastic integer programming problem. The optimal solutions of this new formulation
yield a larger expected number of realized transplants than previous approaches based on
internal recourse or subset recourse. We settle the computational complexity of the selec-
tion problem by showing that it remains NP-hard even for maximum cycle length equal to
two. Furthermore, we investigate to what extent different algorithmic approaches, includ-
ing one based on Benders decomposition, are able to solve instances of the model. We em-
pirically investigate the computational efficiency of this approach by solving randomly
generated instances and study the corresponding running times as a function of maximum
cycle length, and of the presence of nondirected donors.
Summary of Contribution: This paper deals with an important and very complex issue
linked to the optimization of transplant matchings in kidney exchange programs, namely,
the inherent uncertainty in the assessment of compatibility between donors and recipients
of transplants. Although this issue has previously received some attention in the optimiza-
tion literature, most attempts to date have focused on applying recourse to solutions select-
ed within restricted spaces. The present paper explicitly formulates the maximization of
the expected number of transplants as a two-stage stochastic integer programming prob-
lem. The formulation turns out to be computationally difficulty, both from a theoretical
and from a numerical perspective. Different algorithmic approaches are proposed and test-
ed experimentally for its solution. The quality of the kidney exchanges produced by these
algorithms compares favorably with that of earlier models.
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1. Introduction: Kidney
Exchange Programs

Mathematical optimization techniques have estab-
lished themselves as an important and indispensable
tool in guiding decisions in kidney exchange pro-
grams. There is a large and fast-growing amount of
literature documenting various successful implemen-
tations of algorithms that find cycles and chains in ap-
propriately defined compatibility graphs. The increased
performance of such algorithms has led to a better use
of available human kidneys, and as a result, many
lives have been positively impacted.

This paper focuses on the issue of dealing with
incompatibilities that may reveal themselves after an in-
tended transplant has been identified. This is an

important issue; for example, Dickerson et al. (2019) re-
port that 93% of proposed matches fail in the United
Network for Organ Sharing program, for a wide variety
of reasons. In the National Health Service (NHS) Living
Kidney Sharing Scheme, 30% of identified matches did
not proceed to transplant between 2013 and 2017 (NHS
2017a). Here, we analyze how this phenomenon can be
taken into consideration in optimization models. We
propose a new, generic, integer programming formula-
tion to identify the maximum expected number of
transplants, and we perform extensive computational
experiments with this model. The resulting outcomes
give insights on how kidney exchange programs can
best prepare for the challenges that arise when con-
fronted with a posteriori incompatibilities.
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In order to set the stage for our contribution, we
first give a stylized description of the operation of a
kidney exchange program; in this description, we mo-
mentarily ignore many of the practical features that
exist in real-life kidney exchange programs.

The preferred treatment for a patient with end-stage
renal disease is receiving a kidney from a living human
donor. Many patients have a donor, often a friend or
family member, who has volunteered to donate one of
their kidneys for a transplant. However, a donor must
be compatible with a patient for a transplant to be possi-
ble. Determining whether a donor is compatible with
their corresponding patient is done by a preliminary
screening, based on blood type and immunological
properties. When the donor and the patient are not
compatible, they may together decide to enter a kidney
exchange program where more transplant opportuni-
ties become available by relying on the diversity of a
larger pool of individuals. We refer to Gentry et al.
(2011) for more information on this process. Thus, a
kidney exchange program consists of a set of patient-
donor pairs (the pool), for which compatibilities have
been derived from the preliminary screening tests. The
objective is then to identify sequences of potential kid-
ney donations among pairs of the pool, whereby each
patient in the sequence receives a kidney from the do-
nor of the previous pair, whereas the associated donor
donates a kidney to the next patient. This description
implies that the sequence of donations must necessarily
be cyclic. Exchange programs, however, may also allow
for the presence of nondirected donors who are not asso-
ciated with any patient. They may increase the range of
feasible sequences by acting as starting points of se-
quences of donations that end with a patient receiving
a kidney, whereas the associated donor is not involved
in any transplant (and may subsequently act as a non-
directed donor).

A natural and well-established way of describing the
operation of a kidney exchange program is by consider-
ing a so-called compatibility graph. In this directed
graph, a vertex is associated with each patient-donor
pair and each nondirected donor. There is an arc from
vertex i to vertex j if the donor associated with vertex i
is compatible with the patient of pair j (according to
preliminary screening). A k-cycle, that is, a directed cy-
cle of length k in this graph, indicates a sequence of k
transplants that can be simultaneously performed,
based on the compatibilities identified in the prelimi-
nary screening phase. Similarly, a k-chain, that is, a
directed chain of length k originating at a vertex associ-
ated with a nondirected donor, also indicates a feasible
sequence of k transplants. Typically, for logistical rea-
sons, an upper bound is given on the length of the
cycles and chains that can be considered for trans-
plants. The problem faced by the kidney exchange pro-
gram is then to find a collection of vertex-disjoint cycles

and chains of bounded length, covering as many arcs
as possible, thus allowing for the largest possible num-
ber of transplants in the current pool (see Section 2.2
for a more formal definition). We will refer to this opti-
mization problem as the kidney exchange problem (KEP).

Clearly, the previous description is a very stylized
sketch of the operation of a kidney exchange program.
In practice, a program may present many other fea-
tures; for example, arcs may be weighted to prioritize
certain types of patients or transplants. We refer to
Gentry et al. (2011) and Anderson et al. (2015) for a
more elaborate discussion and to Biró et al. (2019) for
an overview of kidney exchange programs in Europe.

The key issue that we address here is that, in kidney
exchange programs, compatibilities arising from pre-
liminary screening are rarely certain and must be as-
sessed by further tests. Indeed, after solving the kid-
ney exchange problem, that is, after having identified
a set of cycles and chains intended to give rise to a
number of transplants, it may turn out that, for vari-
ous reasons, some of the transplants cannot take place.
This may be the case because a patient has already re-
ceived a kidney from another program or is too ill to
undergo surgery. Another frequent reason is that fur-
ther compatibility tests, called crossmatch tests, may re-
veal previously undetected incompatibilities. Such
crossmatch tests must always be performed before any
transplant is performed. They consist of analyzing
blood samples of recipient and donor. There is a sig-
nificant probability that a crossmatch test detects an
incompatible transplant (Dickerson et al. 2016). Of
course, when this happens, it implies that not only
this particular transplant cannot be carried out, but
also the other transplants in the same cycle, or further
in the chain, fail to be implemented.

Because crossmatch tests are time consuming and
expensive, most kidney exchange programs only per-
form such tests once an intended transplant has been
identified (Biró et al. 2019), so that uncertainty re-
mains until that time. In line with previous literature
(Glorie 2012, 2014; Alvelos et al. 2015; Klimentova et al.
2016; Dickerson et al. 2019), we model this uncertainty
by specifying probabilities for the compatibility be-
tween a donor and a patient (or for the availability of
a patient-donor pair).

Our main contribution in this paper is to explicitly
identify the problem of selecting the set of arcs that
should undergo the crossmatch tests to maximize the
expected number of transplants (which, as mentioned
by Glorie 2014, “may be an opportunity to significant-
ly increase the success rates” of kidney exchange pro-
grams). We formulate this problem as a two-stage sto-
chastic optimization problem. In the first stage, we
select a set of arcs that each will undergo a crossmatch
test. The problem of identifying this set of arcs is
called the selection problem. In the second stage, we
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solve the (deterministic) KEP on the graph induced by
the arcs that passed the crossmatch tests.

We summarize our contributions as follows.
• We formalize the selection problem and argue that

solving this problem is a key ingredient in obtaining
solutions that maximize the expected number of trans-
plants (Section 3).

• We establish the computational complexity of the
selection problem by proving that it remains NP-hard
even when the maximum allowed cycle length (K) is
equal to two; this result contrasts with the polynomial
solvability of the KEP when K � 2. The corresponding
theorems are formulated in Section 3, and the proofs
can be found in Online Appendix A.

• We show how to apply Benders decomposition to
a generic integer programming formulation of the
selection problem (Section 4).

• We perform extensive computational experiments
illustrating the quality of the solutions found by the
selection model compared with other approaches
(Section 6) and showing the impact of various model-
ing and algorithmic choices (Sections 7 and 8).

2. Problem Statement
We provide a brief overview of earlier work on KEPs
in Section 2.1. Next, we set the stage by giving a ge-
neric formulation of the KEP in Section 2.2 and by de-
tailing the stochastic version of the KEP in Section 2.3.

2.1. Literature Review
Seminal work on modeling kidney exchange pro-
grams through integer programming was initiated by
Roth et al. (2004, 2006) and Montgomery et al. (2006).
The deterministic KEP is a difficult combinatorial op-
timization problem: as observed in Abraham et al.
(2007), it is NP-hard when restricted to any fixed cycle
length greater than two. (For cycle length equal to
two, KEP can be solved in polynomial time as a maxi-
mum matching problem.) In practice, however, opti-
mal solutions of appropriate integer programming
formulations can be computed in acceptable running
times for medium to large instances; see Dickerson
et al. (2016), Mak-Hau (2017), and Manlove and
O’malley (2015) for recent references.

To take crossmatch tests and uncertainty into
account, two broad classes of approaches have been
proposed: adaptive and nonadaptive approaches. In
nonadaptive approaches, a subset of potential trans-
plants is first selected, and crossmatch tests are subse-
quently performed in parallel on all the arcs of these
subsets. The arcs that pass the crossmatch test can fi-
nally be used to identify the transplants to be executed
by the kidney exchange. Adaptive approaches allow
for more rounds of tests. After each round of cross-
match tests, additional arcs are selected for testing

and this choice is dependent on the successes and fail-
ures in the previous rounds. Eventually, the cross-
matching phase terminates and the successful arcs are
used to identify the transplants to be performed.

Nonadaptive approaches have received most of the
attention in the literature and have led to various for-
mulations of the stochastic problem. Dickerson et al.
(2013, 2019) propose reweighting cycles and chains to
reflect the expected number of transplants that can be
performed using those subgraphs, and they solve
the associated weighted packing problem. A compact
formulation of this packing problem is given by
Dickerson et al. (2016). Pedroso (2014) also reweights
cycles, but his model accounts for all arcs induced
by each cycle, thus allowing for limited recourse at
the cost of additional tests; Alvelos et al. (2015)
provide a compact formulation of this packing model.
Klimentova et al. (2016) propose another recourse
scheme where overlapping cycles can be tested. We
give a more explicit description of these recourse
schemes in Section 2.3.

Another stream of literature focuses on approxima-
tion algorithms. Blum et al. (2013) develop such an al-
gorithm for the case of two cycles where each patient
is involved in at most two crossmatch tests; they
prove that their algorithm finds near-optimal solu-
tions in sufficiently large kidney exchange pools.
Blum et al. (2015) provide nonadaptive approximation
algorithms requiring a constant number of tests per
vertex and delivering a solution with expected value
within a factor ((2=K)2=(2=K+ 1))(1− ε) of the ex-
pected optimal value for the case of K-cycles or K-
chains. Assadi et al. (2016), Behnezhad et al. (2019),
and other authors subsequently strengthened the re-
sult for two cycles.

Adaptive approximation algorithms for bounded
cycles and chains have been introduced by Blum et al.
(2015). For cycles of length 2, the authors proposed an
algorithm that returns a matching with expected value
at most (1− ε) the expected optimal matching value
after a constant number of rounds and a constant
number of queries (i.e., crossmatch tests) per vertex.
They further extended these results to the K-set
packing problem for which they obtained a 2

K (1− ε)-
approximation algorithm. Assadi et al. (2016) subse-
quently improved the results for two cycles.

In real-world practice, both adaptive and nonadap-
tive policies are actually used. The NHS in the United
Kingdom computes solutions that can be adjusted if
planned transplants do not pass the crossmatch test,
in the spirit of the nonadaptive procedure of Pedroso
(2014). Specifically, the NHS prefers (ceteris paribus)
three cycles with embedded two cycles over three
cycles without embedded two cycles. In this way, if
one of the transplants in the three cycles turns out to
be infeasible, the two cycles can be performed instead
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(NHS 2017b). Smaller programs, such as the Dutch
and Czech program, iterate between solving a KEP
and crossmatching all transplants in the solution. This
adaptive process terminates when all tests are success-
ful, and the number of transplants is thus maximized
(Biró et al. 2019).

2.2. Deterministic KEP
Let us now turn to a more formal definition of the de-
terministic KEP. An instance of the problem is defined
by a simple, directed graph G � (V,A), and by two in-
tegers K and L. Each vertex in V represents either a
patient-donor pair or a nondirected donor. An arc
(i, j) ∈ A represents a possible transplant of a kidney
from the donor associated with vertex i to the patient
associated with vertex j. We use V(G′) (A(G′)) to de-
note the set of all vertices (arcs) in a subgraph G′. Let
C be the set of all directed cycles c in G with length
wc � |V(c)| � |A(c)| at most K. Similarly, let H be the set
of all chains h starting from a nondirected donor and
with length wh � |A(h)| ≤ L.

The KEP is the problem of finding a set of vertex-
disjoint cycles of C and chains of H, which maximizes
the total number of arcs covered by the set.

Several mathematical programming formulations
have been proposed for the KEP (Mak-Hau 2017). For
the sake of generality, we are going to assume, here
and in the following sections, that KEP is formulated
as a 0-1 linear programming problem of the form

z(G) � max
∑N

ℓ�1
aℓxℓ, (1)

subject to x ∈ P(G), (2)

x ∈ {0,1}N, (3)

where x is a vector of binary variables of appropriate
length N that expresses what arcs, cycles, and chains
are used for transplants (the exact interpretation de-
pends on the chosen formulation). The vector of coef-
ficients a ∈ R

N reflects the lengths of the cycles and
chains, and P(G) ⊆ R

N is a feasible region defined by a
finite list of linear inequalities. (In order to simplify
the notations, we do not explicitly state the depen-
dence of z(G) and P(G) on K and L.) The generic
formulation (1)–(3) emphasizes the fact that any for-
mulation of KEP could be used for our purpose and
avoids distraction by the intricacies of such specific
formulations. In our computational experiments, we
relied on a well-known explicit formulation of KEP,
namely, the position-indexed edge (PIE) formulation
proposed by Dickerson et al. (2016). This formulation
is described in Online Appendix B.

2.3. Stochasticity in the KEP
As explained in Section 1, a solution of (1)–(3) may
turn out to be unimplementable. Indeed, a potential

transplant that has passed preliminary compatibility
tests and is part of a selected cycle or chain may not
pass the crossmatch test. In order to model this phe-
nomenon, it is customary to introduce, for each arc (i,
j), a probability pi,j that the arc passes the crossmatch
test and that the intended transplant can proceed
(Glorie 2012, 2014; Alvelos et al. 2015; Klimentova et al.
2016; Dickerson et al. 2019). Passing or not passing a
crossmatch test may depend, among other factors, on
physiological properties of the patient and the donor;
historical data can be used to provide reliable esti-
mates of the corresponding probability (Glorie 2012).
The events associated with all arcs are assumed to be
mutually independent. (A variation of this model oc-
curs when probabilities are associated with vertices,
rather than arcs. There is no fundamental distinction
and in our computational experiments, we will use
vertex probabilities. More generally, one could also
imagine a situation where probabilities are specified
for subsets of arcs to pass the corresponding cross-
match tests.)

When stochasticity is introduced, it is necessary to
specify how the results of the crossmatch tests are
used to identify the transplants to be implemented by
the exchange program. All nonadaptive strategies
share the following generic framework:

• (Selection) A subset of arcs, say T ⊆ A, is selected
for testing.

• (Testing) The arcs in T are crossmatched. Let us
call R the set of arcs in T that pass the crossmatch test,
R ⊆ T.

• (Recourse) The kidney exchange problem is solved
to optimality on the subgraph GR � (V,R).

In this framework, only the first and third steps are
algorithmic: testing is performed by the medical teams
and can be viewed as revealing the value of the ran-
dom Bernoulli variables associated with the arcs in T.
(In Blum et al. (2015) or Assadi et al. (2016), this test-
ing step is replaced by “query” instructions.) The
third step can be viewed as providing a recourse
against the outcome of the testing step, and the selec-
tion step is usually implemented to maximize the ex-
pected value of the solution provided by the recourse,
under various restrictions aimed at simplifying the
problem. We now describe three different ways of im-
plementing recourse that have been used in literature.

To start with, in Dickerson et al. (2013, 2019), the set
T is restricted to consist of a collection of pairwise dis-
joint cycles and chains. In that case, the model (1)–(3)
can be used with a suitable redefinition of the objec-
tive function coefficients to express the expected num-
ber of transplants in each cycle or chain. In this model,
the recourse stage is essentially vacuous, because only
those cycles that remain after the crossmatch test, and
fragments of chains up to the point of failure, will be
implemented. In other words, the model assumes no
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recourse. However, as convincingly demonstrated in
Pedroso (2014) and Klimentova et al. (2016), solutions
from the no-recourse model are overly conservative
and do not adequately represent the number of trans-
plants that might actually be performed when allow-
ing a limited number of additional crossmatch tests
(see Example 1).

Example 1. Consider two subgraphs of a given graph
G, say G′ � (V′,A′) and G′′ � (V′′,A′′). We say that G′
is embedded in G′′ if V′ ⊆ V′′. Figure 1 displays an ex-
ample of a two cycle (1− 3− 1) embedded in a three
cycle (1− 2− 3− 1). Assume that the three cycle is
identified by the exchange program in the selection
stage, but that arc (1, 2) subsequently fails the cross-
match test, whereas arc (3, 1) passes the test. For an
exchange program that allows recourse, it would be
possible to further test arc (1, 3), with the hope to be
able to implement the two transplants (1, 3) and (3, 1).

The previous observation led Pedroso (2014) and
Klimentova et al. (2016) to propose procedures where-
by certain types of subgraphs are selected in the first
stage, and all arcs embedded in these subgraphs are
subsequently crossmatched to provide the input for
the recourse stage. As mentioned earlier, in the United
Kingdom, the NHS has included limited recourse of
this nature (NHS 2017b, Biró et al. 2019).

More specifically, Pedroso (2014) proposes to carry
out the selection step by solving the deterministic KEP
model (1)–(3) where the binary variables xc are associ-
ated with feasible cycles with appropriately defined
cycle weights ac � w′

c, and next to apply crossmatch
tests to all arcs embedded in the selected cycles. In
case one of the arcs in a selected cycle fails the cross-
match test, recourse can be obtained by selecting an
embedded, or internal, cycle instead. This approach is
called internal recourse. For the model to be correct, the
weight w′

c is set equal to the expected optimal value of
KEP over the subgraph induced by cycle c. For small
enough cycle lengths, these weights can be efficiently
computed (Pedroso 2014).

Klimentova et al. (2016) extend the previous idea by
solving a packing model similar to (1)–(3), but with
variables that are associated with subsets of vertices
(instead of cycles) of small size; this approach is ac-
cordingly called subset recourse. More formally, the in-
teger programming model used in subset recourse

can be stated as follows. Let Ω denote the set of all
relevant subsets of vertices (for a precise definition of
relevant subsets, we refer to Klimentova et al. 2016).
Define the variables yU � 1 if the vertex subset U ∈Ω
is selected for testing, and yU � 0 otherwise. The
parameter aU � wU denotes now the expected number
of transplants that can be realized in the subgraph
induced by subset U ∈Ω. Then, the selection step of
the subset recourse model is formulated as

max
∑

U∈Ω
wUyU, (4)

subject to
∑

U:v∈U
yU ≤ 1 ∀ v ∈ V, (5)

yU ∈ {0, 1} ∀U ∈Ω: (6)

Klimentova et al. (2016) describe methods that allow
them to compute the value of wU when |U| is not too
large.

3. Selection Problem
As shown in the previous section, no-recourse, inter-
nal recourse, and subset recourse models only differ
in the limitations that they place on the subsets of ver-
tices that are considered in the selection step, and ac-
cordingly, on the coefficients used in the KEP model
(1)–(3). The choice of these limitations, however, is
rather arbitrary and may needlessly restrict the effec-
tiveness of the procedures.

Our proposal in this paper is to focus instead on the
key question, which is in our view: what subset of
arcs should be selected and subsequently tested for
crossmatch? We intend to answer this question by not
restricting ourselves to selecting either disjoint cycles
and chains, or small disjoint subsets of vertices in the
first step. Instead, we propose a model featuring al-
most no a priori restrictions on the selection step. In-
deed, the only condition we impose is an upper
bound on the number of crossmatch tests that can be
performed, and hence, on the number of arcs that can
be selected. This makes sense, because performing
crossmatch tests on all possible transplants within the
pool of a kidney exchange program, that is, testing all
arcs of A, is logistically infeasible.

This leads us to the definition of the following prob-
lem, called the selection problem. Given a directed
graph G � (V,A), we denote by S � {A1, : : : ,Am} the
collection of all subsets of arcs, arbitrarily numbered,
with m � 2|A|. We interpret each subset As ∈ S as a pos-
sible scenario, that is, as the set of arcs that pass the
crossmatch tests under some possible realization of
the random variables. (In the sequel, we will often
only use the index s to denote a scenario As, and
we will write s ∈ S instead of As ∈ S.) Thus, for each s,
the set A \As is the set of arcs that would fail the
crossmatch tests. The probability qs of occurrence of

Figure 1. Three Cycle with an Embedded Two Cycle

1

2 3
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scenario As ∈ S is computed as

qs :� ( ∏

(i, j)∈As

pi,j)(
∏

(i, j)∉As

(1− pi,j)):

Finally, as mentioned previously, we assume that we
are given an upper bound B on the number of cross-
match tests we are allowed to perform. The selection
problem is now to identify a subset of arcs T ⊆ A, with
|T| ≤ B, which maximizes the expected number of
transplants in the graph (V, T).

The selection model offers more flexibility than the
previous (no-)recourse models, in the sense that every
feasible solution of those models yields a feasible
solution of the selection problem (provided that the
number of arcs to be tested does not exceed B), but
not conversely. In fact, for a given budget on the num-
ber of arcs to be tested, it is the most flexible model.
The difference between an optimal value of the selec-
tion problem, and an optimal value of another re-
course model indicates how much is lost by restricting
the set of feasible solutions (see Example 2 for an
illustration).

Example 2. Figure 2 depicts an instance where the
presence of restrictions that are inherent to recourse
schemes has a negative impact on the expected num-
ber of transplants. Assume that the maximum cycle
length is K � 4, that no chains are allowed, and that
the success probability for each arc (i, j) is pi,j � p � 0:5.
Assume further that we use the subset recourse proce-
dure where Ω contains all subsets of size at most four.
Then, the optimal solution of (4)–(6) consists of the
subsets T1 � {a1, a2, a3,a4} and T2 � {b1,b2,b3,b4}. The
testing step requires to crossmatch all 10 arcs induced
by T1 and T2, which leads to an expected 1.0625 trans-
plants. On the other hand, the optimal solution of the
selection problem (say, with B � 10) would pick in-
stead the eight arcs (a1,a2), (a2, a3), (a3,a1), (b1,b2),
(b2,b3), (b3,b1), (a1,b1), (b1,a1) and would yield an
expected 1.1328125 transplants.

Our formulation of the selection problem is in the
same spirit as the models proposed in Blum et al.
(2013, 2015) and Assadi et al. (2016). The main differ-
ence is that these authors use local constraints on the
number of arcs tested and mostly restrict themselves
to two cycles.

In the remainder of this section, we state the com-
putational complexity of the selection problem in
Section 3.1, we provide an integer programming for-
mulation in Section 3.2, and we show in Section 3.3
how the sample average approximation technique
allows us to arrive at a tractable model.

3.1. Complexity of the Selection Problem
We consider three versions of the selection problem:
(i) the selection problem with edge probabilities
(called SPedge, see Section 3.1.1), (ii) the selection
problem with vertex probabilities (called SPvertex, see
Section 3.1.2), and (iii) the selection problem with ex-
plicit scenarios (called SPscen, see Section 3.1.3). We
state that each of these versions is NP-complete and
refer to Online Appendix A for the corresponding
proofs.

We point out that a result in Blum et al. (2013) es-
tablishes the complexity of a related problem: when
given edge probabilities and a bound on the number
of edges allowed to be incident to each node, they
show the resulting problem to be NP-hard. Our hard-
ness results apply to the restricted case of the selection
problem where the only allowable cycles are two
cycles, that is, K � 2, and where we do not allow
chains, that is, L � 0. (This is in contrast with the deter-
ministic KEP that can be solved in polynomial time
when K � 2.) This means that, in this section, we can
restrict our attention to compatibility graphs with the
property that if arc (x,y) ∈ A, then also (y,x) ∈ A. We
model this property by viewing the compatibility
graph as an undirected graph consisting of edges in-
stead of arcs. In this view, each edge stands for a two
cycle of the original directed graph, and a feasible so-
lution of KEP is a matching.

3.1.1. Selection Problem with Edge Probabilities. We
first consider the case where each individual arc in the
compatibility graph may, or may not, pass the cross-
match test. Accordingly, in the equivalent undirected
model, we assume that each undirected edge is associ-
ated with the probability that both corresponding di-
rected arcs pass the crossmatch test. Given a random
graph G � (V,E), where each edge e ∈ E has a success
probability p(e) to be present (i.e., to pass the cross-
match tests), we denote by E(G � (V,E),p) the ex-
pected size of a maximummatching on G � (V,E).

We now explicitly state the decision version of this
selection problem.

Problem: The decision version of SPedge: DecSPedge.

Figure 2. Instance of the Selection Problemwith
K � 4,p � 0:5

a1

a2 a3

a4

b1

b2 b3

b4
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Instance: A simple, undirected graph G � (V,E), a
success probability p(e) (0 ≤ p(e) ≤ 1) for each e ∈ E, and
numbers B and Z.

Question: Does there exist an edge set E∗ ⊆ E such
that |E∗| ≤ B and E((V,E∗),p) ≥ Z?

Theorem 1. DecSPedge is NP-complete.

3.1.2. Selection Problem with Vertex Probabilities. As-
sume now that each patient-donor pair (i.e., each ver-
tex) in the compatibility graph has a given probability
to be able to participate in an exchange. Then, the KEP
with vertex probabilities becomes relevant. Given a ran-
dom undirected graph G � (V,E), where each vertex
v ∈ V has a probability p(v) to be present, we denote
by E(G � (V,E),p) the expected value of a maximum
matching on G � (V,E). We now state as follows the
decision version of the selection problem with vertex
probabilities:

Problem: The decision version of SPvertex:
DecSPvertex.

Instance: A simple, undirected graph G � (V,E), a
success probability p(v), 0 ≤ p(v) ≤ 1, for each v ∈ V,
and numbers B and Z.

Question: Does there exist an edge set E∗ ⊆ E such
that |E∗| ≤ B and E((V,E∗),p) ≥ Z?

We state the following result.

Theorem 2. DecSPvertex is NP-complete.

3.1.3. Selection Problem with Explicit Scenarios. We
finally define the decision version of the selection
problem associated with a subset of scenarios. Given a
compatibility graph G � (V,E) with K � 2 and L � 0,
we denote by z(G) the optimal value of this KEP-
instance, that is, the size of a maximummatching on G.

Problem: The decision version of SPscen: DecSPscen
Instance: A simple, undirected graph G � (V,E), a

collection of t edge sets Es ⊆ E (1 ≤ s ≤ t), numbers B
and Z.

Question: Does there exist an edge set E∗ ⊆ E such
that |E∗| ≤ B and

∑t
s�1z(V,Es ∩ E∗) ≥ Z?

In the statement of DecSPscen, the edge sets
E1, : : : ,Et represent t scenarios. The last inequality in
the question implicitly assumes that all scenarios are
equally likely, that is, each scenario has a probability 1

t
of actually occurring.

We have the following statement.

Theorem 3. DecSPscen is NP-complete.

3.2. An Integer Programming Formulation of the
Selection Problem

In order to model the selection problem as a two-stage
programming problem, we introduce a first-stage bi-
nary variable βi,j for each arc (i, j) ∈ A, with the inter-
pretation that βi,j � 1 if and only if arc (i, j) is selected

to undergo a crossmatch test. For a vector b ∈ {0,1}|A|
and for a scenario As ∈ S, the set of arcs R that pass
the crossmatch tests, as introduced in Section 2.3, is
exactly R � Rs,β � {(i, j) ∈ As : βi,j � 1}: in other words,
Gs,β � (V,Rs,β) is the graph on which the recourse step
will be performed by solving a deterministic KEP
problem.

Let us denote by xs ∈ {0,1}Ns the vector of second-
stage binary variables (of appropriate dimension)
used to represent a solution to the KEP on the graph
Gs � (V,As), s ∈ S; we refer to these variables as scenar-
io variables. Then, we can extend the KEP formulation
(1)–(3) to obtain a generic two-stage integer program-
ming formulation of the selection problem:

fS �max
∑

s∈S
qs
∑Ns

ℓ�1
as,ℓxs,ℓ, (7)

subject to
∑

(i, j)∈A
βi,j ≤ B, (8)

xs ∈ P(Gs,β) ∀s ∈ S, (9)

xs ∈ {0,1}Ns ∀s ∈ S, (10)
βi,j ∈ {0, 1} ∀(i, j) ∈ A: (11)

The objective function (7) expresses the expected val-
ue of a solution of the selection problem by weighing,
for each possible scenario s, the quality of the solution
xs by the probability of occurrence of scenario s. Con-
straint (8) ensures that at most B arcs are selected for
crossmatch tests. Next, Constraints (9) link the selec-
tion of arcs to the choice of transplants to be per-
formed: namely, they ensure that a solution xs selected
for scenario s ∈ S defines a feasible set of transplants
among the arcs that have been submitted to the cross-
match tests (as defined by b) and that have passed
them successfully (as expressed by scenario s).

The exact expression of Constraints (9) depends on
the formulation adopted for KEP. It is usually easy to
model (9) by simply adding to the formulation of
P(V,As) a collection of constraints of the form

∑

ℓ∈Q(s, i, j)
xs,ℓ ≤ βi,j ∀s ∈ S, ∀(i, j) ∈ As, (12)

where the set Q(s, i, j) is an appropriate set of indices,
forcing some variables xs,ℓ to be zero when βi,j is zero.
In Online Appendix B, we explicitly state the formula-
tion of the selection problem associated with the PIE
formulation of KEP. Similar constraints can be used in
conjunction with other formulations of KEP.

3.3. Selection Problem for a Restricted Subset
of Scenarios

Computationally, the selection problem poses new
challenges when compared with the recourse models
discussed in Section 2.3. In particular, in approaches
that solve those recourse models, all relevant cycles c
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or subsets U can be explicitly generated if their sizes
are sufficiently small. Moreover, the computation of
the parameters w′

c or wU (the expected number of
transplants in a subgraph induced by a cycle c or by a
subset U) is also facilitated by the fact that the sub-
graphs under consideration are small (Pedroso 2014,
Klimentova et al. 2016). In contrast with these obser-
vations, taking into account |S| � 2|A| different scenari-
os in model (7)–(11) results in a very large number of
decision variables and of constraints.

In order to obtain a tractable model, we use the
so-called sample average approximation (SAA) tech-
nique. SAA is a popular technique that is used to
approximate an expected value function by a sample
average function, thereby alleviating the computation-
al burden involved with a huge number of scenarios
while remaining accurate. We refer to Homem-de-
Mello and Bayraksan (2014) for a survey describing
the use of SAA in many diverse situations, and we re-
fer to Kleywegt et al. (2001) for an in-depth treatment
of this approach. Applying SAA to our setting allows
us to restrict our attention to a subset of the scenarios.
More precisely, we replace, in (7)–(11), the set of sce-
narios S by the set S ⊆ S where each scenario s ∈ S is
weighted by a factor 1=|S| in the objective function.
Thus, we have constructed the following model:

fS �max
∑

s∈S

1
|S|
∑Ns

ℓ�1
as,ℓxs,ℓ, (13)

subject to
∑

(i, j)∈A
βi,j ≤ B, (14)

xs ∈ P(Gs,β) ∀s ∈ S, (15)

xs ∈ {0,1}Ns ∀s ∈ S, (16)
βi,j ∈ {0, 1} ∀(i, j) ∈ A: (17)

The model (13)–(17) is referred to as the restricted
selection problem associated with the subset S of
scenarios.

By using SAA, each scenario s ∈ S has probability qs
to be included in S; we expect E( fS) to be a good ap-
proximation of fS , at least when the number of scenar-
ios is sufficiently large. Kleywegt et al. (2001) actually
show that with probability one, when the sample size
goes to infinity, E( fS) converges to fS , and the optimal
solutions of the restricted problem (13)–(17) are opti-
mal for the complete problem (7)–(11) (see proposition
2.1 in Kleywegt et al. 2001). However, for a fixed sam-
ple size, the expected optimal value of (13)–(17) over-
estimates the true optimal value, that is, fS ≤ E( fS),
and hence E( fS) is a biased estimator (Kleywegt et al.
2001). We briefly return to this point in the discussion
of our computational experiments (Section 7).

Constraints (15) and (16) model the deterministic KEP
over the subgraph Gs,β associated with the selection b

and with scenario s. Extensive computational experi-
ments by Dickerson et al. (2016) have shown that the
continuous relaxation of position-indexed formula-
tions of the deterministic version of KEP are extreme-
ly tight in practice (the Linear Programming (LP)
bound was equal to the optimal Integer Programming
(IP) value for more than 90% of the large-scale real-
world instances that they tested). Our own prelimi-
nary experiments confirmed that most formulations
of the (deterministic) KEP have very tight linear re-
laxations. These observations suggest that replacing
the binary scenario variables (say, the generic varia-
bles xs in Formulation (7)–(11) of the selection prob-
lem) by their continuous relaxation is unlikely to
have a big impact on the arcs that are picked for test-
ing, that is, on the optimal value of the βi,j variables
(see Section 7 for an experimental assessment of
this assumption). The problem obtained on replacing
(16) by

0 ≤ xs ≤ 1 ∀s ∈ S (18)

is called the relaxed restricted selection problem.
For both the restricted and the relaxed restricted se-

lection problem, it is crucial to understand that, for ev-
ery subset of scenarios, any values of the βi,j-variables
satisfying Constraint (14) provide a feasible selection
and can be implemented as a first-stage solution of
the stochastic KEP.

4. Investigating the IP Formulation of the
Selection Problem

Let us now turn to algorithms for the solution of the se-
lection problem (over the complete set S or over an arbi-
trary subset S of scenarios: the same discussion applies
in both cases, mutatis mutandis). Because the vast majori-
ty of variables in any formulation of the selection prob-
lem are scenario variables, relaxing them decreases the
number of binary variables by an order of magnitude.
Moreover, when the scenario variables are relaxed,
Benders decomposition becomes a natural solution
approach for the resulting mixed-integer program:
indeed, after fixing the βi,j variables to either zero or
one in (7)–(11), the problem breaks down into small-
er independent subproblems, where each subprob-
lem is the linear relaxation of KEP over the subgraph
Gs,β defined by b and by a specific scenario s.

More precisely, relaxing the scenario variables in
the selection problem and using Benders decomposi-
tion, we obtain the master problem

max
∑

s∈S
qszs(b), (19)

subject to
∑

(i, j)∈A
βi,j ≤ B, (20)

βi,j ∈ {0, 1} ∀(i, j) ∈ A, (21)
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where zs(b) is the optimal value of the following sub-
problem, for each s ∈ S:

zs(b) �max
∑Ns

ℓ�1
as,ℓxs,ℓ, (22)

subject to xs ∈ P(Gs,β), (23)
0 ≤ xs,ℓ ≤ 1 ∀ ℓ � 1, : : : ,Ns: (24)

Without going into details (we refer to Rahmaniani
et al. 2017 for a discussion of Benders decomposition),
let us simply mention here that, with Constraints (12),
solving the dual problem of (22)–(24) yields valid in-
equalities of the generic form

∑

(i, j)∈As

uti,jβi,j + vt ≥ zs(b) ∀t � 1, : : : ,m, (25)

where uti,j and vt are coefficients derived from the ex-
treme points of the dual region. These inequalities can
be added to (19)–(21) to obtain the following reformu-
lation of the master problem:

max
∑

s∈S
qszs, (26)

subject to
∑

(i, j)∈A
βi,j ≤ B, (27)

∑

(i, j)∈As

uti,jβi,j + vt ≥ zs ∀t � 1, : : : ,m, ∀s ∈ S: (28)

βi,j ∈ {0, 1} ∀(i, j) ∈ A: (29)

Because there is an exponential number of constraints
(28), adding them all at once in the model is not effi-
cient. Benders decomposition approaches therefore
typically work iteratively, starting at each iteration
with a restricted master problem of the form (26)–(29),
but which only includes a subset of Constraints (28).
The value of the β variables in an (optimal) solution of
this restricted master problem is then used to formu-
late the dual of the subproblem (22)–(24) for each sce-
nario s ∈ S and to generate new valid inequalities that
can be added in the restricted master problem. In our
computational experiments, this iterative process is
automatically managed by a commercial mixed inte-
ger program (MIP) solver (CPLEX). Before handing
the model to the solver, however, we found it useful
to strengthen the formulation as explained in the next
section.

4.1. Strengthening the Formulation
In an optimal solution of the selection problem, each
selected arc must be part either of a cycle of length at
most K, or of a chain of length at most L: indeed,
only such arcs can potentially be used for transplants.
In the Benders decomposition of the problem, how-
ever, this information is lost to the master problem. In
order to palliate this weakness, we add to (7)–(11) (or to
(13)–(17)) a list of constraints that force the selected arcs

to be part of a cycle or chain. In this way, the solutions
of the restricted master problem will display more fea-
tures of optimal solutions of the full selection problem,
even in early iterations of the generation of Benders
cuts.

To achieve this goal, we rely on a formulation
related to the position-indexed edge formulation of
Dickerson et al. (2016) (see Online Appendix B).
Namely, for each vertex ℓ in the graph, a graph copy
Gℓ is created, where Gℓ is the graph G from which all
vertices i with i < ℓ have been deleted. Then, new bi-
nary variables are created and constrained in such a
way, that in graph copy i < ℓ, we choose the arc leav-
ing vertex ℓ to be in the first position in a cycle or
chain. Namely, variable φℓ

i,j,k is equal to one only if the
arc (i, j) is in the kth position of some cycle in graph
copy Gℓ, for all i, j, ℓ ∈ V, i, j ≥ ℓ, (i, j) ∈ A, and
k � 1, : : : ,K. As in Dickerson et al. (2016), the varia-
bles φℓ

i,j,k can be defined only for k ∈ K(i, j,ℓ), where the
set K(i, j, ℓ) contains those positions in which arc (i, j)
can potentially occur in a cycle of Gℓ. In particular,
K(i, j,ℓ) ⊆ {1, : : : ,K}, 1 ∈K(i, j,ℓ) only if i � ℓ, and K ∈
K(i, j,ℓ) only if j � ℓ. Similarly, we define variables ωi,j,k
to be equal to one only if the arc (i, j) is in the kth posi-
tion of some chain, for all (i, j) ∈ A, and k � 1, : : : ,L.
Here again, k can be restricted to a subset K(i, j) of fea-
sible positions, where K(i, j) ⊆ {1, : : : ,L} and 1 ∈K(i, j)
only if i is a nondirected donor.

The following constraints can now be added to en-
sure that each selected arc is part of a cycle or chain of
selected arcs:

βi,j −
∑

ℓ∈V

∑

k∈K(i, j, ℓ)
φℓ
i,j,k −

∑

k∈K(i, j)
ωi,j,k ≤ 0 ∀(i, j) ∈ A,

(30)
φℓ
i,j,k − βi,j ≤ 0 ∀ℓ ∈ V, (i, j)

∈ A, k ∈ K(i, j, ℓ), (31)

ωi,j,k − βi,j ≤ 0 ∀(i, j)
∈ A, k ∈ K(i, j), (32)

φℓ
i,j,k −

∑

(h, i)∈A:(k−1)∈K(h, i, ℓ)
φℓ
h,i,k−1 ≤ 0 ∀ ℓ ∈ V, (i, j)

∈ A, k ∈ K(i, j, ℓ), k > 1, (33)

φℓ
i,j,k −

∑

(j, h)∈A:(k+1)∈K(j, h, ℓ)
φℓ
j,h,k+1 ≤ 0 ∀ℓ ∈ V, (i, j) ∈

A : j ≠ ℓ, k ∈ K(i, j, ℓ), k < K, (34)

ωi,j,k −
∑

(h, i)∈A:(k−1)∈K(h, i)
ωh,i,k−1 ≤ 0 ∀ (i, j) ∈ A,

k ∈ K(i, j), k > 1: (35)

These constraints can be interpreted as follows. Con-
straints (30)–(32) enforce that an arc can only be
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selected if it is part of a chain or cycle, whose arcs are
also selected. Constraints (33) enforce that, if arc (i, j)
is in position k in some cycle of Gℓ, then there must be
a preceding arc in position k – 1, unless k � 1; when k
� 1, then there is no preceding arc, but the variables
φℓ
i,j,1 are constructed in such a way that i must neces-

sarily be equal to ℓ. Similarly, Constraints (34) enforce
that (i, j) must have a succeeding arc, unless j � ℓ

(which ensures that the cycle is completed). Finally,
constraints (35) enforce that if an arc (i, j) is chosen in
the kth position (k > 1) of a chain, then another arc
must be chosen in the preceding position. If k � 1,
there is no preceding position, but the variables are
constructed in such a way that the starting vertex of
the arc corresponds to a nondirected donor. In this
way, the variables ωi,j,k encode chains in the graph G.

In (30)–(35), contrary to the PIE formulation of Dick-
erson et al. (2016), we allow selected cycles and chains
to overlap, so that several in- or outgoing selected arcs
may be incident to a same vertex. This is justified by
the fact that, in the recourse step defined in Section
2.3, different cycles or chains may be chosen depend-
ing on the observed scenario.

5. Experimental Setting
In the next sections, we discuss the quality of the out-
comes of the selection model and the efficiency of the
approaches that we have tested. We start here with a
description of the experimental setting.

For our experiments, we generate kidney exchange
graphs using the random generator described in Said-
man et al. (2006). We consider three different graph
sizes, consisting, respectively, of n � 25 patient-donor
pairs, n � 50 patient-donor pairs, and n � 25 patient-
donor pairs plus one nondirected donor. For each of
the sizes 25, 50, and 25 + 1, we generate 40 graphs, di-
vided into four groups of 10 graphs, with vertex suc-
cess rates p equal to 0.8, 0.6, 0.4, and 0.2 in these four
groups, respectively. For size 50, we added a fifth set of
10 instances, where each vertex success rate is drawn
from a uniform distribution between 0.2 and 0.8, inde-
pendently for each vertex. (The assumption of equal
success probability for all vertices is common in the
KEP literature; see Alvelos et al. 2015 and Dickerson
et al. 2019). Although it may seem unrealistic, there is
an ethical argument for postulating equal probabilities.
Dickerson et al. (2019), for instance, explicitly argue that
equal failure probabilities are useful to protect more
vulnerable patients. On the other hand, the so-called
heterogeneous instances, with different success probabili-
ties for all vertices, provide insight into the possible
gains in the number of expected transplants, when suc-
cess rates within the population can differ significantly.)

The previous graphs form the basis for all instan-
ces.1 Moreover, in each instance, we limit the cycle

length K to two, three, or four, and we limit the maxi-
mum chain length L to either zero or three (because
these are the most common lengths in real-life kidney
exchanges). To complete the instances, we still must
specify the upper bound B on the number of selected
arcs. In order to ensure a fair comparison with re-
course approaches from literature, we set B equal to
the number of arcs selected in a solution found by one
of the recourse models (either subset, or internal, or
no recourse model, depending on the experiment) on
the same graph for a similar configuration. Finally, all
instances feature either |S| � 50, 100, 250, or 500
random scenarios in Formulation (13)–(17) of the re-
stricted selection problem. To be able to compare the
solution quality and the computation times of the dif-
ferent algorithmic approaches, each approach uses the
exact same scenario set S.

We solve the restricted selection problem using the
PIE formulation (Online Appendix B) by the following
four solution approaches:

1. BC-IP: Solve the restricted selection IP problem
(13)–(17) using the standard CPLEX branch-and-cut
solver.

2. BC-MIP: Solve the relaxed restricted MIP selec-
tion problem (13)–(15), (17), and (18) using the stan-
dard CPLEX branch-and-cut solver.

3. BD-MIP: Solve the relaxed restricted selection
MIP problem (13)–(15), (17), and (18) by Benders
decomposition.

4. BD-MIP+: Solve the relaxed restricted selection
MIP problem (13)–(15), (17), and (18), augmented by
Constraints (30)–(35), by Benders decomposition.

For each solution approach, the corresponding
model is solved using CPLEX 12.8, called through the
Concert API. For the two Benders-based approaches,
we rely on CPLEX’s built-in Benders functionality. All
instances were run with a time limit of two hours on
four SandyBridge 2.6-GHz CPUs with 8 GB of memory.

Notice that BC-IP attempts to solve the IP formula-
tion of the problem, whereas BC-MIP, BD-MIP, and
BD-MIP+ are solution approaches for different MIP
relaxations of the problem. Yet a common feature of
solutions of each of these approaches is that they se-
lect a set of arcs, namely the set of arcs (i, j) for which
βi,j � 1 in the respective formulation, and hence, they
yield a feasible solution b of the selection problem. In
the sequel, when we use the word “solution,” we ac-
tually refer to this set of arcs. In case an instance was
not completely solved within two hours, the best in-
cumbent solution was evaluated (see Section 8 for
more details about the instances solved).

To assess the quality of a solution b obtained by any
method, we must evaluate the (true) expected number
of transplants associated with b. (Observe that the ob-
jective function value of the model is not exactly equal
to the expected number of transplants, in view of the
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reliance of SAA on restricted subsets of scenarios, and
of our use of linearly relaxed formulations.) These
evaluations were performed by extensive ex post
computations, in one of two ways. For some of the in-
stances, the expected number of transplants was com-
puted by a modified version of the algorithm used by
Klimentova et al. (2016) for the evaluation of subsets.
This procedure allows us to evaluate exactly (ex post)
the quality of a solution b. However, because of the
presence of large connected components in the graphs
that need to be evaluated, this procedure sometimes
turned out to be computationally costly. Therefore, for
most instances, the solution was evaluated by a Monte
Carlo procedure. Namely, given the selection solution
b for these instances, we generated a large number of
random scenarios, and we used these scenarios to
compute an estimate of the expected number of
transplants.

6. Outcomes of the Selection Model vs.
Other Approaches

In this section, we compare the quality of the solutions
of the selection model found by our approaches, with
the quality of the solutions delivered by internal re-
course, subset recourse, and no recourse (see Section
2.3 for their description). In Section 6.1, we investigate
results compared with recourse approaches in the lit-
erature, whereas Section 6.2 discusses the no-recourse
failure aware matching. In Section 6.3 we investigate
the scaling of our observations to larger datasets.

6.1. Recourse Approaches
In this section, we compare the outcomes of the selec-
tion model with the outcomes found by the recourse
approaches, namely, internal recourse (IR) and subset
recourse (SR). Table 1 gives the expected number of
transplants found by IR and by SR, together with the
expected number of transplants found by solving the
corresponding selection problem. For the selection
problem, we report on the results obtained by
BD-MIP on the relaxed restricted formulation (all
methods actually provide very similar results for
these instances of the selection problem, as we will see
in the next sections). In particular, Table 1 displays the
results for instances with N � 25,K � 3,L � 0, with
N � 25,K � 4,L � 0, and with n � 25 + 1 (directed do-
nor), K � 3,L � 3. The entries in the columns called IR,
SR, and the corresponding column Selection give the
average number of transplants realized by the corre-
sponding approach (recall that each entry is an aver-
age over 10 instances). The column labeled % Increase
displays the improvement provided by the selection
model over the corresponding recourse model. The
number of allowed crossmatch tests (given in the col-
umns called B) is the number of arcs tested in the

outcome of the solution found using internal or subset
recourse. Indeed, recall that this number of tests is not
a priori bounded in a recourse approach, while it
must be when formulating the selection problem.
Hence, in order to allow for a fair comparison of the
outcomes, we opted to set B equal, in each instance, to
the number of arcs used in the solution computed by
the recourse approach under consideration.

Let us now discuss the results displayed in Table 1.
Of course, for each of the approaches we find that the
larger p, the higher the number of expected trans-
plants. More importantly, we conclude from the
results that solutions found by the selection model
dominate the solutions found by the recourse ap-
proaches for all values of p. In fact, as the value of p
becomes smaller, the improvement in quality of the
solutions found by the selection model gets larger. Es-
pecially compared with internal recourse, the selec-
tion model brings significant improvements, ranging
up to 12%, at low vertex success probabilities. A closer
look at the solutions suggests that this is mostly
because of the inability of internal recourse to use
overlapping two cycles, which, at low success rates,
provide many more expected transplants per tested
arc than longer cycles.

6.2. No Recourse
A key factor in explaining the improvements of the
selection model over the outcome of recourse ap-
proaches lies in the number of tests used by the selec-
tion model. Indeed, when we compare the selection
model with the no recourse setting (NR), the quality
of the solutions obtained by these approaches is found
to be quite similar, as shown in Table 2. This is be-
cause of the relatively small number of arcs that the

Table 1. Comparison of the Expected Number of
Transplants Between (i) Internal Recourse (IR) and
Selection and (ii) Subset Recourse (SR) and Selection (BD-
MIP, 500 Scenarios)

p IR Selection % Increase B SR Selection % Increase B

N � 25,K � 3,L � 0

0.8 6.12 6.14 0.3% 12.5 6.78 6.91 1.9% 19.1
0.6 3.90 4.02 3.1% 14.6 4.60 4.64 0.9% 22.5
0.4 1.83 1.94 6.0% 14.7 2.32 2.39 3.0% 22.9
0.2 0.45 0.50 11.1% 14.5 0.65 0.69 6.2% 22.9

N � 25,K � 4,L � 0

0.8 6.69 6.91 3.3% 16.5 6.99 7.08 1.3% 19.5
0.6 4.27 4.47 4.7% 19.8 4.62 4.68 1.3% 22.3
0.4 2.14 2.31 7.9% 20.8 2.33 2.38 2.1% 22.6
0.2 0.56 0.63 12.5% 19.8 0.65 0.69 6.2% 23.1

N � 25+ 1,K � 3,L � 3

0.8 7.52 7.66 1.9% 16.1 8.16 8.30 1.7% 23.0
0.6 4.89 5.13 4.9% 19.6 5.73 5.82 1.6% 28.3
0.4 1.88 2.05 9.0% 16.0 2.41 2.46 2.1% 23.5
0.2 0.53 0.59 11.3% 17.1 0.70 0.72 2.9% 25.3
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no-recourse approach uses, leading to small values of
B that prohibit the selection problem from finding
better solutions (compare the value of B in Tables 1
and 2). In these unnecessarily constrained cases, ran-
domness in the scenario set may even lead the selec-
tion model to select some overlapping two cycles,
which are inferior to nonoverlapping two cycles cho-
sen by the no-recourse model.

6.3. Larger Data Sets
The scaling of the selection method to larger data sets
is an important consideration. The two main questions
are whether the improvement over the recourse ap-
proaches carries over to larger data sets and whether
the selection model can be solved for larger data sets.
The two questions are clearly linked, because optimal
solutions must be found in order to evaluate the full
potential of the selection model. For 50 patient-donor
pairs, as we will discuss in Section 8.4, we cannot
solve all instances to optimality within eight hours.
However, evaluating the best solutions found within
the time limit suggests a positive answer to the first
question. For example, in Table 3, we compare the
best solutions found by the selection method against
those found by subset recourse. The last column of the
table shows the average optimality gap for the selec-
tion model after eight hours of computing time. For
all classes of instances, the conclusions drawn for
smaller instances still apply, and the solutions of the
selection model dominate those obtained by subset re-
course, although many instances have not been solved
to optimality for the selection model. The improve-
ment over subset recourse is especially marked for in-
stances with p � 0.2, but also for heterogeneous
instances.

These results suggest that also for larger pool sizes,
the selection model can increase the expected number of
transplants, despite the difficulty of solving the model.

7. Impact of Restricted and Relaxed
Formulations

In this section, we investigate the impact on the quali-
ty of a solution when (i) we restrict the number of sce-
narios and (ii) we relax the integrality of the scenario
variables

In Section 3.3, we introduced the SAA restricted se-
lection problem, where we limit ourselves to a subset
S of all possible scenarios; the resulting problem is
solved by approach BC-IP. Next, we suggested the re-
laxed restricted selection problem, which arises when
we relax the integrality of the scenario variables and
we can use in the three solution approaches BC-MIP,
BD-MIP, and BD-MIP+. Both the restriction and the
relaxation of the original selection problem presum-
ably simplify the computational problem but may re-
sult in solutions of lower quality compared with the
optimum fS . Recall that the quality of a solution is
measured by the expected number of transplants that
can be realized in a graph that has as an arc-set those
arcs (i) that are selected and (ii) that pass the crossmatch
test as specified by given probabilities. Optimizing over
a restricted subset of scenarios may lead to overfitting,
that is, to the selection of (combinations of) arcs that are
disproportionately successful in the chosen scenarios
compared with the full range of scenarios. On the other
hand, relaxing the scenario variables may entail the se-
lection of arcs for which good fractional KEP solutions
exist for all scenarios but no good integer solution.

Table 4 reports the results obtained on graphs with
n � 25 patient-donor pairs and various values of
p, |S|,K,L.

Each entry provides an estimate (averaged over 10
instances) of the expected number of transplants asso-
ciated with the optimal solution obtained by the ap-
proach indicated in the column header (either BC-IP
or BD-MIP+).

7.1. Restricting the Number of Scenarios
From Table 4, we see that the effect of varying the
number of scenarios depends mostly on the success

Table 2. Comparison of the Expected Number of
Transplants Between No Recourse and Selection (BD-MIP,
500 Scenarios)

p No recourse Selection % Increase B

N � 25,K � 3,L � 0

0.8 5.55 5.56 0.2% 10.0
0.6 3.16 3.16 0.0% 8.9
0.4 1.52 1.52 0.0% 9.7
0.2 0.35 0.33 −5.3% 8.9

N � 25,K � 4,L � 0

0.8 5.63 5.76 2.3% 10.7
0.6 3.16 3.16 0.0% 8.9
0.4 1.52 1.52 0.0% 9.7
0.2 0.35 0.33 −5.3% 8.9

N � 25+ 1,K � 3,L � 3

0.8 6.75 6.74 −0.1% 11.9
0.6 4.00 4.00 0.0% 11.8
0.4 1.49 1.53 2.7% 10.1
0.2 0.37 0.41 10.8% 10.8

Table 3. Comparison of Expected Number of Transplants
Between Subset Recourse and Selection (BD-MIP+, N � 50,
K � 3,L � 0, 500 Scenarios, Eight-Hour Time Limit)

p SR Selection % Increase B Optimality gap

0.8 17.76 17.93 0.95% 52.6 2.6%
0.6 11.72 11.75 0.31% 56.5 5.0%
0.4 6.08 6.09 0.18% 59.6 5.8%
0.2 1.75 1.85 5.81% 60.2 0%
Heterogeneous 8.32 8.73 4.89% 54.0 3.7%
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rate and to a lesser extent on the maximum cycle/
chain length. When K � 2 or when p � 0.8, the number
of scenarios used hardly affects the quality of the solu-
tion. However, for K � 3 and L � 0, enlarging the
number of scenarios from 50 to 500 increases the num-
ber of expected transplants of the (near-)optimal solu-
tion by less than 1% for the instances with 80% success
rate, whereas it increases the solution quality by 17%
for the instances with 20% success rate. Therefore, it
appears that for smaller success rates and for larger
values of K and L that increasing the number of sce-
narios matters. The influence of the success rate is fur-
ther illustrated by the difference between the objective
value of the restricted selection problem (i.e., the ex-
pected number of transplants estimated over a limited
subset S of scenarios), and the ex post evaluation over
a much larger set. For instances with K � 3 and L � 0,
50 scenarios, and 20% success rate, the accurate ex
post evaluation of the objective value of the restricted
selection problem (BC-IP) equals 0.59 (Table 4). How-
ever, the objective function value given by the optimal
solution of BC-IP (again averaged over 10 instances)
equals 0.82 (this value is not shown in Table 4), which
is an overestimation of 44%. By comparison, for in-
stances with K � 3, L � 0, 50 scenarios, and 80% suc-
cess rate, the average objective function value is 7.04,
an overestimation of only 3% over the more accurate
value 6.85.

7.2. Relaxing the Scenario Variables
The impact of relaxing the scenario variables can be
measured by the difference between each value in col-
umn IP and the corresponding value in column MIP
in Table 4. The results clearly show that relaxing the
scenario variables has little to no influence on the
quality of solutions for any set of values we consider

for K and L. This is fully coherent with the observa-
tions of Dickerson et al. (2016), which motivated the
consideration of the relaxed model, as discussed in
Section 3.3.

We point out that, although instances of the KEP
with K � 2,L � 0 are solvable in polynomial time, the
LP-relaxations of the corresponding formulations
need not be integral, and it is therefore not guaranteed
that the values in columns IP and MIP are close. How-
ever, Table 4 shows that, in general, the value of the
solution found by solving the MIP relaxation lies quite
close to the value of the solution of the IP formulation.
This suggests the relaxation does not come at the cost
of solution quality.

8. Computational Efficiency
In this section, we focus on the computational efficien-
cy of different solution approaches, and we investigate
how computing times depend on various parameters.

In a first experiment, we compare all four solution
approaches on graphs of size 25, with maximum cycle
length 3 and no chains (Section 8.1). In a second exper-
iment, we investigate the impact of the maximum cy-
cle length, by comparing the computation times for
cycle lengths 2, 3, and 4 on the same graphs (Section
8.2). In a third set of experiments, we allow the use of
chains in graphs of size 25 + 1 (Section 8.3). Finally,
we report on our experience with larger graphs in
Section 8.4.

8.1. Comparison of the Running Times of the
Solution Approaches

In this first experiment, we ran all instances with each
solution method (BC-IP, BC-MIP, BD-MIP, BD-MIP+)
for cycle length K � 3.

Table 4. Estimate of the Expected Number of Transplants (Average over 10 Instances), N � 25

p |S|
K � 2,L � 0 K � 3,L � 0 K � 4,L � 0 K � 3,L � 3

BC-IP BD-MIP+ BC-IP BD-MIP+ BC-IP BD-MIP+ BC-IP BD-MIP+
0.8 50 5.37 5.37 6.85 6.80 7.08 7.08 8.21 8.27

100 5.38 5.38 6.88 6.88 7.16 7.06 8.29 8.28
250 5.38 5.36 6.90 6.87 7.17 7.08 8.26 8.31
500 5.38 5.38 6.91 6.91 7.14 7.08 8.31 8.30

0.6 50 4.06 4.06 4.54 4.55 4.52 4.49 5.74 5.73
100 4.07 4.06 4.57 4.58 4.58 4.58 5.78 5.78
250 4.07 4.07 4.62 4.63 4.65 4.65 5.79 5.82
500 4.08 4.08 4.64 4.64 4.67 4.68 5.85 5.82

0.4 50 2.19 2.19 2.27 2.28 2.23 2.25 2.30 2.28
100 2.21 2.21 2.32 2.33 2.31 2.31 2.39 2.39
250 2.21 2.21 2.38 2.38 2.37 2.36 2.44 2.43
500 2.22 2.22 2.39 2.39 2.38 2.38 2.46 2.46

0.2 50 0.61 0.61 0.59 0.56 0.55 0.54 0.56 0.60
100 0.63 0.63 0.64 0.64 0.63 0.63 0.67 0.67
250 0.63 0.63 0.68 0.68 0.68 0.69 0.71 0.71
500 0.64 0.64 0.69 0.69 0.69 0.69 0.72 0.72
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It appears from the results in Table 5 that BD-MIP+
(relaxing the scenario variables, applying Benders de-
composition and using Constraints (30)–(35)) general-
ly leads to the lowest computation times, especially
for harder instances involving a large number of sce-
narios or a large success probability. For small num-
bers of scenarios, we also note the good performance
of BC-IP (somewhat surprisingly, in most cases, this
approach is actually more efficient than its mixed-
integer relaxed counterpart BC-MIP). However, as al-
ready mentioned in Section 7, we point out that the
quality of the solutions decreases significantly with
the number of scenarios. Standard Benders decompo-
sition (BD-MIP) does not perform well except on the
instances with low success rate. In fact, BD-MIP is
generally even slower than BC-IP. On the other hand,
adding Constraints (30)–(35) in BD-MIP+ has a very
strong, positive impact on the computation time.

8.2. Impact of Cycle Length
In our second set of experiments, we solve the
(relaxed) restricted selection problem for different
values of K, that is, for different maximum cycle
lengths. Average computation times of the two solu-
tion approaches BC-IP and BD-MIP+ are displayed
in Table 6, with the shortest times in boldface for
each combination of instance type and solution
method.

From the results in Table 6, we see that the maxi-
mum cycle length has a strong influence on the total
computation time. Especially in the instances with
high success rates, computation times increase sharply
with the cycle length. The results also mostly confirm
the trend observed in Section 8.1, with BD-MIP+

performing better than BC-IP for the harder instances.
Interestingly, however, BC-IP remains a competitive
alternative when the number of scenarios is not too
large.

8.3. Impact of Chains
In our third set of experiments, we investigate the
impact of the presence of nondirected donors (there-
by allowing chains) on the computation times. To
set the upper bound on the number of selected arcs,
we run subset recourse (see Section 2.3) on a modi-
fied version of the graph (because subset recourse
was not originally developed to handle chains):
namely, for each vertex associated with a patient-
donor pair, we add an arc with weight 0 from that
vertex to the vertex representing the nondirected do-
nor (referred to as the NDD vertex). We furthermore
allow cycles of different lengths if they start from
the NDD vertex.

Table 7 shows that the presence of nondirected do-
nors has a significant impact on computation times.
Without a nondirected donor, most instances with cy-
cle length 3 and 80% success rate are solved within
two hours, even with 500 scenarios. In contrast, the
addition of a single nondirected donor results in
many instances that could not be solved for the harder
configurations. When using BD-MIP+, 8 of 20 instan-
ces with 500 scenarios fail to finish within the time
limit for the instances with 80% and 60% success
rates; this happens for 5 of 20 instances when deal-
ing with 250 scenarios. The density of the graph, and
as a consequence, the upper bound on the number of

Table 5. Average Computation Times (in Seconds) over 10
Instances for Each Solution Method, N � 25,K � 3,L � 0

p |S| BC-IP BC-MIP BD-MIP BD-MIP+
0.8 50 15 22 518 33

100 23 23 510 18
250 149 314 1,124 91
500 812* 813* 1,758* 232

0.6 50 12 13 14 8
100 14 16 18 41
250 37 48 761 45
500 154 156 1,073 58

0.4 50 11 14 14 10
100 11 12 12 13
250 19 21 42 37
500 31 31 172 36

0.2 50 1.6 4.8 3.0 3.6
100 2.8 8.4 5.8 5.3
250 10 10 8.6 7.4
500 13 17 10 9.2

Notes. Each asterisk refers to one instance (out of 10) that did not
finish within two hours. In such cases, unfinished instances are
counted as taking 7,200 seconds.

Table 6. Average Computation Times (in Seconds) over 10
Instances for N � 25,K ∈ {2, 3, 4},L � 0

p |S|
K � 2,L � 0 K � 3,L � 0 K � 4,L � 0

BC-IP BD-MIP+ BC-IP BD-MIP+ BC-IP BD-MIP+
0.8 50 3.3 0.2 15 33 153 117

100 3.6 0.9 23 18 401 181
250 3.9 3.4 149 91 1,156* 730
500 13 9.0 812* 232 2,149* 1,025*

0.6 50 3.0 0.2 12 8.3 29 132
100 5.0 1.6 14 41 40 52
250 6.5 8.1 37 45 266 228
500 7.6 25 154 58 1,502 936

0.4 50 3.6 2.9 11 10 15 20
100 6.1 2.6 11 13 12 15
250 7.3 9.4 19 37 46 121
500 8.4 11 31 37 115 71

0.2 50 1.1 0.1 1.6 3.6 2.2 3.9
100 4.1 0.0 2.8 5.3 5.6 7.0
250 8.3 2.3 10 7.4 11 14
500 11 3.8 13 9.2 17 14

Notes. Each asterisk refers to one instance (out of 10) that did not
finish within two hours. In such cases, unfinished instances are
counted as taking 7,200 seconds.
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selected arcs derived from the subset recourse
solution do play an important role. Although 4 of 10
instances with 80% success rate and 500 scenarios
failed to finish in two hours, 3 of these instances
finished in under 20 seconds. These two groups of
instances contain 182 and 122 arcs on average, re-
spectively. The difficulty of the instances with 60%
success rate is also apparently increasing with the
density of the graphs.

Comparing the different solution approaches, we
observe that BD-MIP and BD-MIP+ consistently out-
perform BC-IP for the harder instances with high suc-
cess rates. For the easier instances, results are more
mixed. Unlike in the case of cycle-only instances,
BD-MIP is competitive with the other approaches.

8.4. Larger Datasets
We shortly comment on our computational experience
with graphs of size 50. Instances of this size often
prove too large to solve within the time limit, or with-
out running out of memory, by any approach. Table
8 displays the results obtained in 8 hours of computing
time with BC-IP and with BD-MIP+. For 80% success
rate and 50 scenarios, BD-MIP+ solves 7 of 10 instan-
ces to optimality within the time limit, but this ratio
falls to 4 of 10 for 500 scenarios. BC-IP performs slight-
ly worse on these instances. For all other classes of in-
stances, results are more mixed. The efficiency of the
algorithms clearly decreases when the number of sce-
narios increases. Nevertheless, we are able to solve to
optimality (by either method) all instances with 20%
success rate and 100 scenarios; even with 500

scenarios, 9 of 10 instances are solved to optimality.
We finally note that both methods obtain solutions of
similar quality. BD-MIP+ is more memory intensive,
whereas BC-IP only fails to solve to optimality because
of the time limit, and BD-MIP+ is prone to running
out of memory.

9. Conclusions
Selecting the right patient-donor pairs for crossmatch-
ing in kidney exchange programs is an important and
challenging problem. In this paper, we introduced a
new model for the optimization of kidney exchanges
under stochastic failures. We formulated the resulting
problem as a two-stage stochastic optimization prob-
lem. In terms of the expected number of transplants,
our model compares favorably with recourse models
in the literature. Hence, institutions that are responsi-
ble for running a kidney exchange program can be
supported by outcomes of the selection model when
deciding on crossmatch tests. This two-stage formula-
tion also allows for flexibility in the testing strategy.
Although we have only chosen to impose a global
bound on the number of tests in the first stage, one
can also envision testing constraints per donor and re-
cipient, differentiation between types of donor-patient
pairs, and so on.

Furthermore, we experimented extensively with
different implementations of the model and with dif-
ferent algorithms for solving it. From our experi-
ments, it appears that Benders decomposition applied
to a strengthened formulation tends to run faster than
the other implementations, although simply running
CPLEX’s standard branch-and-cut algorithm provides
competitive results. In both cases, increasing the maxi-
mum cycle length, as well as allowing chains, has a
strong negative impact on the running times.

In summary, the selection model is able to yield ex-
change plans with a higher expected number of trans-
plants than earlier recourse models and provides an
attractive opportunity for the optimization of kidney
exchange programs. However, solving this problem
to optimality remains a computational challenge. Fur-
ther research will be needed to develop more efficient
exact or heuristic procedures for its solution.

Table 7. Average Computation Time for Different Solution
Methods over 10 Instances, N � 25 + 1 Nondirected Donor,
K � 3,L � 3

p |S| BC-IP BD-MIP BD-MIP+
0.8 50 106 69 57

100 196 285 122
250 (9) 2,389 (9) 1,886 (9) 1,748
500 (4) 4,385 (7) 3,283 (6) 3,296

0.6 50 1,034 1138 774
100 (7) 2,621 2,080 (7) 2,976
250 (4) 4,354 (8) 3,379 (6) 3,853
500 (4) 4,409 (4) 4,756 (6) 4,059

0.4 50 9.6 17.8 28.1
100 14 20 21
250 451 438 742
500 785 739 781

0.2 50 1.3 1.0 0.3
100 1.1 1.1 2.4
250 12 9.5 8.4
500 16 13 11

Notes. Numbers in parentheses indicate the number of instances
completed in under two hours. Unfinished instances are counted as
taking 7,200 seconds.

Table 8. Instances Solved to Optimality in Under Eight
Hours by Success Rate and Number of Scenarios (N � 50)

p |S|
BC-IP BD-MIP+

50 100 250 500 50 100 250 500

0.8 6 5 2 1 7 5 6 4
0.6 8 3 3 2 6 5 5 1
0.4 9 8 4 2 7 5 2 2
0.2 10 10 10 9 10 10 9 9
Heterogeneous 7 6 5 4 5 8 9 5
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