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A shootout is a popular mechanism to identify a winner of a match between two teams. It consists
of rounds in which each team gets, sequentially, an opportunity to score a point. It has been shown
empirically that shooting first or shooting second in a round has an impact on the scoring probability.
This raises a fairness question: is it possible to specify a sequence such that identical teams have equal
chance of winning? We show that, for a sudden death, no repetitive sequence can be fair. In addition, we
show that the so-called Prohuet–Thue–Morse sequence is not fair. There is, however, an algorithm that
outputs a fair sequence whenever one exists. We also analyze the popular best-of-k shootouts and show
that no fair sequence exists in this situation. In addition, we find explicit expressions for the degree of
unfairness in a best-of-k shootout; this allows sports administrators to asses the effect of the length of the
shootout on the degree of unfairness.
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1. Introduction

We consider the following situation. Two teams, called A and B, play a match. To decide upon a winner
of an otherwise tied game, a so-called shootout takes place. The shootout has two phases. Phase 1
consists of k rounds, and in every round each of the teams shoots once (what it means to shoot, depends
on the particular sport). Shooting leads either to success (scoring) or to failure (missing). The team that
has the most successes after Phase 1 (which we call a best-of-k) wins the match. If both teams have
the same number of successes, the shootout continues with Phase 2 (which we call sudden death). This
phase consists of individual rounds and ends only when in a particular round one team scores and the
other does not.

Many popular sports use shootouts to identify a winner, though the setup can differ per sport. For
example, in football, FIFA rules FIFARules prescribe that in each round the same team shoots first both
in Phase 1 as well as in Phase 2. The resulting sequence is denoted as AB/AB/AB/AB/AB||(AB)∞,
where the symbol ‘||’ is used to separate Phase 1 from Phase 2 and ‘/’ is used to separate the
rounds. This sequence is called the penalty sequence. Another example of a shootout is the tiebreaker
in tennis - the serving player can be seen as the team shooting a penalty in football. The rules
of the tiebreak (see ITFRules) stipulate that Phase 1 is a best-of-6, with the first serving player
alternating in each round, while in Phase 2 the first serving player also alternates in each round:
AB/BA/AB/BA/AB/BA||(AB/BA)∞; this sequence is called the ABBA sequence. Other sports using
shootouts are field hockey, ice hockey, rugby and water polo.

In a seminal paper by Apesteguia & Palacios-Huerta (2010), the penalty sequence used in football is
shown to give an advantage to the team that starts, Team A. This is generally explained by the pressure of
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lagging behind exercised on the second shooting team B, resulting in a so-called First Mover Advantage
(FMA). Indeed, the consecutive nature of the two penalties in a round gives an asymmetry between the
first shooting team and the second shooting team. Thus, even when the two teams are equally strong,
i.e. even when their probabilities of scoring are the same in all situations, their chances of winning
the match may differ. This difference in win probabilities depends on the particular sequence of the
shootout. In this note we investigate the existence of so-called fair sequences, both for the best-of-k and
for the sudden death.

1.1 Related literature

Wright (2014) gives an overview of rules in various sports that affect fairness, see also Kendall &
Lenten (2017) and Haigh (2009). The subject of shootouts, and the possible presence of FMA in football
shootouts, is heavily debated in the literature. Since the work of Apesteguia & Palacios-Huerta (2010),
the presence of a FMA has been confirmed in Palacios-Huerta (2014), Anbarci et al. (2015), Vandebroek
et al. (2018) and Rudi et al. (2019), while it has not been found in Kocher et al. (2012) and Arrondel
et al. (2019). We quote Csató (2020): ‘To summarize, while the empirical evidence remains somewhat
controversial, it seems probable that the team kicking the first penalty enjoys an advantage’.

Even for those that doubt the existence of an FMA in football, it is well established that
psychological factors have an impact on the probability of scoring. This is shown by Jordet et al. (2007)
and Arrondel et al. (2019). In the latter study, they identify three different situations (called ‘survival’,
‘catch-up’ and ‘break point’), which are shown to have different impacts on the scoring probability.

Different models have been proposed to capture the FMA. A frequently used model explains the
existence of an FMA by using a probability to score when trailing and a probability to score when
not trailing (see the Appendix of Apesteguia & Palacios-Huerta, 2010). They derive corresponding
win probabilities, and Vandebroek et al. (2018) show that within this model, when using the penalty
sequence, the FMA is irrespective of the length of the shootout. Csató (2020) derives win probabilities
for various (dynamic) sequences within this model (see also Csató & Petróczy, 2020 for a more
comprehensive analysis).

Brams & Ismail (2018) specifically focus on fairness in shootouts. While accepting the existence of
an FMA, they propose and analyze rules where the first shooting team in a round is determined by the
outcomes of previous rounds. Among such dynamic sequences are the Catch Up Rule and the Behind
First Alternating Order Rule (see also Anbarci et al., 2015; Csató, 2020; Csató & Petróczy, 2020, for
analyses of dynamic sequences).

It is interesting to note that other sports than football, have other scoring probabilities. For instance,
the probability of scoring a penalty in ice hockey equals around 33% (see Kolev et al., 2015). Here, as
missing a penalty is the expected outcome, the pressure moves to the goalie; one can view the goalie in
ice hockey as the one taking the penalty; the goalie ‘scores’ when the goalie stops the penalty. In line
with the existence of an FMA, Kolev et al. (2015) claim there is advantage in shooting second.

A popular sequence in the scientific literature is the so-called Prohuet–Thue–Morse (PTM)
sequence. This sequence has many applications in various branches of science, see Allouche &
Shallit (1999) for a rigorous analysis. In shootouts, it has been studied in Brams & Taylor (1999),
Palacios-Huerta (2012), Rudi et al. (2019) and Cohen-Zada et al. (2018).

1.2 Our contribution

We analyze a shootout with a prescribed format, i.e. we do not allow the sequence to depend on outcomes
during the shootout. Teams A and B have the same scoring probabilities in the same situation, i.e. teams
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A and B are equally strong; these scoring probabilities remain constant during the shootout. Following
literature (see, e.g. Brams & Ismail, 2018), we define the concept of a fair sequence in Section 2. We
present the following results in this note:

• for sudden death, no sequence that is a repetition of any finite sequence is fair (Section 3.2.1);

• the PTM sequence is unfair (Section 3.2.2);

• we give an algorithm that outputs a fair sequence for sudden death (Section 3.3);

• for best-of-k, we show how to find least unfair sequences (Section 4.2); and

• we empirically compute these least unfair sequences for relevant values for p and q when k = 5,
and for different values of k when p = 3

4 and q = 2
3 (Sections 4.3 and 4.4).

We conclude in Section 5.

2. Preliminaries

As sketched in Section 1, a shootout between teams A and B consists of a best-of-k, followed by a
sudden death. Each of these two phases consists of rounds, and every round has one of the two teams
shooting first. The problem is to specify, prior to the start of the shootout, for each of the upcoming
rounds both in the best-of-k, as well as in the sudden death, which team will shoot first; a specification
for the sudden death will be referred to as a sequence, and as a finite sequence if it is only a specification
for a finite number of rounds. For instance, Phase 1 of the penalty sequence can be represented by the
finite sequence AAAAA, while Phase 2 of the ABBA sequence can be represented by the sequence
ABAB · · · .

Throughout this note we assume Team A and Team B are equally strong. We say a team wins a
round, if it scores in that round while the other team does not. If neither of the teams wins the round,
the round is tied. The phenomenon of the first shooting team having higher probability of winning the
round than the second, is called the First Mover Advantage (FMA).

To model the sudden death, we introduce the probabilities P = {P+, P−, P±}, where P+ (P−) equals
the probability that the first (second) shooting team wins the round, and where P± equals the probability
of a tie. This set satisfies P+ + P− + P± = 1. The FMA is then defined as λ = P+ − P−.

The length of a finite sequence is the number of rounds for which the sequence specifies the first
shooting team. We denote the set of finite sequences of length n by Sn. We say that a sequence S
is repetitive if it consists of the concatenation of a finite sequence Sn ∈ Sn, i.e. S = SnSnSn · · · . A
sequence S may or may not be a repetitive, in any case, it should specify for all rounds r ∈ N which
team shoots first. For a given sequence, we define the concept of being fair in the following way.

Definition 2.1 Let teams A and B be equally strong. Given P , a sequence S is called fair, if:

P(Team A wins) = P(Team B wins). (1)

If S is not fair, it is unfair.

We will now investigate the existence of fair sequences for sudden death in Section 3 and for best-
of-k in Section 4.
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3. Sudden death

In this section, we consider sequences that specify the first shooting team in the sudden death phase
of the shootout. We introduce the characteristic polynomial of a sequence in Section 3.1. Next, we
show in Section 3.2 that, when P± ∈ Q, no repetitive sequence is fair. We also show that the so-called
Prohuet-Thue-Morse sequence is unfair for all P+ > P−. In Section 3.3, we introduce an algorithm that
for a given P , returns a fair sudden death sequence if it exists.

3.1 The characteristic polynomial of a sequence

In a sudden death shootout, starting each round, the score is a draw—if one team gains an advantage by
winning a round, that team wins the sudden death and the game is over. Thus, for a team to win Round
r, the first r − 1 rounds resulted in a draw. This leads to the following observation:

P(Team A wins) =
∞∑

r=1

P(r − 1 rounds drawn)P(Team A wins round r),

P(Team B wins) =
∞∑

r=1

P(r − 1 rounds drawn)P(Team B wins round r).

The probability for team A to win in a certain Round r, depends on who shoots first in that round.
We take I to be the index set of all rounds in which A is allowed to shoot first. In the popular
AAAA-series, this means I = N, while in the ABBA-series, this would mean I = {1, 3, 5, . . . }. Of
course, in the remaining rounds I = N \ I, team B shoots first.

Recall that P+, P− are the probabilities that the first respectively second shooting team wins a round,
with P± as the probability the round will be tied, and λ = P+ − P− as FMA. We have the following
lemma.

Lemma 3.1 Let P be given. Teams A and B, shooting first in rounds I, I respectively, win the sudden
death with equal probability if and only if∑

r∈I

Pr−1± =
∑
r∈I

Pr−1± . (2)

Proof. We prove this by a straightforward calculation.

P(Team A wins) =
∞∑

r=1

P(r − 1 rounds drawn)P(Team A wins Round r)

=
∑
r∈I

Pr−1± P+ +
∑
r∈I

Pr−1± P−

=
∑
r∈I

Pr−1± (P− + λ) +
∑
r∈I

Pr−1± P−

=
∞∑

r=1

Pr−1± P− + λ
∑
r∈I

Pr−1±

= P−
1 − P±

+ λ
∑
r∈I

Pr−1± .
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Similarly, we find for Team B:

P(Team B wins) = P−
1 − P±

+ λ
∑
r∈I

Pr−1± .

Since the first term P−
1−P± is equal for both teams, the lemma follows. �

Definition 3.1 Given an index set I, we define hI(x) = ∑
i∈I xi−1. For a (finite) sequence S, with team

A shooting first in rounds I, we define the characteristic polynomial fS(x) = hI(x) − hI(x).

Using this definition, we state the following corollary to Lemma 3.1.

Corollary 3.1 Let P be given. A sequence S is fair if and only if fS(P±) = 0, i.e. if P± is a zero of
fS(x).

3.2 Unfair sequences

3.2.1 Repetitive sequences are unfair. Although Lemma 3.1 and Corollary 3.1 provide a necessary
and sufficient condition for a sequence to be fair, it is not clear when (2) is satisfied. The following
theorem clarifies the status for repetitive sequences.

Theorem 3.1 Let P± ∈ P be rational, i.e. P± ∈ Q(0,1). Each repetitive sequence S is unfair.

Proof. Consider a repetitive sequence S that is a concatenation of some finite sequence Sn. Let In be
the index set indicating when Team A shoots first in this sequence Sn. The characteristic polynomial of
Sn is then given by fSn

(x) = ∑
i∈In

xi−1 −∑
i∈In

xi−1, a polynomial of degree n−1. Since S is repetitive,
it follows that

fS(x) = fSn
(x) · (1 + xn + x2n + · · · ) = fSn

(x)

1 − xn
.

Clearly,

fS(P±) = 0 ⇐⇒ fSn
(P±) = 0.

The following claim states that, for x ∈ (0, 1), there is no rational solution to fSn
(x) = 0.

Claim 1. Any finite degree polynomial u(x) with coefficients in {−1, 1} has no rational zero’s in (0, 1).

Proof. Consider u(x) = ∑n
i=0 cix

i with ci ∈ {−1, 1}, and let w
v ∈ Q(0,1) with gcd(w, v) = 1, be such

that u(w
v ) = 0. Then, it must hold that vnu(w

v ) = 0 mod v as well. However, vnu(w
v ) = cnwn mod v.

As gcd(w, v) = 1, this leads to cnwn = 0 mod v and this is not possible unless w = v = 1 or w = 0. �
As P± ∈ Q, there are no P± that satisfy fSn

(P±) = 0 and we conclude that S is unfair. �
Remark. It follows easily from Theorem 3.1 that, given rational P , no finite sequence will be fair.

In addition, observe that the popular AAAA- and ABAB-sequences are unfair for all real values of P
when λ = P= − P− > 0. Indeed, this follows as fAAAA(x) = 1

1−x > 0 and fABAB(x) = 1
1+x > 0 for

x ∈ (0, 1).
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The relevance of Theorem 3.1 lies in the guaranteed presence of unfairness; when picking/determin-
ing P from empirical data and deciding upon a finite sequence to be repeated, any resulting sequence is
unfair.

3.2.2 The PTM sequence is unfair. In order to mitigate the First Mover Advantage, the PTM
sequence is suggested in Brams & Taylor (1999), The Win-Win solution. It was also proposed by
Palacios-Huerta (2012) and, recently, further analyzed in Rudi et al. (2019). Also, for the tennis tiebreak,
it was discussed by Cohen-Zada et al. (2018). In contrast to their observation, we show that in our model,
for any P± ∈ P , the PTM-sequence is an unfair sequence.

Definition 3.2 The PTM sequence is a sequence containing 0 and 1, obtained in the following way.
Start with a 1. Invert the sequence, meaning that 1 becomes 0 and vice versa. Add the newly obtained
sequence at the end of the old one. Repeat this process.

• Step 0: 1

• Step 1: 1 0

• Step 2: 1 0 0 1

• Step 3: 1 0 0 1 0 1 1 0

When looking at this as a penalty sequence, one can let team A start the Round n when PTM(n) = 1
and team B when PTM(n) = 0.

Theorem 3.2 The PTM sequence is unfair for all P .

Proof. We will construct the characteristic polynomial of the PTM-sequence and show that is bounded
away from 0 in the interval (0, 1).

Let Sn be the first n rounds of the PTM-sequence, and for notational purposes, let fn(x) be its
characteristic polynomial. Clearly, for n = 2, f2(x) = 1 − x. By construction, the first 2k terms of
the characteristic polynomial of the PTM-sequence are inverted to obtain the terms 2k + 1 up to 2k+1.
For the characteristic polynomial, inversion of a coefficient is just multiplication by −1, which leads to
the following expression:

f2k+1(x) = f2k(x)(1 − x2 k
).

To explain this equality, notice that the first 2k terms of f2k+1 terms are the same as f2k(x). The next 2k

terms all have degree x2k
or higher, and are the inverse of f2k(x)—hence the multiplication of f2k(x) with

the term −x2k
.

Applying this expression iteratively for 21, 22, 24 . . . , we get the following (Allouche & Shallit, 1999):

fPTM(x) = (1 − x)(1 − x2)(1 − x4) · · · =
∞∏

k=0

(
1 − x2k

)
. (3)

We now prove that there is no x ∈ (0, 1) for which fPTM(x) = 0, implying there is no P± for which
the PTM-sequence is fair.

Claim 2. For x ∈ (0, 1), fPTM(x) > 0.
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Proof. Clearly, fPTM(x) is decreasing on (0, 1). Notice that fPTM(x) = (1 − x)fPTM(x2), for all x.
Suppose there is an x ∈ (0, 1) for which fPTM(x) = 0. Consequently, as 1 − x > 0, this implies that
fPTM(x2) = 0. As x2 < x, this implies that if there is an x ∈ (0, 1) for which fPTM(x) = 0, we can pick
an arbitrarily small x′ for which fPTM(x′) = 0. As the function fPTM is strictly decreasing on (0, 1), and
attaining f (1) = 0, either f (x) = 0 for all x ∈ (0, 1), or f (x) > 0 ∀x ∈ (0, 1).

Take x = 1
2 . Then

fPTM

(
1

2

)
=

(
1 − 1

2

) (
1 − 1

22

)
· · · > 1 − 1

2
− 1

4
− 1

16
. . .

> 1 − 1

2
− 1

4
− 1

8
= 1

8
> 0.

�
Using Claim 2, we conclude that there are no values x ∈ (0, 1) for which the PTM-sequence is fair,

and hence the proof is complete. �

3.3 An algorithm generating a fair sequence

We established in Section 3.2.1 that, for given values P ⊂ Q, there are no finite fair sequences. However,
it is possible to construct infinite sequences that are fair, for any value of P± ≥ 0.5 (indeed, notice that
if P± < 0.5, the team shooting first will have an insurmountable FMA and no fair sequence exists).
Consider now the following algorithm which takes P± ≥ 0.5 as input.

Let Team A shoot first in Round 1 and set I1 = {1}. Starting from n = 1, construct In+1 from In in
the following way:

Step 1: If fIn
(P±) < fIn

(P±) then In+1 := In ∪ {n + 1}, else In+1 := In.

Step 2: n:=n+1. Go to Step 1.

We prove the following theorem.

Theorem 3.3 Let P be such that P± ≥ 0.5. Then, Algorithm 3.3 returns a fair sequence.

Proof. Define dn ≡ | fIn
(P±) − fIn

(P±)| and write dn = | fn − f n| By induction on n, we will prove

that dn ≤ Pn−1± ∀n if P± ≥ 0.5. When n = 1, dn ≤ Pn−1± = 1. Suppose that dk ≤ Pk−1± holds for
k = 1, . . . , n − 1 and suppose that fn−1 > f n−1. Then f n = f n−1 + Pn−1± and fn = fn−1. Either f n ≥ fn,
or fn > f n.
In the first case, clearly dn ≤ Pn−1± .
In the second case, dn = dn−1 − Pn−1± ≤ Pn−2± − Pn−1± ≤ Pn−1± as P± ≥ 0.5.
In both cases, dn ≤ Pn−1± .

Thus, limn→∞ fIn
(P±) − fIn

(P±) = 0, and as a consequence Algorithm 3.3 constructs a fair
sequence. �

We point out that Algorithm 3.3 can be criticized from the point of view that it does not end.
That property however, seems necessarily linked to its goal, namely finding a fair sequence, which
by Theorem 3.1 cannot be achieved by a sequence of finite length. In any case, when one is prepared to
specify P±, it is certainly possible to precompute a very large number of entries, and use that as proxy
for a fair sequence.
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Of course, the resulting sequence depends on the chosen values for P+, P−, P±. Thus, to decide
which particular sequence to use in practice, one would have to decide on the values for these
probabilities. When choosing P+ = 1

4 , P− = 3
16 (see Apesteguia & Palacios-Huerta, 2010; Vandebroek

et al., 2018), this results in a sequence that starts with: ABBBABABBAA . . . . Finally, we mention that,
even though the algorithm identifies a single fair sequence, the index set I is not necessarily a unique
index set, i.e. multiple distinct fair sequences may exist.

4. The best-of-k

As described in Section 1, the first phase of a shootout consists of a best-of-k, where the winner is the
team that scored the most penalties after Round k. In case of a tie, there is a Phase 2 which consists of
a sudden death. Apesteguia & Palacios-Huerta (2010) model the existence of an FMA in a best-of-k by
assuming that the pressure of being behind affects the scoring probability negatively, see Section 4.1.
In Section 4.2 we show how to compute the degree of unfairness in this model and we apply this to the
best-of-5 in Section 4.3 and to the best-of-k when p = 3

4 , q = 2
3 in Section 4.4.

4.1 Modeling psychological pressure

The main feature of the model is to encompass the added pressure of shooting while lagging behind in
a fitting and realistic way. Recall that we assume Team A and B are equally strong. Next, we introduce
parameters p, q ∈ (0, 1) as the probability of a team scoring. A team has probability p of scoring, if it is
equal or ahead, and probability q if the team is trailing. We assume p > q.

If the score, at the beginning of the round, is equal, and Team A shoots first, Team B second, this
results in the following possible outcomes with probabilities:

P+ = P({A scores, B does not}) = p(1 − q),

P− = P({B scores, A does not}) = (1 − p)p,

P± = P({A and B score equally often}) = pq + (1 − p)2.

Notice that the probability that Team B scores after Team A scored, is q. If Team A missed, however,
the probability that Team B would score is equal to p. This makes sense as in the first case, the score
would have been in favor of Team A, adding pressure to Team B to catch up. As we assume that p > q,
we immediately see that P+ > P−, indicating the existence of (FMA) λ, where λ := P+ − P−.

If, at the start of a round, one team (say A) leads, the possible outcomes with probabilities are slightly
different:

Q+ = P({Team A extends lead with 1}) = p(1 − q),

Q− = P(Team B decreases lead with 1) = (1 − p)q,

Q± = P({A and B score equally often}) = pq + (1 − p)(1 − q).

The values of p, q are, of course, not known, but they can be estimated from real world results. In
football, p = 3

4 , q = 2
3 is a common pick in the literature (see Brams & Ismail, 2018; Csató, 2020).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/32/4/411/5975144 by Technische U

niversiteit Eindhoven user on 10 O
ctober 2021



A MATHEMATICAL ANALYSIS OF FAIRNESS IN SHOOTOUTS 419

4.2 Degree of unfairness

Theorem 3.3 tells us that it is possible to create a sudden death sequence that is fair. Hence, when the
shootout is tied after k rounds, we can use Theorem 3.3 to construct a sequence such that both teams
have an equal probability of winning. That leaves us with only k choices to be made, indicating who
shoots first in the k rounds of the best-of-k. To model our choice of who shoots first, we introduce
σi ∈ {−1, 1}, i = 1, . . . , k, where σi = 1 indicates Team A shooting first in round i, σi = −1 indicates
Team B shooting first. We will derive formulas for Wi (Wi), indicating the probability of team A (B)
winning the shootout given that there is a tie at the start of round i (1 ≤ i ≤ k). We also define
and calculate Δi = Wi − Wi, the difference between the probability of winning for team A and B,
i = 1, . . . , k. The objective is to find values for the σi that minimize Δ1, as the difference in winning
probabilities between Team A and Team B at the start of the shoot out is then minimized. Lastly, we
define the auxiliary term Kj as follows: given that one team is ahead by 1 at the start of the round, Kj is
the probability that the score will be leveled for the first time after j rounds.

Suppose the score is tied at the beginning of Round i (1 ≤ i ≤ k). One of the following three events
occurs:

Event 1: The teams draw this round, and Round i + 1 will start with a tied score.

Event 2: One of the teams wins the Round, and somewhere between the beginning of Round i+2 and
Round k + 1, the score is leveled again.

Event 3: One of the teams wins the round and stays ahead for the rest of the shootout.

Only in the case of Event 3, the model gives the team starting the round an advantage over the other
team, as that team is more likely to take the lead because of FMA, and by staying ahead profiting from
that lead.

We can see Team A’s winning probability Wi as the sum of the probability of winning in each of
these events. For each of these events, we list the probability of occurring and the winning probability
for Team A.

1. Event 1 occurs with probability P±. The probability of winning after drawing Round i, is given
by Wi+1. Hence the probability of winning in this fashion equals P±Wi+1.

2. The probability that some team wins Round i equals 1 − P±. The probability that after the
following j rounds, j = 1, . . . , k − i, the score is leveled for the first time, is Kj. The total

probability of Team A winning in this fashion, is thus given by (1 − P±)
∑k−i

j=1 KjWi+j+1.

3. The probability that Team A takes the lead in Round i, is given by 1
2 (1 + σi)P+ + 1

2 (1 − σi)P−.

The probability that the leading team stays ahead after this round, is given by 1 − ∑k−i
j=1 Kj, so

the total probability of Team A winning in this fashion is the product of both terms.

This leads to the following winning probability for Team A:

Wi = P±Wi+1 + (1 − P±)

k−i∑
j=1

KjWi+j+1

+
⎛
⎝1 −

k−i∑
j=1

Kj

⎞
⎠ 1

2

(
(1 + σi)P+ + (1 − σi)P−

)
.
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From this, we derive, as Δi = Wi − Wi:

Δi = P±Δi+1 + (1 − P±)

k−i∑
j=1

KjΔi+j+1 +
⎛
⎝1 −

k−i∑
j=1

Kj

⎞
⎠ σi(P+ − P−)

= P±Δi+1 + (1 − P±)

k−i∑
j=1

KjΔi+j+1 +
⎛
⎝1 −

k−i∑
j=1

Kj

⎞
⎠ σiλ.

Notice that we can write Δi as a linear combination of terms λσj, with j ≥ i. Thus Δi = ∑k
j=i Di,jλσj.

Applying this iteratively, we find the following expression for Δi:

Δi =
k∑

j=i+1

⎛
⎝P±Di+1,j + (1 − P±)

j−i−1∑
�=1

K�Di+1+�,j

⎞
⎠ λσj +

⎛
⎝1 −

k−i∑
j=1

Kj

⎞
⎠ λσi.

For Δ1, which represents the unfairness that we want to minimize, we arrive at the following:

Δ1 =
k∑

j=2

⎛
⎝P±D2,j + (1 − P±)

j−2∑
�=1

K�D2+�,j

⎞
⎠ λσj +

⎛
⎝1 −

k−1∑
j=1

Kj

⎞
⎠ λσ1.

4.3 Results for the best-of-5

We can apply these general setting to the popular case of k = 5. This results in

i = 6 : Δ6 = 0.

i = 5 : Δ5 = λσ5.

i = 4 : Δ4 = P±λσ5 + (
1 − K1

)
λσ4.

i = 3 : Δ3 = (P2± + (1 − P±)K1)λσ5 + P±(1 − K1)λσ4 + (1 − K1 − K2)λσ3.

i = 2 : Δ2 = (P±D3,5 + (1 − P±)K1D4,5 + (1 − P±)K2)λσ5

+ (P±D3,4 + (1 − P±)K1D4,4)λσ4 + P±D3,3λσ3 + (1 −
3∑

j=1

Kj)λσ2.

i = 1 : Δ1 = (
P±D2,5 + (1 − P±)K1D3,5 + (1 − P±)K2D4,5 + (1 − P±)K3

)
λσ5

+ (P±D2,4 + (1 − P±)K1D3,4 + (1 − P±)K2D4,4)λσ4

+ (P±D2,3 + (1 − P±)K1D3,3)λσ3 + P±(1 −
3∑

j=1

Kj)λσ2 + (1 −
4∑

j=1

Kj)λσ1.

All the unknowns that remain, are the terms Kj. These terms represent the probability that the leading
team gives away the lead after exactly j rounds. In our model, the probabilities for these events are given
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Table 1 Least unfair sequences for given p and q in best-of-5

by

K1 = Q−.

K2 = Q±Q−.

K3 = (Q2± + Q+Q−)Q−.

K4 = (Q2± + 2Q+Q−)Q±Q−.

The eventual aim is to have an assignment that minimizes |Δ1|, the unfairness at the start of Round 1.
We assume that Team A shoots first in Round 1, which gives σ1 = 1. Given values for p, q, we compute
which of 16 possible assignments of σ2, σ3, σ4, σ5, minimizes |Δ1|. The corresponding sequences are
presented in the following Table 1, with equal colors for equal sequences. We choose a grid with
0.6 ≤ q < p ≤ 0.8 to reflect realistic probabilities in football.

It is interesting to see the variety of preferred sequences, even when fixing the value of p or q, or their
difference. This can be explained as the underlying calculation of the unfairness in a best of k shootout,
is a polynomial of degree 2k. The code to calculate which sequence is fairest, is given in Appendix A.

4.4 Results for best-of-k with fixed p, q

The expressions obtained in Section 4.3 to calculate the unfairness of a sequence of any length, given
p, q, is used to calculate the fairness of shootouts of another length than Best-of-5. The fairest sequences
for p = 3

4 , q = 2
3 for shootouts of length k = 2, 3, . . . , 10 are shown in Table 2. It is important to stress

that the values reported in the column ‘measure of unfairness’ are the difference in winning chances
between both teams, assuming that in the event of a tie after k rounds, both teams have an equal chance of
winning the subsequent sudden death. It is remarkable that comparing two fairest sequences of different
length, the longer penalty sequence is not automatically less unfair, even if the p, q is constant for both
sequences. The code that was used to calculate is given in Appendix A.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/32/4/411/5975144 by Technische U

niversiteit Eindhoven user on 10 O
ctober 2021



422 R. LAMBERS AND F.C.R. SPIEKSMA

Table 2 Least unfair sequence and their offset for various
shootout lengths with p = 3

4 , q = 2
3

k Sequence Measure of unfairness (10−3)

2 AB 16.93
3 ABB 7.62
4 ABBA 1.47
5 ABABB 0.21
6 AABBBB 0.24
7 ABBABAB 0.01
8 ABAABBBB 0.04
9 AABBBBBBA 0.03
10 ABABABBABB 0.002

5. Conclusion

Many sports use shootouts to identify a winner in an otherwise tied game. Popular examples include
football, field hockey, ice hockey, tennis, rugby and water polo. A shootout has rounds, where in each
round two teams, in an alternating fashion, have the possibility to score a point. Such a shootout has two
phases. Phase 1 is a best-of-k (in soccer k = 5, the tie-break in tennis has k = 6), and if the shootout is
tied after Phase 1, it continues with Phase 2, which is a sudden death. It is widely accepted that shooting
when behind impacts the chances of scoring a point compared to shooting when not behind. We consider
the problem to specify a sequence that determines which team shoots first in each round of the shootout
such that identical teams have equal chance of winning the shootout; such sequences are called fair.

Using a common way to model the discrepancy between scoring chances for both teams, we show
that in a sudden death, repetitive sequences are not fair, for any choice of the parameters; we also show
that the PTM-sequence is not fair for any choice of parameters. There is, however, an algorithm that
outputs a fair sequence.

For a shootout decided over best-of-k, we show that no fair sequence exists. Using the popular choice
p = 3

4 , q = 2
3 (reflecting the probabilities of scoring when not behind, and when behind, respectively),

the least unfair sequence in a best-of-5 is AB/BA/AB/BA/BA. More generally, we show that the degree
of unfairness depends on the length of the shootout: longer shootouts can be significantly fairer than
shorter ones.
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