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Abstract
A popular approach to construct a schedule for a round-robin tournament is known as first-break, then-schedule. Thus, when
given a home away pattern (HAP) for each team, which specifies for each round whether the team plays a home game or an
away game, the remaining challenge is to find a round for each match that is compatible with both team’s patterns. When
using such an approach, it matters how many rounds are available for each match: the more rounds are available for a match,
the more options exist to accommodate particular constraints. We investigate the notion of flexibility of a set of HAPs and
introduce a number of measures assessing this flexibility. We show how the so-called canonical pattern set (CPS) behaves
on these measures, and, by solving integer programs, we give explicit values for all single-break HAP sets with at most 16
teams.

1 Introduction

Round-robin tournaments are abundantly used in all kinds of
sport competitions, both in professional leagues, and in ama-
teur leagues. The setting where each pair of teams meets
once (single round robin (SRR)), or twice (double round
robin (DRR)) has proven to be a very popular format to
arrive at a ranking of the participating teams Goossens and
Spieksma (2012). Very often, each team has a venue, and a
match between two teams takes place at the venue of one
of the two teams, meaning that one team plays home (H),
while the other team plays away (A). Deciding upon the
matches to be played in each round of a single or double
round-robin tournament is known to be of great practical
importance in scheduling professional leagues such as soccer
competitions. Indeed, scheduling a round-robin tournament
has attracted a lot of attention in the scientific literature
Kendall et al. (2010), Van Bulck et al. (2020); a popular
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approach to do so is known as a first-break, then-schedule
approach Nemhauser and Trick (1998). The relevance of
the first-break, then-schedule approach is strengthened by
the observation that, when scheduling multiple leagues con-
secutively, first-break then-schedule is able to take capacity
considerations of clubs that have teams playing in different
leagues, into account Davari et al. (2020). We now infor-
mally describe this approach (see Sect. 2 for more precise
terminology).

First-break, then-schedule is a hierarchical approach con-
sisting of two phases. In the first phase, each team receives a
home-away pattern (HAP), i.e., it is specified for each round
whether the team plays at its home venue, or not. Next, in the
second phase, each match that needs to be played is assigned
to a round; of course, for such an assignment ofmatches to be
feasible, it must hold that each team plays at most one match
in each round and that the assignment is compatible with the
patterns from phase 1. In such a hierarchical approach, it is
clear that the scheduling decision (which matches to play
in which round) crucially depends on the HAP-set that is
chosen in the first phase. For instance, it is conceivable that
in the second phase, a set of constraints is revealed that are
incompatible with the given HAP-set. This would need to
be solved by either changing the HAP-set, or putting energy
into mitigating the effects of violating that specific set of
constraints.

The themeof this contribution is that not allHAP-sets have
the same risk of leading to incompatible constraints. Indeed,
some HAP-sets are more flexible than others. In Sect. 2, we
give a number of definitions, and in Sect. 3 we introduce our
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measures for the flexibility of a HAP-set. We also show how
single-breakHAP-sets, in particular the canonical pattern set,
behavewith respect to thesemeasures. In Sect. 4, we describe
how to compute these measures using integer programming;
we conclude in Sect. 5.

2 Preliminaries

We consider a time-constrained SRR with an even number
of teams, denoted by 2n, n ∈ N. To avoid trivialities, we
assume 2n ≥ 4. A match between two distinct teams i and
j is denoted by an unordered pair {i, j}, 1 ≤ i �= j ≤ 2n.
Every teamplays everyother teamexactly once.A schedule is
a specification of all

(2n
2

)
matches in 2n−1 rounds, including

the venues. Thus, in a schedule everymatch {i, j} is assigned
to a specific round, the venue of the match is specified, and
every team must play exactly one match in every round. For
a survey of round-robin scheduling, we refer to Rasmussen
and Trick (2008) and Drexl and Knust (2007).

Although we restrict our analysis to SRRs, we claim that
many of the ideas can be generalized to DRRs as well (or
k-round-robin settings with k ≥ 2). In particular, the defi-
nitions of the measures (see Sect. 3) can be generalized to
DRRs. However, we want to point out that a match in a DRR
tournament is generally seen as an ordered pair (i, j), rather
than an unordered pair of teams. Indeed, whereas in a single
round-robin tournament, the home advantage is to be decided
in the schedule, a double round-robin tournament typically
assumes that each team plays at home against each other
team exactly once. Moreover, very often it is required that
one encounter between a pair of teams occurs in the first
half, whereas the other encounter occurs in the second half
of the schedule; these two encounters should be separated by
a given number of rounds. Taking such issues into account
would impact the corresponding definitions for DRR tourna-
ments. We now proceed with defining our terminology.

Definition 2.1 (based on Rasmussen and Trick 2008) A
Home-away pattern (HAP) is a vector h = (h1, h2, . . . ,
h2n−1), where hr ∈ {H , A} specifies whether a team that
plays according to pattern h plays home or away in round r ,
with r = 1, 2, . . . , 2n − 1.

An important property of a HAP is formed by the occur-
rence of so-called breaks: the presence of two consecutive
symbols that are identical (see de Werra 1981 and Goossens
and Spieksma 2011). To simplify notation, we take a circular
view of a HAP, i.e., we define h0 ≡ h2n−1.

Definition 2.2 (based on Rasmussen and Trick 2008) A
Home-Away Pattern h has a break in round r if hr−1 = hr ,
with r = 1, 2, . . . , 2n − 1. In case hr−1 = hr = A, we call
the break an away-break, otherwise we call it a home-break.

Notice that, since 2n − 1 is odd, and given our circular
view of a HAP, any HAP has at least one break. Indeed,
observe that a HAP that consists of alternating H’s and A’s
has a single break in round 1. In fact, motivated by practice,
we are interested in the number of breaks present in a HAP,
and we define the break number of a HAP, denoted by bn(h),
to capture this number.

Definition 2.3 The break-number of home-away pattern h
equals bn(h) = |{r : hr−1 = hr , r = 1, 2, . . . , 2n − 1}|.
Definition 2.4 A home-away pattern h is called a single-
break pattern if bn(h) = 1.

Definition 2.5 (based on Rasmussen and Trick 2008) Two
home-away patterns h1, h2 are called complementary iff
h1r �= h2r for each r = 1, 2, . . . , 2n − 1.

Notice that an entire HAP h is determined by the
rounds in which its breaks occur and by its value in the
final round. Thus, we can write a HAP h as follows:
PH (r1, r2, . . . , rbn(h)), where h denotes a HAP that has (i)
bn(h) breaks occurring in rounds r1, r2, . . . , rbn(h), and (ii)
an H in the final round. In case HAP h has an A in its
final round and has breaks in rounds r1, r2, . . . , rbn(h), we
write PA(r1, r2, . . . , rbn(h)). Clearly, PH (r1, r2, . . . , rbn(h))

and PA(r1, r2, . . . , rbn(h)) are complementary patterns.
We sometimes omit the distinction between PH , PA and

simply use P . When discussing complementary pairs of pat-
terns, we denote by Pc the complement of HAP P .

As a real-life example illustrating this terminology, we
consider the HAPs used by the professional Dutch tennis
competition for teams in 2019, organized by the Royal Dutch
Tennis Association. This is a competition between 8 teams
who play a single round robin, according to the HAPs given
in Table 1 (for the precise schedule, we refer to the KNLTB
2019). The first column shows the team’s names, and the
next 7 columns describe the home-away patterns. The final
column gives the corresponding description of the particular
pattern.

We remark that many other real-life examples of SRR
tournaments exist. For instance, the TATA Steel Chess tour-
nament is organized as a single round robin, where playing
with white (black) can be regarded as playing home (away)
Lambers et al. (2020).

We now turn our attention to sets of HAPs; we define a
HAP-set as follows:

Definition 2.6 A set of 2n HAPs of length 2n − 1, denoted
by F2n , is called a HAP-set. We call 2n the order of F2n .

A schedule is called compatible with a HAP-set if the set
of HAPs implied by the schedule coincides with the given
HAP-set. We formally define the following notions:

Definition 2.7 For each 2n ≥ 4:
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Table 1 HAPs for the 2019–2020 top Dutch male tennis league

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

Team 1 (Lewabo) A H A H A H H PH (7)

Team 2 (Spijkenisse) A H A H H A H PH (5)

Team 3 (Suthwalda) H A H A H A H PH (1)

Team 4 (Nieuwekerk) H A H A A H A PA(5)

Team 5 (Arnolduspark) H A H A H A A PA(7)

Team 6 (Leimonias) A H A H H A A PA(5, 7)

Team 7 (Naaldwijk) A H A H A H A PA(1)

Team 8 (Kimbria) H A H A A H H PH (5, 7)

• AHAP-set F2n is feasible if there exists a schedule com-
patible with F2n .

• A HAP-set F2n is complementary, if for every pattern
P(r1, . . . , rb) ∈ F2n , also the complementary pattern
Pc(r1, . . . , rb) ∈ F2n .

• A HAP-set F2n is called single-break if each pattern h ∈
F2n is a single-break pattern.

The HAP-set given in Table 1 is an example of a com-
plementary HAP-set; 6 of the 8 HAPs are single-break, the
remaining two patterns each have two breaks.

Identifying whether a given HAP-set is feasible is known
as the pattern set feasibility problem. As far as we are aware,
the complexity status of this problem is not settled;Miyashiro
et al. (2003) describe a necessary condition for feasibility, see
also Briskorn (2008), Horbach (2010). In addition, observe
that when given a schedule compatible with a certain HAP-
set for a SRR, one can (i) interchange any two rounds and
(ii) change in a single round each H to an A, and vice versa,
and arrive at another HAP-set that must be feasible.

We are primarily interested in feasible HAP-sets that con-
sist of patterns with a limited number of breaks, as witnessed
by the following definition.

Definition 2.8 For each 2n ≥ 4, k ≥ 1, we define

H2n,k = {F2n : bn(h) ≤ k for each h ∈ F2n, F2n feasible}.

In particular,H2n,1 is the collection of single-breakHAP-sets
of order 2n.

Finally, we point out that Definitions 2.1-2.8 can be gen-
eralized to double round-robin tournaments by using 4n − 2
(instead of 2n − 1) rounds.

2.1 About single-break HAP-sets

Single-break HAP-sets are of special interest. de Werra
(1981) showed that a feasible single-break HAP-set exists
for any 2n teams. Furthermore, for single-break HAP-sets,

the conditions of Miyashiro et al. (2003) have been (exper-
imentally) shown to be sufficient for 2n ≤ 26 Miyashiro
et al. (2003). de Werra (1981) showed that each feasible
single-break HAP-set for 2n teams is complementary; as a
consequence, in each round either 0 or 2 HAPs will fea-
ture a break. Notice that two teams with identical HAPs
h1, h2 ∈ F2n are never able to play against each other.

We can describe a feasible, single-break HAP-set F2n
quite compactly as follows. It follows from de Werra (1981)
that out of the 2n − 1 rounds, there are n pairwise distinct
rounds in which two patterns have a break, one team having
an away break, and the other having a home break. Let us
denote these n rounds by ri , i = 1, . . . , n.

We sort these ri ’s in increasing order. Next, we define
the difference between consecutive rounds as follows: di =
ri+1 − ri , i = 1, . . . , n, where we use rn+1 ≡ r1 + 2n − 1.
So the sequence D = (d1, d2, . . . , dn) gives the break-gaps,
i.e., the number of rounds between two consecutive breaks
(notice that di ≥ 1, i = 1, . . . , n). We refer to this represen-
tation of a feasible, single-break HAP-set as the break-gap
representation or D-notation (see also de Werra 1981 and
Knust and Lücking 2009).

Not only can a feasible, single-break HAP-set F2n be rep-
resented by a sequence (d1, d2, . . . , dn), it is also true that
any set of n positive integers that sum to 2n − 1 corresponds
to a (set of) single-break HAP-sets (which is not necessarily
feasible). Although a HAP-set, when specified in terms of ri
values, uniquely determines a corresponding D sequence, a
D sequence can correspond to multiple HAP-sets with dif-
ferent ri ’s. Consider, for instance, n = 2 and the following
two distinct HAP-sets: {H AA, HH A, AHH , AAH} and
{H AH , HH A, AH A, AAH}. The first one has r1 = 2 and
r2 = 3 leading to D = (1, 2), while the second one has
r1 = 1 and r2 = 2, also leading to D = (1, 2).

Furthermore, de Werra (1981) shows that a sequence D
is feasible if and only if all cyclic permutations of D are
feasible. Hence, without loss of generality, when dealing
with single-break HAP-sets F2n , we will assume that the
two (complementary) patterns with a break in round 1 are
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always present in F2n , and we restrict ourselves to the lexi-
cographically largest sequence among this set of equivalent
sequences.

A number of observations follow, where we identify a
pattern with a team:

Observation 2.1 If two patterns h1, h2 in a single-break
HAP-set F2n that start with the same symbol (i.e., h11 = h21)
have their break in rounds r , r + 1, respectively, then in any
feasible schedule, the correspondingmatch is played in round
r.

This is explained in the following way. As h1, h2 start
with the same symbol, until round r − 1, we have h1j = h2j ,

j = 1, . . . , r − 1. Then, since h1 has a break in round r , we
get h1r �= h2r . However, as h

2 has a break in round r + 1, we
see that h1r+1 = h2r+1 and as both patterns are single break,
h1j = h2j for r + 1 ≤ j ≤ 2n − 1. Ergo, h1, h2 can only play
each other in round r .

Observation 2.2 If three patterns h1, h2, h3 in a single-break
HAP-set F2n that start with the same symbol (i.e., h11 = h21 =
h31) have their break in rounds r , r+1, r+2, respectively (so
their breaks are consecutive), there is no feasible schedule.
This can be seen because all three teams can only play each
other in rounds r+1, r+2, while they should play 3matches
in total. (This also follows from the condition in Miyashiro
et al. 2003.)

Observation 2.3 If there is no team with a break in round
r+1, then round r+1 is opposite to round r, i.e., for each h ∈
F2n, we have hr �= hr+1. Then, in every feasible schedule,
the matches scheduled in round r can all be played in round
r+1, and vice versa (provided that we invert the teamplaying
home and the team playing away).

One of themost popular single-breakHAP-sets in practice
is the canonical pattern set (CPS) of order 2n (see de Werra
1980); it is defined as follows.

Definition 2.9 The canonical pattern setof order 2n (CPS2n)
is the following single-break HAP-set: CPS2n = {PA(2i −
1), PH (2i − 1) : i = 1, . . . , n}; its break-gap representation
is D = (2, 2, . . . , 2, 1).

In other words, we can order the teams whose HAPs start
with an H (A) such that the break-gap is 2 for any two con-
secutive teams, except for one pair of teams, for which the
break-gap equals 1. This is indeed a possible representation,
since

∑
i di = 2n − 1.

3 Measuring the flexibility of a HAP-set

Given a HAP-set F2n , we are interested in the diversity of the
schedules that are compatible with F2n (2n ≥ 4). To make

this concrete, we introduce three distinct measures called the
width (Sect. 3.1), the fixed part (Sect. 3.2), and the spread
(Sect. 3.3), and we show how the CPS fares on these mea-
sures.

3.1 Measure 1: the width

We call two schedules, each compatible with a given HAP-
set F2n , distinct when there exists a match that is played in
one round in schedule 1 and in another round in schedule 2.
Let us define here a stronger notion of distinctness.

Definition 3.1 Two schedules, each compatible with a given
HAP-set F2n , are match-distinct when each match is played
in a different round (when comparing schedule 1 with sched-
ule 2).

Using Definition 3.1, we define the width of a HAP-set:

Definition 3.2 The width of a HAP-set F2n , denoted by
width(F2n), is the number of pairwise match-distinct sched-
ules compatible with F2n .

For instance, if F2n is infeasible, width(F2n) = 0, and if
a HAP-set has width 2 (or higher), then there exist two sched-
ules such that eachmatch occurs in different rounds in the two
schedules. As an example, the width of the HAP-set given
in Table 1 equals 1, implying that no pair of match-distinct
schedules compatible with that HAP-set exists. Further, we
refer to Table 2 (right) for an example of a HAP-set with
width 2.

We remark here that, in order to generalize the definition
ofwidth toDRR tournaments, it suffices tomake a distinction
between matches (i, j) and ( j, i).

Single-break HAP-sets do not allow large width; in fact,
there are always matches that must be played in a particular
round, as witnessed by the following theorem.

Theorem 3.1 For each 2n ≥ 4: width(F2n) = 1 for each
F2n ∈ H2n,1.

Proof Consider the break-gap representation of any feasible
single-break HAP-set F2n ; as discussed in Sect. 2, it follows
that the corresponding entries must sum to 2n − 1. Clearly,
when choosing n positive integers that sum up to 2n − 1,
there must be at least one ‘1’ among them. Since F2n is com-
plementary (deWerra 1981), there exist two pairs of patterns
which have breaks in consecutive rounds. Then, Observa-
tion 2.1 shows that, in any schedule compatible with F2n ,
the corresponding two matches each have only one round
where they can be played. Thus, width(F2n) = 1, for each
2n ≥ 4. ��

In fact, the argument above implies that any feasible HAP-
set F2n which contains two single-break patterns of the form
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Table 2 On the left CPS4, on the right HAP-set Q

Team R1 R2 R3 Team R1 R2 R3

1 H A H 1 H H H

2 H A A 2 H A A

3 A H A 3 A H A

4 A H H 4 A A H

PH (r) and PH (s) (or PA(r) and PA(s)) with |r − s| = 1
has width 1.

Theorem 3.1 is tight in the following sense: even when all
patterns except one are single-break patterns, HAP-sets with
width 2 exist. In fact, even for 2n = 4, it is possible to find
a HAP-set with width equal to 2 containing only one pattern
that is not a single-break pattern. Such a HAP-set consisting
of 4 teams is given by Q in the following example.

The HAP-set on the left is CPS4; the HAP-set on the
right differs from CPS4 in two entries and is given by
Q = {PH (1, 2, 3), PA(3), PA(1), PH (2)}. Both HAP-sets
are compatible with two distinct schedules; however, there
are two schedules compatiblewithHAP-setQ that arematch-
distinct, while this is not the case for CPS4. Table 3 displays
two schedules compatible withCPS4, and two that are com-
patible with Q.

Thus, while CPS4 has width 1, the HAP-set Q has
width 2.

3.2 Measure 2: the fixed part

As can be deduced from Theorem 3.1, the width is a mea-
sure that does not differentiate between feasible single-break
HAP-sets. Still, different feasible, single-break HAP-sets are
not necessarily equalwhen it comes to the number ofmatches
that must take place in the same round. Therefore, we intro-
duce here a more refined measure that is able to do so.

Definition 3.3 The fixed part of a feasible HAP-set F2n ,
denoted by FP(F2n), is the number of matches that are
played in the same round in every schedule compatible with
F2n , for each 2n ≥ 4.

Notice that if there is just a single schedule compatible
with F2n , the value of this measure equals

(2n
2

)
. Notice also

that if the width of a HAP-set F2n equals 2, it follows that
FP(F2n) = 0. For example, the fixed part of the HAP-set
given in Table 1 is 4. More in particular, it consists of the
matches Team 1 - Team 7, Team 2 - Team 6, Team 3 - Team
5, and Team 4 - Team 8, which all have to be played in
round 7.

The following lower and upper bounds for FP(F2n) are
readily obtained. Given a feasible, single-break HAP-set, let
(d1, d2, . . . , dn) be its break-gap representation. We use I =
|i : di = 1|.

Lemma 3.1 For any feasible, single-break HAP-set F2n
(2n ≥ 4), we have: 2I ≤ FP(F2n) ≤ nI .

Proof The lower bound follows fromObservation 2.1 and the
fact that a feasible, single-break HAP-set is complementary.
To see the upper bound, consider a round in which no team
has a break, say round r is such a round in a feasible HAP-
set F2n . Since the HAP-set is feasible, there exists a schedule
compatible with it. Since no team has a break in round r , we
can interchange all matches in round r − 1 with all matches
in round r (while inverting the home-away assignment) and
arrive at another feasible schedule. Eachoccurrence ofdi = 1
reveals the presence of a round r in which two teams have a
break, followed by a round r + 1 in which two other teams
have a break. The interchange argument does not hold for the
n matches in round r . ��

3.2.1 The FP of the CPS

We now proceed by investigating the FP of the CPS.We start
by recalling the following definition and insights that come
from Miyashiro et al. (2003).

Definition 3.4 Let U ⊆ F2n be a subset of patterns of order
2n. We define, for each r ∈ {1, . . . , 2n − 1}:
Hr (U ) = |{h ∈ U | hr = H}|,
Ar (U ) = |{h ∈ U | hr = A}|,
m−

r (U ) = min{Hr (U ), Ar (U )},
m+

r (U ) = max{Hr (U ), Ar (U )},
M−

r (U ) = argmin{Hr (U ), Ar (U )}.
Notice that the teams of a setU all have to play each other

once in a feasible schedule, thus resulting in a total amount
of |U |(|U |−1)

2 matches that have to be scheduled between the
teams ofU .We introduce A(U ) = ∑

r m
−
r (U ), summing the

maximumnumber of thematcheswithinU that can be sched-
uled per round. Next, we define α(U ) = A(U ) − |U |(|U |−1)

2
and as observed in Miyashiro et al. (2003), if α(U ) < 0, the
HAP-set is infeasible, since not all matches withinU can be
scheduled.

If α(U ) = 0, we say thatU is tight, meaning that in every
round r , exactly m−

r (U ) matches between teams in U have
to be scheduled and that all teams t ∈ M−

r (U ) have to be
scheduled against other teams of U \ M−

r (U ).
Now, to facilitate our analysis, we first identify subsets of

patterns (teams) from the CPS that are tight.

Definition 3.5 For i = 1, . . . , 
 n
2 �:

Ui = {PA(2n − (2i − 1)), . . . , PA(2n

− 1), PH (1), PH (3), . . . , PH (2i − 1)},
Uc
i = {PH (2n − (2i − 1)), . . . , PH (2n

− 1), PA(1), PA(3), . . . , PA(2i − 1)}.
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Table 3 S1, S2 are compatible
with CPS4; S3, S4 are
compatible with Q

Round S1 S2 Round S3 S4

R1 (1,3),(2,4) (1,4),(2,3) 1 (1,3),(2,4) (1,4),(2,3)

R2 (4,1),(3,2) (3,1),(4,2) 2 (1,4),(3,2) (1,2),(3,4)

R3 (1,2),(4,3) (1,2),(4,3) 3 (1,2),(4,3) (1,3),(4,2)

Notice that {PA(2n − 1), PH (1)} = U1 ⊂ U2 ⊂ . . . ⊂
U
 n

2 � and that |Ui | = |Uc
i | = 2i , 1 ≤ i ≤ 
 n

2 �. We also
identify a set of rounds as follows:

Definition 3.6 For i = 1, . . . , 
 n
2 �:

Ri = {2n − 2i + 1, 2n − 2i + 2, . . . , 2n − 2} ∪ {2n − 1} ∪
{1, 2, . . . , 2i − 3, 2i − 2}.
Observe that {2n − 1} = R1 ⊂ R2 ⊂ . . . ⊂ R
 n

2 � and that
|Ri | = 4i − 3, 1 ≤ i ≤ 
 n

2 �. Indeed, notice that round
2n − 1 ∈ Ri for all i = 1, . . . , 
 n

2 �, and that with each unit
increase of index i four rounds are added, two to the “left”
of round 2n − 1 and two to the “right” of round 2n − 1.

Lemma 3.2 Ui is tight for each i = 1, . . . , 
 n
2 �.

Proof Consider any fixed i with 1 ≤ i ≤ 
 n
2 �. Observe

that for any round r /∈ Ri all patterns in Ui are identical,
i.e., h1r = h2r for all h1, h2 ∈ Ui , r /∈ Ri . It follows that
any match between a pair of teams within Ui takes place
in a round from Ri . Consider the first two rounds in some
set Ri , i.e., rounds 2n − 2i + 1 and 2n − 2i + 2. There is
only one team in Ui , which has a symbol in {H , A} that is
different from the symbols of the other teams from Ui in
these rounds, namely team PA(2n − 2i + 1): the team that
features a break in round 2n−2i+1. Thus,m−

2n−2i+1(Ui ) =
m−

2n−2i+2(Ui ) = 1. Next, for the third and fourth rounds
in Ri , i.e., rounds 2n − 2i + 3 and 2n − 2i + 4, there are
two teams that have a symbol in {H , A} that is different
from the symbols of the other teams fromUi in these rounds,
namely team PA(2n − 2i + 1) and PA(2n − 2i + 3). This
implies that m2n−2i+3(Ui ) = m2n−2i+4(Ui ) = 2. In fact,
continuing in this way, we see m−

2n−2i+ j = � j
2 � and we

arrive at m2n−1(Ui ) = |Ui |
2 . By symmetry, we claim that

m−
2n−1− j = m−

j for j = 1, 2, . . . , 2i − 2. Thus, A(Ui ) =
∑2i−2

r=2n−2i+1 m
−
r (Ui ) = 1+1+2+2+. . .+ |Ui |−2

2 + |Ui |−2
2 +

|Ui |
2 + |Ui |−2

2 + |Ui |−2
2 + . . . + 2 + 2 + 1 + 1 = |Ui |(|Ui |−1)

2 .

It follows that Ui is tight. ��
We are now in a position to prove that, for schedules that

are compatiblewithCPS2n , exactlynmatches haveprecisely
one round in which they can be played.

Theorem 3.2 For each 2n ≥ 4: FP(CPS2n) = n.

Proof To prove this theorem, we (i) identify n matches, each
of which, in any schedule compatible with CPS2n , can be

played in one round only, and (ii) show that, for each other
match, solutions exist where this match is played in different
rounds.
Claim In any schedule compatible with CPS2n , all matches
of the form (PA(2n − (2i − 1)), PH (2i − 1)) are played in
round 2n − 1, for i = 1, . . . , 
 n

2 �.
Proof We prove this claim by induction. Clearly, the state-
ment is true for i = 1 as round 2n − 1 is the only round
in which the match between the two teams PA(2n − 1) and
PA(1) can be played.

Suppose now the claim is true for i = 1, 2, . . . , k − 1
(k − 1 < 
 n

2 �). As Uk is tight by Lemma 3.2, we know that
t = PA(2n − (2k − 1)) has to be scheduled against a team
in Uk in every round where t ∈ M−

r (Uk). This is true for
the rounds 2(k − 1) − 1, . . . , 2n − 1. Notice that in round
2n − 1, by the induction hypothesis, all teams in Uk−1 are
already scheduled against teams fromUk−1; thus, t has to be
scheduled against a team in Uk \ Uk−1 = {t, PH (2k − 1)}.
Therefore, the match (PA(2n − (2k − 1)), PH (2k − 1)) has
to be scheduled in round 2n − 1. ��

By symmetry, it follows that a similar analysis for the
teams from the sets Uc

i , 1 ≤ i ≤ 
 n
2 � implies that all teams

from these sets play a match that can only be played in round
2n − 1. Together with the claim, this means that we have
shown that 
 n

2 � + 
 n
2 � matches can only be played in round

2n − 1. If n is odd, this leaves out two teams: PA(n) and
PH (n). However, since these two teams have to play some
match in round 2n − 1, and as all other teams are already
paired, they have to play each other. Thus, in any feasible
schedule compatible with the CPS, the entire round 2n − 1
consists of matches that can only be played in this round.

Finally, we point out that, due to Observation 2.3, in any
feasible schedule compatible with CPS2n , the matches in
round r can be interchanged with the matches in round r + 1
(r − 1) if r is odd (even), for r = 1, . . . , 2n − 2. This proves
the theorem. ��

Observe that the proof of Theorem 3.2 implies that all
matches in the last round of a schedule compatible with a
CPS are fixed, i.e., these matches cannot be played in any
other round.

3.3 Measure 3: the spread

Given a HAP-set, we call the spread of a match {i, j} the
number of distinct rounds in which it can be played, i.e., for
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which there is a schedule compatible with the given HAP-
set that has this match in this round. Notice that this is not
necessarily equal to the number of rounds r where hir and h

j
r

differ. Next, by simply summing the spread of a match over
all matches, we arrive at the spread of a HAP-set. Formally:

Definition 3.7 The spread ofmatch {i, j}with respect to fea-
sible HAP-set F2n is denoted by spr(i, j) =

|{r : ∃ a schedule S compatible with F2n where match {i, j}
is in round r}|.

Definition 3.8 The spread of a HAP-set F2n is the sum, over
the matches, of the spread of a match, i.e., spread(F2n) =∑

{i, j} spr(i, j).

A higher value of the spread for a feasible HAP-set indi-
cates more flexibility in scheduling individual matches. As
an example, the spread of the HAP-set given in Table 1 is
84 (16 matches can be played in 4 rounds, 8 matches have
2 possible rounds, and the fixed part consists of 4 matches).
We now state an upper bound on the spread of CPS2n .

Theorem 3.3

spread (CPS2n) ≤ n

6

(
10n2 − 9n + 11

)
− �n

2
�.

Proof First, we derive an upper bound for the spread of each
individual match; then, we sum these upper bounds to obtain
the result. Aswe identify each teamwith a pattern PH (2i+1)
or PA(2i+1) 0 ≤ i, j ≤ 2n−1, amatch is either of the form
(PH (2i + 1), PH (2 j + 1)) or (PA(2i + 1), PA(2 j + 1))
(with i < j), or it is of the form (PH (2i + 1), PA(2 j + 1))
(with i, j = 0, . . . , n − 1). We refer to the former set of
matches as matches of Type 1 and to the latter set of matches
as matches of Type 2. Obviously:

spread (CPS2n) =
∑

i< j

(spr(PH (2i + 1), PH (2 j + 1))

+spr(PA(2i + 1), PA(2 j + 1)))

+
n−1∑

i=0

n−1∑

j=0

spr(PH (2i+1), PA(2 j + 1)).

(1)

Consider a match of Type 1. Given two teams PH (2i+1),
PH (2 j + 1) with 0 ≤ i < j ≤ n − 1, their HAPs differ in
the rounds Ri, j := [2i + 1, 2 j]. As two teams can only be
scheduled in rounds where they have a different HAPs, it
follows immediately that, for each 0 ≤ i < j ≤ n − 1:

spr(PH (2i + 1), PH (2 j + 1)) ≤ |Ri, j | = 2( j − i). (2)

Using (2), we are able to bound the sum of the spreads of
the corresponding matches; we find for 2n ≥ 4:

∑

i< j

spr(PH (2i + 1), PH (2 j + 1))

≤
n∑

j=1

j−1∑

i=0

2( j − i)

=
n−1∑

j=1

j( j + 1) =

= 1

6
(n − 1)n(2n − 1) + n(n − 1)

2

= 1

6
((n − 1)n(2n − 1) + 3n(n − 1)) =: Z1,2n .

Notice that we also need to count the spreads of the
matches (PA(2i + 1), PA(2 j + 1)); by symmetry, their sum
will also be upper bounded by Z1,2n , which leads to:

∑

i< j

(spr(PH (2i + 1), PH (2 j + 1))

+spr(PA(2i + 1), PA(2 j + 1))) ≤ 2Z1,2n . (3)

Consider now a match of Type 2. Two teams PH (2i +
1), PA(2 j + 1) have different HAPs in rounds Rc

i, j :=
[1, 2min(i, j)]∪[2max(i, j)+1, 2n−1]. It follows that the
spread of a match between two such teams obeys, for each
i, j = 0, . . . , n − 1:

spr(PH (2i + 1), PA(2 j + 1)) ≤ |Rc
i, j |. (4)

However, herewe can prove better bounds.We distinguish
three cases when looking at matches of Type 2. We assume
i ≤ j , as the analysis is similar if i ≥ j .

Case 1 i = n − j − 1.
From the proof of Theorem3.2, we get immediately
that the match (PH (2i + 1), PA(2 j + 1)) can be
scheduled in round2n−1 if andonly if i = n− j−1;
obviously, in this case, the spread of this match is
equal to 1. Hence, for i, j = 0, . . . , n − 1 with
i = n − j − 1:

spr(PH (2i + 1), PA(2 j + 1)) = 1. (5)

Case 2 i < n − j − 1.
From Definition 3.5, it follows that PH (2i + 1) ∈
Ui , which is a tight set by Lemma 3.2. This means
that in rounds [1, 2i], PH (2i + 1) has to be sched-
uled against 2i teams fromUi . As PA(2 j ′+1) ∈ Ui

if and only if n − j ′ − 1 ≤ i , PA(2 j + 1) /∈ Ui .
Therefore, (PH (2i + 1), PA(2 j + 1)) cannot be
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scheduled in [1, 2i]. Since, in addition, round 2n−1
is not available, it follows that this match can only
beplayed in oneof the rounds in [2 j+1, 2n−2] .We
conclude, for i, j = 0, . . . , n−1with i < n− j−1:

spr(PH (2i + 1), PA(2 j + 1)) ≤ 2(n − j − 1).

(6)

Case 3 i > n − j − 1.
We apply a similar argument as in Case 2. In this
case, we observe thatUn− j−1 is tight, which means
that PA(2 j+1) canonly play teams fromUn− j−1 in
rounds [2 j+1, 2n−2], and PH (2i+1) /∈ Un− j−1

as i > n− j−1. Therefore, (PH (2i+1), PA(2 j+
1)) cannot be scheduled in [2 j + 1, 2n − 1], and
must be scheduled in [1, 2i]. It follows that, for
i, j = 0, . . . , n − 1 with i > n − j − 1:

spr(PH (2i + 1), PA(2 j + 1)) ≤ 2i . (7)

We now derive an upper bound for the sum of the spreads
of a subset of the matches of Type 2. Let 
 n

2 � = k, so n = 2k
if n is even, and n = 2k + 1 if n is odd. We use the right-
hand sides of expressions (5), (6), and (7), to obtain an upper
bound for the sum of the spreads of the subset of the matches
of Type 2, where we let i vary from 0 till k − 1; we find for
each 2n ≥ 4:

k−1∑

i=0

n−1∑

j=0

spr(PH (2i + 1), PA(2 j + 1)) =

=
k−1∑

i=0

n−1∑

j=i

spr(PH (2i + 1), PA(2 j + 1))

+
k−1∑

i=0

i−1∑

j=0

spr(PH (2i + 1), PA(2 j + 1)) =

=
k−1∑

i=0

∑

j :i=n− j−1

spr(PH (2i + 1), PA(2 j + 1))

+
k−1∑

i=0

∑

j : j<n−i−1

spr(PH (2i + 1), PA(2 j + 1))

+
k−1∑

i=0

∑

j : j>n−i−1

spr(PH (2i + 1), PA(2 j + 1))

+
k−1∑

i=0

i−1∑

j=0

spr(PH (2i + 1), PA(2 j + 1)) ≤

≤
k−1∑

i=0

[1 +
n−i−2∑

j=i

2(n − j − 1)

+
⎛

⎝
n−1∑

j=n−i

2i

⎞

⎠ +
i−1∑

j=0

2(n − i − 1)] =

=
k−1∑

i=0

[1 + n(n − 2i − 1) + 2i · i + 2i(n − i − 1)] =

=
k−1∑

i=0

[1 + n2 − n − 2i]

= k(n2 − n + 1) − k(k − 1) =: Z2,2n .

In the above derivations, validity of the inequality follows
from inequalities (5), (6), and (7). Notice that Z2,2n is the
result of the sum of the upper bounds of the spreads corre-
sponding to the matches (PH (2i + 1), PA(2 j + 1)), where
i < k. By symmetry, Z2,2n is also equal to the sum of the
spreads corresponding to matches (PH (2i+1), PA(2 j+1))
where i ≥ n−k (recall that k = 
 n

2 �). If n is even, this would
mean k = n − k and the sum over all upper bounds is equal
to Z2,2n , leading to:

n−1∑

i=0

n−1∑

j=0

spr(PH (2i + 1), PA(2 j + 1)) ≤ 2Z2,2n . (8)

If n is odd, we still need to bound the spread of thematches
(PH (2k + 1), PA(2 j + 1) where j ≥ k, and (PA(2k +
1), PH (2 j + 1)) where j > k. It is not difficult to see that
the sumof the spread of thesematches is bounded from above
by Zodd = 2k · k + 1 + 2k · k = 4k2 + 1, leading to:

n−1∑

i=0

n−1∑

j=0

spr(PH (2i + 1), PA(2 j + 1)) ≤ 2Z2,2n + Zodd .

(9)

Combining (1), (3) and (8), for even n we get an upper
bound of:

spread (CPS2n) ≤ 2Z1,2n + 2Z2,2n =
= 1

6
(2(n − 1)n(2n − 1)

+ 6n(n − 1)) + 2k(n2 − n + 1) − 2k(k − 1) =
= 1

6
(4n3 − 6n2 + 2n + 6n2 − 6n

+ 6n3 − 6n2 + 6n − 6n(k − 1)) =
= 1

6
(10n3 − 6n2 + 8n − 6nk) =

= 1

6
(10n3 − 9n2 + 8n).
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Combining (1), (3) and (9), for odd n we get an upper
bound of:

spread (CPS2n) ≤ 2Z1,2n + 2Z2,2n + 4k2 + 1 =
= 1

6
(2(n − 1)n(2n − 1)

+ 6n(n − 1)) + 2k(n2 − n + 1)

− 2k(k − 1) + 4k2 + 1 =
= 1

6
(2(n − 1)n(2n − 1) + 6n(n − 1)

+ 6(n − 1)(n2 − n + 1) + 12k(k + 1) + 6) =
= 1

6
(10n3 − 12n2 + 8n + 6(n − 1)(k + 1) + 6) =

= 1

6
(10n3 − 6n2 + 8n − 6(nk − k + n)) =

= 1

6
(10n3 − 9n2 + 8n + 3).

When n is even, 3n = 6� n
2 �, and when n is odd, 3n =

6� n
2 � − 3. Therefore, we can write, for any n, that:

spread (CPS2n) ≤ 1

6
(10n3 − 9n2 + 11n) − �n

2
�.

This finishes the proof. ��
We can calculate the actual value of the spread of CPS2n

using integer programming (see Sect. 4). In Table 4, we
explicitly list the value of the spread of CPS2n and its upper
bound for values of 2n up to 30, and note that this bound is
tight. In fact, we conjecture that this bound is tight for any
even number of teams.

Conjecture 3.1

spread (CPS2n) = n

6

(
10n2 − 9n + 11

)
− �n

2
�.

4 Computing themeasures

InSect. 4.1,we introduce twomathematical formulations that
are instrumental in computing the flexibility measures pro-
posed earlier. In Sect. 4.2, we present computational results
for single-break HAP-sets.

4.1 Mathematical formulations

In order to check whether a given HAP-set F2n has a width of
at leastW , we develop a feasibility integer programming (IP)
formulation, such that if this formulation has a feasible solu-
tion,W pairwisematch-distinct schedules can be constructed
that are compatible with F2n . The given HAP-set consist of
2n HAPs hi , represented by the parameter hir which equals 1

if hi has a home game on round r and 0 otherwise. We refer
to ti as the team that plays according to HAP hi . The binary
decision variable xw

i, j,r equals 1 if in schedulew, ti is playing
a home game against team t j on round r , and 0 otherwise.
We use R to denote the set of rounds {1, 2, ..., 2n − 1}.

∑
r∈R(xw

i, j,r + xw
j,i,r ) = 1 ∀i, j ∈ F2n : i �= j, w ∈ {1, . . . ,W } (10)

∑
j∈F2n (x

w
i, j,r + xw

j,i,r ) = 1 ∀i ∈ F2n, r ∈ R, w ∈ {1, . . . ,W } (11)

xw
i, j,r ≤ hir ∀i, j ∈ F2n, r ∈ R, w ∈ {1, . . . ,W } (12)

xw
i, j,r ≤ 1 − h j

r ∀i, j ∈ F2n, r ∈ R, w ∈ {1, . . . ,W } (13)
W∑

w=1
xw
i, j,r ≤ 1 ∀i, j ∈ F2n, r ∈ R (14)

xw
i, j,r ∈ {0, 1} ∀i, j ∈ F2n, r ∈ R, w ∈ {1, . . . ,W } (15)

Constraints (10) enforce that each match is played exactly
once in each schedule, while constraints (11) make sure that
each team plays exactly one match per round in each sched-
ule. Constraints (12) and (13) accomplish that a home match
for ti against t j can only be scheduled on round r if hi fea-
tures a home match and h j specifies an away match on that
round. The fact that all W schedules need to be pairwise
match-distinct is enforced by constraints (14).

The width of a HAP-set F2n can be determined by solving
formulation (10)–(15) by a binary search on potential val-
ues for W . Moreover, it is possible to adapt this formulation
to study properties of patterns that allow the existence of a
feasible HAP-set with width at least W . This can be done
by treating the hir parameters as variables and then adding
constraints on these to reflect the properties one wants the
patterns to have. Furthermore, an objective function, e.g.,
minimizing the total number of breaks, could be added.

To compute the FP, we consider the model above forW =
2, where we, for a given match between ti ′ and t j ′ , replace
constraints (14) with

W∑

w=1

(xw
i ′, j ′,r + xw

j ′,i ′,r ) ≤ 1 ∀r ∈ R. (16)

This yields a feasibility IP that allows to check whether or
not the match between ti ′ and t j ′ is part of the fixed part
of HAP-set F2n . FP(F2n) is then obtained by summing the
number of IPs that are infeasible over all matches {ti ′ , t j ′}.

Probably the most challenging measure, from a compu-
tational point of view, is the spread. When we consider
formulation (10)–(15) for W = 1, formulation (17)–(21)
arises. Note that we dropped the index w in the x variables
and that constraint (14) is now redundant. Consider now a
match between ti ′ and t j ′ , to be played in a particular round
� (regardless of the home advantage) as enforced by con-
straint (22).

∑
r∈R(xi, j,r + x j,i,r ) = 1 ∀i, j ∈ F2n : i �= j (17)
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Table 4 Values for the spread
and the upper bound for CPS
with 2n teams

2n 4 6 8 10 12 14 16 18 20 22 24 26 28 30

upper bound 10 35 88 177 314 507 768 1105 1530 2051 2680 3425 4298 5307

spread(CPS) 10 35 88 177 314 507 768 1105 1530 2051 2680 3425 4298 5307

∑
j∈F2n (xi, j,r + x j,i,r ) = 1 ∀i ∈ F2n, r ∈ R (18)

xi, j,r ≤ hir ∀({i, j}, r) �= ({i ′, j ′}, �) (19)

xi, j,r ≤ 1 − h j
r ∀({i, j}, r) �= ({i ′, j ′}, �) (20)

xi, j,r ∈ {0, 1} ∀i, j ∈ F2n, r ∈ R (21)
xi ′, j ′,� + x j ′,i ′,� = 1 (22)

The idea is that by solving the resulting feasibility IP for
eachmatch between ti ′ and t j ′ and each round �which is com-
patible with the given HAP-set F2n , we can find the spread
by solving at most n × n

2 × (2n − 1) IPs. Indeed, each round
has n × n

2 H-A pairs, and for each of these, in each of the
2n−1 rounds, after solving formulation (17)–(22), we record
yes/no whether this match can be played in this round. Next,
enumerating gives us the spread of each match, from which
we determine the spread of the HAP-set.

Note that this also gives us the fixed part of the given
HAP-set, however, not before solving formulation (17)–(22)
O(n3) times (as opposed to solving formulation (10)–(13),
(15), (16) O(n2) times).

4.2 Results

We have used the formulations in Sect. 4.1 to compute the
spread and the fixed part for all D-notations corresponding
to feasible single-break HAP-sets of 2n ≤ 16. Recall that
each such D-notation represents a family of HAP-sets with
the same value for the flexibility measures (see Section 2.1).
All computations were done using IBM Ilog Cplex 12.8 on
a Dell Latitude 7490 with Intel Core i7-8650 @ 1.9 GHz
and 16 GB RAM. IP models (10)–(16) and (17)–(22) were
solved in less than one second; all flexibility measures were
computed in less than 1 minute for up to 16 teams. Recall
that we know that the width equals one for all single-break
HAP-sets from Theorem 3.1.

The results are summarized in Table 5. While for 4 and 6
teams, all single-break HAP-sets are equivalent with respect
to all flexibility measures, this is no longer the case for 8
teams and more. It turns out that for 8 teams, the popular
canonical pattern set is the best choice with respect to the
spread and as good as any other single-break HAP-set when
we focus on the fixed part. For 10 to 16 teams, however, the
canonical pattern set is clearly dominated by another type of
schedule, indicated by theD-notation 312...21.Moreover, for
all values of 2n thatwe considered, this single-breakHAP-set
shows the highest spread as well as the lowest fixed part.

Table 5 Flexibility measures for single-break HAP-sets for up to 16
teams

2n D-notation spread FP

4 21 (CPS) 10 2

6 221 (CPS) 35 3

8 2221 (CPS) 88 4

3121 76 4

10 22221 (CPS) 177 5

31221 161 4

12 222221 (CPS) 314 6

312212 266 6

312221 332 4

321221 266 6

313121 254 6

14 2222221 (CPS) 507 7

3122212 471 6

3122221 557 4

3212221 471 6

3123121 423 7

3131221 439 6

3213121 423 7

16 22222221 (CPS) 768 8

31222122 686 8

31222212 796 6

31222221 864 4

32122212 632 8

32122221 796 6

32212221 686 8

31223121 672 8

31231221 690 6

31312212 614 8

31312221 838 6

32122131 614 8

32123121 684 8

32131221 690 6

32213121 672 8

31313121 640 8

41213121 552 8

We also point out the following: we claim that if some
match (P(r), P(s)) is in the FP, then its complementary
match, defined as (Pc(r), Pc(s)) is also in the FP. Thus, the
set of matches in the FP can be seen as pairs. Interestingly,
for 2n ∈ {10, 14}, there exist feasible single-break HAP-sets
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with an odd number of matches in the FP. This can only hap-
pen when the complement of a match is the match itself, as in
thematch (PH (r), PA(r)). Thus, in these cases, although the
match is between two teams that have complementary HAPs
(and hence could, seemingly, play in each round), apparently,
this match can only be played in one round only.

5 Conclusion

In a first-break-then-schedule approach, it is important to
have freedom to schedule the individual matches after the
home-away patterns have been chosen. We have proposed
three measures that indicate the amount of freedom asso-
ciated with a particular HAP-set. We have theoretically
established how the most popular HAP-set, the canonical
pattern set (CPS), fares on these measures. Also, we have
computed, using integer programming, for all feasible single-
break HAP-sets up to order 16, the numerical values of the
proposed measures. It is interesting to see that, when the
number of teams exceeds 10, the CPS is not the most flexible
HAP-set.

More generally, while we have focused here on single
break HAP-sets, we expect that, when allowing HAPs with
break-numbers of value 2 and larger, one can construct HAP-
sets that score better onourflexibilitymeasures, i.e., achieve a
better value for thewidth, fixed part, and spread, respectively.
We leave this as an interesting direction to explore.
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